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nonlinear dynamics

D F Escande
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E-mail: dominique.escande@univ-amu.fr

Abstract. This review focusses on the contributions of plasma physics to chaos and

nonlinear dynamics bringing new methods which are or can be used in other scientific

domains. It starts with the development of the theory of Hamiltonian chaos, and then

deals with order or quasi order, for instance adiabatic and soliton theories. It ends

with a shorter account of dissipative and high dimensional Hamiltonian dynamics,

and of quantum chaos. Most of these contributions are a spin-off of the research on

thermonuclear fusion by magnetic confinement, which started in the fifties. Their

presentation is both exhaustive and compact. [21 July 2016]

PACS numbers : 01.65.+g, 05.45.-a, 52.
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1. Introduction

In the second half of the twentieth century, the magnetic confinement of charged particles

in magnetic bottles was studied to heat plasmas to the high temperatures required

for controlled thermonuclear fusion. The basic idea was to put particles in magnetic

fields whose lines wind upon magnetic surfaces. Rapidly, it turned out that these

lines are described by low dimensional Hamiltonian mechanics, forcing physicists to

revisit classical mechanics and to get acquainted with the related results mathematicians

started to develop in the first half of the twentieth century†. Unfortunately, though very

useful, these results were not sufficient to deal with magnetic confinement. Fortunately,

the development of computers and of numerical calculations enabled them to visualize

dynamics, to compute their features, and to back up the development of non rigorous

approaches. While textbooks were full of examples with regular motion, chaos turned

out to be an ubiquitous behaviour of classical mechanics!

A parallel endeavour in the second half of the twentieth century occurred in the

context of accelerator physics, with the aim to drive particles to the high energies

necessary for studying the physics of elementary particles. This means avoiding chaos

and not describing it, which limits the scope of studies on this topic. In contrast, the

quest for magnetic fusion requires also the study of chaos itself, in order to understand

chaotic transport. Indeed, this issue is present in very different parts of the research

on magnetic fusion: magnetic field line topology, dynamics of particles in magnetic

fields, turbulent transport, radiofrequency heating, ray dynamics, etc‡... This broad

scope of problems naturally triggered a series of contributions to nonlinear dynamics

and chaos. These contributions are the topic of the present topical review. In order

to limit its length, it focusses on the contributions bringing new methods which are or

can be used in other scientific domains. These contributions are of several types. There

are those of plasma physicists and those inspired by plasma physics to scientists of

other fields of science, mathematicians and astronomers in particular. There are also

those of plasma physicists initially working on chaos and nonlinear dynamics, who then

decided to dedicate their later research to this exciting and challenging topic. Plasma

physics may not vindicate their whole successive work, but at least the initial impetus

it provided them.

This topical review starts with the development of the theory of Hamiltonian chaos

in the context of plasmas (section 2). Indeed, this was a turning point in plasma

physics, because this development uncovered the then mysterious dynamics underlying

phenomena traditionally tackled by statistical approaches; in particular, thanks to

images provided by numerical calculations. This induced a strong interest in the whole

plasma community, even by non practitioners of chaos.

† (Morrison 2000b) makes at length the point that plasma physics re-ignited research in classical

dynamics.
‡ Chaos is at work in particular in anomalous transport of fusion plasmas, when heating magnetized

plasmas by cyclotronic waves, and in the deep penetration of lower hybrid rays in such plasmas.
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The dynamics of complex systems generally exhibits a mixture of ordered and

chaotic motion. Furthermore, a chaotic orbit needs a sufficient time to really look

chaotic. Therefore, there is a large part of the nonlinear dynamics of plasmas which

deals with order or quasi order, for instance adiabatic theory. This is the topic of the

second part of this topical review (section 3). It deals, in particular, with soliton theory,

which is an early landmark of the contributions of plasma physics to nonlinear dynamics.

The following parts are shorter and deal with high dimensional Hamiltonian

dynamics (section 4), dissipative dynamics (section 5), quantum chaos (section 6), and

possible extensions (section 7).

Writing the history of the contributions of plasma physics to chaos and nonlinear

dynamics is a delicate endeavour. Indeed, the beginning of this history corresponds

to a literature whose access is often not easy, in particular for linguistic reasons, while

the more modern part suffers from the present deluge of publications where interesting

results may be drowned. In order to limit bias, a series of colleagues listed in the

acknowledgements kindly provided me with their views on the topic of this topical

review. This considerably enriched its initial scope, but it may still be incomplete.

Telling the same story with equations and figures would require a book. The present

compact and hopefully close to exhaustive paper is tailored for the plasma physics

community, and especially the fusion one, where most concepts underlying this story

are well-known. In any event, more details can be obtained in the about 250 quoted

references with a simple click. However, in order to help non specialists to access more

easily to the basics of the main issues, references to sections of review papers and

textbooks are provided in the corresponding sections of this review and are indicated

with “Pedagogy”.

2. Hamiltonian chaos

2.1. How did the story start?

After the second world war, classical mechanics was not fashionable at all among

physicists. Why did plasma physics happen to contribute to this field? It is because

many plasma physicists were involved in the development of thermonuclear fusion by

magnetic confinement. The story can be told as follows.

In 1950, Spitzer invents the stellarator, and in 1951 Sakharov and Tamm invent

the tokamak. While the principle of the latter comes with a regular magnetic field, this

cannot be taken for granted for the former, a serious issue for a magnetic configuration

meant to be a magnetic bottle! This forces theoreticians to start the still on-going

study of the nature of magnetic field lines of stellarators. Even if a stellarator looks

like a figure 8 as Spitzer’s one, topologically it is a torus. Therefore, the regularity of

its magnetic field lines can be checked by looking at their successive intersections with

the surface of section defined by a given toroidal angle. A massless charged particle

streaming freely along a given magnetic field line crosses such a surface periodically in
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time. By analogy, it is natural to consider this line as an orbit parameterized by a

time which is the toroidal angle. Then, studying the nature of magnetic field lines boils

down to the study of the nature of orbits in a torus, and their successive intersections

build the so-called Poincaré map of their dynamics†. Magnetic flux conservation makes

such a map area-preserving, implying a relationship between magnetic field lines and

Hamiltonian systems.

While in 1952 Kruskal‡ introduces and iterates area preserving maps for stellarator

magnetic field lines (Kruskal 1952), they are fully recognized as Hamiltonian systems

only ten years later by fusion physicists (Kerst 1962, Gelfand, Graev, Zueva, Morozov

& Solov’ev 1962, Morozov, Solov’ev, & Leontovich 1966). However, the general and

explicit Hamiltonian description for field lines is provided by Boozer even two decades

after (Boozer 1981)§. Two years later, a more fundamental description is given by

two other plasma physicists, Cary and Littlejohn, in terms of an action principle that

depends on the vector potential‖ (Cary & Littlejohn 1983)¶. In 1986, Elsässer completes

the picture by showing the equivalence of changes of gauge and of canonical variables

(Elsässer 1986).

Having a Hamiltonian description of magnetic field lines is nice, but when coming

to the numerical calculation of Poincaré maps, the integration of orbits from differential

equations is a formidable task for the computers of the sixties! This motivates physicists

to derive explicit area preserving maps corresponding to a full step of the Poincaré map.

The paradigm of such maps is the standard map, also called Chirikov-Taylor map.

This map appeared first in 1960 in the context of electron dynamics in the microtron+

(Kolomenskii 1960), a type of particle accelerator concept originating from the cyclotron

in which the accelerating field is not applied through large D-shaped electrodes, but

through a linear accelerator structure. This map was independently proposed and

† This technique is also used experimentally. The first instance is the mapping of the magnetic field

lines of the model-C Stellarator (Sinclair, Hosea & Sheffield 1970).
‡ Kruskal is quoted several time in this topical review. Indeed, he made essential contributions to

nonlinear dynamics and chaos. He was also quite influential. In particular in astrophysics, as can be

seen in the acknowledgements of the Hénon-Heiles paper where he is thanked (Hénon & Heiles 1964).

Indeed, this famous work was performed while Michel Hénon was in Princeton. It describes the non-

linear motion of a star around a galactic center where the motion is restricted to a plane, and uncovers

this motion can be chaotic.
§ Boozer is a plasma physicist whose paper is in Physics of Fluids which published both fluid and

plasma papers at that time.
‖ Reference (Piña & Ortiz 1988) describes how to implement this technique in concrete cases and

illustrates its large flexibility.
¶ This action principle is present implicitely in (Morozov et al. 1966) where a zero gyro-radius limit of

the particle action was taken.
+ According to reference 2 of (Melekhin 1975), it appeared ten years earlier in Kolomenskii’s PhD

thesis at the Lebedev Institute.
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numerically studied in a magnetic fusion context by Taylor † in 1968, and by Chirikov‡

in 1969 (also for particle accelerators) (Chirikov 1969). The latter also recovers this map

on linearizing the motion in the vicinity of a separatrix (section 4.4 of (Chirikov 1979)).

2.2. Transition to chaos in Hamiltonian systems

In the sixties, numerical simulations make visible that the phase-space of a typical

1.5 degree-of-freedom Hamiltonian system has intertwined zones of regular and chaotic

orbits, a fact known by mathematicians for decades. For plasma physicists it is

important to know how broad are chaotic domains§, and the threshold where such

domains connect to make sizeable chaotic “seas” for systems with a control parameter.

The latter issue leads Chirikov to derive in 1959 an approximate criterion (Chirikov 1959,

Chirikov 1979), described below, whose use becomes rapidly ubiquitous. This criterion

works for Hamiltonians, which are the sum of an integrable part and of a perturbation

written in terms of the action-angle variables of the integrable part. Kolmogorov-Arnold-

Moser (KAM) theory (Kolmogorov 1954, Moser 1962, Arnold 1963a) reveals that the

extension of chaotic domains is bounded by KAM tori‖. Therefore, a more rigorous

approach to the estimate of the width of chaotic domains goes through the estimate of

the threshold of break-up of KAM tori. Greene¶ achieves this in 1979 in a very accurate

way through a criterion (Greene 1979), described below, which is explicitly implemented

for the standard map+. As a result, the transition to chaos is then described in two

complementary ways using Hamiltonians and maps. The next two subsections tell the

corresponding story. The first one describes the Hamiltonian approach which started

first historically.

† Taylor writes : “At the time I was interested in [the standard map], I had just obtained an early desk

calculator which could be programmed using three stored addresses (x, y, z), but more importantly it

could be connected to a mechanical plotter! One lunch time I set it up to iterate the equations above,

and to plot the successive points - which it did at about two per second! When I returned from lunch

there was the first picture of regular and chaotic regions. The others followed later. I did not consider

this work suitable for publication, but I did include the figures in the Culham Progress report for

that year (1968-9). This was noticed and taken up by others, notably Froeschlé (Froeschlé 1970) who

published the figures (with acknowledgment) and by Stix, who included them in his lectures. So the

model became quite well known.” (Taylor 2015).
‡ Chirikov is quoted repeatedly in this paper for contributions in many different problems of nonlinear

dynamics and chaos. A summary of his main contributions can be found in (Bellissard, Bohigas, Casati

& Shepelyansky 1999), published in a special issue of Physica D in his honor.
§ Then called “stochastic domains”. The change of name is motivated by several reasons. A simple

one comes from the inspection of the time evolution of two nearby orbits at initial time. In a chaotic

system they diverge exponentially, but not in a stochastic one.
‖ The quotations of (Arnold 1963b) and (Moser 1968) show that plasma physics is also a source of

inspiration for these mathematicians.
¶ Greene is quoted repeatedly in this paper for contributions in many different problems of nonlinear

dynamics and chaos. A summary of his main contributions can be found in (Morrison, Johnson &

Chan 2008).
+ Scalings in (Greene 1968) anticipate this result.
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2.2.1. Working with Hamiltonians

Resonance-overlap criterion In 1959, Chirikov deals with the confinement of charged

particles in magnetic mirror traps. He focusses on resonances between the Larmor

rotation of charged particles and their slow oscillations along the lines of force.

In agreement with numerical simulations, he hypothesizes that when neighboring

resonances overlap, there is a complete exchange of energy among the degrees of

freedom of the particle, so that the particle escapes from the trap (Chirikov 1959)

(Pedagogy: section 4.2 of (Lichtenberg & Lieberman 2013) and section 5.2.2 of (Elskens

& Escande 2003)); in modern language, this corresponds to a large scale chaotic motion

of the particle. This criterion is immediately applied successfully to the determination

of the confinement threshold for experiments with plasmas of open mirror traps†

(Rodionov 1959). This simple to implement criterion becomes rapidly famous among

physicists‡, and especially after Chirikov’s review paper§ (Chirikov 1979). The resonant

domain of a single wave and the overlap of the resonance domains of two waves can

be observed in a traveling wave tube, a kind of noiseless beam-plasma system (Doveil,

Auhmani, Macor & Guyomarc’h 2005). Rechester and Stix, when dealing with magnetic

chaos due to weak asymmetry in a tokamak, use this criterion to compute the width

of narrow chaotic (“stochastic”) layers next to the separatrix of an integrable system

when it is perturbed‖ (Rechester & Stix 1976).

This criterion is useful for systems with many degrees of freedom too. Indeed, it

can be directly applied to determine the energy border for strong chaos in the Fermi-

Pasta-Ulam system when only a few long wave modes are initially excited (Chirikov

& Izrailev 1966, Chirikov, Izrailev & Tayursky 1973). In (Escande, Kantz, Livi &

Ruffo 1994) one computes the Gibbsian probability distribution of the overlap parameter

s corresponding to two nearby resonances of the Hamiltonian of a chain of rotators.

Requiring the support of this distribution to be above the threshold of large scale chaos,

gives the right threshold in energy above which the Gibbsian estimate of the specific heat

† References (Chirikov 1987, Chirikov 1987b, Chirikov 1993) yield a broad account of particle

confinement in magnetic traps.
‡ An indication of the importance of this criterion is obtained when typing “resonance overlap

criterion” in Google Scholar: 209,000 references are obtained; (Chirikov 1979) is quoted 4,200 times

according to the Web of Science. Though not quoting Chirikov’s seminal work, reference (Rosenbluth,

Sagdeev & Taylor 1966) contributed to publicize the concept of resonance overlap too. In reality,

the resonances supposed to overlap exist only in the limit where only one is present and the system

is integrable. When the size of both trapping domains increases, a Poincaré map shows that chaos

makes progressively the integrable separatrices fuzzy, which rules out any overlap. Furthermore, a

perturbative calculation shows there is a mutual repulsion of the separatrices, which makes their overlap

more difficult (Escande 1979). Therefore, the resonance overlap criterion should be more adequately

named a “heteroclinic connection criterion” (see figure 1 of (Elskens & Escande 1993)).
§ This paper brings also a wealth of information about Hamiltonian chaos which is very useful for

physicists of the eighties to get acquainted with chaos theory (“stochasticity theory” at that time).
‖ Here again, Chirikov’s authorship of the resonance overlap criterion is overlooked. First estimates of

the width of chaotic layers are given in (Zaslavsky & Filonenko 1968, Zaslavsky & Chirikov 1971) with

the overlap criterion. Rechester and Stix’ estimates are improved in (Escande 1982a).
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at constant volume agrees with the time average of the estimate given by the fluctuations

of the kinetic energy: one has a self-consistent check of the validity of Gibbs calculus

using the observable s!

Renormalization approach At the end of the seventies, Doveil is working on ion acoustic

waves in a multipole plasma device where these waves are dispersive. This leads him

to study numerically the (chaotic) dynamics of ions when several waves are present†.

For simplicity he focusses on the two-wave case. The Poincaré map corresponding to

the motion of one particle in two longitudinal (plasma) waves displays a sequence of

resonance islands related to higher order nonlinear resonances which become explicit

by canonical transformations‡. Following the philosophy of Chirikov’s review paper

(Chirikov 1979), it is then tempting to apply the resonance overlap criterion to two

neighboring such resonances. The criterion is easier to apply if the corresponding

Hamiltonian is approximated by a simpler one... corresponding to the motion of one

particle in two longitudinal waves. The passage from the initial two-wave Hamiltonian to

the transformed one is similar to the transform of Kadanoff’s block-spin renormalization

group (Escande & Doveil 1981a, Escande & Doveil 1981b) (Pedagogy: section 4.5

of (Lichtenberg & Lieberman 2013) and section 5.4 of (Elskens & Escande 2003))...

where Chirikov’s criterion is absent! Its practical implementation for more general

Hamiltonians is then described in (Escande, Mohamed-Benkadda & Doveil. 1984) and

in sections 3.1 and 4.1 of the review paper (Escande 1985). Appendix B of the latter

reference shows how to derive a renormalization for any KAM torus trapped into a

resonance island. A one parameter renormalization scheme is derived for “stochastic

layers” in (Escande 1982a). All these schemes are approximate ones in a physicist

sense: the approximations are not mathematically controlled.

Later on several mathematical works try and cope with this shortcoming. A way

to make the 1981 renormalization scheme rigorous is indicated in (MacKay 1995). The

ideas proposed originally in (Escande & Doveil 1981a, Escande & Doveil 1981b) lead

to approximate renormalization transformations enabling a very precise determination

of the threshold of break-up of invariant tori for Hamiltonian systems with two

degrees of freedom (Chandre & Jauslin 2002); these transformations are similar to

the transformation of Kadanoff’s block-spin renormalization, in the sense that they

combine a process of elimination and rescaling. In (Chandre & Jauslin 2002) the break-

up of invariant tori proves to be a universal mechanism and the renormalization flow is

† Computers at that time are slow enough for the successive points of the Poincaré map to come

successively on the screen of a monitor. This makes obvious that chaotic motion is not really stochastic.

In particular, when islands are present in the chaotic sea, one can see long phases where the orbit looks

as trapped in the corresponding resonances, a feature incompatible with a stochastic process. This is

due to a self-similar structure producing strong correlations and incomplete chaos (Zaslavsky, Stevens

& Weitzner 1993).
‡ This set of islands has a signature, a “devil’s staircase”, which is experimentally observable in a

traveling wave tube (Macor, Doveil & Elkens 2005). The cancellation of a set of islands can build a

barrier to transport in the same device (Chandre, Ciraolo, Doveil, Lima, Macor & Vittot 2005).
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precisely described. In 2004, Koch brings this type of approach to a complete rigorous

proof (Koch 2004): it is a computer assisted proof of the existence of a fixed point with

non-trivial scaling for the break-up of golden mean KAM tori.

Other approaches For Hamiltonians with zero or one primary resonance, one cannot

apply the resonance overlap criterion or the above renormalization approach. Reference

(Codaccioni, Doveil & Escande 1982) shows how to compute the threshold of large scale

chaos by using the blow-up of the width of chaotic layers† as computed in (Rechester &

Stix 1976).

In 2000, the study of the Poincaré map of magnetic field lines in a toroidal

confinement configuration called “reversed field pinch” germane to the tokamak is the

occasion of a paradoxical discovery: chaos decreases when a magnetic perturbation

increases, in contradiction with the prediction of the resonance overlap criterion! This

phenomenon stems from a separatrix disappearance due to an inverse saddle-node

bifurcation (Escande, Paccagnella, Cappello, Marchetto & D’Angelo 2000), a process

likely to occur in many Hamiltonian systems‡.

2.2.2. Working with maps In the seventies, Greene is interested in the nature of

magnetic field lines in stellarators, and in their corresponding return area-preserving

map. He naturally focusses on the simplest example of such maps, the standard map,

which is very easy to iterate on computers of that time. At the end of the 70’s,

in the same way as it is natural to focus on higher order nonlinear resonances in a

Hamiltonian description, it is natural to focus on periodic orbits with a long period

in area-preserving maps. These periodic orbits correspond to O-points and X-points of

resonance islands. While studying the stable periodic orbits approximating a given KAM

torus when truncating the continuous fraction expansion of its winding number at high

order, Greene notes they become unstable when the KAM torus breaks up. This leads

him to his famous “residue criterion” which provides a method for calculating, to very

high accuracy, the parameter value for the destruction of the last torus§ (Greene 1979)

(Pedagogy: section 3.2a of (Lichtenberg & Lieberman 2013)). Defining the threshold of

large scale chaos in a given domain of phase space means finding the threshold of break-

up of the most robust KAM torus. The continued fraction expansion of their winding

† One of the considered cases is the polynomial Hénon-Heiles Hamiltonian (Hénon & Heiles 1964).

However, the technique of (Codaccioni et al. 1982) is unable to detect integrability. Indeed, it predicts

a blow-up of the width of a chaotic layer also for the integrable Hamiltonian obtained from Hénon-Heiles’

one by changing a sign in its formula!
‡ It occurred in the discharges at high current of the RFX-mod reversed field pinch, first when

stimulated by a modulated edge toroidal field (Lorenzini, Terranova, Alfier, Innocente, Martines,

Pasqualotto & Zanca 2008), and then spontaneously (Lorenzini, Martines, Piovesan, Terranova, Zanca,

Zuin, Alfier, Bonfiglio, Bonomo, Canton et al. 2009).
§ Four theorems show that large parts of this criterion have a firm foundation, but not all cases have

been analyzed: for instance, can a non-smooth circle have residues going to infinity (MacKay 1992)?

If so, then one cannot infer from residues going to infinity that there is not a circle.
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number is found numerically to have a special form exhibited in (Greene, MacKay &

Stark 1986)†.

Greene’s work is placed in a renormalization group setting by MacKay, then his

student (MacKay 1983). This work is closely related to the approximate renormalization

described above. This triggers a dialog between the latter renormalization and the

rigorous one under the auspices of Greene’s criterion during almost a decade (Schmidt

1980, Doveil & Escande 1981, Doveil & Escande 1982, Schmidt & Bialek 1982, Escande

& Mehr 1982c, Mehr & Escande 1984, MacKay 1988a). The existence of a fixed point

with a non-trivial scaling for MacKay’s renormalization is finally proved in 2010 (Arioli

& Koch 2010).

Reference (MacKay 1989) derives a simple criterion for non-existence of invariant

tori. When applied to the Hamiltonian describing the motion of a particle in the field

of two waves of section 2.2.1, it gives results in close agreement with those of Greene’s

residue method.

Till now we considered maps such that the period of the motion on a torus

is a monotonic function of the action of the torus: they are twist maps. We

now deal with non-twist systems where the period goes through an extremum on a

given torus; in such systems, the overlap criterion fails and KAM theorem cannot

be applied. They are introduced in 1984 by Howard, motivated by multifrequency

electron-cyclotron-resonance heating in plasmas (Howard & Hohs 1984). He derives an

accurate analytic reconnection threshold of the approximate separatrices of the pairs of

islands corresponding to actions symmetrical with respect to that of the extremum

period. Motivated by the study of magnetic chaos in systems with reversed shear

configurations, del-Castillo-Negrete and Morrison propose a prototype map called the

standard non-twist map, and present a detailed renormalization group study of the non-

twist transition to chaos (del Castillo-Negrete & Morrison 1992a, del Castillo-Negrete,

Greene & Morrison 1996, del Castillo-Negrete, Greene & Morrison 1997) : there is a new

universality class in this transition. This stimulates a series of rigorous mathematical

results: in (Delshams & la Llave 2000), the proof of persistence of critical circles

and a partial justification of Greene’s criterion, as generalized in (del Castillo-Negrete

et al. 1996). In (Gonzalez-Enriquez, Haro & la Llave 2014), the bifurcations of KAM

tori are studied by using the classification of critical points of a potential as provided by

Singularity Theory. This approach is applicable to both the close-to-integrable case and

the far from integrable case whenever a bifurcation of invariant tori has been detected

numerically, but the system is not necessarily written as a perturbation of an integrable

one.

2.2.3. Finite time mappings for Hamiltonian flows In view of the many techniques

which can be used for area preserving maps, it is interesting to construct a finite

† Greene’s criterion originates from stellarator studies. In 1984 it feedbacks on them by enabling the

derivation of Hamiltonian systems that are for all practical purposes integrable, with the particular

application to design stellarators with almost non-chaotic magnetic fields (Hanson & Cary 1984).
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time mapping corresponding to a given Hamiltonian flow. In the nineties, motivated

by various plasma physics issues, Abdullaev develops to this end his mathematically

rigorous “mapping method” based on Hamilton-Jacobi theory and classical perturbation

theory which works for Hamiltonians that are the sum of an integrable part and of a small

perturbation (Abdullaev 1999, Abdullaev 2002) (See (Abdullaev 2006, Abdullaev 2014a)

for a systematic description of the method). This method can be used to find infinitely

many periodic orbits of a perturbed Hamiltonian system, and not only primary ones

(see Sec. 7.2.2 in (Abdullaev 2014a)). It can also be used as a method of symplectic

integration, with an accuracy controlled by the product of the perturbation parameter

and of the mapping time step (Abdullaev 2002). The method enables to derive the

canonical versions of mappings widely used in the theory of chaotic Hamiltonian systems

and of their applications (see (Abdullaev 2004a, Abdullaev 2006, Abdullaev 2007) and

references therein).

Using this method, the canonical separatrix mapping describing the dynamics

near a separatrix is derived in (Abdullaev 2004b, Abdullaev 2005), while keeping the

canonical variables of the corresponding Hamiltonian, an improvement over Chirikov’s

separatrix mapping (Chirikov 1979). The new mapping is consistent with the rescaling

invariance described in section 2.3.4, and enables the derivation of analytical formulas

for the stable and unstable manifolds of the saddle point (Abdullaev 2014b, Abdullaev

2014a).

2.3. Chaotic transport

In Hamiltonian systems with 1.5 or 2 degrees-of-freedom, when KAM tori break up in

a given domain of phase space, chaotic transport sets in. In the sixties, the lack of

mathematical results enabling the description of this transport and its quantification,

leads plasma physicists to assume that chaotic motion is a stochastic one close to a

Brownian motion and has a diffusive nature. However, as shown below, this is not the

whole story!

2.3.1. Quasilinear diffusion

As an Ansatz In 1966, Rosenbluth, Sagdeev, and Taylor are interested in the

destruction of magnetic field surfaces by magnetic field irregularities (Rosenbluth

et al. 1966). They state that if there is resonance overlap, “then a Brownian motion of

flux lines and rapid destruction of surfaces results”. They go to the action-angle variables

of the unperturbed magnetic field, and write a Liouville equation for field lines which is

very similar to the Vlasov equation. Since the magnetic modes play a role for field lines

analogous to that of Langmuir waves for electrons in a plasma, they use the quasilinear

estimate of transport corresponding to the latter case. This estimate, introduced in

1961 (Romanov & Filippov 1961), had been made popular in 1962 by two papers

on the bump-on-tail instability published in two successive issues of Nuclear Fusion
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(Vedenov, Velikhov & Sagdeev 1962, Drummond & Pines 1962) (Pedagogy: section 5.4

of (Lichtenberg & Lieberman 2013) and section 6.8.1 of (Elskens & Escande 2003)).

Then, quasilinear estimates are made systematically for chaotic transport for almost

three decades without questioning its validity, except for the standard map which

exhibits a diffusive behavior with a diffusion constant oscillating as a function of the

control parameter of the map about the quasilinear value† (Chirikov 1979, Rechester

& White 1980, Rechester, Rosenbluth & White 1981, Meiss, Cary, Grebogi, Crawford,

Kaufman & Abarbanel 1983). However, in 1998 the diffusion properties of the Chirikov-

Taylor standard map are shown to be nonuniversal in the framework of the wave-particle

interaction, because this map corresponds to a spectrum of waves whose initial phases

are all correlated (Bénisti & Escande 1998b). For the sawtooth map, the dynamics is

found diffusive for most of the integer values of the perturbation parameter (Cary &

Meiss 1981b). This is done by calculating the characteristic functions, and the joint

probabilities of the map (Cary, Meiss & Bhattacharjee 1981c).

Quasilinear or not? For a chaotic motion, the perturbative approach used in the

original derivation of the quasilinear equations cannot be justified. Therefore, the

quasilinear description might not be correct to describe the saturation of the bump-

on-tail instability; its inconsistency is shown in (Laval & Pesme 1983a, Laval & Pesme

1983b). In 1984, Laval and Pesme propose a new Ansatz to substitute the quasilinear

one, and predict that the velocity diffusion coefficient should be renormalized by a

factor 2.2 during the saturation of the instability (Laval & Pesme 1984). This motivates

Tsunoda, Doveil, and Malmberg to perform an experiment with an electron beam in

a traveling wave tube, in order to avoid the noise present in beam-plasma systems

(Tsunoda, Doveil & Malmberg 1987a, Tsunoda, Doveil & Malmberg 1987b, Tsunoda,

Doveil & Malmberg 1991). This experiment comes with a surprising result: quasilinear

predictions look right, while quasilinear assumptions are proved to be completely wrong.

Indeed no renormalization is measured, but mode-mode coupling is not negligible at all.

This sets the issue: is there a rigorous way to justify quasilinear estimates for chaotic

dynamics?

This issue is first tackled by the author of this paper by considering the self-

consistent motion of a finite number of waves and particles corresponding to the beam-

plasma problem (see the first paragraph of section 4.1). However, the motion of a particle

in a prescribed spectrum of waves is mysterious too and deserves a thorough study. For

uncorrelated phases, it is natural to expect the diffusion coefficient to converge to its

quasilinear estimate from below when the resonance overlap of the waves increases.

In 1990 numerical simulations of the motion of one particle in a spectrum of waves

performed by Verga come with a surprising result: for intermediate values of the overlap,

the diffusion coefficient exceeds its quasilinear value by a factor about 2.5 (Cary, Escande

† If the orbits inside accelerating islands are also taken into account, one finds a superdiffusive transport

(Benkadda, Kassibrakis, White & Zaslavsky 1997). Transport becomes diffusive by adding some noise

to the mapping (Karney, Rechester & White 1982).
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& Verga 1990).

Diffusion or not? This result triggers a series of works aiming at understanding whether

the diffusion picture makes sense and when the quasilinear estimate is correct. In 1997,

Bénisti shows numerically that the diffusion picture is right, provided adequate averages

are performed on the dynamics (Bénisti & Escande 1997) (see also section 6.2 of (Elskens

& Escande 2003), and (Escande & Sattin 2007, Escande & Sattin 2008)); however, this

picture is wrong if one averages only over the initial positions of particles with the same

initial velocity, in contrast with the 1966 Brownian Ansatz: chaotic does not mean

Brownian! This motivates Elskens to look for mathematical proofs using probabilistic

techniques, and leads him to two results: individual diffusion and particle decorrelation

are proved for the dynamics of a particle in a set of waves with the same wavenumber and

integer frequencies if their electric field is gaussian (Elskens & Pardoux 2010), or if their

phases have enough randomness (Elskens 2012). The intuitive reason for the validity of

the diffusive picture is given in (Bénisti & Escande 1997): it is due to the locality in

velocity of the wave-particle interaction, which makes the particle to be acted upon by a

series of uncorrelated dynamics when experiencing large scale chaos. This locality of the

wave-particle interaction is rigorously proved by Bénisti in (Bénisti & Escande 1998a).

On taking into account that the effect of two phases on the dynamics is felt only after a

long time when there is strong resonance overlap, it can be approximately proved that

the diffusion coefficient is larger than quasilinear, but converges to this value when the

resonance overlap goes to infinity (Bénisti & Escande 1997, Escande & Elskens 2002b)

(see also (Escande & Elskens 2002a, Escande & Elskens 2003), and Pedagogy: section

6.8.2 of (Elskens & Escande 2003)).

For the advection of particles in drift waves or in 2-dimensional turbulence, care

must be exerted when trying to define a corresponding diffusive transport. Then one

must define the Kubo number K which is the ratio of the correlation time of the

stochastic potential as seen by the moving object to the (nonlinear) time where the

dynamics is strongly perturbed by this potential (trapping time, chaos separation time,

Lyapunov time, ...) (Ottaviani 1992, Vlad, Spineanu, Misguich, Reuss, Balescu, Itoh

& Itoh 2004). At a given time, the potential has troughs and peaks. If the potential

is frozen, particles bounce in these troughs and peaks. When K ≪ 1, the particles

typically run only along a small arc of the trapped orbits of the instantaneous potential

during a correlation time (see figure 1a of (Escande & Sattin 2007)). During the next

correlation time they perform a similar motion in a potential completely uncorrelated

with the previous one. These uncorrelated random steps yield a 2 dimensional Brownian

motion with a diffusion coefficient which can be computed with a quasilinear estimate.

2.3.2. Diffusion with trajectory trapping If K ≫ 1, a quasi-adiabatic picture works:

the particles make a lot of bounces before the potential changes its topography (see

figure 1b of (Escande & Sattin 2007)). The change of topography forces particles to

jump to a nearby trough or peak. The successive jumps produce a random walk whose
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order of magnitude of the corresponding diffusion coefficient can be easily computed

(Ottaviani 1992, Vlad et al. 2004, Escande & Sattin 2007, Escande & Sattin 2008).

In a series of works, Vlad and coworkers clarify the issue of diffusion with trajectory

trapping. The just described simple picture is almost correct for a Gaussian spatial

correlation function of the potential (Vlad et al. 2004). More generally, the frozen

potential displays as well “roads” crossing the whole chaotic domain. This enables

long flights in the dynamics that bring some dependence upon K in the estimate for

the diffusion coefficient. The correct calculation of this coefficient is a much harder

task. To this end, one may group together the trajectories with a high degree of

similarity, and one starts the averaging procedure over these groups. This yields the

decorrelation trajectory method (Vlad, Spineanu, Misguich & Balescu 1998) and the

nested subensemble approach (Vlad et al. 2004). These techniques are extensively

used for the study of the transport in magnetically confined plasmas (see (Vlad &

Spineanu 2013) for a recent set of references), and for the study of astrophysical

plasmas (Vlad & Spineanu 2014) and of fluids (Vlad & Spineanu 2015). Reference (Vlad

et al. 1998) computes numerically the diffusion coefficient of particles in a spectum of

waves scaling like k−3, and for Kubo numbers up to 2105. For largeK’s, due to trajectory

trapping, the scaling of the diffusion coefficient with K is less than K1 corresponding

to the Bohm scaling. For 1 < K < 104, the results agree with the percolation scaling

K0.7 (Isichenko 1992), but the scaling K0.64 provided by the decorrelation trajectory

method fits better the data in the whole domain 1 < K < 2105. A diffusion coefficient

proportional to K2/3, better than the percolation scaling, is obtained by a simple

random-walk model using the concept of Hamiltonian pseudochaos, i.e. random non-

chaotic dynamics with zero Lyapunov exponents (Milovanov 2009).

Some turbulent plasmas may be modeled by integrable Hamiltonian systems

subjected to non-smooth perturbations. Then, chaotic transport occurs at any small

magnitude of perturbation. The profile of the diffusion coefficient in the unperturbed

action is found to have a fractal–like structure with a reduced or vanishing value of the

coefficient near low-order rational tori (Abdullaev 2011).

2.3.3. Pinch velocity In reality, when the diffusive picture is correct, there is a pinch or

dynamic friction part on top of the diffusive part, and the correct model is the Fokker-

Planck equation (Escande & Sattin 2007, Escande & Sattin 2008). For the advection of

particles in drift waves or in 2-dimensional turbulence, the direction of this pinch part

depends on K (Vlad, M. & Benkadda 2006).

2.3.4. Rescaling invariance of chaotic transport in chaotic layers Consider a one-

dimensional Hamiltonian which is the sum of an integrable part displaying a hyperbolic

fixed point X and of a time-periodic perturbation with amplitude ǫ. Its phase-space

near X turns out to be invariant with respect to a rescaling of the conjugate coordinates

along the eigenvectors of X , of ǫ, and of the phase of the perturbation. In the

middle of the nineties, Abdullaev and Zaslavsky show it numerically (Abdullaev &
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Zaslavsky 1994, Zaslavsky & Abdullaev 1995), and prove it rigorously (Abdullaev &

Zaslavsky 1995, Abdullaev 1997) (see also (Abdullaev 2000, Abdullaev 2006)). Since

the motion slows down near a saddle point, a particle spends relatively large time

intervals there. Therefore, the transport of particles in a narrow stochastic layer

about the separatrix related to X is mainly determined by the structure of this layer

near this point. It turns out that the statistical properties of chaotic transport are

periodic (or quasiperiodic) functions of log ǫ (Abdullaev 2000) (see also (Abdullaev &

Spatschek 1999, Abdullaev 2006)).

2.3.5. Transport through cantori In the eighties it becomes clear among plasma

physicists that chaotic transport is intrinsically more intricate than a diffusion, especially

if one considers a single realization of the physical system of interest. In particular, it

may be strongly inhomogeneous in phase space due to localized objects restricting it:

the cantori described now.

When a KAM torus breaks up, it becomes a Cantor set called a cantorus

(Aubry 1978, Percival 1980) (Pedagogy: section IIB of (Meiss 2015)). In 1984, MacKay,

Meiss, and Percival show that a cantorus is a leaky barrier for chaotic orbits, and that

the flux through the cantorus between two successive iterates of the Poincaré map can be

computed as the area of a turnstile built in a way similar to homoclinic lobes for X-points

(MacKay, Meiss & Percival 1984a) (Pedagogy: section IIA of (Meiss 2015)). The above-

described renormalization theories for KAM tori provide a critical exponent for this area

(MacKay et al. 1984a). The latter can be obtained from the actions of homoclinic orbits

(MacKay, Meiss & Percival 1987). A new description of transport in a chaotic domain

can be obtained through Markov models combining the fluxes through the discrete

set of the most important noble cantori (MacKay, Meiss & Percival 1984b, Meiss &

Ott 1985, Meiss & Ott 1986). Such models also enable computing the power law

temporal decay of correlations and lifetimes (Hanson, Cary & Meiss 1985, Meiss &

Ott 1986) first noted in (Chirikov & Shepelyansky 1981, Karney 1983). All these

ideas turn out to be very useful in the next decades, as explained in (Meiss 2015).

An approach to barriers in a chaotic domain motivated by plasma physics consists in

defining approximately invariant circles† (Dewar & Meiss 1992).

The Lyapunov exponent measures the mean rate of divergence of nearby orbits

inside a chaotic domain. It gives a rough estimate of the decay rate of the exponential

part of the correlation functions, which is important in several plasma physics problems

(Grebogi & Kaufman 1981). It is generally computed numerically, but analytical

estimates are available for some mappings (see (Rechester, Rosenbluth & White 1979),

and sections 5.2 and 6.3 of (Chirikov 1979) where it is called Krylov-Kolmogorov-Sinai

entropy). It can be analytically computed for the motion of a particle in a broad

spectrum of waves with a large amplitude (see section 6.8.2 of (Elskens & Escande 2003)).

† This approach leads in 2008 to the definition of temperature contours for chaotic magnetic fields

(Hudson & Breslau 2008). This work quotes a series of studies by non plasma physicists which led to

it, with the introduction of ghost surfaces in particular.
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2.3.6. Symbolic dynamics for chaotic layers A striking regularity is present in the

time series of the long chaotic orbits of the standard map that are in a stochastic layer

surrounding a single island and bounded by two KAM tori: the radial coordinate of

the moving point oscillates for a certain time in a region adjacent to an island chain,

then jumps suddenly to another basin, where it remains for a random time, etc... This

behavior can be adequately modelled by a Continuous Time Random Walk (CTRW)

(Balescu 1997). The issue of the diffusion of magnetic field lines in a tokamak leads to

reconsider it in (Misguich, Reuss, Elskens & Balescu 1985). The associated time series

can be described in terms of an algorithm based on a symbolic dynamics. A computer

program enables a completely automatic measurement of the waiting times and of the

transition probabilities of the CTRW, and therefore the analysis of arbitrary long time

series.

2.3.7. Transport in low shear or shearless systems As explained at the end of section

2.2.2, the study of magnetic chaos in systems with reversed shear configurations

motivated the introduction of the standard non-twist map. On varying the control

parameter of this map above the break-up of the shearless curve, it is found that

transport develops very slowly, because of structures with high stickiness giving rise to

an effective barrier near the broken shearless curve (Szezech, Caldas, Lopes, Morrison

& Viana 2012).

Internal transport barriers in toroidal pinches (tokamak and reversed field pinch)

are favored by low or vanishing magnetic shear (del Castillo-Negrete & Morrison 1992b).

This leads Firpo into the study of corresponding Hamiltonian models for the magnetic

field lines, which brings conclusions with a general bearing. Indeed, low shear is shown

to have a dual impact: away from resonances, it induces a drastic enhancement of the

resilience to chaotic perturbations and decreases chaotic transport; close to low-order

rationals, the opposite occurs (Firpo & Constantinescu 2011).

3. Quasi order and order

3.1. Adiabatic theory

When dealing with configurations for the magnetic confinement of charged particles,

one often finds that the motion of a particle in such a configuration has multiple scales.

For instance, section 2.2.1 considered the case of magnetic mirror traps where a particle

has a fast Larmor rotation and slow oscillations along the lines of force. If the dynamics

is not in a regime of large scale chaos, it is natural to take advantage of the time scale

separation to describe the motion. This leads to tractable analytical calculations if

the fast degree of freedom is nearly periodic compared to the slow one: one makes a

(classical) adiabatic theory of the motion. In reality, the adiabatic ideas carry over to

some non strictly adiabatic cases: this is neo-adiabatic theory. The applications of these

ideas are now described.
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3.1.1. Classical adiabatic theory Classical adiabatic theory is formalized in 1937

(Krylov & Bogolyubov 1937). In the 1950s and early 1960s, Kruskal is working on

asymptotics and on the preservation or destruction of magnetic flux surfaces. His

unpublished work motivates Lenard and Gardner to develop a theory of adiabatic

invariance to all orders (Lenard 1959, Gardner 1959). He then develops a Hamiltonian

version of adiabatic theory (Kruskal 1962) where adiabatic invariants are related to

proper action variables. This technique is used to second order in (Northrop, Liu &

Kruskal 1966, McNamara & Whiteman 1967). However its implementation is tedious,

which prompts the use of other techniques: first the Poisson bracket technique with a

methodological contribution from plasma physicists (McNamara & Whiteman 1967),

and then the powerful Lie transform method with two important methodological

contributions from plasma physicists in 1976: one by Dewar (Dewar 1976), and one

by Dragt and Finn (Dragt & Finn 1976)† (Pedagogy: section 2.3 of (Lichtenberg &

Lieberman 2013)). Adiabatic motion in plasma physics is also a source of inspiration

for pure mathematicians, as can be seen in (Arnold 1963b) which deals, in particular,

with magnetic traps, and quotes Kruskal’s work in his section devoted to adiabatic

invariants.

3.1.2. Neo-adiabatic theory Several problems in plasma physics where there is a slow

variation of the system of interest cannot be addressed by classical adiabatic theory.

This is in particular the case when this slow variation induces a transition from trapped

to passing orbits in magnetic configurations of magnetic fusion or of the magnetosphere.

Then orbits cross a separatrix. Since the period of a motion diverges on a separatrix,

whatever slow be the evolution of the mechanical system, classical adiabatic theory

breaks down to describe this crossing. However, it turns out that one can still take

advantage of a separation of time scales for most crossing orbits: those which do not stick

too long to the X-point. In 1986, four (groups of) authors come up with the calculation

of the change of adiabatic invariant due to separatrix crossing: (Neishtadt 1986),

(Hannay 1986), (Vasilev & Guzev 1986), and a group of plasma physicists (Tennyson,

Cary & Escande 1986, Cary, Escande & Tennyson 1986). The approaches are very

similar (except for the third paper) and constitute what is now called neo-adiabatic

theory‡. The theory provides also explicit formulas for the trapping probabilities in a

resonance region.

3.1.3. Adiabatic description of Hamiltonian chaos Section 2.3.1 considered the case of

diffusive transport of a particle in strongly overlapping longitudinal waves. The diffusive

picture was justified by the locality in velocity of the wave-particle interaction. This

locality is quantified by a width in velocity which grows with the overlap parameter.

† Cary’s tutorial paper (Cary 1981a) provides a unifying view on Lie transform perturbation theory

for Hamiltonian systems together with important applications in plasma physics.
‡ (Bazzani, Frye, Giovannozzi & Hernalsteens 2014) provides an extensive list of papers on neo-

adiabatic theory. An early work already gave the solution in the case of a pendulum (Timofeev 1978).
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Then, the diffusive picture is justified if this width is much smaller than the range of

the phase velocities of the waves with strong resonance overlap. In the opposite case,

the locality in velocity of the wave-particle interaction corresponds to a motion where

the trapping time in the frozen potential of all waves is much smaller than the time

scale of variation of this potential (this corresponds to the case of a large Kubo number

introduced in section 2.3.1). At a given time, the frozen potential displays one or more

separatrices which are pulsating with time. This issue is of interest to plasma physicists†.

The simplest case corresponds to a single pulsating separatrix, as occurs for the

dynamics of a nonlinear pendulum in a slowly modulated gravity field. Numerical

simulations reveal that the domain swept by the slowly pulsating separatrix in the

Poincaré map looks like a chaotic sea where no island is visible (Menyuk 1985, Elskens

& Escande 1993) (Pedagogy: section 1 of (Elskens & Escande 1993) and section 5.5.2

of (Elskens & Escande 2003)). As a result one might think the limit of infinite overlap

to correspond to some “pure” chaos. A fact pushing in this direction is a theorem

stating that, in the domain swept by the slowly pulsating separatrix, the homoclinic

tangle is tight‡ (Elskens & Escande 1991). However another theorem tells the total

area covered by small islands in the same domain generally decreases when the slowness

of the system increases, but remains finite for symmetric frozen potentials (Neishtadt,

Sidorenko & Treschev 1997). This shows that, when taking at random initial conditions

in the apparently smooth chaotic sea of the motion of a nonlinear pendulum in a slowly

modulated gravity field, there is a finite probability to find a regular orbit: chaotic

does not mean stochastic§! This also shows that chaos is not pure at all, and that the

numerical simulation of orbits may provide a misleading information‖. In the adiabatic

limit, successive separatrix crossings are not independent, which significantly affects

transport (Bruhwiler & Cary 1989, Cary & Skodje 1989). However the separation of

nearby orbits is intuitive, since two such orbits may be separated when coming close

to the X-point, one staying untrapped and the other one becoming trapped. The

transition from stochastic diffusion in a large set of waves to slow chaos associated to a

pulsating separatrix can be detected experimentally in a traveling wave tube (Doveil &

† In 1997, the understanding of adiabatic chaos leads to finding a way of mitigating its effects, such

as in the work on omnigenous stellarators, viz. stellarators where all orbits are confined (Cary &

Shasharina 1997).
‡ When resonance overlap diminishes, at some moment the heteroclinic intersection between manifolds

of the two resonances vanishes. This occurs at a threshold approximately given by the resonance

overlap criterion if the two resonances are not too different in size and wavelength (Escande &

Doveil 1981b, Escande 1985).
§ Furthermore, the presence of the small islands induces the apparent intermittent trapping of chaotic

orbits in a way analogous to what described in the first footnote of paragraph 2.2.1.
‖ If the mathematical model is thought as the approximation of a true physical system, the dynamics

of the latter undergoes actually perturbations like noise. These perturbations are likely to smear out

the many minuscule islands of (Neishtadt et al. 1997). Then, the above numerical simulation gives

the right physical picture. This sets the important issue of the structural stability of mathematical

models when embedded into more realistic ones: numerical simulations might be more realistic than

the mathematical model they approximate!
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Macor 2011).

Adiabatic invariants of slowly varying Hamiltonian systems occur not only for

almost periodic orbits, but also for chaotic orbits that wander ergodically over the energy

surface of the system. This type of invariant is important in statistical mechanics of

many-body systems, but is also invoked by Lovelace (Lovelace 1979) for single particle

dynamics in the context of beam-plasma equilibrium and stability. This leads Ott to

consider the general question of how well these approximate constants are preserved.

Using multiple time scale techniques and adopting ideas from quasilinear theory, he

shows, among other results, that the error in these invariants is much larger than the

one for almost periodic orbits (Ott 1979).

3.1.4. Separatrix crossing for non-slowly varying dynamics In 2015, Bénisti shows

that for the rapidly varying dynamics of a particle in a sinusoidal wave with a large

exponential growth and a small initial amplitude, one can still describe separatrix

crossing (Bénisti & Gremillet 2015). This is done in two steps. First, a perturbative

analysis in the wave amplitude provides the change in action up to the time when

the action remains nearly stationary after trapping. Then, adiabatic theory is used

to describe the subsequent evolution of the orbit: the perturbative and adiabatic

descriptions are matched. The method can be generalized to non-sinusoidal potentials

and to waves that do not simply grow exponentially in time†. This technique works

for particles with a high enough initial velocity. Lower velocities can be described by

neo-adiabatic theory (Bénisti & Gremillet 2015).

3.2. Chimeras

Fast ions in a fusion reactor can excite many types of waves, and in particular the

energetic particle mode (EPM) which can produce avalanches of such ions. The coherent

nonlinear behaviour of an EPM can be described by the complex Ginzburg-Landau

equation (equation (2) of (Zonca, Briguglio, Chen, Fogaccia, Hahm, Milovanov &

Vlad 2006)), which describes a vast array of phenomena including nonlinear waves,

second-order phase transitions, Rayleigh-Bénard convection and superconductivity. In

2014, Sethia and Sen find out that this equation gives chimera states (Sethia & Sen 2014).

These states represent a spontaneous breakup of a population of identical oscillators that

are identically coupled, into subpopulations displaying synchronized and desynchronized

behavior. Till then, they had been found to exist in weakly coupled systems and with

some form of nonlocal coupling between the oscillators. The new result shows that

neither of these conditions is essential for their existence.

† This method can also derive the particles’ distribution function. This allows to easily calculate the

nonlinear response of a cold beam to an electrostatic wave (Bénisti & Gremillet 2015).
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3.3. Solitons and solitary waves

Year 1965 brings a landmark in soliton† theory: the discovery by Zabusky and Kruskal

(Zabusky & Kruskal 1965) that Korteweg-de Vries‡ (KdV) solitary waves survive

collision. At that time computers enable to compute the collision of two solitary waves

(their existence was proved in 1895). The outcome is surprising: after the collision, both

solitary waves recover their initial shapes. Two years after, the solution is provided by

Gardner, Greene, Kruskal, and Miura, with the inverse scattering transform§ (Gardner,

Greene, Kruskal & Miura 1967, Gardner, Greene, Kruskal & Miura 1974) which is a key

technique of soliton theory with a lot of applications beyond plasma physics. During

the period 1970 to 1982 many experiments on solitons in plasmas were performed (see

(Lonngren 1983) for a review).

In 1970, Kadomtsev and Petviashvili (Kadomtsev & Petviashvili 1970) introduce

the first partial differential equation generating solitons in two space dimensions, as a

model to study the evolution of long ion-acoustic waves of small amplitude propagating

in plasmas under the effect of long transverse perturbations. This equation is a universal

model (a kind of normal form) for nonlinear, weakly dispersive waves in an anisotropic

medium (Biondini & Pelinovsky 2008).

In 1971, Rogister shows that the evolution of small-amplitude nonlinear Alfvén

waves propagating quasiparallel with respect to the background magnetic field is

governed by an equation called the derivative nonlinear Schrödinger equation (Rogister

1971). In 1978, Kaup and Newell prove that this equation has solitonic solutions too

(Kaup & Newell 1978).

The effect of energy dissipation on solitary waves is important for plasma physics.

This starts to be examined in 1969 by Ott and Sudan. Using a multiple time scale

technique, they analyze the damping of solitary waves, first for the case of ion acoustic

waves (Ott & Sudan 1969), and subsequently for very general types of damping

mechanisms (Ott & Sudan 1970).

In 1983, Kaw, Sen and Valeo initiate an approach to the evolution of interacting

waves in plasma, which consists in reducing the initial problem stated in terms of partial

differential equations into a nonlinear Hamiltonian form with two degrees of freedom

only (Kaw, Sen & Valeo 1983). This permits the identification and classification of

a rich variety of nonlinear solutions, in particular solitary waves, but also periodic

and stochastic solutions (Kaw et al. 1983, Kaw, Sen & Valeo 1985, Kaw, Sen &

Katsouleas 1992, Bisai, Sen & Jain 1996). Reference (Kaw et al. 1983) elicits also

interest in the nonlinear dynamics community because of the curious square root form

of the nonlinear potential which seemed to make the system fully integrable. Eventually

the system was shown to be non-integrable by an application of Ziglin’s theorem

† There is a wealth of textbooks on solitons; the Wikipedia article may be a good pedagogical

startpoint.
‡ The Korteweg-de Vries equation describes long-wavelength water waves and ion-acoustic waves in

plasmas.
§ Pedagogy: the Wikipedia entry with this title.
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(Grammaticos, Ramani & Yoshida 1987).

In 2012, Sen’s research work on solitons in plasmas brings an interesting spin-off.

A genetic programming search for equations sharing the KdV solitary wave solution

uncovers a KdV-like advection-dispersion equation and an infinite dimensional family

of equations with this property (Sen, Ahalpara, Thyagaraja & Krishnaswami 2012).

4. High dimensional Hamiltonian dynamics

4.1. Self-consistent dynamics

4.1.1. Finite dimension Self-consistent dynamics is at the heart of the complex

behavior exhibited by plasmas. Indeed, the electric and magnetic fields determining

the motion of charged particles are generated by the particles themselves. As a result,

the particle dynamics in a plasma corresponds to a coupled Hamiltonian dynamical

system with a very large number of degrees of freedom. This occurs in particular in the

wave-particle interaction. References (Escande 1991, Antoni, Elskens & Escande 1998)

and chapter 2 of (Elskens & Escande 2003) derive the Hamiltonian describing the self-

consistent evolution of N ′ tail particles and M longitudinal waves, by starting from

the N -body description of a one-dimensional plasma with a finite length (Pedagogy:

section 2.1 of (Elskens & Escande 2003)). As explained in section 2.3.1, this derivation

is motivated by a finite dimensional approach to the explanation of the surprising

experimental result of (Tsunoda et al. 1987a, Tsunoda et al. 1987b, Tsunoda et al. 1991).

The case with many waves displays a phenomenon known in fluid dynamics as

“depletion of nonlinearity”: if the tail distribution function is a plateau in both velocity

and space, which occurs at the saturation of the bump-on-tail instability introduced in

section 2.3.1, the self-consistency is quenched, since the particles are not able to modify

the wave amplitudes (see section 2.2 of (Besse, Elskens, Escande & Bertrand 2011)).

Therefore, their dynamics, even when strongly chaotic, is the 1.5 degree-of-freedom

one corresponding to the motion in a prescribed spectrum of waves. Depending on

this spectrum, the diffusion coefficient may be quasilinear or not, as recalled in section

2.3.1. This contradicts previous works trying to prove the validity of quasilinear theory

(Liang & Diamond 1993b, Liang & Diamond 1993a, Escande & Elskens 2002b, Elskens

& Escande 2003) and the “turbulent trapping” Ansatz aiming at the contrary (Laval &

Pesme 1984) (see section 2.3 of (Besse et al. 2011)). This brings a first element toward

understanding the surprising experimental result recalled above.

The derivation for the single wave case (M = 1) was first provided in two

seminal papers (Onishchenko, Linetskiı, Matsiborko, Shapiro & Shevchenko 1970,

O’Neil, Winfrey & Malmberg 1971). It was also provided in (Tennyson, Meiss &

Morrison 1994, del Castillo-Negrete 1998, Crawford & Jayaraman 1999) by starting

with kinetic descriptions. The single wave case is a paradigm for the interaction of

particles with collective degrees of freedom: electrostatic instabilities (Crawford &

Jayaraman 1999), interaction of vortices with finite-velocity flow in hydrodynamics (del
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Castillo-Negrete 2000, del Castillo-Negrete & Firpo 2002, del Castillo-Negrete 2005).

These references study the corresponding transition to chaos and formation of coherent

structures in phase space: order and chaos coexist, a typical feature of complex systems,

already indicated by the existence of chimeras. The M = 1 case also brings the

possibility of analytical calculations which are impossible in the full N -body description

of the plasma. Indeed, Gibbs statistical mechanics can be derived in this case, revealing

a second order phase transition associated with the Landau damping regime: for

nonequilibrium initial data with warm particles, above a critical initial wave intensity,

thermodynamics predicts a finite wave amplitude in the limit N → ∞; below it, the

equilibrium amplitude vanishes (Firpo & Elskens 2000).

4.1.2. Infinite dimension Due to its interaction with resonant particles, a longitudinal

wave in a thermal plasma experiences a non-dissipative damping discovered by Lev

Landau in 1946. This effect is of paramount importance in plasma physics. In a

Vlasovian approach, it is understood as the consequence of a phase-mixing effect of

a continuum of linear modes, called van Kampen modes†. However, one may wonder

whether nonlinear effects do not destroy these linear modes and the corresponding phase

mixing. Proving the innocuity of nonlinear effects is the equivalent of deriving a KAM

theorem for a continuous system (the Vlasov-Poisson one), a tour de force which partly

earned Villani the 2010 Fields medal (Mouhot & Villani 2010, Villani 2014). This is a

major contribution of plasma physics to the nonlinear dynamics of continuous systems‡.

When the electron distribution function is gradually changed, for instance by adding

a bump in the tail of the distribution, an instability may appear in the Vlasov-Poisson

system describing a spatially uniform plasma. For such a problem, center manifold

theory cannot be used because of the existence of a continuum of modes. In order to cope

with this problem, in 1989, Crawford and Hislop use the method of spectral deformation,

a technique till then used in the theory of Schrödinger operators in quantum mechanics.

They derive equations for the nonlinear evolution of electrostatic waves by extending the

method to the full nonlinear Vlasov equation, without making the standard assumptions

of weak nonlinearity and separated time scales (Crawford & Hislop 1989). In 1994,

Crawford overcomes the absence of a finite-dimensional center manifold in this problem,

by restricting his analysis to initial conditions where only the unstable mode is initially

excited, so that it is not one component of an arbitrary fluctuation. This way, he can

treat the Vlasov equation perturbatively, and shows that for a plasma with a neutralizing

background of ions, the instability saturates at an amplitude scaling like the square of

† (Morrison 2000a) solves the dynamics of this continuum in the context of Hamiltonian systems theory,

by a canonical transformation to action-angle variables for this infinite degree-of-freedom system.
‡ The physical interpretation of Landau damping is subtle, but can be made completely intuitive

by using the above finite dimensional self-consistent approach which shows that it is due to the

synchronization of quasi-resonant particles with the wave (Escande, Zekri & Elskens 1996, Elskens

& Escande 2003); the synchronization is confirmed experimentally (Doveil, Escande & Macor 2005).

Within this approach, proving Landau damping in a nonlinear context requires the standard KAM

theorem only.
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the growth rate, in heavy contrast with the traditional scaling like the square root.

Furthermore, all orders contribute to the saturation, which implies that the equilibrium

may be approached in a non monotonic way (Crawford 1994).

As already indicated in section 3.2, the self-consistent interaction of fast ions with

waves is an important topic for burning magnetic fusion plasmas. An analogy mapping

the previous velocity distribution to the radial distribution of particles in a toroidal

plasma provides a description of the corresponding limit case of a uniform plasma by

the continuous limit of the above finite dimensional self-consistent model (Zonca, Chen,

Briguglio, Fogaccia, Vlad & Wang 2015). In 2015, Zonca and coworkers show that

the more general description of the magnetic fusion case is provided by an analogue of

Dyson’s equation in quantum field theory, describing particle transport due to emission

and reabsorption of toroidal symmetry breaking perturbations, called “phase space

zonal structures” (PSZS), by analogy with the meso-scale configuration space patterns

spontaneously generated by drift-wave turbulence. The relevant dynamics corresponds

to the non-adiabatic (chaotic) case where the particle trapping time is not short with

respect to the characteristic time for the nonlinear evolution of PSZS. For a non uniform

plasma, there is a convective amplification of wave packets as avalanches leading to the

secular transport of particles over large radial scales inside the toroidal plasma. This

physics has analogies with the “super-radiance” regime in free-electron lasers (Zonca

et al. 2015).

Avalanches are also present in gyrokinetic numerical simulations of tokamak

plasmas, which correspond to a reduced Vlasovian description of such plasmas taking

advantage of the fact that the magnetic moment of particles is an adiabatic invariant.

Avalanches correspond to a description of transport at strong variance with that

of a chaotic transport due to turbulent waves. This description is germane with

self-organized criticality, the kind of self-organization at work in sandpiles. This

view progressively emerged in the last two decades (Dendy & Helander 1997, Dendy,

Chapman & Paczuski 2007, Sanchez & Newman 2015).

4.2. Noncanonical Hamiltonian theory

The standard Hamiltonian description of physical systems uses canonical variables. This

makes this description uneasy for systems that are written in terms of noncanonical

variables like ideal fluid and systems with long range interactions when described by

Vlasov equation. This motivates Greene and Morrison to introduce in 1980 noncanonical

Poisson brackets for fluid systems (Morrison & Greene 1980). Morrison brings this

approach to full maturity in the following two decades (see (Morrison 1998) for a review).

This approach leads in particular to the energy-Casimir criterion of nonlinear stability†

(see section VI.B of (Morrison 1998)). Furthermore, linearly stable equilibria with

negative energy modes are shown to be unstable when nonlinearity or dissipation is

† This criterion was introduced first in (Holm, Marsden, Ratiu & Weinstein 1985), and in a series of

papers where several plasma physicists are present (see note 42 of (Morrison 1998)).
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added (see section VI of (Morrison 1998) for a global discussion).

5. Dissipative dynamics

While a wealth of plasma physics issues are naturally dealt with by a Hamiltonian

approach, dissipative effects are important in plasmas too†. This is the case for

nonlinear wave coupling. In particular, for the dynamics of an unstable wave coupled

nonlinearly to two lower frequency damped waves (Vyshkind & Rabinovich 1976). In

1980, Wersinger, Finn, and Ott demonstrate via the Poincaré section technique that

this dynamics is well described by a one-dimensional map with a quadratic maximum‡,

which implies chaos with a strange attractor (Wersinger, Finn & Ott 1980). This is the

first explicit numerical demonstration of the applicability of such a map from physically

motivated differential equations. As a sequel of this work, numerical techniques are

used to compute for the first time the fractal dimension of strange attractors in

several examples. These dimensions are then compared with the predictions from the

Kaplan-Yorke conjecture, which relates an attractor’s fractal dimension to its Lyapunov

exponents, thus providing important early confirmation for the conjecture (Russell,

Hanson & Ott 1980).

In 1982, Bussac publishes an analytical method which accounts for the main

features of the asymptotic solution of this coupled wave dynamics for the nonlinear

decay of a coherent unstable wave into its subharmonic (Bussac 1982b). This dynamics

is shown to be close to a Hamiltonian one. The map providing the mismatch to

the corresponding constant energy at each crossing of the Poincaré surface of section

exhibits period doubling, and an explicit equation is obtained for the chaotic attractor.

The same type of nonlinear wave coupling can lead to another path to chaos called

type I intermittency. When the control parameter is varied, the transition to chaos is

abrupt, but the quantities which measure the amount of chaos smoothly vary with the

control parameter, which implies a continuous character for such a transition (Bussac &

Meunier 1982c). Reference (Bussac 1982a) yields a complete panorama of the dynamics

of the three-wave system involving again a one dimensional map which is analytically

derivable from the original system of differential equations.

In 2003, Firpo shows that the description of the early nonlinear regime of the

resistive m = n = 1 mode of the tokamak can be done by assuming that the perturbation

retains the form of the linearly unstable eigenmode, which leads to a Landau nonlinear

stability equation (Firpo & Coppi 2003, Firpo 2004, Firpo 2005). The difficulty and

novelty of this analysis comes from the existence of an inner critical layer whose position

is not fixed, in contrast with those occurring next to walls in fluid (Stuart 1958) and

† See (Greiner, Klinger, Klostermann & Piel 1993, Klinger, Greiner, Latten, Piel, Pierre, Bonhomme,

Arnas-Capeau, Bachet & Doveil 1995, Mausbach, Klinger & Piel 1999) for a simple experimental proof

of various phenomena like period doubling bifurcations and intermittency in low-pressure thermionic

discharges. Pedagogy: chapter 7 of (Lichtenberg & Lieberman 2013).
‡ This type of map exhibits period doubling cascades.
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other plasma physics problems (Dahlburg 1998) whose solutions follow similar paths. In

the much simpler problem of the nonlinear tearing mode where the position of the inner

critical layer is fixed, Ottaviani and the author of the present paper show in 2004 that the

perturbation can be written as a linear unstable eigenmode plus a higher-order correction

ψ whose radial width scales like the linear magnetic island width. This yields a linear

differential equation for ψ, which can be solved readily (Escande & Ottavani 2004).

6. Quantum chaos

In 1979, the issue of the chaotic motion of geometric optics rays in plasmas motivates

McDonald and Kaufman to study the quantum chaos provided by the two-dimensional

Helmholtz equation with “stadium” boundary. In contrast to the clustering found for a

separable equation, the eigenvalue separations have a Wigner distribution, characteristic

of a random Hamiltonian (McDonald & Kaufman 1979).

The same year, a work involving Chirikov considers the quantum kicked rotator,

which is the quantized version of the standard map. In the regime of strong chaos,

the rotator energy and the squared number of excited quantum levels appear to grow

diffusively in time, as in the corresponding classical system. Only up to a break time

though (Casati, Chirikov, Ford & Izrailev 1979), after which the quantum energy

excitation is suppressed while the classical one continues to diffuse. This time is

proportional to the classical diffusion rate (Chirikov, Izrailev & Shepelyansky 1981).

However, even classically small noise can induce quantum decoherence, thus

eliminating the quantum saturation of diffusion, and restoring perpetual classical

diffusion (Ott, Jr & Hanson 1984). This type of behavior has been experimentally

investigated in atomic physics experiments (Arndt, Buchleitner, Mantegna & Walther

1991).

Multi-photon ionization of hydrogen can be treated by classical theory when the

initial quantum number is large and the photon energy is small. Then ionization

corresponds to the chaotic motion obtained for high photon intensities. However, the

quantum ionization threshold may be higher than the threshold of classical chaos,

because classical chaos is suppressed by quantum effects when the phase-space area

escaping through classical cantori each period of the electric field is smaller than Planck’s

constant (MacKay & Meiss 1988b).

7. Natural extensions

There are natural extensions to this work. In particular, those due to intertwined

contributions of plasma physicists with fluid dynamicists about vortex structures (see

chapter 6 of (Horton & Ichikawa 2002)). Also about the generalized Lagrangian

mean, a formalism to unambiguously split a motion into a mean part and a nonlinear

oscillatory part, where plasma physicists provided important contributions (Frieman

& Rotenberg 1960, Dewar 1970). There is also the use of non-neutral plasmas
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for the experimental study of vortex dynamics in two-dimensional hydrodynamics

(Malmberg 1992, Durkin & Fajans 2000).

8. Conclusion

The main part of this story is borne out of two constraints: the need for a theoretical

description of the magnetic confinement of thermonuclear plasmas and the insufficient

corresponding mathematical knowledge. However its birth would not have been possible

without the development of computer calculations.

Plasma physics is often considered as motivated by its applications. This is wrong,

since plasmas belong in complex systems which are of interest on their own, and are a

central topic of contemporary physics. This is right, provided one counts applications

like its just recalled numerous contributions to chaos and nonlinear dynamics!

A histogram of the number of published papers quoted in this topical review as a

function of time shows that there is a peak of the number of published papers per year

in the 1980-1984 period, then a decrease to 60% of this peak in the 1985 to 2004 period,

and to 40% in the 2005-2014 period, with no decrease when going from 2005-2009 to

2010-2014. Therefore, there still is a steady flow of contributions from plasma physics

to chaos and nonlinear dynamics.

However, there is less excitement about these new results than in the 1980-

1984 period where plasma physicists started to understand chaos. The 1980-1984

results recalled in this topical review bring a reassuring background to the present

investigations, but most are not much used explicitly. Indeed, as to fusion theory, the

development of massive computer simulations progressively revealed that the complexity

of fusion plasmas displays a mixture of order and chaos, for instance in avalanches,

that is not suggestive of an elementary quantitative description (so far). Furthermore,

numerical calculations are so handy, that it is more reliable to find out a threshold

of bifurcation numerically, for instance a threshold of chaos, than to compute it by

applying a low dimensional technique after painstaking uncontrolled approximations.

The practical success of the simple-minded quasilinear approximation was another

incentive to give up more sophisticated descriptions of chaotic transport. Works about

nonlinear or chaotic plasma physics have been taking over: a whole series of books would

be necessary to summarize their results! However a breakthrough in the fundamental

analysis of complex plasma dynamics cannot be excluded...
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Elsässer, K. (1986). Magnetic field line flow as a Hamiltonian problem, Plasma Phys. Control. Fusion

28: 1743–52.

Elskens, Y. (2012). Gaussian convergence for stochastic acceleration of N particles in the dense

spectrum limit, J. Stat. Phys. 148: 591–605.

Elskens, Y. & Escande, D. F. (1991). Slowly pulsating separatrices sweep homoclinic tangles where

islands must be small: an extension of classical adiabatic theory, Nonlinearity 4(3): 615.

Elskens, Y. & Escande, D. F. (1993). Infinite resonance overlap : a natural limit of Hamiltonian chaos,

Physica D 62: 66–74.

Elskens, Y. & Escande, D. F. (2003). Microscopic dynamics of plasmas and chaos, Institute of Physics,

Bristol.

Elskens, Y. & Pardoux, E. (2010). Diffusion limit for many particles in a periodic stochastic acceleration

field, Ann. Appl. Prob. 20: 2022–2039.

Escande, D. F. (1979). Primary resonances do not overlap, in G. Laval & D. Grésillon (eds), Intrinsic

stochasticity in plasmas, Cargese, 17-23 June 1979, Les Editions de Physique, Orsay, pp. 41–51.

Escande, D. F. (1982a). Renormalization for stochastic layers, Physica 6D: 119–125.

Escande, D. F. (1985). Stochasticity in classical Hamiltonian systems : universal aspects, Phys. Rep.

121: 165–261.

Escande, D. F. (1991). Large scale structures in kinetic plasma turbulence, in J. D. F. and P. L. Sulem

(ed.), Large scale structures in nonlinear physics, Vol. 392, Springer, Berlin, pp. 73–104. Lect.

Notes Phys.

Escande, D. F. & Doveil, F. (1981a). Renormalization method for the onset of stochasticity in a

Hamiltonian system, Phys. Lett. A 83: 307–10.

Escande, D. F. & Doveil, F. (1981b). Renormalization method for computing the threshold of large-scale

stochastic instability in two degrees of freedom Hamiltonian systems, J. Stat. Phys. 26: 257–84.

Escande, D. F. & Elskens, Y. (2002a). Quasilinear diffusion for the chaotic motion of a particle in a

set of longitudinal waves, Acta Phys. Pol. B 33: 1073–84.

Escande, D. F. & Elskens, Y. (2002b). Proof of quasilinear equations in the chaotic regime of the weak

warm beam instability, Phys. Lett. A 302: 110–8.

Escande, D. F. & Elskens, Y. (2003). Proof of quasilinear equations in the strongly nonlinear regime

of the weak warm beam instability, Phys. Plasmas 10: 1588–94.

Escande, D. F., Kantz, H., Livi, R. & Ruffo, S. (1994). Self consistent check of the validity of Gibbs

calculus using dynamical variables, J. Stat. Phys. 76: 605–26.

Escande, D. F. & Mehr, A. (1982c). Link between KAM tori and nearby cycles, Phys. Lett. A 91: 327–



Contributions of plasma physics to chaos and nonlinear dynamics 30

330.

Escande, D. F., Mohamed-Benkadda, M. S. & Doveil., F. (1984). Threshold of global stochasticity,

Phys. Lett. A 101: 309–13.

Escande, D. F. & Ottavani, M. (2004). Simple and rigorous solution for the nonlinear tearing mode,

Phys. Lett. A 323: 278–84.

Escande, D. F., Paccagnella, R., Cappello, S., Marchetto, C. & D’Angelo, F. (2000). Chaos healing by

separatrix disappearance and quasisingle helicity states, Phys. Rev. Lett. 85: 3169–72.

Escande, D. F. & Sattin, F. (2008). When can the Fokker-Planck equation describe anomalous or

chaotic transport? Intuitive aspects, Plasma Phys. Control. Fusion 50: 124023 (8 pp).

Escande, D. F., Zekri, S. & Elskens, Y. (1996). Intuitive and rigorous microscopic description of

spontaneous emission and Landau damping of Langmuir waves through classical mechanics,

Phys. Plasmas 3: 3534–3539.

Escande, D. & Sattin, F. (2007). When can the Fokker-Planck equation describe anomalous or chaotic

transport?, Phys. Rev. Lett. 99: 185005–1–4.

Firpo, M.-C. (2004). Onset of the nonlinear regime and finite-resistivity effects for the resistive kink

instability, Phys. Plasmas 11: 970–79.

Firpo, M.-C. (2005). Early nonlinear regime of mhd internal modes : the resistive case, Phys. Lett. A

342: 263–6.

Firpo, M.-C. & Constantinescu, D. (2011). Study of the interplay between magnetic shear and

resonances using Hamiltonian models for the magnetic field lines, Physics of Plasmas 18(3).

Firpo, M.-C. & Coppi, B. (2003). Dynamical analysis of the nonlinear growth of the m=n=1 resistive

internal mode, Phys. Rev. Lett. 90: 095003.

Firpo, M.-C. & Elskens, Y. (2000). Phase transition in the collisionless damping regime for wave-

particle interaction, Phys. Rev. Lett. 84: 3318–3321.

Frieman, E. & Rotenberg, M. (1960). On hydromagnetic stability of stationary equilibria, Rev. Mod.

Phys. 32: 898–902.
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