Heme oxygenase-1 induction restores high-blood-flow-dependent remodeling and endothelial function in mesenteric arteries of old rats

Submitted by Emmanuel Lemoine on Wed, 12/11/2013 - 17:08

Titre
Heme oxygenase-1 induction restores high-blood-flow-dependent remodeling and endothelial function in mesenteric arteries of old rats

Type de publication
Article de revue

Auteur
Freidja, Mohamed Lamine [1], Vessieres, Emilie [2], Clere, Nicolas [3], Desquiret-Dumas, Valérie [4], Guihot, Anne-Laure [5], Toutain, Bertrand [6], Loufrani, Laurent [7], Jardel, Alain [8], Procaccio, Vincent [9], Faure, Sébastien [10], Henrion, Daniel [11]

Editeur
Lippincott, Williams & Wilkins

Type
Article scientifique dans une revue à comité de lecture

Année
2011

Langue
Anglais

Date
2011/01

Numéro
1

Pagination
102 - 112

Volume
29

Titre de la revue
Journal of hypertension

ISSN
1473-5598

Mots-clés
Age [12], Animals [13], Blood [14], Endothelium, Vascular [15], Enzyme [16], Heme [17], Mesenteric [18], Protoporphyrins [19], Rats [20], Rats, Wistar [21], Vasodilation [22]
BACKGROUND:
Aging is associated with reduced structural and functional adaptation to chronic changes in blood flow (shear stress) in small arteries. As heme oxygenase-1 (HO-1) is induced by hemodynamic forces in vascular smooth muscle and endothelial cells, we hypothesized that it might improve flow-dependent remodeling in aging.

METHOD:
First-order mesenteric arteries from 3 and 16-month-old rats were exposed to high, low, or normal flow by alternate ligation in vivo. Rats were treated with the HO-1 inducer, cobalt protoporphyrin (CoPP, 5 mg/kg) or vehicle. 14 days later, local blood flow was measured in vivo, and arteries were studied in vitro.

RESULTS:
Despite an equivalent change in blood flow, diameter enlargement in the high-flow arteries was blunted in old compared to young rats and was associated with decreased endothelium-dependent relaxation to acetylcholine. In old rats, HO-1 induction with CoPP restored outward remodeling, via a paradoxical reactive oxygen species-dependent mechanism, and was associated with a Mn-superoxide dismutase (SOD) overexpression, as well as a significant reduction of mitochondrial aconitase activity, used as a biomarker for oxidative stress. The heme oxygenase activity inhibitor, Sn-protoporphyrin, and the SOD-mimetic, TEMPOL, prevented the effect of CoPP on remodeling and oxidative status in old rats. Furthermore, HO-1 induction improved endothelial function, in association with increased endothelial nitric oxide synthase protein expression and phosphorylation (Ser-1177). In low-flow arteries, inward remodeling was unaffected by aging or by CoPP. Thus, in old rats, CoPP-induced up-regulation of HO-1 restored high-flow-dependent remodeling (diameter enlargement) and improved endothelial function in mesenteric arteries.

CONCLUSION:
This opens new perspectives in the treatment of ischemic diseases in aging.

URL de la notice
http://okina.univ-angers.fr/publications/ua273 [23]
DOI
10.1097/HJH.0b013e32833db36e [24]
Lien vers le document
http://dx.doi.org/10.1097/HJH.0b013e32833db36e [24]
[24] http://dx.doi.org/10.1097/HJH.0b013e32833db36e

Publié sur Okina (http://okina.univ-angers.fr)