Impact of Experimental Conditions on Noncontact Laser Recordings in Microvascular Studies

Submitted by Emmanuel Lemoine on Thu, 01/30/2014 - 14:36

Titre
Impact of Experimental Conditions on Noncontact Laser Recordings in Microvascular Studies

Type de publication
Article de revue

Auteur
Mahé, Guillaume [1], Durand, Sylvain [2], Humeau-Heurtier, Anne [3], Lefthériotis, Georges [4], Abraham, Pierre [5]

Editeur
Wiley

Type
Article scientifique dans une revue à comité de lecture

Année
2012

Langue
Anglais

Date
2012

Numéro
8

Pagination
669 - 675

Volume
19

Titre de la revue
Microcirculation

ISSN
1549-8719

Mots-clés
Blood [6], experimental [7], Iontophoresis [8], Laser [9], Methods [10], Microcirculation [11], Skin [12]

Résumé en anglais
Microcirculation 19: 669–675, 2012. Abstract Microcirculation, especially skin microcirculation, is a window toward systemic vascular function in magnitude and underlying mechanisms. Different techniques have been developed to assess the microcirculation. Among these techniques, laser technology is used to perform noninvasive microvascular assessments. In the 1970s, the laser Doppler flowmetry (LDF) technique was proposed to monitor microvascular blood flow. More recently, noncontact technologies including laser Doppler perfusion imaging (LDI) and laser speckle contrast imaging (LSCI) have improved the reproducibility of the microcirculation measurements and facilitated some clinical evaluations such as on wounds and ulcers. However, due to the absence of contact between tissue and sensors, it is likely that different technical and environmental conditions may interfere with microvascular recordings. This review presents major technical and environmental conditions, which may interfere with noncontact laser recordings in microvascular studies.

URL de la notice

DOI

Lien vers le document
http://dx.doi.org/10.1111/j.1549-8719.2012.00205.x [14]
Publié sur Okina (http://okina.univ-angers.fr)