Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins

Submitted by Emmanuel Lemoine on Thu, 02/06/2014 - 14:07

Titre
Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins

Type de publication
Article de revue

Auteur
Joubert, Aymeric [1], Bataille-Simoneau, Nelly [2], Campion, Claire [3], Guillemette, Thomas [4], Hudhomme, Piétrick [5], Iacomi-Vasilescu, Béatrice [6], Leroy, Thibault [7], Pochon, Stéphanie [8], Poupard, Pascal [9], Simoneau, Philippe [10]

Editeur
Blackwell Publishing Ltd

Type
Article scientifique dans une revue à comité de lecture

Année
2011

Langue
Anglais

Numéro
1

Pagination
62-80

Volume
13

Titre de la revue
Cellular Microbiology

ISSN
1462-5822

Résumé en anglais
Camalexin, the characteristic phytoalexin of Arabidopsis thaliana, inhibits growth of the fungal necrotroph Alternaria brassicicola. This plant metabolite probably exerts its antifungal toxicity by causing cell membrane damage. Here we observed that activation of a cellular response to this damage requires cell wall integrity (CWI) and the high osmolarity glycerol (HOG) pathways. Camalexin was found to activate both AbHog1 and AbSlt2 MAP kinases, and activation of the latter was abrogated in an AbHog1 deficient strain. Mutant strains lacking functional MAP kinases showed hypersensitivity to camalexin and brassinin, a structurally related phytoalexin produced by several cultivated Brassica species. Enhanced susceptibility to the membrane permeabilization activity of camalexin was observed for MAP kinase deficient mutants. These results suggest that the two signalling pathways have a pivotal role in regulating a cellular compensatory response to preserve cell integrity during exposure to camalexin. AbHog1 and AbSlt2 deficient mutants had reduced virulence on host plants that may, at least for the latter mutants, partially result from their inability to cope with defence metabolites such as indolic phytoalexins. This constitutes the first evidence that a phytoalexin activates fungal MAP kinases and that outputs of activated cascades contribute to protecting the fungus against antimicrobial plant metabolites.

URL de la notice

DOI
10.1111/j.1462-5822.2010.01520.x [12]
Liens

Publié sur Okina (http://okina.univ-angers.fr)