Thiazolidinediones Induce Osteocyte Apoptosis by a G Protein-coupled Receptor 40-dependent Mechanism

Submitted by Emmanuel Lemoine on Tue, 06/10/2014 - 11:23

Thiazolidinediones Induce Osteocyte Apoptosis by a G Protein-coupled Receptor 40-dependent Mechanism

Mieczkowska, Aleksandra [1], Baslé, Michel-Félix [2], Chappard, Daniel [3], Mabilleau, Guillaume [4]

Mieczkowska, Aleksandra [1], Baslé, Michel-Félix [2], Chappard, Daniel [3], Mabilleau, Guillaume [4]

Mieczkowska, Aleksandra [1], Baslé, Michel-Félix [2], Chappard, Daniel [3], Mabilleau, Guillaume [4]

American Society for Biochemistry and Molecular Biology

Apoptosis [5], Bone [6], GPR40 [7], MAP Kinases (MAPKs) [8], osteocyte [9], Peroxisome Proliferator-activated Receptor (PPAR) [10], sclerostin [11]

Thiazolidinediones (TZDs) represent an interesting treatment of type 2 diabetes mellitus. However, adverse effects such as heart problems and bone fractures have already been reported. Previously, we reported that pioglitazone and rosiglitazone induce osteocyte apoptosis and sclerostin up-regulation; however, the molecular mechanisms leading to such effects are unknown. In this study, we found that TZDs rapidly activated Erk1/2 and p38. These activations were mediated through Ras proteins and GPR40, a receptor expressed on the surface of osteocytes. Activation of this pathway led only to osteocyte apoptosis but not sclerostin up-regulation. On the other hand, TZDs were capable of activating peroxisome proliferator-activated receptor-γ, and activation of this signaling pathway led to sclerostin up-regulation but not osteocyte apoptosis. This study demonstrates two distinct signaling pathways activated in osteocytes in response to TZDs that could participate in the observed increase in fractures in TZD-treated patients.

http://okina.univ-angers.fr/publications/ua3342 [12]
10.1074/jbc.M111.324814 [13]
http://dx.doi.org/10.1074/jbc.M111.324814 [13]
Publié sur Okina (http://okina.univ-angers.fr)