Validation of a predictive method for an accurate assessment of resting energy expenditure in medical mechanically ventilated patients

Submitted by Emmanuel Lemoine on Fri, 07/18/2014 - 09:44

Titre
Validation of a predictive method for an accurate assessment of resting energy expenditure in medical mechanically ventilated patients

Type de publication
Article de revue

Auteur
Savard, Jean-François [1], Faisy, Christophe [2], Lerolle, Nicolas [3], Guérot, Emmanuel [4], Diehl, Jean-Luc [5], Fagon, Jean-Yves [6]

Editeur
Lippincott, Williams & Wilkins

Type
Article scientifique dans une revue à comité de lecture

Année
2008

Langue
Anglais

Date
2008/04

Numéro
4

Pagination
1175 - 1183

Volume
36

Titre de la revue
Critical Care Medicine

ISSN
0090-3493
Objective: Use comparison with indirect calorimetry to confirm the ability of our previously described equation to predict resting energy expenditure in mechanically ventilated patients.

Design: Prospective, validation study. Setting: Eighteen-bed, medical intensive care unit at a teaching hospital. Patients: All adult patients intubated >24 hrs were assessed for eligibility. Exclusion criteria were clinical situations that could contribute to erroneous calorimetric measurements.

Interventions: Resting energy expenditure was calculated using the original Harris-Benedict equations and those corrected for usual stress factors, the Swinamer equation, the Fusco equation, the Ireton-Jones equation, and our equation:

\[
\text{resting energy expenditure (kcal/day)} = 8 \times \text{weight (kg)} + 14 \times \text{height (cm)} + 32 \times \text{minute ventilation (L/min)} + 94 \times \text{temperature (°C)} - 4834.
\]

Measurements and Main Results: Resting energy expenditure was measured by indirect calorimetry for the 45 included patients. Resting energy expenditure calculated with our predictive model correlated with the measured resting energy expenditure \((r^2 = .62, p < .0001)\), and Bland-Altman analysis showed a mean bias of \(-192 \pm 277\) kcal/day, with limits of agreement ranging from \(-735\) to \(351\) kcal/day. Resting energy expenditure calculated with the Harris-Benedict equations was more weakly correlated with measured resting energy expenditure \((r^2 = .41, p < .0001)\), with Bland-Altman analysis showing a mean bias of \(279 \pm 346\) kcal/day between them and the limits of agreement ranging from \(-399\) to \(957\) kcal/day. Applying usual stress-correction factors to the Harris-Benedict equations generated wide variability, and the correlation with measured resting energy expenditure was poorer \((r^2 = .18, p < .0001)\), with Bland-Altman analysis showing a mean bias of \(-357 \pm 750\) kcal/day and limits of agreement ranging from \(-1827\) to \(1113\) kcal/day. The use of the Swinamer, Fusco, or Ireton-Jones predictive methods yielded weaker correlation between calculated and measured resting energy expenditure \((r^2 = .41, p < .0001; r^2 = .38, p < .0001; r^2 = .39, p < .0001, \text{respectively})\) than our equation, and Bland-Altman analysis showed no improvement in agreement and variability between methods.

Conclusions: The Faisy equation, based on static (height), less stable (weight), and dynamic biometric variables (temperature and minute ventilation), provided precise and unbiased resting energy expenditure estimations in mechanically ventilated patients.

DOI 10.1097/CCM.0b013e3181691502 [8]
Lien vers le document http://dx.doi.org/10.1097/CCM.0b013e3181691502 [8]