Recording of EEG during fMRI experiments: patient safety

Submitted by Florence Franconi on Tue, 12/02/2014 - 14:22

Titre
Recording of EEG during fMRI experiments: patient safety

Type de publication
Article de revue

Auteur
Lemieux, L [1], Allen, P J [2], Franconi, Florence [3], Symms, M R [4], Fish, D R [5]

Editeur
Wiley

Type
Article scientifique dans une revue à comité de lecture

Année
1997

Langue
Anglais

Date
1997 Dec

Pagination
943-52

Volume
38

Titre de la revue
Magnetic Resonance in Medicine

ISSN
0740-3194

Mots-clés
Electroencephalography [6], Electromagnetic Fields [7], Humans [8], Magnetic Resonance Imaging [9], Models, Theoretical [10], Safety [11], temperature [12]

Résumé en anglais
The acquisition of electroencephalograms (EEG) during functional magnetic resonance imaging (fMRI) experiments raises important practical issues of patient safety. The presence of electrical wires connected to the patient in rapidly changing magnetic fields results in currents flowing through the patient due to induced electromotive forces (EMF), by three possible mechanisms: fixed loop in rapidly changing gradient fields; fixed loop in a RF electromagnetic field; moving loop in the static magnetic field. RF-induced EMFs were identified as the most important potential hazard. We calculated the minimum value of current-limiting resistance to be fitted in each EEG electrode lead for a representative worst case loop, and measured RF magnetic field intensity and heating in a specific type of current-limiting resistors. The results show that electrode resistance should be > or = 13 k(omega) for our setup. The methodology presented is general and can be useful for other centers.

URL de la notice

Autre titre
Magn Reson Med

Identifiant (ID)
PubMed
9402196 [14]

Liens
Publié sur Okina (http://okina.univ-angers.fr)