Experience-based modulation of behavioural responses to plant volatiles and other sensory cues in insect herbivores

Submitted by Emmanuel Lemoine on Thu, 02/05/2015 - 14:30

Titre
Experience-based modulation of behavioural responses to plant volatiles and other sensory cues in insect herbivores

Type de publication
Article de revue

Auteur
Anderson, Peter [1], Anton, Sylvia [2]

Editeur
Wiley

Type
Article scientifique dans une revue à comité de lecture

Année
2014

Langue
Anglais

Date
2014/08

Numéro
8

Pagination
1826 - 1835

Volume
37

Titre de la revue
Plant, cell & environment

ISSN
1365-3040

Mots-clés
Animals [3], Cues [4], Feeding Behavior [5], Female [6], Herbivory [7], Insects/physiology [8], Larva/physiology [9], Male [10], Mating Preference, Animal [11], Oviposition [12], Plants/chemistry [13], Smell [14], Volatile Organic Compounds/chemistry [15]

Résumé en anglais
Plant volatiles are important cues for many herbivorous insects when choosing a suitable host plant and finding a mating partner. An appropriate behavioural response to sensory cues from plants and other insects is crucial for survival and fitness. As the natural environment can show both large spatial and temporal variability, herbivores may need to show behavioural plasticity to the available cues. By using earlier experiences, insects can adapt to local variation of resources. Experience is well known to affect sensory-guided behaviour in parasitoids and social insects, but there is also increasing evidence that it influences host plant choice and the probability of finding a mating partner in herbivorous insects. In this review, we will focus upon behavioural changes in holometabolous insect herbivores during host plant choice and localization of mating partners, modulated by experience to sensory cues. The experience can be acquired during both the larval and the adult stage and can influence later responses to plant volatiles and other sensory cues not only within the developmental stage but also after metamorphosis. Furthermore, we will address the neurophysiological mechanisms underlying the experience-dependent behavioural adaptations and discuss ecological and evolutionary aspects of insect behavioural plasticity based upon experience.

URL de la notice
http://okina.univ-angers.fr/publications/ua7584 [16]

DOI
10.1111/pce.12342 [17]

Lien vers le document
http://dx.doi.org/10.1111/pce.12342 [17]
Liens

Publié sur Okina (http://okina.univ-angers.fr)