Alveolar fluid in acute respiratory distress syndrome promotes fibroblast migration: role of platelet-derived growth factor pathway

Submitted by Emmanuel Lemoine on Tue, 02/24/2015 - 15:22

Titre
Alveolar fluid in acute respiratory distress syndrome promotes fibroblast migration: role of platelet-derived growth factor pathway

Type de publication
Article de revue

Auteur
Piednoir, P. [1], Quesnel, C. [2], Nardelli, L. [3], Lecon, V. [4], Bouadma, L. [5], Lasocki, Sigismond [6], Philip, I. [7], Mailleux, A. [8], Soler, P. [9], Crestani, B. [10], Dehoux, M. [11]

Editeur
Lippincott, Williams & Wilkins

Type
Article scientifique dans une revue à comité de lecture

Année
2012

Langue
Anglais

Date
2012

Numéro
7

Pagination
2041 - 9

Volume
40

Titre de la revue
Critical Care Medicine

ISSN
1530-0293

Mots-clés
Acute Lung Injury/epidemiology/metabolism [12], Aged [13], Blotting, Western [14], Bronchoalveolar Lavage [15], Bronchoalveolar Lavage Fluid/cytology [16], Cell Line [17], Cell Movement/physiology [18], Enzyme Inhibitors/pharmacology [19], Female [20], Fibroblasts/physiology [21], Humans [22], Intensive Care Units [23], Interleukin-8/metabolism [24], Male [25], Middle Aged [26], Multiple Organ Failure/mortality [27], Multivariate Analysis [28], Neutrophils/metabolism [29], Platelet-Derived Growth Factor/metabolism [30], Prospective Studies [31], Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors [32], Respiration, Artificial [33], Respiratory Distress Syndrome, Adult/epidemiology/metabolism [34], Severity of Illness Index [35], Tyrphostins/pharmacology [36]
OBJECTIVES: Fibroblast migration is an initiating step in fibroproliferation; its involvement during acute lung injury and acute respiratory distress syndrome remains poorly understood. The aims of this study were: 1) to determine whether bronchoalveolar lavage fluids from patients with acute lung injury/acute respiratory distress syndrome modulate lung fibroblast migration; 2) to assess lung fibroblast migration's clinical relevance; and 3) to evaluate the role of the platelet-derived growth factor pathway in this effect. DESIGN: Prospective cohort study. SETTING: Three intensive care units of a large tertiary referral center. PATIENTS: Ninety-three ventilated patients requiring bronchoalveolar lavage fluids were enrolled (48 with acute respiratory distress syndrome, 33 with acute lung injury, and 12 ventilated patients without acute lung injury/acute respiratory distress syndrome). INTERVENTIONS: After bronchoalveolar lavage fluids collection during standard care, the patients were followed up for 28 days and clinical outcomes were recorded. Migration assays were performed by using a Transwell model; bronchoalveolar lavage fluids platelet-derived growth factor and soluble platelet-derived growth factor receptor-alpha were characterized by Western blot and measured by ELISA. MEASUREMENTS AND MAIN RESULTS: Most of the bronchoalveolar lavage fluids inhibited basal fibroblast migration. Bronchoalveolar lavage fluids chemotactic index increased with severity of lung injury (28% in patients without acute lung injury/acute respiratory distress syndrome and with acute lung injury vs. 91% in acute respiratory distress syndrome patients; p = .016). In acute lung injury/acute respiratory distress syndrome patients, inhibition of basal fibroblast migration by bronchoalveolar lavage fluids below 52% was independently associated with a lower 28-day mortality (odds ratio [95% confidence interval] 0.313 [0.10-0.98], p = .046). Platelet-derived growth factor-related peptides and soluble platelet-derived growth factor-Ralpha were detected in all bronchoalveolar lavage fluids from acute lung injury/acute respiratory distress syndrome patients. The effect of bronchoalveolar lavage fluids stimulating migration was inhibited by a specific platelet-derived growth factor receptor inhibitor (AG1296). Bronchoalveolar lavage fluids inhibiting migration reversed the effect of rh-platelet-derived growth factor-BB and reduced by 40% the binding of 125I-platelet-derived growth factor-BB to fibroblast cell surface in favor of a role for platelet-derived growth factor-sRalpha. CONCLUSIONS: Together, our results suggest that during acute lung injury, fibroblast migration is modulated by bronchoalveolar lavage fluids through a platelet-derived growth factor/platelet-derived growth factor-sRalpha balance. Migration is associated with clinical severity and patient 28-day mortality.
Publié sur Okina (http://okina.univ-angers.fr)