The AGE-breaker ALT-711 restores high blood flow-dependent remodeling in mesenteric resistance arteries in a rat model of type 2 diabetes

Submitted by Emmanuel Lemoine on Tue, 02/24/2015 - 16:14

Titre: The AGE-breaker ALT-711 restores high blood flow-dependent remodeling in mesenteric resistance arteries in a rat model of type 2 diabetes

Type de publication: Article de revue

Auteur: Freidja, M. L [1], Tarhouni, K. [2], Toutain, Bertrand [3], Fassot, Céline [4], Loufrani, Laurent [5], Henrion, Daniel [6]

Editeur: American Diabetes Association

Type: Article scientifique dans une revue à comité de lecture

Année: 2012

Langue: Anglais

Date: 2012

Numéro: 6

Pagination: 1562 - 72

Volume: 61

Titre de la revue: Diabetes

ISSN: 1939-327X

Flow-mediated remodeling of resistance arteries is essential for revascularization in ischemic diseases, but this is impaired in diabetes. We hypothesized that breaking advanced glycation end product (AGE) cross-links could improve remodeling in mesenteric resistance arteries in Zucker diabetic fatty (ZDF) rats compared with lean Zucker (LZ) rats. Arteries, exposed to high (HF) or normal (NF) blood flow after alternate arterial ligation in vivo, were collected after 2 weeks. In LZ rats, HF artery diameter was larger than for NF vessels, but this was not the case in ZDF rats. Endothelium-mediated dilation in ZDF rats, which was lower than in LZ rats, was further decreased in HF arteries. Treatment of rats with the AGE-breaker 4,5-dimethyl-3-phenacylthiazolium chloride (ALT-711) (3 mg/kg/day; 3 weeks) reversed diabetes-induced impairment of HF-dependent remodeling. ALT-711 also improved endothelium nitric oxide-dependent relaxation in mesenteric resistance arteries. Reactive oxygen species reduction restored relaxation in ZDF rats but not in LZ or ALT-711-treated rats. AGEs were reduced in ALT-711-treated ZDF rats compared with ZDF rats. Metalloproteinase activity, necessary for HF-dependent remodeling, was reduced in ZDF rats compared with LZ rats and restored by ALT-711. Thus, targeting AGE cross-links may provide a therapeutic potential for overcoming microvascular complications in ischemic disorders occurring in diabetes.

URL de la notice http://okina.univ-angers.fr/publications/ua8432 [19]
DOI 10.2337/db11-0750 [20]
Lien vers le document http://dx.doi.org/10.2337/db11-0750 [20]

Liens
[20] http://dx.doi.org/10.2337/db11-0750

Publié sur Okina (http://okina.univ-angers.fr)