Sustained release of TGF-β1 from biodegradable microparticles prepared by a new green process in CO2 medium

Submitted by Thomas Cordonnier on Mon, 08/31/2015 - 15:12

Titre
Sustained release of TGF-β1 from biodegradable microparticles prepared by a new green process in CO2 medium

Type de publication
Article de revue

Auteur
Swed, Amin [1], Cordonnier, Thomas [2], Dénarnaud, Alison [3], Boyer, Cécile [4], Guicheux, Jérôme [5], Weiss, Pierre [6], Boury, Frank [7]

Editeur
Elsevier

Type
Article scientifique dans une revue à comité de lecture

Année
2015

Langue
Anglais

Date
30-09-2015

Numéro
1-2

Pagination
357-65

Volume
493

Titre de la revue
International Journal of Pharmaceutics

ISSN
03785173

Mots-clés
Glycofurol [8], Injectable solvent [9], isosorbide dimethyl ether [10], Protein encapsulation [11], sustained release [12], Transforming growth factor beta1 (TGF-b1) [13]

Résumé en anglais
The aim of this work was to encapsulate transforming growth factor b1 (TGF-b1) into PLGA microparticles for regenerative medicine applications. TGF-b1 was firstly precipitated to ensure its stability during subsequent encapsulation within microparticles. A novel emulsification/extraction process in CO2 medium under mild conditions of pressure and temperature was used to encapsulate the protein. Interestingly, non-volatile injectable solvents, isosorbide dimethyl ether (DMI) and glycofurol (GF), were employed to precipitate the protein and to dissolve the polymer. Good encapsulation efficiency was obtained with preserved bioactivity of the protein. The microparticles were characterized in terms of size and zeta potential. In addition, the morphology and surface properties were determined using scanning electron microscopy (SEM) and atomic force microscopy (AFM) respectively. In vitro release study of the protein from microparticles was presented to assess the capacity of these systems to control the protein release. Moreover, cytotoxicity study was performed and showed an excellent cytocompatibility of the obtained microparticles. Thus, we described an effective and original process for TGF-b1 encapsulation into PLGA microparticles. The obtained polymeric carriers could be used in many biomedical applications and were more specifically developed for cartilage regeneration.

URL de la notice
http://okina.univ-angers.fr/publications/ua13833 [14]
Liens

Publié sur Okina (http://okina.univ-angers.fr)