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Abstract

This work is concerned with the modelling of perovskite based hybrid solar cells

formed by sandwiching a slab of organic lead halide perovskite (CH3NH3PbI3−xClx)

photo-absorber between (n-type) acceptor and (p-type) donor materials - typically ti-

tanium dioxide and spiro. A model for the electrical behaviour of these cells is for-

mulated based on drift-diffusion equations for the motion of the charge carriers and

Poisson’s equation for the electric potential. It is closed by (i) internal interface con-

ditions accounting for charge recombination/generation and jumps in charge carrier

densities arising from differences in the electron affinity/ionisation potential between

the materials (ii) Ohmic boundary conditions on the contacts. The model is anal-

ysed by using a combination of asymptotic and numerical techniques. This leads to

an approximate - yet highly accurate - expression for the current-voltage relationship

as a function of the solar induced photo-current. In addition, we show that this ap-

proximate current-voltage relation can be interpreted as an equivalent circuit model

consisting of three diodes, a resistor and a current source. For sufficiently small biases

the device’s behaviour is diodic and the current is limited by the recombination at the

internal interfaces, whereas, for sufficiently large biases the device acts like a resistor

and the current is dictated by the Ohmic dissipation in the acceptor and donor. The re-

sults of the model are also compared to experimental current-voltage curves and good

agreement is shown.
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1 Introduction

Solar technology has been a very active field of research for many years. For the majority

of this time the best cells have been made from inorganic crystalline semiconductors; with

commercially available silicon modules typically operating in the range of 16-20% power

conversion efficiency (PCE) [15]. However, during this time, the cost of their manufacture

(in both a financial and environmental sense) has remained relatively high. More recently,

a different class of solar cells has emerged that are manufactured using organic semicon-

ductors. These organic devices present several important advantages over their traditional

inorganic counterparts; for example, low cost materials, high throughput manufacturing

techniques (e.g. roll-to-roll printing) and mechanical flexibility (allowing the placement

of cells in previously unusable positions). Despite these advantages, the current organic

devices have been unable to compete in the commercial market due to their relatively low

efficiency. Until this year the best organic cells had around a 7-10% PCE [14, 15].

However, in only the last year, it has been discovered that hybrid organic cells con-

structed with a light-absorbing layer of perovskite can lead to a significant improvement in

PCE [12, 21, 27]. This perovskite material acts as both a light absorber and an ambipolar

charge (or exciton) transporting material, negating the need for nano-structured hetero-

junctions such as those used in most organic photovoltaics. Indeed, when this perovskite

material is used in a thin film architecture, and a flat perovskite layer is placed between a

titanium dioxide acceptor and a spiro donor, device performances of up to 15% PCE have

been achieved [2, 43]. However, since the technology is new, and the underlying physics

is not yet fully understood, it is anticipated that an even higher PCE is obtainable with

the correct optimisation leading to a cell that is both cheap and operating at the highest

efficiency.

In perovskite cells, absorption of light occurs mainly in the perovskite layer. Following

light absorption there is a coexistence of excitons and free charges, owing to the exci-

ton binding energy being on the order of the thermal energy (∼50 meV) [26]. The exact

branching ratio for excitons versus free charges remains unknown, and for the work pre-

sented here we assume that free charge generation is the predominant pathway. These free

charges migrate through the perovskite by a combination of thermally excited diffusion and

electrically induced drift. Selective flow of charges to the contacts is facilitated by the ac-

ceptor and donor layers abutting the perovskite, that act as a barrier to holes and electrons,

respectively. There is evidence to suggest that efficient solar cell operation is aided by sig-

nificant levels of n-doping in the acceptor (∼ 1022 − 1023/m3) and p-doping in the donor

(∼ 1023 − 1024/m3) [37]. Charge (electron-hole) recombination can take place within the

bulk of the perovskite and in narrow layers (∼1nm) near the material interfaces.

Our approach to describing the electrical properties of a perovskite cell is (in §2) to for-



A MODEL FOR PEROVSKITE BASED HYBRID SOLAR CELLS 3

mulate a model based on: (i) drift-diffusion equations for the two species of charge carriers

(hole and electrons) throughout the device and (ii) a version of Poisson’s equation that ac-

counts for doping in both the acceptor and donor. The effect of (iii) charge recombination

is modelled near the material interfaces by appropriate internal boundary conditions and

(iv) in the bulk of the perovskite by a bulk recombination term. Charge pair generation

is modelled by (v) a bulk generation term within the perovskite while changes in electron

affinity and ionisation potential at the material interfaces are systematically accounted for

by (vi) jump conditions on the carrier densities at the material interfaces (see for example

[33]). Finally (vii) Ohmic boundary conditions are prescribed on the contacts on the outer

edges of the cell.

The model is analysed using a combination of asymptotic and numerical techniques.

In the physically relevant regime, under illumination of one sun: (I) the Debye lengths in

donor, perovskite and acceptor are all small in comparison to the width of the materials;

(II) the charge mobilities in the perovskite are very much greater than those in the acceptor

and donor; and (III) recombination is difficult - corresponding to small values of the dimen-

sionless parameters δ, δKl and δKr as defined later in (21). We note that if recombination

were not difficult the device would behave primarily as an Ohmic resistor and it would not

be possible to achieve the open-circuit voltages (of around 1 Volt) that are observed in real

devices.

In practice, a combination of the properties (I) and (III) makes solution of the problem

using numerical methods very challenging. Our approach, in §3, has been to use a numeri-

cal scheme to compute solutions in which the dimensionless Debye lengths are moderately

small, and recombination is moderately difficult. However we are unable to solve for the

extremely small dimensionless Debye lengths and values of δKl and δKr that occur in

practice - a more detailed explanation of why this difficulty occurs is given in §3.

This motivated us, in §4, to adopt an asymptotic approach to the solution of the problem

that systematically exploits the small dimensionless Debye lengths and large relative mo-

bility in the perovskite (properties (I) and (II)) - previous authors have treated related, but

different, problems using these techniques [1, 4, 8, 18, 30, 35, 38]. The resulting asymp-

totic solution compares very favourably to the full numerical solution in the appropriate

regime (see figure 3). It also leads to a relatively simple set of transcendental equations for

the current-voltage curve, which in the case of bimolecular recombination (§4.2) can be

solved exactly. For certain types of non-bimolecular (§4.3) recombination the problem for

the current-voltage curve can be reduced to the solution of a single algebraic equation. In

§5 we compare experimental current-voltage curves to those predicted by the asymptotic

solution to the model. Finally, in §6, we draw our conclusions.
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Figure 1: A sketch of a perovskite cell showing the HOMO/valence bands (dashed lines)

and LUMO/conduction bands (solid lines).

2 Problem formulation

A sketch of the idealised geometry of a perovskite solar cell is given in figure 1; it consists

of a p-type donor layer in −d − b/2 < x < −b/2, a perovskite layer in −b/2 < x < b/2
and an n-type acceptor layer b/2 < x < a + b/2. The perovskite has a highly ordered

crystalline structure which is associated with well-defined conduction and valence band

edges separated by a band-gap. In contrast the organic acceptor and donor materials are

amorphous and have no well-defined band structure. Electrons are excited into the lowest

unoccupied molecular orbital (LUMO) leaving a hole in the highest occupied molecular

orbital (HOMO) and conduction takes place as excited electrons and holes move between

LUMO and HOMO (respectively) on adjacent molecules. This process is often viewed as

a hopping process between shallow, highly localised, energy wells (termed ‘traps’) and a

variety of different charge transport models are used to describe it including multiple trap-

ping models [20], Gaussian disorder models [31], and atomistic models [24]. Nevertheless

drift diffusion models are still widely used [5, 6, 9, 10, 16] to describe transport processes

in organic semiconductors and indeed solutions of hopping models using Dynamic Monte-

Carlo methods have been used to derive drift-diffusion parameters from microscopic data

[22, 42]. Here we also opt to use a drift-diffusion description of the acceptor and donor ma-

terials and note that (from a mathematical view point) the energy level of the LUMO plays

a role identical to that of the conduction band edge while that of the HOMO plays a role

identical to that of the valence band edge. We denote the energy of an electron at the lower

edge of the conduction band (or LUMO) by Ec(x), and that of a hole at the upper edge

of the valence band (or HOMO) by Ev(x). These quantities can be conveniently split into

material dependent parts (µ̄n(x) and µ̄p(x)) and parts arising from electrostatic interactions
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so that they can be written in the form

Ec(x) = µ̄n(x)− qφ and Ev(x) = µ̄p(x)− qφ, (1)

where, φ is the electric potential and q is the elementary charge. The material properties

µ̄n(x) and µ̄p(x) are the electron affinity and ionization potential respectively, which, in

this problem, are piece-wise constant functions that can be written as

µ̄n(x) =

{

µ̂n for − b/2 < x < b/2,

µn for b/2 < x < a+ b/2,
(2)

µ̄p(x) =

{

µp for − d− b/2 < x < −b/2,

µ̂p for − b/2 < x < b/2.
(3)

The ‘average’ force exerted on an electron in the conduction band (or LUMO) is thus

−∇Ec while that exerted on a hole in the valence band (or HOMO) ∇Ev. Notably the in-

finite gradients in µ̄n and µ̄p that occur at the interfaces between materials lead to effective

discontinuities in the electron and hole concentrations. In practice these energy differences

are so large that the hole concentration in the acceptor and the electron concentration in the

donor are vanishingly small which is an important factor in limiting (undesirable) recom-

bination of charge carriers in these materials. Henceforth we assume that µ̄n and µ̄p are

constant within a material so that, with the exception of material interfaces, we can ignore

forces arising from gradients in these quantities.

Bulk equations Charge carrier transport is modelled using drift-diffusion equations. In

the donor, we assume that the electron concentration is zero (justified by the large jump

in electron affinity between donor and perovskite) while in the acceptor we assume that

the hole concentration is zero (justified by the large jump in ionization potential between

acceptor and perovskite). The appropriate hole (electron) conservation equations in the

donor (acceptor) are thus

q
∂p

∂t
+

∂Jp

∂x
= 0 where Jp = −qDd

(

∂p

∂x
+

qp

kT

∂φ

∂x

)

in − (b/2 + d) < x < −b/2, (4)

q
∂n

∂t
− ∂Jn

∂x
= 0 where Jn = qDa

(

∂n

∂x
− qn

kT

∂φ

∂x

)

in b/2 < x < b/2 + a. (5)

where t denotes time, n and p are electron and hole number densities respectively, Jp and

Jn are the hole and electron current densities respectively, Dd and Da are the diffusivities



A MODEL FOR PEROVSKITE BASED HYBRID SOLAR CELLS 6

of a hole in the donor and an electron in the acceptor respectively, k is Boltzmann’s constant

and T is the absolute temperature.

In the perovskite both holes and electrons are created in abundance by photo-absorption

which we model as a bulk generation term G(x) in the electron and hole conservation equa-

tions. We also incorporate terms, accounting for bulk recombination R(n, p) and thermal

generation Gt(n, p) of electron-hole pairs, into the conservation equations so that they take

the form

∂p

∂t
+

1

q

∂Jp

∂x
= G−R(n, p) + Gt(n, p), and Jp = −qD̂p

(

∂p

∂x
+

qp

kT

∂φ

∂x

)

, (6)

∂n

∂t
− 1

q

∂Jn

∂x
= G−R(n, p) + Gt(n, p), and Jn = qD̂n

(

∂n

∂x
− qn

kT

∂φ

∂x

)

, (7)

in −b/2 < x < b/2. Here D̂p and D̂n are the diffusivities of holes and electrons in the

perovskite, respectively. The exact forms of the bulk generation, bulk recombination and

bulk thermal generation terms G(x), R(n, p) and Gt(n, p) are discussed later in this section.

The charge carrier conservation equations (4)-(7) are coupled to Poisson’s equation for

the electric potential, φ, which takes the form

∂2φ

∂x2
=























q

εd
(N̂d − p) in −(b/2 + d) < x < −b/2,

q

εp
(n− p) in −b/2 < x < b/2,

q

εa
(n− N̂a) in b/2 < x < b/2 + a,

(8)

where we incorporate the effect of doping, in the donor and acceptor, by including the terms

N̂d and N̂a. Here εd, εp and εa are the permittivities of the donor, perovskite and acceptor,

respectively.

Jump conditions at the material interfaces Continuity of potential and electric dis-

placement at the donor-perovskite interfaces and at the perovskite-acceptor interface take

the form

φ|x=−b/2− = φ|x=−b/2+ , εdφx|x=−b/2− = εpφx|x=b/2+ , (9)

φ|x=b/2− = φ|x=b/2+ , εpφx|x=b/2− = εaφx|x=b/2+ . (10)

Continuity of electric current across the interfaces and electron-hole interface recombina-

tion conditions can be formulated as follows:

Jp|x=−b/2− = Jn + Jp|x=−b/2+ , Jn|x=−b/2+ = qRl(n, p)− qGlt(n, p), (11)

Jn|x=b/2− + Jp|x=b/2− = Jn|x=b/2+ , Jp|x=b/2− = qRr(n, p)− qGrt(n, p), (12)
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where Rl and Rr are the electron-hole recombination rates on the donor-perovskite and

perovskite-acceptor interfaces respectively, Glt and Grt are the rates of thermal generation of

electron-hole pairs on the donor-perovskite and perovskite-acceptor interfaces respectively.

Here, as is usual, we assume that there is no net surface charge on the semiconductor-

semiconductor interfaces. We note however that these interfaces can be populated by a high

density of traps so it is possible to envisage situations where large charge densities reside on

the surfaces, but we do not consider this scenario here. The ratio of the hole concentrations

(on either side of the donor-perovskite interface) and of the electron concentrations (on

either side of the perovskite-acceptor interface) are given in terms of the jumps in the

ionization potential and electron affinity (see, for example, [33]) by

p|x=−b/2+ = νpp|x=−b/2− where νp =
ĝv
gv

exp

(

µ̂p − µp

kT

)

, (13)

n|x=b/2− = νnn|x=b/2+ where νn =
ĝc
gc

exp

(

− µ̂n − µn

kT

)

. (14)

where gc and ĝc are the conduction band density of states in the acceptor and perovskite, re-

spectively, and gv and ĝv are the valence band density of states in the donor and perovskite,

respectively. Further details on the derivation of the conditions (13) and (14) are given in

§A.

Choice of bulk and surface recombination rates The exact recombination mechanisms

(both surface and bulk) in perovskite cells are still not yet well understood. However,

since the perovskite has a well defined crystalline structure it is reasonable to assume that

bulk recombination occurs directly and is thus bimolecular (i.e. has the form R ∝ np).

Bimolecular recombination is associated with diodic behaviour with ideality factor N =
1. In contrast, there is experimental evidence to suggest that the recombination at the

material interfaces occurs via intermediate trap states so that a more general recombination

condition, of the form Rl,t ∝ nαpβ , is appropriate [23]. This form of the recombination is

associated with diodic behaviour with ideality factor N = 2/(α + β).
The requirement that the system has a genuine equilibrium in the dark (where the ap-

plied voltage and all current flows are zero) is tantamount to imposing that R−Gt, Rl−Glt

and Rr − Grt all have the form Γ(n, p)(np − N2
D) for some functions Γ(n, p) where n, p

and ND are the electron, hole and intrinsic carrier densities in the perovskite (ND is defined

in terms of fundamental material properties in (131)). Even with these requirements there

is still scope to model different recombination mechanisms through the choice of the func-

tions Γ(n, p) in the three recombination conditions. Here, we initially model both bulk and

surface recombinations using Langevin conditions, corresponding to direct recombination
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of electron-hole pairs, by writing

R− Gt = K̂(np−N2
D), Rl − Glt = K̂l(np−N2

D), Rr − Grt = K̂r(np−N2
D), (15)

where K̂, K̂l and K̂r are constants. We note that this choice of recombination conditions

inherently leads to an ideality factor N = 1. Later, in §4.3 we treat a much broader class

of recombination conditions, which can model a general ideality factor, and discuss how

these alterations affect the predictions of the model.

Boundary conditions at the contacts The problem is closed by imposing Ohmic bound-

ary conditions at the contacts with the electrodes. This is tantamount to assuming that there

are sufficient surface recombination sites, so as to ensure that local equilibrium is always

maintained, and that tunnelling effects at the contacts (and the diode-like behaviour) can

be neglected 1. In order that the model has a genuine equilibrium in the dark, in which the

applied voltage and all current flows are zero, it is a requirement that the global condition

(133) is satisfied (derived in §A). This can be ensured by writing the Ohmic boundary

conditions in the form

p|x=−(b/2+d) =
ND

Ñ−

√
νnνp

exp

(

qVbi

2kT

)

(16)

n|x=b/2+a =
Ñ−ND√
νnνp

exp

(

qVbi

2kT

)

, (17)

φ|x=−(b/2+d) = Vl −
Vbi

2
, φ|x=b/2+a = −Vr +

Vbi

2
, (18)

where V = Vl + Vr is the applied voltage and Vbi is the built in potential across the whole

device (as defined in (128)). In terms of the fundamental material properties of the device

(as discussed in §A)

Ñ− =

√

gc
gv

exp

(

−µp + µn +Wcath +Wanod

2kT

)

.

In non-steady state the currents measured at the two contacts (i.e. J |x=−(b/2+d) and J |x=b/2+a)

will, in general, be different. In order to determine the single current flowing in the exter-

nal circuit one must account for the rate of change of the surface charge densities at the

metal contacts. However, this is not a problem at steady state where the currents on at the

1If tunnelling effects at the contacts were believed to be significant one could, for example, incorporate

the conditions introduced by Malliaras and Scott, see [29]
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two contacts must be identical and equal to that flowing in the external circuit. Finally, for

convenience, we choose an origin for the electric potential in the middle of the perovskite

material

φ|x=0 = 0, (19)

such that Vl and Vr are the potential differences across the left- and right-hand sides of the

device respectively.

2.1 Non-dimensionalisation

Here we introduce dimensionless variables (denoted by a star) by scaling the model vari-

ables appropriately. We scale space with the width of the perovskite layer, voltages with

the thermal voltage and current densities with the typical photo-generated current density

qG0b (where G0 is a typical value of G - the rate of photo-generation of charge pairs per

unit volume). Carrier charge densities are scaled with Π0 = b2G0/
√
DaDd, the typical

charge density required to carry a current of magnitude qG0b. The appropriate scalings

thus takes the form

x = bx∗, p = Π0p
∗, n = Π0n

∗, φ =
kT

q
φ∗, G = G0G

∗,

Gt = G0G∗

t , Glt = bG0G∗

lt, Grt = bG0G∗

rt, R = G0R
∗, Rl = bG0R

∗

l ,

Rr = bG0R
∗

r , J = qG0bJ
∗, Jn = qG0bJ

n∗, Jp = qG0bJ
p∗, Vbi =

kT

q
Φ∗

bi,

Vl =
kT

q
Φ∗

l , Vr =
kT

q
Φ∗

r, t =
b2√
DaDd

t∗,

(20)

and gives rise to the following dimensionless quantities that characterise the system:

Λd =

√

εd
εp
, Λa =

√

εa
εp
, κ =

√

Dd

Da

, κn =
D̂n√
DaDd

, κp =
D̂p√
DaDd

,

δ =
K̂Π2

0

G0

, wd =
d

b
, wa =

a

b
, Na =

N̂a

Π0

, Nd =
N̂d

Π0

,

N =
ND

Π0

, Kl =
K̂l

K̂b
, Kr =

K̂r

K̂b
, λ =

√

εpkT

q2b2Π0

, νp =
ĝv
gv

exp

(

µ̂p − µp

kT

)

,

νn =
ĝc
gc

exp

(

− µ̂n − µn

kT

)

.

(21)
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Of the parameters whose meaning is not self-evident from their definition: νn is the ra-

tio of the electron concentration in the perovskite to that in the acceptor adjacent to the

perovskite-acceptor boundary; νp is the ratio of the hole concentration in the perovskite to

that in the donor adjacent to the perovskite-donor boundary; λ is the ratio of the Debye

length in the perovskite to the width of the perovskite layer; λΛa is the ratio of the Debye

length in the acceptor to the width of the perovskite layer; λΛd is the ratio of the Debye

length in the donor to the width of the perovskite layer; and δ is ratio of the typical bulk

recombination to the typical bulk generation in the perovskite.

The Steady Dimensionless Equations Since our primary focus here is to derive expres-

sions for the current-voltage relation of the cell we consider only the steady state, in which

the total current throughout the device is a constant, J ; this can be seen by integrating (4a),

(5a) and the difference between (6) and (7) and imposing continuity of current (11a) and

(12a)). On applying the rescalings (20) to the steady-state version of the model (4)-(19)

and dropping the stars we retrieve the dimensionless steady-state problem

J = −κ (px + pφx)

Λ2
dφxx =

1

λ2
(Nd − p)







in − wd −
1

2
< x < −1

2
, (22)

Jp
x = G− δ(np−N2)

Jn
x = δ(np−N2)−G

Jp = −κp (px + pφx)

Jn = κn (nx − nφx)

φxx =
1

λ2
(n− p)















































in − 1

2
< x <

1

2
, (23)

J =
1

κ
(nx − nφx)

Λ2
aφxx =

1

λ2
(n−Na)











in
1

2
< x <

1

2
+ wa, (24)
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subject to the jump conditions

νpp− = p+ Λ2
dφx|− = φx|+ φ− = φ+

Jn
+ + Jp

+ = J Jn
+ = Klδ(n+p+ −N2)

}

across x = −1

2
, (25)

n− = νnn+ φx|− = Λ2
aφx|+ φ− = φ+

Jn
−
+ Jp

−
= J Jp

−
= Krδ(n−p− −N2)

}

across x =
1

2
, (26)

(where subscripts − and + denote quantities evaluated just to the left and just to the right

of the interface respectively) and the boundary conditions

p =
N

Ñ−

√
νnνp

exp

(

Φbi

2

)

φ = −Φbi

2
+ Φl















on x = −wd −
1

2
, (27)

n =
NÑ−√
νnνp

exp

(

Φbi

2

)

φ =
Φbi

2
− Φr















on x =
1

2
+ wa, (28)

φ = 0 on x = 0, (29)

Here we can either choose to: (i) specify J , and use the solution to the problem to obtain

Φl, Φr and in turn the dimensionless applied potential Φ = Φl + Φr or; (ii) specify the

dimensionless applied potential Φ = Φl +Φr and use the solution to the problem to obtain

J . We note further that we can eliminate Jp from the problem by adding (23a) to (23b),

integrating and applying the jump conditions (25c) and (26c) to obtain

Jp = J − Jn, (30)

and henceforth we replace Jp by this expression.

2.1.1 Parameter estimates for real devices

Here we use existing data to obtain estimates for the sizes of the dimensionless param-

eters. We will base our calculations on a cell constructed using a TiO2 acceptor, a lead

triiodide perovskite absorbing layer (CH3NH3PbI3) and a spiro-OMeTAD donor. A typical

experimental current-voltage curve for this type of cell is shown in figure 5. We note that
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other materials are also commonly used, for example, Lee et al. [27] investigated the per-

formance of a methylammonium lead iodide chloride (CH3NH3PbI3−xClx) perovskite cell

and reported similar levels of performance. Parameter estimates for our system of choice

are shown in table 1. The corresponding dimensionless parameter values are

κ ≈ 0.3162, κ̂n = κ̂p ≈ 3.1623× 104, Λd ≈ 0.7746, Λa ≈ 4,
wd ≈ 1.2, wa ≈ 0.2, νn ≈ 6.68× 10−2, νp ≈ 2.9874× 10−4.

(31)

We can also obtain estimates for G0, Π0 and λ based on the current-voltage curve plot-

ted in figure 5 by observing that the reverse saturation current density Jrev,sat ≈ −200

A/m2 is given to a reasonable approximation by −q
∫ b/2

−b/2
Gdx. Assuming almost uniform

generation through the perovskite and taking b from table 1 yields a typical value for the

generation rate of G0 ≈ 2.5 × 1027 /m3s. In turn this corresponds to Π0 ≈ 7.9 × 1023

/m3 (via Π0 = b2G0/
√
DaDd) and λ ≈ 0.96 × 10−2. The value of ND, the intrinsic car-

rier concentration in the perovskite CH3NH3PbI3?xClx, is as yet unknown. It is however

expected to be much less than the typical carrier concentrations Π0 in the device under il-

lumination. In silicon, for example ND ≈ 1.5× 1016m−3 [39] which would, if repeated in

the perovskite, give a value for N ≈ 2× 10−8. In agreement with the discussion in §1 the

dimensionless dopant concentrations, Na and Nd, are expected to be approximately O(1).
The remaining dimensionless parameters in the model (δ, Kl, Kr, Ñ−) are more difficult to

estimate (even using the curve shown in figure 5) without first analysing the model in detail

and are therefore taken to be O(1) quantities for the purposes of the ensuing analysis.

3 Numerics

Our approach to the numerical solution of the system of equations (22)-(30) is to make a

series of transformations that pose all three parts of the problem on the interval (−1/2, 1/2).
In order to do this we make the following changes of variable:

x = −1/2− wd

(

z + 1
2

)

, p(x) = p̂(z), φ(x) = φ̂(z), Jp(x) = Ĵp(z), in −wd − 1
2
< x < −1

2
,

x = z, in −1
2
< x < 1

2
,

x = 1/2 + wa

(

1
2
− z
)

, n(x) = ñ(z), φ(x) = φ̃(z), Jn(x) = J̃n(z) in 1
2
< x < 1

2
+ wa.

(32)
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Parameter Symbol Value Reference(s)

Hole diffusivity in donor Dd 10−10m2/s [28]

Electron diffusivity in acceptor Da 2.5× 10−9m2/s [28]

Electron diffusivity in perovskite D̂n 2.5× 10−5m2/s [37]

Hole diffusivity in perovskite D̂p 2.5× 10−5m2/s [37]

Donor permittivity εd 3ε0F/m [37]

Acceptor permittivity εa 80ε0F/m [37]

Perovskite permittivity εp 6.5ε0F/m [37]

Acceptor width a 50− 100nm [37]

Donor width d 500− 700nm [37]

Perovskite width b 500nm [37]

Energy of LUMO in acceptor µn −4eV [12, 21]

Energy of HOMO in donor µp −5.22eV [21]

Energy of conduction band edge in perovskite µ̂n −3.93eV [12, 21]

Energy of valence band edge in perovskite µ̂p −5.43eV [12, 21]

Table 1: Parameter values for the device described in §2.1.1. Here, ε0 is the permittivity of

free space.

By doing so we can transform the steady-state problem (22)-(30) to one on the domain

−1/2 < z < 1/2 formed by the eight equations

wdJ = κ
(

p̂z + p̂φ̂z

)

, Λ2
dλ

2φ̂zz = w2
d(Nd − p̂), Jn

z +G = δ(np−N2),

J − Jn = −κ̂p (pz + pφz) , Jn = κ̂n (nz − nφz) , λ2φzz = (n− p),

κwaJ = −
(

ñz − ñφ̃z

)

, Λ2
aλ

2φ̃zz = w2
a(n−Na).

(33)
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and the thirteen boundary conditions

ñ =
NÑ−√
νnνp

exp

(

Φbi

2

)

φ̃ =
Φbi

2
− Φr

p = νpp̂

φ = φ̂

∂φ

∂z
= −Λ2

d

wd

∂φ̂

∂z
Jn = δKl(np−N2)



































































on z = −1

2
,

p̂ =
N

Ñ−

√
νnνp

exp

(

Φbi

2

)

φ̂ = −Φbi

2
+ Φl

n = νnñ

φ = φ̃

∂φ

∂z
= −Λ2

a

wa

∂φ̃

∂z
J − Jn = δKr(np−N2)































































on z =
1

2
, (34)

φ|z=0 = 0. (35)

The system (33)-(35) comprises an eleventh order set of ODEs with thirteen boundary con-

ditions. Thus, on imposing J and leaving the two parameters Φl and Φr to be determined as

part of the solution, it is not unreasonable to expect that (33)-(35) is well-posed. We solve

(33)-(35) using the open source software ‘chebfun’ [11, 40], which approximates functions

by Chebyshev polynomials, and is particularly appropriate for solving stiff problems. Nev-

ertheless, this approach still has difficulty in solving the problem (33)-(35) with physically

realistic parameter values and here we use it as a tool to gain insight into the behaviour of

the problem for less extreme parameter values and to compare to our asymptotic analysis

of the problem. The properties of the system that makes this a particularly challenging nu-

merical problem are: (i) the small value of the dimensionless Debye length, λ, and; (ii) the

small values of dimensionless recombination rate constants δKl and δKr. Inspecting the

recombination boundary conditions in (34) one can see that the product np must become

extremely large - specifically O(1/Klδ) or O(1/Krδ) - on the internal interfaces in order

to reach the series resistance limited regime where J = O(1). When these large values of

the product np are reached, Poission’s equation in (33) becomes extremely stiff owing to a

combination of the small value of λ and the large values of n and p.

In figure 3 we show some representative current-voltage curves, potential profiles and

charge carrier density profiles computed using this numerical scheme. A well-documented

version of our code is provided in the supplementary material.
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4 Asymptotic solution to the model in the limit of large

perovskite conductivity and small Debye length

On estimating the model parameters from the data on real cells (see §2.1.1) it is apparent

that there are very large disparities between hole and electron diffusivities in the perovskite

and those in the donor and acceptor. The crystalline structure of the perovskite leads to a

high electrical conductivity (corresponding to large electron and hole diffusivities) in com-

parison to the donor and acceptor which have much smaller conductivities (small electron

and hole diffusivities). These properties manifest themselves in the dimensionless model

in large values of κ̂p and κ̂n which are both O(104). Physically we expect them to lead to a

situation in which electron and hole densities rapidly equilibrate within the perovskite and

in which the primary resistance to current flow is in the donor and acceptor layers. More-

over, we recall that λ, the ratio of the Debye length in the perovskite to the width of the

perovskite layer, is small being of O(10−2) which results in approximate charge neutrality

(n ≈ p) in the bulk of each material. The large difference in electron affinity between the

acceptor (where it is high) and the perovskite (where it is low) mean that electron densities

immediately adjacent to the perovskite-acceptor boundary are much greater in the accep-

tor than in the perovskite; this corresponds to a small value of dimensionless parameter

νn which is of O(10−2). Analogously the large difference in ionization potential between

the donor (where it is low) and the perovskite (where it is high) mean that hole densities

immediately adjacent to the donor-perovskite boundary are much greater in the donor than

in the perovskite corresponding to a small value of dimensionless parameter νp which is

of O(10−4). From a physical perspective this can be interpreted as the acceptor and donor

efficiently acting to ‘suck’ free-electrons and holes (respectively) out of the perovskite. Fi-

nally, since we are primarily interested in the operation of devices under illumination we

expect the dimensionless thermal generation rate N ≪ 1. However, it turns out that taking

νn, νp and N to be O(1) quantities results in a distinguished limit that is also valid, in the

physical case, when νn, νp, N ≪ 1. In order to make it clear that the asymptotic analy-

sis does not rely on νn, νp and N being small we therefore take them to be O(1) for the

purposes of the ensuing analysis.

Motivated by these arguments we investigate the solution to the system (22)-(29) in the

physically relevant asymptotic limit κ̂p = O(1/λ2) and κ̂n = O(1/λ2) where λ ≪ 1 (in

the specific case discussed in §2.1.1 λ = O(10−2)). We formally take all other parameters

to be of O(1). In order to aid clarity, we re-express all large and small parameters in terms

of O(1) over-barred variables by writing

κp =
κ̄p

λ2
and κn =

κ̄n

λ2
. (36)



A MODEL FOR PEROVSKITE BASED HYBRID SOLAR CELLS 16

As we have defined the problem the power generating regime of the current-voltage curve

lies in the quadrant J < 0 and Φ = Φl + Φr > 0. Since this is the section of the curve that

is of most practical interest, in the remainder of this section, we focus on the current regime

J < 0. Later, in §4.2 we discuss the cases J = 0 and J < 0. It turns out that (in the small

λ limit) the leading order solutions in the acceptor and donor region decouple from each

other and since the solution structure in the donor and acceptor are very similar we only

detail the solution derivation in the perovskite and acceptor layers and merely summarise

the results for the donor. The relevant equations and boundary conditions in these two

regions are obtained from (23), (24), (26), (28) and (29) and are

px + pφx =
λ2

κ̄p

(Jn − J), Jn
x = δ(np−N2)−G

nx − nφx =
λ2

κ̄n

Jn, φxx =
1

λ2
(n− p)















in − 1

2
< x <

1

2
, (37)

nx − nφx = κJ, φxx =
1

Λ2
aλ

2
(n−Na) in

1

2
< x <

1

2
+ wa, (38)

n|x=1/2− = νnn|x=1/2+ ,

φx|x=1/2− = Λ2
aφx|x=1/2+ ,

φ|x=1/2− = φ|x=1/2+ ,

(Jn − J)|x=1/2− = −Krδ(n|x=1/2−p|x=1/2− −N2)



























across x =
1

2
(39)

n =
NÑ−√
νnνp

exp

(

Φbi

2

)

and φ =
Φbi

2
− Φr on x =

1

2
+ wa, (40)

φ = 0 on x = 0. (41)

It also prove useful to recap the recombination condition

Jn|x=−1/2+ = δKl(n|x=−1/2+p|x=−1/2+ −N2). (42)

4.1 Matched asymptotic analysis with J < 0 in the limit λ → 0

An asymptotic analysis of the problem in the limit λ → 0 requires that we split the de-

vice into seven regions, which we denote with the superscripts I-VII and depict in figure

2. These comprise the bulk regions (VI), (I) and (III) (in the donor, perovskite and ac-

ceptor, respectively), boundary layers about the donor-perovskite and perovskite-acceptor

interfaces (regions (V) and (II), respectively) and boundary layers near the contact (regions

(VII) and (IV)).
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4.1.1 Features of the solution in the perovskite

Before proceeding with the matched asymptotic analysis we derive some general results

that hold throughout the whole of the perovskite layer, whether in the bulk (I) or in the

boundary layers (II) and (V). We note first (from (37a) and (37c)) that

px ∼ −pφx and nx ∼ nφx, (43)

in all three regions and it follows that the leading order behaviour of the solutions for n and

p is given by

p ∼ B exp(−φ) and n ∼ A exp(φ) in − 1

2
< x <

1

2
, (44)

for some, as yet undetermined, constants A and B. Taking these behaviours and substitut-

ing them in (37b) leads to the expression

Jn
x ∼ δ(AB −N2)−G(x) (45)

which can readily be integrated to give the leading order behaviour of the electron current

throughout the perovskite

Jn ∼ δ(AB −N2)x−
∫ x

0

G(s)ds+
J

2
− h in − 1

2
< x <

1

2
(46)

for some constant h that remains to be determined. We can determine two relations for the

unknown constants A, B and h by substituting this expression for Jn, together with those

for n and p found in (44), into the interface conditions (39d) and (42) to obtain

−δ(AB −N2)− J

2
− h+

∫ 0

−1/2

G(x)dx ∼ Klδ(AB −N2), (47)

−δ(AB −N2)− J

2
+ h+

∫ 1/2

0

G(x)dx ∼ Krδ(AB −N2), (48)

which we can solve to find expressions for h and AB

h =
1

2

[

(

Kr −Kl

Kl +Kr + 1

)

(

∫ 1/2

−1/2

G(x)dx+ J

)

+

∫ 0

−1/2

G(x)dx−
∫ 1/2

0

G(x)dx

]

,(49)

AB =

∫ 1/2

−1/2
G(x)dx+ J

δ(Kl +Kr + 1)
+N2. (50)
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Donor (p-type) Perovskite Acceptor (n-type)

Region (I)

Region (II)

Region (III)

Region (IV)Region (V)

Region (VI)

Region (VII)

Figure 2: A sketch showing the locations and widths of the different asymptotic regions.

4.1.2 The perovskite bulk: Region (I)

We begin by examining the solution in the perovskite bulk, away from the interfaces, by

expanding in the form

n = n
(I)
0 +O(λ2), p = p

(I)
0 +O(λ2) and φ = φ

(I)
0 +O(λ2). (51)

Since λ ≪ 1, the leading order balance in Poisson’s equation, (37d), implies approximate

charge neutrality, n
(I)
0 (x) = p

(I)
0 (x). Then substitution of the expansion (51) into (37a) and

(37c) yields

n
(I)
0,x + n

(I)
0 φ

(I)
0,x = 0, n

(I)
0,x − n

(I)
0 φ

(I)
0,x = 0. (52)

from which it follows that n
(I)
0,x = 0 and φ

(I)
0,x = 0. Applying the boundary condition (41),

namely φ
(I)
0 |x=0 = 0, to the latter of these two equations and writing down a solution to the

former that is compatible with (44) yields

n
(I)
0 = A, p

(I)
0 = A and φ

(I)
0 = 0. (53)

from which we see that B = A. It follows from (50) that

A =

√

√

√

√

∫ 1/2

−1/2
G(x)dx+ J

δ(Kl +Kr + 1)
+N2. (54)

4.1.3 The acceptor bulk: Region (III)

Having found the leading order solution in the perovskite bulk we look for a solution in the

acceptor bulk. Once again the relatively small ratio of the Debye length to the width of the

acceptor (Λaλ ≪ 1) gives rise to approximate charge neutrality throughout the bulk of the

acceptor and motivates us to expand as follows:

n(III) = n
(III)
0 +O(λ2) and φ(III) = φ

(III)
0 +O(λ2). (55)
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Substituting this expansion into (38) and taking the leading order terms results in the fol-

lowing equations

n
(III)
0,x − n

(III)
0 φ

(III)
0,x = κJ and n

(III)
0 = Na. (56)

Substituting the latter into the former and integrating with respect to x leads to the following

relation for the leading order potential

φ
(III)
0 = −Jκ

Na

(

x− 1

2

)

+ c, (57)

for some as yet undetermined constant c. From (57) it can be seen that the acceptor bulk is

primarily behaving as an Ohmic resistor.

4.1.4 Boundary layer about the acceptor-perovskite interface: Region (II)

We investigate the solution close to the perovskite-acceptor interface by rescaling distances

in (37)-(39) as follows:

x =
1

2
+ λη. (58)

This leads to following inner equations in the boundary layer:

φηη = n− p

nη − nφη = λ3J
n

κ̄n

pη + pφη = λ3J
n − J

κ̄p

Jn
η = λ(δ(np−N2)−G)



































in η < 0 and (59)

Λ2
aφηη = n−Na

nη − nφη = λJκ

}

in η > 0, (60)

respectively, which couple via the conditions

n|η=0− = νnn|η=0+ , φη|η=0− = Λ2
aφη|η=0+ ,

φ|η=0− = φ|η=0+ .

}

across η = 0. (61)

We look for an asymptotic solution to (59)-(61) by expanding as follows:

n = n
(II)
0 +O(λ2), p = p

(II)
0 +O(λ2) and φ = φ

(II)
0 +O(λ2). (62)

We divide the task of looking for a solution to this problem by first solving in the perovskite,

where η < 0, then solving in the acceptor, where η > 0, and finally ensuring appropriate

continuity of the solution across the interface η = 0 by applying the conditions (61).
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Solution in η < 0 (the perovskite) As discussed in §4.1.1 the leading order solutions for

electron and hole densities in the perovskite have the form (44) corresponding to leading

order solutions to (59b)-(59c) of the form

n
(II)
0 = A exp

(

φ
(II)
0

)

and p
(II)
0 = A exp

(

−φ
(II)
0

)

in η < 0, (63)

where A is determined by (54). Substituting these solutions into the leading order expan-

sion of (59a) results in the following Poisson-Boltzmann equation for the leading order

potential

φ
(II)
0ηη = A

(

exp
(

φ
(II)
0

)

− exp
(

−φ
(II)
0

))

. (64)

The far field behaviour of φ(II) is given by matching to region (I) in the limit η → −∞ and

is

φ(II) → 0 as η → −∞. (65)

Solutions to (64)-(65) have the form

φ
(II)
0 = ±2 log

[

coth

(
√

A

2
(η0 − η)

)]

in η < 0, (66)

where η0 is a positive constant. Here we take the negative sign in this expression on the

physical grounds that we know that - for all relevant operating conditions - the electron

concentration is small in the perovskite in proximity to the boundary with acceptor, and

is thus less than the hole concentration2. By substituting the leading order potential from

(66) (on taking the negative sign) into the solution (63) we obtain the corresponding charge

carrier densities

n
(II)
0 = A tanh2

(
√

A

2
(η0 − η)

)

and p
(II)
0 = A tanh−2

(
√

A

2
(η0 − η)

)

in η < 0.(67)

Solution in η > 0 (the acceptor) The expansion of the drift-diffusion equation (60b) is,

at leading order,

n
(II)
0,η − n

(II)
0 φ

(II)
0,η = 0 in η > 0, (68)

2The only situation in which this is not the case, is when the device is operating very close to its reverse

saturation current density and A ≤ νnNa. However, we stress that this is not relevant in the interesting

power-generating regime and so we do not pursue this further.
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which has solution

n
(II)
0 = M exp

(

φ
(II)
0

)

in η > 0, (69)

where M is a constant that remains to be determined.

Matching to region (III) as η → ∞ By matching to the leading order solution in the

acceptor bulk (56)-(57) we obtain the following matching conditions on the leading order

solution in region (II):

φ
(II)
0 → c and n

(II)
0 → Na as η → +∞. (70)

Solution in η > 0 (the acceptor) continued The matching conditions (70) allows us

to determine the unknown constant in (69) as M = Na exp(−c). Then on substitution of

(69) into the leading order expansion of Poisson’s equation (60a) we obtain the following

equation for the leading order potential φ
(II)
0 :

Λ2
aφ

(II)
0,ηη = Na

(

exp
(

φ
(II)
0 − c

)

− 1
)

. (71)

By multiplying this equation by φ
(II)
0,η , integrating with respect to η, applying the matching

condition (70) and taking the negative square root of the results (thus ensuring that we are

able to satisfy (61b) at leading order when we compare this solution in η > 0 to (66)) we

obtain the following expression for the derivative of the potential:

Λaφ
(II)
0,η = −

√

2Na

(

exp
(

φ
(II)
0 − c

)

− (φ
(II)
0 − c+ 1)

)

. (72)

We can integrate this once more, this time with respect to φ
(II)
0 , in order to find an expres-

sion for η but, before doing so we enforce continuity of the potential across the interface

η = 0 through (61c), which, on noting that the solution in η < 0 is given by (66), leads to

the boundary condition

φ
(II)
0 |η=0+ = −2 log

[

coth

(
√

A

2
η0

)]

. (73)

Integrating (72) and applying this boundary condition yields a parametric solution for the

potential

η =

∫

−2 log
[

coth
(√

A

2
η0

)]

φ
(II)
0

Λa
√

2Na (exp (s− c)− (s− c+ 1))
ds

where φ
(II)
0 < −2 log

[

coth
(√

A
2
η0

)]

.

(74)
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Coupling the solution in η > 0 to that in η < 0 via the interface conditions In order to

determine the remaining constants in the solution, namely η0 and c, we impose the interface

conditions (61a) and (61b). By substituting for n(II)|η=0− (from (67)) for n
(II)
0 |η=0+ (from

(69)) and for φ
(II)
0 |η=0 (from (73)) in (61a) we obtain an expression for c:

c = − log

(

A

νnNa

)

. (75)

The remaining constant η0 is determined by substituting for φ
(II)
0,η |η=0− (from the derivative

of (66)) and for φ
(II)
0,η |η=0+ (from (72)-(73)) into (61b); this yields a transcendental equation

for η0

Λ2
aNa sinh

2
(

η0
√
2A
)

[

A

νnNa

tanh2

(

η0

√

A

2

)

− log

{

A

νnNa

tanh2

(

η0

√

A

2

)}

− 1

]

= 4A.(76)

This is readily solved by using a numerical root-finding scheme.

4.1.5 Near the acceptor contact: Region (IV)

To complete the description of the right-hand side of the device we study the behaviour near

the acceptor contact where the charge carrier density must vary rapidly in order to satisfy

the Ohmic boundary conditions. The structure of this boundary layer is similar to that in

the acceptor near the internal interface (i.e. η > 0 in §region II as discussed in the section

above). We therefore suppress some of the details for brevity. We begin by performing the

rescaling

x =
1

2
+ wa + λξ (77)

in (38) and (40) so that the boundary layer equations and boundary conditions are

Λ2
aφ

(IV )
ξξ = n(IV ) −Na and n

(IV )
ξ − n(IV )φ

(IV )
ξ = −λJκ in ξ < 0, (78)

with φ(IV )|ξ=0 =
Φbi

2
− Φr and n(IV )|ξ=0 =

NÑ−√
νnνp

exp

(

Φbi

2

)

. (79)

Expanding as follows:

n(IV ) = n
(IV )
0 +O(λ2) and φ(IV ) = φ

(IV )
0 +O(λ2) (80)
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and matching to the solution in region (III), (56) and (57), leads to the following matching

conditions on the leading order solution:

φ
(IV )
0 → −wa

Jκ

Na

+ c and n
(IV )
0 → Na as ξ → −∞. (81)

The solution to the leading order expansion of (78b) that satisfies the matching conditions

is

n
(IV )
0 = Na exp

(

φ
(IV )
0 + wa

Jκ

Na

− c

)

. (82)

Substituting this expression into the leading order expansion of (78a) and (79a) leads to the

following:

Λ2
a

Na

φ
(IV )
0,ξξ =

[

exp

(

φ
(IV )
0 + wa

Jκ

Na

− c

)

− 1

]

, φ
(IV )
0 |ξ=0 =

Φbi

2
− Φr, (83)

which, together with the matching condition (81a), has a parametric solution of the form

ξ = ±
∫ φ

(IV )
0

Φbi/2−Φr

Λa
√

2Na

(

exp
(

s+ wa
Jκ
Na

− c
)

− (s+ wa
Jκ
Na

− c+ 1)
)

ds, (84)

where ξ < 0. Finally, we may determine Φr, the potential drop across the right-hand side

of the device (between x = 1/2+wa and x = 0), by substituting for φ(IV )|ξ=0 (from (79a)),

n
(IV )
0 |ξ=0 (from (79b)) and for c (from (75)) in (82). We find that

Φr = log

(

A
√
νp

NÑ−

√
νn

)

+
waJκ

Na

. (85)

4.1.6 Solutions in the regions (V), (VI) and (VII)

The structure of the solution in the donor region is analogous to that in the acceptor. We

therefore omit all detail of its derivation and give only the asymptotic expansions and the

leading order solutions in each region.

The donor bulk: (Region (VI)) Here the appropriate expansions for the potential and

the hole density are

φ(IV ) = φ
(V I)
0 +O(λ2), and p(V I) = p

(V I)
0 +O(λ2) (86)
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and the leading order solutions are

φ
(IV )
0 = − J

κNd

(

x+
1

2

)

+ ĉ and p
(IV )
0 = Nd. (87)

The boundary layer about the donor-perovskite interface: Region (V) Here we rescale

about the interface by writing x = −1/2 + λχ and expand as follows:

φ(V ) = φ
(V )
0 +O(λ2), n(V ) = n

(V )
0 +O(λ2), p(V ) = p

(V )
0 +O(λ2). (88)

In the perovskite where (χ > 0) the leading order solution is

n
(V )
0 = A tanh−2

(
√

A

2
(χ+ χ0)

)

, p
(V )
0 = A tanh2

(
√

A

2
(χ+ χ0),

)

,

φ
(V )
0 = 2 log

[

coth

(
√

A

2
(χ+ χ0)

)]

,

(89)

and in the donor (χ < 0) it has the form

p
(V )
0 = Nd exp

(

ĉ− φ
(V )
0

)

, (90)

χ =

∫ 2 log
[

coth
(√

A

2
χ0)

)]

φ
(V )
0

Λd
√

2Nd ((s− ĉ− 1) + exp (ĉ− s))
ds, (91)

where the second equation is an implicit expression for φ
(V )
0 . Here the constant ĉ is given

by

ĉ = log

(

A

νpNd

)

, (92)

and the positive constant χ0 is found by solving the transcendental equation

Λ2
dNd sinh

2
(

χ0

√
2A
)

[

A

νpNd

tanh2

(

χ0

√

A

2

)

− log

{

A

νpNd

tanh2

(

χ0

√

A

2

)}

− 1

]

= 4A.(93)

The boundary layer about the donor contact: Region (VII) Here we rescale about the

contact by writing x = −(wd + 1/2) + λω and expand as follows:

φ(V II) = φ
(V II)
0 +O(λ2), p(V II) = p

(V II)
0 +O(λ2). (94)
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The leading order solutions for the hole density and potential are given by the following

explicit and implicit relations, respectively:

p
(V II)
0 = Nd exp

(

ĉ+
Jwd

κNd

− φ
(V II)
0

)

, (95)

ω = ±
∫ φ

(V II)
0

Φl−Φbi/2

Λd
√

2Nd

(

(s− Jwd

κNd

− ĉ− 1) + exp
(

ĉ+ Jwd

κNd

− s
))

ds. (96)

Finally, the potential drop across across the left-hand side of the device (between x = 0
and x = −1/2− wd) can be determined as

Φl = log

(

Ñ−A
√
νn

N
√
νp

)

+
Jwd

κNd

. (97)

4.2 The current-voltage relation for bimolecular recombination (N =
1)

In §4.1 we derived the asymptotic solution of (37)-(41), in the limit λ → 0. This allows us

to write an asymptotic expression for the current-voltage relation (between J and Φ), that

is valid for all values of J , by (i) recalling that Φ = Φl + Φr, (ii) substituting for Φl using

(97), and (iii) substituting for Φr from (85). This takes the form

Φ ∼ log

(

A2

N2

)

+ J

(

wd

κNd

+
waκ

Na

)

, (98)

where A is, in the case of bimolecular recombination, given by (54). It follows that the

current-voltage relation is

Φ ∼ log





∫ 1/2

−1/2
G(x)dx+ J

N2δ(Kl +Kr + 1)
+ 1



+ J

(

wd

κNd

+
waκ

Na

)

. (99)

Validity of asymptotics It is clear that N is small but we have had, as yet, no way of

estimating δ. If we take the relation (99) and substitute J = 0 we get an expression for the

open circuit voltage Φoc which we can invert to obtain an expression for δ(Kl +Kr + 1)

δ(Kl +Kr + 1) ∼
∫ 1/2

−1/2
Gdx

N2(exp(Φoc)− 1)
.
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For a perovskite cell Voc ≈ 0.8V which equates to Φoc ≈ 32. Substituting for δ(Kl+Kr+1)
in (54), from the above, we obtain, on neglecting small terms,

A ∼ N



exp(Φoc)



1 +
J

∫ 1/2

−1/2
G(x)dx









1/2

. (100)

It is required, in order for the asymptotics to be valid, that A/λ2 ≫ 1; this ensures the

existence of a Debye layer in the perovskite. Substituting N = 2 × 10−8 (as estimated

previously from silicon), λ = 10−2 and Φoc = 32 we see that the condition A/λ2 ≫ 1 is

satisfied for most of the current voltage curve but fails close to Jsc, the short-circuit current

(where Φ = 0).

4.3 Extension to non-bimolecular recombination (N 6= 1)

Here we investigate how alterations to the surface recombination rates affect the current-

voltage curve. Physically, alterations may be appropriate if the recombination of charges

across the interface between the donor-perovskite and perovskite-acceptor interfaces is trap

mediated - that is, recombination occurs through intermediate trap states. In this case

[23, 34] it has been argued that the surface recombination rates (Rl and Rr), and surface

thermal generation rates (Glt and Grt), given in (15) should be modified to

Rl − Glt = K̂ln
α−1pβ−1(np−N2

D)
∣

∣

∣

x=−b+/2
,

Rr − Grt = K̂rn
γ−1pτ−1(np−N2

D)
∣

∣

∣

x=b−/2
.

(101)

Here the case α = β = γ = τ = 1 corresponds to direct bimolecular recombination, i.e.

the case investigated in the §4.1 and K̂l and K̂r play analogous roles to K̂l and K̂r in (15)

although with different dimensions.

Non-dimensionalising (101) via (20) leads to the following dimensionless conditions

on the material interfaces

Jn|x=−1/2+ = δ Kln
α−1pβ−1

(

np−N2
)∣

∣

x=−1/2+
,

(Jn − J)|x=1/2− = −δ Krn
γ−1pτ−1

(

np−N2
)∣

∣

x=1/2−
(102)

where Kl = Πα+β−2
0

K̂l

K̂b
and Kr = Πγ+τ−2

0

K̂r

K̂b
. (103)

The solution procedure here is identical to that presented in §4.1 with the exception that A
must be recalculated in terms of the new interface conditions (102). In order to do so we
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Figure 3: A comparison between the numerical and asymptotic solution of (22)-(29).

For the purposes of this demonstration we took the dimensionless parameters to be:
∫ x=1/2

x=−1/2
G(x)dx = 1, κ = 1, κn = κp = 102, Λd = Λa = 1, λ = 10−1, wd = 1, wa = 0.5,

νn = 10−1, νp = 2 × 10−1, Φbi = 0, Ñ− = 1, Kl = 0.8, Kr = 0.4, N = 10−1/
√
2

and Na = Nd = 2. The panels (a), (b) and (c) were computed with δ = 0.2 and show

the device operating at J = 1/2, 0,−1/2 respectively. Panel (d) shows the current-voltage

curve for the same device with δ = 0.2, 0.1, 0.05 indicated by cross, square and circular

markers respectively. A well-documented version of the code used to generated these plots

is available in the supplementary material.
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insert the asymptotic expression for the electron current in the perovskite (46) into (102),

recall that B = A and substitute for the leading order electron and hole densities on the

right and left interfaces, in regions (II) and (V), from (67) (with η = 0) and (89a-b) (with

χ = 0), respectively. This yields the following simultaneous equations for A and h:

−δ(A2 −N2)− J

2
− h+

∫ 0

−1/2

G(x)dx = KlδA
α+β−2(A2 −N2) tanh2β−2α

(
√

A

2
χ0

)

,(104)

−δ(A2 −N2)− J

2
+ h+

∫ 1/2

0

G(x)dx = KrδA
γ+τ−2(A2 −N2) tanh2γ−2τ

(
√

A

2
η0

)

.(105)

Summing these two expressions leads to a transcendental equation for A

δ(A2 −N2)
(

1 +KlA
α+β−2gl(χ0) +KrA

γ+τ−2gr(η0)
)

=

∫ 1/2

−1/2

G(x)dx+ J, (106)

in which gl(χ0) = tanh2β−2α
(√

A
2
χ0

)

, gr(η0) = tanh2γ−2τ
(√

A
2
η0

)

and η0 and χ0 are

solutions to (76) and (93), respectively.

4.3.1 The current-voltage curve for non-bimolecular recombination (N 6= 1)

In order to obtain the current-voltage relation we must solve for η0(A) and χ0(A) from

(75)-(76) and (92)-(93), substitute the results into (106), solve the resulting equation for A
and insert the resulting functional expression for A(J) into (98). In practice this requires

the use of a numerical root-finding method (we used the ‘fsolve’ routine in MATLAB with

the defaults settings). To summarise the current-voltage curve is given by

Φ ∼ log

(

A(J)2

N2

)

+ J

(

wd

κNd

+
waκ

Na

)

where A(J) is determined by the solution to (107)







































δ(A2 −N2)
(

1 +KlA
α+β−2 tanh2β−2α C +KrA

γ+τ−2 tanh2γ−2τ B
)

=

∫ 1/2

−1/2

G(x)dx+ J,

2

√

A

Na

= Λa sinh (2B)

(

log

[

νnNa

A
coth2 B

]

− 1 +
A

νnNa

tanh2 B

)1/2

,

2

√

A

Nd

= Λd sinh (2C)

(

log

[

νpNd

A
coth2 C

]

− 1 +
A

νpNd

tanh2 C

)1/2

,

(108)

where here we have substituted B = η0
√

A/2 and C = χ0

√

A/2. In practice, it may be

simpler to solve (108b-c) by formulating these two equations in the form of equations for
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tanhB and tanhC, respectively. These can be written as

tanhB

√

(

A

νnNa

)

tanh2 B − 1 + log

(

νnNa

A tanh2 B

)

=
(1− tanh2 B)

Λa

√

A

Na

,(109)

tanhC

√

(

A

νpNd

)

tanh2C − 1 + log

(

νpNd

A tanh2 C

)

=
(1− tanh2 C)

Λd

√

A

Nd

,(110)

Validity of asymptotics The calculation of the asymptotic validity of our expansion is

more complex than that for bimolecular recombination as a consequence of the complicated

relationship between A and J given in (108). The result of this calculation is, as before,

that N exp(Φoc/2)/λ
2 ≫ 1, is a requirement for the results of the asymptotic analysis to

be correct over a substantial portion of the current-voltage curve (including the maximum

power point).

Approximations to (107)-(108) for small and large A Real current-voltage data of per-

ovskite cells suggests that the potential difference across the cell must reach roughly 1 Volt,

corresponding to a dimensionless potential Φ ≈ 40, before the series resistance term (i.e.

the second term on the right-hand-side of (107)) becomes appreciable. This corresponds to

a change in size of A on the order of e20, since Φ increases from 0 to 40. We can therefore

say a great deal about the nature of the current-voltage relation simply by examining the

solutions for tanhB and tanhC for small and large values of A and noting that moderate

values of A only occur for a narrow range of the potential Φ. We find that

tanhB →
(

ν
1/2
n

Λa + ν
1/2
n

)1/2

and tanhC →
(

ν
1/2
p

Λd + ν
1/2
p

)1/2

as A → +∞,(111)

tanhB ∼ 1

Λa

(

2

Na log(νnNa/A)

)1/2

A1/2 for A ≪ 1,(112)

tanhC ∼ 1

Λd

(

2

Nd log(νpNd/A)

)1/2

A1/2 for A ≪ 1.(113)

It follows that for large A (107a) is approximated by an algebraic relation for A



1 +Kl

(

ν
1/2
p

Λd + ν
1/2
p

)β−α

Aα+β−2 +Kr

(

ν
1/2
n

Λa + ν
1/2
n

)γ−τ

Aγ+τ−2



 ∼
∫ 1/2

−1/2
G(x)dx+ J

δ(A2 −N2)
,(114)
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whereas for small A it is approximated by

(

1 +Kl

(

2

Λ2
dNd log(νpNd/A)

)β−α

A2β−2 +Kr

(

2

Λ2
aNa log(νnNa/A)

)γ−τ

A2γ−2

)

∼
∫ 1/2

−1/2
G(x)dx+ J

δ(A2 −N2)
.

(115)

We note from (107) that, in the regime where Ohmic losses across the device are insignif-

icant (typically this is true for applied voltages Φ less that the open circuit potential Φoc),

A ≈ N exp(Φ/2). Although N , the ratio of the intrinsic carrier concentration to the typical

solar generated carrier concentration, is very small exp(Φ/2) rapidly becomes very large

as Φ increases from 0 toward around 32 at open circuit.

An example Here we illustrate the solution of (107)-(108) with an example in which

α = 1/4, β = 5/12, γ = 1/3 and τ = 1/6. For the purposes of this demonstration we

also set the parameters
∫ x=1/2

x=−1/2
G(x)dx = 1, κ = 1, κn = κp = 1/λ2, Λa = Λd = 1/2,

wa = wd = 1/2, νn = νp = 1/4, Φbi = 0, N = 0.1, Ñ− = 1, Kl = 50, KR = 500,

Na = Nd = 4 and δ = 10−5 with λ = 0.05. Notably, by plotting log(
∫ 1/2

−1/2
G(x)dx + J)

as a function of Φ we observe three linear regimes with differing gradients: ≈ 1 for small

potentials, ≈ 1/4 for intermediate potentials and ≈ 1 for large potentials; corresponding to

idealities N ≈ 1, 4 and 1 respectively, see figure 4. The model is thus capable of leading

to results in which multiple ideality factors are observed in the current-voltage curve.

5 Comparison to experiment

The experimentally determined current-voltage relation of a cell constructed using a TiO2

acceptor, a lead triiodide perovskite (CH3NH3PbI3) and a spiro-OMeTAD donor is shown

in figure 5. In panel (b) we plot the variation of log(
∫ x=b/2

x=−b/2
G(x)dx + J) with qV/kT .

Here, we observe a linear section of the curve (corresponding to the exponential part of the

curve in panel (a)) where the device acts like a diode. The gradient of this linear section

of curve is a good approximation to the reciprocal of the ideality factor i.e. 1/N [19].

For this cell we find that N ≈ 3 which suggests that recombination in the bulk of the

device is relatively unimportant (since it inherently gives rises to an ideality factor N = 1)

and instead that the behaviour is largely determined by the recombination at the material

interfaces.
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Figure 4: A representative current-voltage relation obtained using the generalised recom-

bination conditions discussed in §4.3 by (i) solving (107)-(108) shown using solid curves,

and, (ii) numerical solution of (33)-(35) with the corresponding generalised recombina-

tion conditions shown using circular markers. For the purposes of this demonstration we

took the dimensionless parameters to be: α = 1/4, β = 5/12, γ = 1/3 and τ = 1/6,
∫ x=1/2

x=−1/2
G(x)dx = 1, wa = wd = 1/2, Λa = Λd = 1/2, Na = Nd = 4, νn = νp = 1/4,

N = 0.1, Ñ− = 1, δ = 10−5, Kl = 50, KR = 500, κn = κp = 1/λ2, λ = 0.05, Φbi = 0
and κ = 1. In panel (b) we can observe three regimes with differing ideality factors.
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This observation motivates us to attempt to reproduce the experimental current-voltage

relation by setting α = β = γ = τ = 1/3 (so that 2/(α + β) = 2/(γ + τ) = N = 3) and

by taking N ≪ 1 and Kl,Kr ≫ 1 so that the bulk recombination and thermal generation

are much less significant than the recombination at the material interfaces. In this case

equation (108a) decouples from (108b) and (108c) and has approximate solution (in the

limit N → 0, Kl ≫ 1 and Kr ≫ 1)

A(J) =





∫ 1/2

−1/2
G(x)dx+ J

δ(Kl +Kr)





3/2

. (116)

Inserting this expression into (107) and re-dimensionalising using (20)-(21) gives the fol-

lowing dimensional expression for the current-voltage relation:

V =
3kT

q
log





q
∫ b/2

−b/2
G(x)dx+ J

qN
2/3
D

(

K̂l + K̂r

)



+
kT

q2

(

d

N̂dDd

+
a

N̂aDa

)

J. (117)

We see from (117) that there are two quantities that determine the shape of the current-

voltage curve: (i) the series resistivity integrated over the width of the cell, kT (d/N̂dDd +

a/N̂aDa)/q
2, and (ii) the reverse saturation current density, qN

2/3
D (Kl + Kr). In the ex-

pression for the former the acceptor and donor widths (a and d) and diffusivities (Da and

Dd) are known to reasonable accuracy, however, there is little data on the dopant levels,

N̂a and N̂d. By fitting kT (d/N̂dDd + a/N̂aDa)/q
2 to the slope of the experimental cur-

rent voltage curve in the limit J → ∞ we can obtain a relation between N̂a and N̂d. In

the expression for the reverse saturation current density, qN
2/3
D (Kl + Kr), we do not have

accurate estimates for any of the quantities ND, Kl or Kr. However by fitting to the experi-

mental current-voltage curve, in the regime in which it grows exponentially, we can obtain

an estimate for qN
2/3
D (Kl+Kr). The results of fitting these two quantities to the data yields

a very good agreement with the experimental current-voltage curve (see figure 5), and the

following estimates:

qN
2/3
D (Kl +Kr) ≈ 4.4× 10−3 C/m2s,

kT

q2

(

d

N̂dDd

+
a

N̂aDa

)

≈ 3.4× 10−4 Ωm2.(118)

Due to the lack of exisiting physical data on perovskite cells it is difficult to say whether or

not the first quantity in (118) is reasonable. However, it is noteworthy that on substitutiion

of the known values for a, d, Da and Dd (shown in table 1) along with N̂a = N̂d =
1024/m3 (in agreement with the discussion in §1, §2.1.1 and [37]) we arrive at an estimate
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Figure 5: Panels (a) and (b) show an experimental and the fitted asymptotic current-voltage

relation. In panel (b) the variation of log(q
∫ x=b/2

x=−b/2
G(x)dx + J) with qV/kT so that the

gradient of the linear section of the curve is 1/N ≈ 1/3. This experimental data was

prepared by Giles Eperon in the Clarendon Laboratory, University of Oxford.

for the series resistivity integrated over the width of the cell that agrees very favourably

with the estimate (obtained via fitting) shown in (5.3) - justifying our assumption that the

dimensionless dopant densities, Na and Nd, are O(1).

6 Discussion and conclusions

We have presented a drift-diffusion model for the electrical behaviour of a perovskite based

hybrid planar heterojunction solar cell formed from a layer of perovskite sandwiched be-

tween layers of acceptor and donor materials that act as selective charge blockers. The

basic assumptions of this model are that (i) significant photo-generation occurs only within

the perovskite layer, (ii) both acceptor and donor materials are doped, (iii) hole numbers

in the acceptor are insignificant, (iv) electron numbers in the donor are insignificant, and

(v) electron-hole recombination takes place in the perovskite bulk and on its interfaces

with the donor and acceptor. Initially we assumed that recombination (wherever it oc-

curs) is bimolecular and analysed the resulting model in the physically appropriate asymp-

totic limit in which (I) the charge mobilities in the perovskite layer are much greater than

those in the adjacent acceptor and donor layers3 and (II) the Debye lengths at all four

interfaces (contact-donor, donor-perovskite, perovskite-acceptor and acceptor-contact) are

much shorter than the widths of the various layers. In this limit we showed that the poten-

3Thus resistance to current flow is dominated by the resistances of the acceptor and donor layers.
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tial drop across the device can be divided into (a) drops across the boundary layers at the

contacts (which are insensitive to changes in the current flow across the device), (b) drops

across the boundary layers at the junctions of the perovskite with the acceptor and the donor

(which depend logarithmically on the current flow) and (c) drops across the donor bulk and

the acceptor bulk (which both depend linearly on the current flow). This led us to conclude

that the current-voltage relationship is asymptotic to that of a Shockley equivalent circuit

consisting of a current source in parallel with a diode (ideality factor 1) and in series with

a resistor.

However real current-voltage data suggests that the ideality factors of perovskite solar

cells are significantly greater than one (and further that they sometimes display more than

one ideality factor, i.e. the ideality factor can change with the position on the current-

voltage curve). This motivated us to consider models for non-bimolecular recombination

on the interfaces between the perovskite and the donor, and the perovskite and the acceptor.

Here we took the interfacial recombination rates to be given by

Rl = K̂ln
αpβ and Rr = K̂rn

γpτ , (119)

respectively, where n and p denote the electron and hole number densities in the per-

ovskite, on the interface. The main result of the ensuing asymptotic analysis, which is

based on the assumptions given above, is the derivation of an asymptotic expression for

the current-voltage curve. In its dimensionless form this is given by (107)-(108). On re-

dimensionalising this result, via (20) and (103), and on neglecting thermal generation we

obtain:

A(J) = ND exp

(

1

2

(

qV

kT
− J

q

(

d

N̂dDd

+
a

N̂aDa

)))

where A(J) satisfies(120)

(

K̂A2 + M̂l(A)Aα+β + M̂r(A)Aγ+τ
)

=
1

b

(

∫ b/2

−b/2

G(x)dx+
J

q

)

, (121)

with M̂l(A) = K̂l tanh
2β−2α C(A) and M̂r(A) = K̂r tanh

2γ−2τ B(A), (122)

where B(A) and C(A) are calculated from the transcendental equations (108b-c), with

A = A/Π0. Notably, where each of the interfacial recombination rates are symmetric

with respect to holes and electrons (such that β = α and τ = γ), the functions M̂l(A)
and M̂r(A) are constant and are given by M̂l(A) = K̂l and M̂r(A) = K̂r. In this

scenario (121) becomes a simple algebraic equation for A in terms of the current density

and the generation rate integrated over the width of the perovskite. This can be viewed as an

equivalent circuit in which three diodes (with ideality factors 1, 1/α and 1/γ) are in parallel

with a current source, and these components are in series with a resistor, see figure 6. In
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practical devices the series resistance is insignificant until the applied voltage V across the

device has increased to close to 1 Volt, corresponding to a value of qV /kT ≈ 40. In the

range 0 − 1 Volt A increases by a factor of around e20. It is therefore possible, depending

upon the sizes of the recombination rates, that all three different ideality factors (1, 1/α
and 1/γ) will be observed, as V increases, before the series resistance becomes dominant.

In cases where there is non-symmetric recombination β 6= α and/or τ 6= γ an even richer

range of behaviour may be observed and this is discussed further in §4.3.1.

In addition to deriving an asymptotic expression for the current-voltage curve we also

solved the model numerically and compared these results to the asymptotic solution, both

via the predicted current-voltage curves and via the potential and charge carrier density

profiles (see figure 3). The agreement we found was extremely good. Finally, in §5, we

showed that very good agreement could be obtained between our asymptotic expression for

the current-voltage curve and those obtained experimentally.

We remark that the size of the intrinsic carrier density ND in the perovskite is unknown

and that if it were significantly lower than our estimate that the asymptotic structure of the

problem would change. Peltola [32] presents numerical results and detailed discussion of

this second scenario showing that charge-carrier depletion occurs in the perovskite layer

which, in turn, leads to an increase in its resistance and a large potential drop across the

layer. Although the current-voltage predictions here agree marginally better with experi-

mental data than those in [32] there still remains considerable room for doubt about the

exact mechanisms underlying the operation of these cells, not least because much of the

available current-voltage data is clouded by history effects that arise from long relaxation

timescales. Such history effects are currently the subject of much speculation, see [36],

being variously ascribed to ferroelectricicty in the perovskite, charge-trapping and the slow

motion of ions across the cell.

In summary the analysis conducted herein describes the steady-state behaviour of a per-

ovskite solar cell by a relatively simple relation between the current flowing through the

cell and the applied voltage (120)-(122). The parameters in this expression depend upon

physical properties of the cell, such as recombination rates, charge carrier diffusivities and

doping levels. It therefore provides a simple tool for optimising the behaviour of the cell

through modifications to its physical properties. An important extension to this work is

to investigate the dynamic behaviour of the model. Comparison between time-dependent

model results and experimental transient current decay curves are expected to lead to fur-

ther insight into the functioning of the cell.
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Figure 6: A schematic of the equivalent circuit in the case when each of the interfacial

recombination rates are symmetric with respect to electrons and holes, i.e. in the case when

β = α and τ = γ. Here, Iphoto =
∫ b/2

−b/2
G(x)dx and Rs = kT/q2S×(d/N̂dDd)+(a/N̂aDa)

where S is the surface area of the cell.
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A Equilibrium solution and derivation of Ohmic bound-

ary conditions

We start by recalling that, where the Fermi Level does not lie within a few kT of the valence

and conduction band edges, the Fermi-Dirac distributions for electron and hole densities in

a semiconductor (n and p, respectively) can be approximated by

n(x) = ḡc(x) exp

(

−Ec(x)− Ef

kT

)

and p(x) = ḡv(x) exp

(

−Ef − Ev(x)

kT

)

, (123)

where Ef is the Fermi Level, Ec(x) is the electron energy at the conduction band edge (or

LUMO), Ev(x) is the electron energy at the valence band edge (or HOMO), ḡc(x) is the

density of states in the conduction band (or LUMO) and ḡv(x) is the density of states in the

valence band (or HOMO). The spatial dependence of Ec and Ev is given in (1). Similarly,

ḡc and ḡv are also piece-wise constant functions that take the following values in each of
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the materials:

ḡc(x) =

{

ĝc for − b/2 < x < b/2,

gc for b/2 < x < a+ b/2,
(124)

ḡv(x) =

{

gv for − d− b/2 < x < −b/2,

ĝv for − b/2 < x < b/2.
(125)

In the metallic cathode the Fermi Level is given by

Ef = −qφcath −Wcath (126)

where φcath and Wcath are the potential in the cathode and the work function of the cathode,

respectively. Similarly in the anode contact

Ef = −qφanod −Wanod (127)

where φanod and Wanod are the potential in the anode and the work function of the anode,

respectively. Since the Fermi Level, Ef , is uniform throughout the device it follows that

the built in potential of the cell Vbi, which measures the potential difference between the

anode and cathode at equilibrium, is given by

Vbi = φanod − φcath =
1

q
(Wcath −Wanod). (128)

We illustrate the equilibrium configuration of the perovskite solar cell under consideration

in figure 7. The various bands indicated in this diagram show the vacuum electron potential

(solid red), the electron potential at the conduction band edge (solid green) and the electron

potential at the valence band edge (solid purple purple). The spacing between the Fermi

Level and the flat sections of the valence and conduction bands, that lie away from interfa-

cial Debye layers, is determined by the doping levels in the semiconductors (thus these are

evenly spaced about the Fermi Level in an undoped material, such as the perovskite). Hav-

ing fixed these bands in relation to the Fermi Level, the energy of the vacuum level can be

determined by noting that the gap between the conduction band edge (or LUMO) and the

vacuum level is given by the electron affinity of the material whilst that between the valence

band edge (or HOMO) and the vacuum level is given by the the ionisation potential of the

material. The drop (increase) in the energy of the vacuum level, of size −qφ̃, in the various

layers of the device below (above) that of the cathode arises from the potential difference

between the material and the cathode. Continuity of the potential (and therefore also the
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Figure 7: Typical band bending diagram for a planar trilayer perovskite solar cell at equi-

librium. Vacuum level indicated by red curves, conduction bands (or LUMOs) by green

curves and valence bands (or HOMOs) by purple curves. Here φ̃ measures the potential

with respect to the cathode. Upward and downward arrows indicate positive and negative

quantities, respectively.

vacuum level) forces the bands to bend near the material interfaces across the interfacial

Debye layers.

Our aim here is to derive interfacial conditions and boundary conditions, on the dy-

namic model of the solar cell, that are consistent with the equilibrium solution discussed

above. We assume, even where the cell is not in equilibrium, that electron and hole concen-

trations equilibrate either side of the cathode-donor, donor-perovskite, perovskite-acceptor

and acceptor-anode interfaces. Making use of (1) and (123)-(125) we obtain the following

conditions for the ratio of hole densities on either side of the donor-perovskite interface

p|x=−b/2+

p|x=−b/2−

=
ĝv
gv

exp

(

µ̂p − µp

kT

)

, (129)

and for the ratio of electron densities on either side of perovskite-acceptor interface

n|x=b/2−

n|x=b/2+

=
ĝc
gc

exp

(

µn − µ̂n

kT

)

. (130)

In the perovskite the intrinsic carrier density ND is defined in terms of the product of the

equilibrium values of the two different species of free charge carriers, i.e. np = N2
D, from
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which (and from (123)) it follows that

N2
D = ĝcĝv exp

(

µ̂p − µ̂n

kT

)

. (131)

While on the two contacts we can use (123)-(127) to show that

p|x=−(b/2+d) = gv exp

(

µp +Wcath

kT

)

and n|x=b/2+a = gc exp

(

−µn +Wanod

kT

)

.(132)

Multiplying the above two conditions and using (128)-(131) to eliminate the term gvgc exp((µ
p−

µn+Wcath−Wanode)/(kT )) we obtain the following global condition relating the interface

conditions to the boundary conditions

p|x=−(b/2+d)n|x=b/2+a = N2
D exp

(

qVbi

kT

)

p|x=−b/2−n|x=b/2+

p|x=−b/2+n|x=b/2−

(133)


