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We discuss the intelligent computational control theory and introduce the hardware structure of HIT/DLR II dexterous 
robotic hand, which is the typical dexterous robotic hand. We show that how DSP or FPGA controller can be used in the 
dexterous robotic hand. A popular intelligent dexterous robotic hand control system, which named Electromyography (EMG) 
control is investigated. We introduced some mathematical algorithms in EMG controlling, such as Gauss mixture model 
(GMM), artificial neural network (ANN) and Support vector machine (SVM).  
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1. INTRODUCTION 
Robot, as a technological representative in the new era, 

becomes the industry hot spot of both information 
technology and traditional mechanical industry. These 
automatic devices, which could function like our human 
beings, can not only replace human beings in some 
production aspects to improve the productivity greatly1, 
and reduce the cost pressure of mankind labor, but also 
simulate human’s thinking or action pattern  to complete 
some higher flexible activities. 

A report, named "Robots Moving Closer to Humans", 
was given by Professor Siciliano2 on the 11th 
International Conference on Control, Automation, 
Robotics and Vision (ICARCV2010), he proposed that 
the robot was getting closer and closer to people, and they 
could interact, study and work with human beings. Most 
of robotic hands, as the end effector3 for robot to interact 
with outer space, used to finish tasks following the 
guidance of program codes Their capability had been 
greatly enriched with the support of information 
technology, but the structure of most robotic hands are 
still very simple, such as clamp, pliers and so on. They 
were designed for certain kind task. As for complex tasks, 
it was difficult to take all circumstances into 
consideration. Multi-fingered dexterous robotic hand was 
designed to solve these problems by using the bionic 
structure, the multi-fingered hand become more flexible 
and more similar to human hand. Using the intelligent 
control technology largely reduced the dependence of 
programming, and greatly improved the adaptability and 
learning ability of dexterous robotic hand. Dexterous 
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robotic hand should also have the similar capability as 
human hand do, such as enough position accuracy in 
grasping operation, and precise force controlling in 
grasping fragile objects, which requires the dexterous 
robotic hand to be equipped with multiple sensors4 (such 
as position, force, temperature detection, and the 
sensation of touch and slip, etc.). Due to the uncertainty 
of the working environment, the anti-interference ability 
was important for dexterous robotic hand. These 
problems were inevitable in designing of dexterous hand 
control system. 

2. EMBEDDED CONTROL SYSTEMS OF 
DEXTEROUS ROBOTIC HAND 

Intelligent control was an interdisciplinary, as K. S. Fu5 
claimed, the intelligent control was an interdisciplinary of 
the artificial intelligence and automatic control. After that, 
G. N. Saridis6 added operational research into intelligent 
control, and he held the view that intelligent control was 
the intersection of artificial intelligence, operational 
research and automatic control, as shown in figure 1. 



 

Fig. 1. Intelligent control 

Intelligent control system was actually the further 
development of the traditional control system7, which 
should be able to adapt to different settings, organize 
different tasks and had the function of automatic learning. 
The self-adaptive learning control system was a much 
more universal control system compared to self-adaptive 
or self-organizing control system. It could not only be 
used to control the system without knowing its dynamic 
characteristics, but also could be used as a superior 
decision pattern recognizer, classifier or manager. A 
control system, which contained those features above 
could be regarded as learning control system. The 
learning control system designed for robotic hand 
controlling8 had the ability to learn information of 
intrinsic property from an unknown process or 
environment, and could use the information learned from 
that to control one process with few unknown variables. 
Pattern classification, Bias estimates, Stochastic 
approximation and Fuzzy automata model were the 
mathematic methods most widely used9 in research 
learning control systems. 

2.1. Intelligent control system of multi-fingered hand 
based on DSP/FPGA 

HIT/DLR II dexterous hand was designed by the 
Harbin Institute of Technology (HIT) and the German 
Aerospace Center (DLR)10, with 4 fingers sharing the 
same structure and one independent thumb. The total 
degrees of freedom of the hand was 13, and there were 
many sensors for testing position, force, torque and 
temperature. Compared with HIT/DLR I, the previous 
generation HIT/DLR hand, HIT/DLR II contained five 
fingers rather than four fingers on HIT/DLR I11, and its 
structure was more compact to match the shape and size 
of human hand. 

2.2. General structure of the control system of 
dexterous hand 

The control system of DLR/HIT II hand was designed 

on the basis of DSP/FPGA control structure12, according 
to the hierarchical controlling and modularization theory. 
The sensing system, driving control system and the 
machine body of the hand were intelligently integrated 
together by using electronic components and the high 
efficient controlling constructions, as shown in figure 2. 
All data processing and control algorithm were divided 
into 5 layers. The bottom data collection, processing and 
electric motor driving were controlled by the DSP and 
FPGA sensors in fingers. However, in the communication 
layer, all the signal were transferred by FPGA in the palm 
to control the movement of each finger. In the higher 
control layer, task planning and multi-finger manipulating 
were organized by floating point DSP13, and the clock 
cycle of the whole control system was 200 s. Finally, all 
the man-machine interface on top layer was supported by 
PC. 
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Fig. 2. Layer structure of the control system of DLR/HIT 

II hand 

2.3. System structure of the finger control layer 

DSP controller14 in the tip of the HIT/DLR II finger 
was in charge of collecting and processing data which 
were sent by sensors on this finger. The control of joint  
and communication between FPGA in finger were all 
controlled by DSP, as shown in figure 3. 

 

Fig.3. Internal structure of HIT/DLR II finger 

DSP in the knuckle was able to execute millions of 
instructions per second, which was important for fast 
computation. Moreover, there were abundant peripheral 
resources supported by this chip, such as enhanced pulse 
width modulation (PWM) module for motor drive, 
capture (CAP) module for digital Hall signal cap-turing15 
from motor, analog to digital conversion (A/C) module 
for sensor signal collection, serial peripheral interface 
(SPI) module for serial communication with the external 
AD sensor and serial communication interface (SCI) 
module for the communication with FPGA16 in fingers, as 
shown in figure 4. 



 

 
Fig. 4. DSP control system in finger 

FPGA controller in base joint of a finger was in charge 
of the sensors’ signal calibration, driving the base joint 
and the communication between palm FPGA and finger 
DSP. The finger FPGA was embedded with 32 bit RISC 
microprocessor17 (NIOS), and used the hardware 
description language (VHDL) to run other program 
module, such as serial communication interface, serial 
peripheral interface and driving the brushless DC motor18, 
as shown in figure 5. Since digital signals collected by 
sensors contained no physical meaning, they could not be 
directly applied in the control algorithm19. The collected 
signals, after calibrating, should be converse into useful 
information by finger FPGA, such as position, speed, 
torque and temperature20 etc. Then the useful information 
would be packed to send to the upper controller. 

 
Fig. 5. FPGA control system in finger 

 

3. EMG PATTERN RECOGNITION BASED 
CONTROL SYSTEM OF DEXTEROUS HAND 

The EMG control of robotic hand21 was a typical 
human-computer system. There were three main purposes 
of human-computer interaction. The first one was to 
regard human as a part of the system, and tried to study 
the behavior of the whole system. The second one was to 
simulate the human characteristics in system, so as to 
realize the human kind intelligent control in further. The 
third one was to study the characteristic of human and 
computer respectively, and to combine the decision-
making ability of human and the quick response ability of 
computer, in order to take good advantage of them, and to 
construct a human-computer intelligent control system 

effectively. The EMG control system of dexterous robotic 
hand belonged to decision-making model22 control system 
in advance, and man held the dominant position. Because 
different people had different muscle and nerve structure, 
in the construction of the EMG signal system, it was 
necessary to take different participators in the system 
validation. Even so, some researchers pointed out that the 
EMG control system was not universal valid23, the 
validity of the system only need to be tested on individual 
participator. The EMG signal of human body was the 
original source of control signal, so the quality24 of EMG 
signals was essential to the accuracy and reliability of the 
robotic hand operation. The long term effective EMG 
output training based on different modes of was a method 
to improve the success rate of EMG control. To set up the 
suitable EMG control system, the mechanism of EMG 
output training25, and the structure of nerve and muscular 
on arm and should be studied. 

3.1. Structure of EMG control system 

The EMG control not only related to the theory of 
automatic control, but also related to the biological in-
formation processing theory. EMG control process was 
based on the pattern recognition algorithm. As shown in 
Figure 6, the EMG feature extraction and pattern 
recognition were needed in EMG controlling, which 
belonged to the flied of computer pattern recognition. The 
performance of EMG control system was determined by 
recognition system, which was the core of EMG control 
system. Because there were no accurate mathematical 
model of EMG pattern recognition at present26, the only 
way was conducting experiments and trying different 
pattern recognition method representative to pick out the 
experiential optimal extractor and classifier27.  

After the EMG pattern of a certain action or posture 
was obtained, EMG signal need to be transmitted to the 
controller of dexterous robotic hand. Then the signal 
would be translated into motion parameters for the input 
of motion trajectory planning by the motor controller. In 
controlling the grasping mode of robotic hand, force 
information also needed to be extracted from EMG 
signals, so that the controller could distribute grasping 
force in each finger. Dexterous robotic hand also required 
position, joint torque sensors for propose of learning the 
current position and force information of each finger. In 
addition, to get the man know about the current status 
information, vibration feedback and electrical stimulation 
28 were most used as the feedback methods, the 
hierarchical feedback was structure of force feedback. 
However, the location information of the prosthetic hand 
was still rely on the visual feedback. How to make the 
robot feedback information recognized from the outside 
world to human body, and follow the normal nerve 
transmission pathways in the human body, was a big 
problem in EMG control, it also played a pretty important 
role in the closed-loop EMG control system. 
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Fig. 6. Structure of FPGA control system in fingers 

A typical EMG control system should include the EMG 
signal output from a body, biological information 
acquisition and processing, action pattern recognition, 
robotic hand controlling and biological feedback29. Those 
five basic components above were shown in figure 7. The 
transfer of all kinds of information between the different 
levels could be summarized that the impulse from the 
central nerve of human body was transferred to skeletal 
muscle and nerve interface via nerves. The impulse was 
amplified by the motor endplates to outbreak the30 action 
potentials. All action potentials were overlapping to cross 
the tissue fluid, fat and skin to reach the surface. The 
electrode on the surface would collect and pre-process the 
EMG signal from human body. The EMG signal which 
stood for hand muscle contraction mode was recognized 
in different patterns to obtain the instruction of robotic 
hand movement. Finally, the internal control loop was 
formed with its own sensors to, and the interaction 
between internal and external of the robotic hand were in 
the form of feedback (vision, electrical stimulation and 
vibration) to transmit to the human body, which was the 
closed loop within human body31. 

 
Fig. 7. Structure of EMG control system 

3.2. Mathematical mechanism of EMG signals 

The EMG signal x(t) collected by each electrode was 
the sum of M motor unit action potentials(MUAP) : 
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According to the theory of electrophysiology, when 
muscle contraction force, changed, neuron pulse 
frequency was almost the same. However, the total 
number of MUAP which defined as M, was turning into 
M(t), a time-varying function. The EMG signal is: 

)()()(
1

ttctx
M

i
im∑

=

=                        (2) 

To reduce the interference of muscle electricity, human 
body electrostatic field and the power frequency of circuit, 
improve the common-mode rejection ability of EMG 

signal, two same electrodes were used along the axis 
direction of the muscle fibers, with the distance of 10 mm 
between two EMG signal collecting positions. The signal 
taken was differential signal: 
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Where, vdt /=Δ  , d was the electrode distance, v was 
the electrical conduction velocity, tΔ  was the delay of action 
potential from the first electrode to the second electrode. As a 
result, the power spectrum of EMG: 
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From formula (1), double electrode collected EMG 
signal z(t) was the differential of x(t), in the integer times 
of t1/Δ  of z(t), power spectrum subsided, namely when 

0)(x =ωS in formula (2), the EMG signal double 
electrode was typically non-stationary signal or time-
frequency domain signal and the spectrum feature weight 
was larger than the amplitude. Therefore, the series of DB 
wavelet packet transform, (WPT), from the time domain 
signal z(t) to extract the frequency domain information 
z(f). Each signal is WPT is decomposed into eight 
frequency band: 
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It was WPT refactoring coefficient module, among 
them, k = 1, 2,..., 8, ks was the number k WPT sub-band 
coefficient of refactoring, 1, 2,..., j was the number of 
muscles EMG and sN was the rebuild coefficient of WPT, 
its value was equal to the number of sampling  time t. 
Thus, each electromyography value of action sample 
were ),,,( 821 xxx ! , among them )(sEx kk = . 

3.3. Popular pattern recognition algorithms in EMG 
control 

3.3.1. Linear classifier 

Linear classifier (LLC)32 was a linear function of the 
input vector x, which was defined as follows: 

bxwxg T +=)(                          (6) 

Where w was a weight matrix for linear transformation, 
b was a classifier bias. Linear classifier decision boundary 
was a linear hyper plane. In a classification problem of 
two class, given a feature vector x, if g(x) >0, x was 
marked as ω1, otherwise, the x would be marked as ω2. In 
this paper, we used a logarithmic multi-class linear 



 

classifier. In a NC problem, the linear classifier was 
defined as: 
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The parameter of linear classifier, such as βi0, βi, i=1, 
2, ..., NC could be estimated by the maximum likelihood 
method(ML). 

3.3.2. Gauss mixture model classifier 

Gauss mixture model (GMM) classifier was a 
classification method based on probability model, which 
has been widely used in voice recognition33. Because 
there are lots of similarities of EMG and voice signals, 
the GMM classifier had been applied to the EMG pattern 
classifier successfully, and identified 6 kinds of wrist and 
hand movements34. For a NC classification problem, 
when a D dimensional input feature x was given, the type 
i GMM hybrid likelihood function was: 
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Where M was the number of mixing elements of Gauss, 
i
rλ , r = 1, 2, ..., M were the mixing coefficient, which 

met the following constraint conditions 1
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),(xpir r = 1, 2, ..., M was a single mode probability 
distribution function: 
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Where i
rµ  was the mean vector of a D*1 dimension, 

and the covariance matrix was D*D dimension. 

The above definition showed that the GMM model was 
completely determined by }{ r

i
r
i

r
ii ∑= µλω , r= 1, 2,..., 

M, i = 1, 2,..., NC. These parameters should be accurately 
estimated in the training process of GMM classifier. Now 
the popular method to estimate the parameters of GMM 
classifier was the expectation maximization algorithm 
(EM). 

3.3.3. Artificial neural network classifier 

Artificial neural network (ANN) was another popular 
mathematic tool, which was able to achieve the da-ta 
classification, regression and other functions. The most 
simple network structure was a two-layer perceptron 
network. It could be regarded as a linear classifier. The 
most significant drawback of two-layer network was it 
could only deal with linear pattern recognition problem. 
With the introducing of multi-layer perceptron neural 

network, it was able to handle nonlinear problems, which 
greatly expanded the application scope of neural network. 
In this paper, a three-layer neural network classifier was 
chosen, for the three-layer network can approximately 
deal with any complex system in theory. In the EMG 
classifier, this kind of sensor network was also been used. 
The definition of three-layer artificial neural network 
classifier was shown as follows: 
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Where, x was the input vector, the output value was y. 
)1(
jiw , )2(

jiw  were the moment of the first layer and the 

second layer. )(•σ , )h(•  were the activation function of 

neurons. In pattern recognition, )(•σ stood as a sigmoid 
function: 

  exp(x))1/(1(x) +=σ               (11) 

)h(• was a linear function, its range is fixed in the 
interval [0, 1], the error back propagation algorithm was 
commonly used to complete the training of MLP. In order 
to enhance robustness generalization ability of the 
network35, the regularization technique was used to 
prevent over large of some weights in the network, which 
might cause the over fitting phenomenon. 

3.3.4. Support vector machine classifier 

Support vector machine (SVM) classifier, a new kind 
tool of machine learning, was proposed recently, which 
has been widely used now. Unlike other methods to 
minimize the error or error rate, the goal of SVM was to 
maximize the edge of different classes. There were some 
features of SVM as follow: 

(1) By using the kernel function36 to map the input 
vector into a high-dimensional space, in order to obtain 
better separation properties. 

(2) According to the computational statistical theory37, 
the distance from one class to the discriminant hyper 
plane would be maximized. 

The basic structure of the SVM classifier was a two-
class linear classifier problem, the expression was 

bxwy +⋅= )(φ , where w was the weight matrix of 
classifier, b was the offset value matrix, and Ø(x) was the 
kernel function, the kernel function was defined: 
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Through the appropriate selection of the kernel 
function, the input vector could be implicitly mapped into 
a high dimensional space38, without direct operation in 
high dimensional space, which was called kernel tricky. 
In order to make the SVM become nonlinear, we used 



radial basis function39 as the kernel function, because it 
was a basic function in pattern recognition problem. In 
samples, the target values of the tag was set as 

}1,1{−∈it , all samples meet the following conditions: 
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When the sample points located in the super plane, the 
equality holds and it was called support vector. In practice, 
there would be overlap between classes, so we need to 
introduce the slack variables 0≥iξ . In solving the soft-
margins SVM problem40, the optimized expressions were 
as follows. 
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Where 0≥C   , it represents the punishment 
coefficients of a slack variable. Its role was to 
compromise the margin maximization and error 
minimization problems41. The final solution to the 
optimization problem was a dual Lagrange equation: 
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In the EMG classification, we need to extend the SVM 
classifier from two-class classifier to handle multi-class 
recognition problems. Researchers have proposed many 
methods to solve this problem, such as one against rest 
(OAR), one against one (OAO), directed acyclic graph 
(DAG), the two fork tree, etc. Research showed that OAO 
and DAG42 was the optimized method compared with 
others in actual calculation. 

 

4. CONCLUSIONS 
In this paper, the HIT/DLR II dexterous hand was 

taken as an example, to introduce the main driving 
mechanism, sensors and other hardware of a dexterous 
hand. Then, introduced the EMG control strategies of 
dexterous hand in detail, and summarized the application 
of mathematical theory of intelligent control in the EMG 
control of dexterous hand. Intelligent control was an 
important part in robotic hand motion, with the 
development of computer technology, it had been more 
and more intelligent. At the same time, the robotic hand 
was becoming more flexible, and was able to work 
seamlessly with the human under the control of intelligent 
control system. The use of EMG control made it possible 
for robot to act as a prosthetic. In the near future, with the 
emerging of new computational control algorithm, the 
robotic hand will continue to upgrade, to obtain the even 
higher precision and power than human hand. 
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