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ABSTRACT 

 

Aims  Semi-synthetic derivatives of the anti-malarial drug artemisinin may also possess anti-cancer 

properties. The ability to detect artemisinin uptake and distribution in cells would facilitate live cell 

imaging without labelling. This study describes mid-range infrared absorption spectra for three 

artemisinin variants and attempts to detect their presence in a simple cell model (erythrocytes). 

Cytotoxicity assays assess potential anti-cancer properties against bladder cancer cells.   

 

Methods  Mid-range Fourier transform infrared spectra were obtained from dry preparations of 

Dihydroartemisinin (DHA), Artesunate (ART) and Artemether (ARTE).  Erythrocytes were prepared 

from normal blood and incubated for 30 minutes at 37°C with the three artemisinin derivatives. 

Cytospin preparations were prepared on aluminium foil for spectroscopy. Potential for growth 

inhibition in the RT112 bladder carcinoma cell line was assessed by the 3-(4,5-Dimethylthiazol-2-

yl)-2,5-Diphenyltetrazolium Bromide residual viable biomass method. 

 

Results  Spectra were obtained from the three native compounds. Repeat scans after 8 weeks 

showed ART and ARTE to be stable, stored under manufacturer’s recommendations.  DHA 

exhibited marked changes over the same period.  It was possible by subtraction to detect DHA in 

cytospins, but not ART or ARTE.  The fit between the subtraction spectrum and that of the native 

compound was >80%. DHA and ART showed strong cytotoxic potential against RT112 cells. 

 

Conclusion  The artemisinin derivatives tested exhibit unique mid-range infrared absorption 

spectra which can be used to monitor degradation and, for DHA, can be detected by subtraction in 

loaded erythrocytes rendering future imaging studies feasible. Its cytotoxic efficacy against RT112 

cells suggest bladder cancer as a possible target disease. 

 

WHAT THE PAPER ADDS   

The spectra have been added to databases where they had not previously been represented.  The 

ability to detect dihydroartemisinin in erythrocytes by Fourier transform infrared methodology is a 

step towards imaging studies in live cells that would expand options for tracking the compound in 

its native state, without the disadvantages of labelling. The demonstration of cytotoxicity against 

bladder cancer cells is original and enhances the relevance of the study.
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INTRODUCTION 

Artemisinin is derived from the sweet wormwood plant Artemisia annua L and has a long history 

of use in Chinese medicine to treat febrile conditions [1]. It is a key component of the World 

Health Organisation’s global anti-malaria strategy, its derivatives representing a class of highly 

potent anti-malarial drugs. Following success against malaria, originally under the Chinese name, 

Qinghaosu [2] and subsequently as artemisinin [3], researchers began investigating whether 

artemisinins held potential anticancer properties.  Early reports demonstrating that artemisinins 

were cytotoxic to tumour cells include experiments with neuronal cells [4] and a range of cancer 

cells [5]. Subsequent studies have demonstrated, growth inhibition, increased levels of oxidative 

stress, enhanced apoptosis and inhibition of angiogenesis on exposure to these drugs [6-8]. Some 

of these properties and mechanisms are outlined below.  

 

Artemisinins are lipophilic and can cross erythrocytic, parasitic and host cell plasma membranes 

[9] as well as cytoplasmic membrane bound organelles such as mitochondria [10]. The mechanism 

of artemisinins’ activity is known to be dependent upon the Fe2+ mediated oxidization of the 

atypical endoperoxide bridge [11].  In nucleate cells artemisinins induce apoptosis by a ROS 

mediated activation loop among caspases 8 and 9 [12] and, optionally also caspase 3 [13]. Semi-

synthetic artemisinin derivatives have been formulated to increase solubility and bioavailability in-

vivo.  However, artemisinins are metabolised quickly, so while their rapid activity makes them 

effective against malaria, the use of artemisinin for cancer treatment/anti-angiogenesis treatment 

may be limited by its fast elimination from blood plasma, unless slow-release or combination 

strategies [14] can be developed.  

 

Current malarial therapies and investigations into potential anti-cancer properties are based on 

the derivatives Dihydroartemisinin (DHA), Artesunate (ART) and Artemether (ARTE) [15].  An aid to 

research in this area would be an ability to image cellular uptake and distribution in real time, as 

demonstrated with fluorescence labeling [10]. This prompted us to design a laboratory-based 

study investigating artemisinin identification by Fourier transform infrared (FT-IR) spectroscopy, 

offering a label-free reporting system. These initial studies use a relatively simple erythrocyte 

model, but may represent the beginning of a body of work that ultimately facilitates live cell FT-IR 

imaging of neoplastic epithelial cells treated with native artemisinin derivatives, enabling a clearer 

understanding of their uptake, trafficking and metabolism and hence their potential value as 

adjuvant components of targeted cancer therapies. 
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MATERIALS AND METHODS 

 

In vitro analysis of raw materials 

DHA was packaged in foil and stored below 5oC according to the manufacturer’s instructions.  The 

ART and ARTE derivatives were indicated for storage in plastic at room temperature. FT-IR 

spectroscopy was conducted for each artemisinin derivative using a FT-IR Nexus analyser (Thermo 

Nicolet, USA) and interpreted by OMNIC (version 6.1) software. A background signal was collected 

and subtracted from sample signatures. For analysis of the compounds ex-vivo, enough crystals to 

adequately cover the diamond within the sample inlet were held securely in place by a metal 

clamp. A spectrum was acquired on screen within one minute. The resultant plots showed the 

absorption and wave number of the peaks identified.  These were compared to patterns 

characteristic of specific bonds to determine if a unique spectrum for artemisinin derivatives could 

be identified using information from the following online sources, Byrd J [16] and the Chemical 

Education Digital Library [17]. 

 

Incorporation of DHA into viable erythrocytes and its identification in situ 

Enucleate Erythrocytes were used to pilot in-vivo detection, being a simple cell type, as well as 

relevant to the original use of the drugs. They were obtained from a finger-prick into 10ml 

phosphate buffered saline (PBS) and washed twice by centrifugation. The artemisinin derivatives 

ART, DHA and ARTE were used. 0.2g of each derivative was dissolved into 2ml of absolute ethanol.  

20µl of each artemisinin stock solution was added to 2ml of Erythrocytes in PBS, 2ml was kept as 

control. These were incubated with the derivatives for 30 minutes in a cell culture incubator (37oC, 

5% CO2 in humidified air). They were then centrifuged at 1200g for 5 minutes. The supernatant 

was removed and the cells were re-suspended in PBS and re-centrifuged. The resulting pellet was 

used to prepare cytospin slides. 

 

Labeled slides were wrapped in aluminium foil, shiny-side-out, and placed in a cytospin centrifuge 

(Cytospin 4, Thermo Scientific, UK). The Erythrocytes pellets were added to the sample inlets on 

the cytospin filter and centrifuged at 1000rpm for 5 minutes. Slides were air-dried before spectra 

were obtained by forcing  the blood spots onto the diamond crystal of the FT-IR analyser.  A 

background spectrum for the aluminium foil was subtracted. OMNIC software was then used to 

subtract the untreated Erythrocyte spectrum from spectra obtained from cells treated with each 

artemisinin derivative. This provided three subtraction spectra with which to search against online 
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libraries.  

 

Cytotoxicity to epithelial monolayers 

Cytotoxicity studies were performed according to the protocols used in previous studies from the 

group and set out in detail elsewhere [18].  Briefly, cells were seeded into 96-well plates, allowed to 

attach for 24 hours, treated with serial dilutions of drug, incubated further for 48 hours and the 

residual viable biomass assessed by the addition of 3-(4,5-Dimethylthiazol-2-yl)-2,5-

Diphenyltetrazolium Bromide (MTT) reagent for 2 hours before measuring absorbance at 470nm on 

a plate-reading spectrophotometer.  

 

Statistical analysis 

Statistical analyses were performed using SPSS software (version 19.0 for Windows; SPSS Inc., 

Chicago, Illinois, USA). Data were normally distributed, thus descriptive statistics are expressed as 

mean ± standard errors of the mean. Data was subjected to a one-way analysis of variance 

(ANOVA), providing an overall figure of significance. In order to ascertain where the differences 

are and discover trends post hoc analysis the Tukey or Games-Howell tests were applied. The 

conventional p<0.05 value was used as the cut-off for significance. 

 

5 
 



RESULTS 

 

In vitro results on raw materials 

The first spectrum obtained for DHA is shown in figure 1. The very large peak at ~2450cm-1 can be 

ignored as being carbon dioxide interference from the atmosphere. This peak has been blanked 

out in subsequent spectra. The peak at 3245cm-1 corresponds to the O-H bond within the DHA 

molecule, which is added to native artemisinin to form DHA and improve the solubility of the drug.  

The peak at 2921.95cm-1 corresponds to C-H bonding. There is a peak at 1750cm-1 that 

corresponds to a carbonyl C=O bond indicative of an aldehyde, amide, carboxylic acid or ester. 

Within the fingerprint region there are peaks between 180 and 1300cm-1, these correspond to the 

ether, C-O-C bonds within the molecule.  

 

A new spectrum was obtained for DHA 52 days after the first; changes had occurred as shown in 

figure 2.  The OH region became broader and formed a doublet, usually seen when a molecule 

contains both O-H and N-H bonding, which DHA should not. This change is indicative of 

degradation and may be due to moisture reacting with the O-H bonds during storage.  Spectra for 

ART and ARTE were subsequently also obtained 14 days later (Day 66).  They do not display such 

differences.  Sample spectra are shown in figures 3 and 4.   

 

Figure 3 consists of two spectra for ART taken eight weeks apart. The spectra do not have the 

degree of change seen with the DHA. There is some change in the C-H bond section just under 

3000cm-1. ART was synthesised to be more water soluble and has a carboxylic acid group, 

corresponding peaks seen at 1142/1144.53cm-1, an additional ether C-O-C bond (smaller peaks 

between 1080 and 1300cm-1), plus an ester bond O=C-O.   

 

ARTE plots show little change with time (Figure 4).  ARTE is a lipophilic alkylether without an OH 

group, so there is no peak between 3200 and 3600cm-1. There is a large peak that corresponds to 

C-H bonding between 2850 and 3000cm-1. ARTE does not have a carbonyl C=O bond therefore 

there is no peak between 1690-1760cm-1. It has an additional methyl CH3 group; this may 

correspond to the peaks at 1373/1372cm-1, respectively. The CH3 is attached to an O, so there is a 

significant amount of C-O-C ether bonds, which can be seen in the peaks between 1080 and 

1300cm-1.  
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OMNIC 6.1 software was used to confirm whether the DHA, ART and ARTE spectra matched 

spectra of molecules stored within online databases/libraries. Matches were not found, indicating 

their spectra are unique. A new library was set up containing the spectra for each of the 

artemisinin derivatives. 

 

Incorporation of DHA into viable erythrocytes and its identification in situ 

For the ART and ARTE subtraction spectra, no strong matches were found. For the DHA treated 

cells a match of 80.87% with the spectra obtained after subtraction for the pure DHA compound 

(Figure 5).   

 

Cytotoxicity to epithelial monolayers 

All three artemisinin derivatives showed significant (P<0.05 vs control) toxicity studies using 

RTT112 bladder cancer cells in an MTT-based assay over 1.5µg/ml, but the curves for ARTE were 

flatter than for ART or DHA with respective R2 values of 0.67, 0.74 and 0.96 (Figure 6). ARTE failed 

to achieve a reduction in residual viable biomass to 50% of control values (IC50) up to 25µg/ml.  

IC50s for ART and DHA were 3µg/ml and 9µg/ml, respectively.  
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DISCUSSION 

Semi-synthetic derivatives of the anti-malarial drug artemisinin may possess cytotoxic activity 

against nucleate cells growing in vitro, and anti-angiogenic activity [4,5], offering potential anti-

cancer properties. To further the study of these phenomena the ability to detect artemisinin 

uptake and distribution in cells would be advantageous. Live cell imaging studies without the 

problems of labelling small molecules could be achieved through FT-IR spectroscopy.  This study 

describes mid-range infrared absorption spectra for three artemisinin variants and detects the 

presence of one, DHA, in erythrocytes incubated with the drugs, albeit at this stage without 

imaging. It also assesses the cytotoxic effect of artemisinin derivatives in the RT112 bladder 

carcinoma cell line. 

 

The structurally unique feature and key source of artemisinins activity is its endoperoxide bridge. 

However, as there is no net change in the dipole moment during the vibration of homonuclear 

molecules such as O2, N2, and H2, these molecules do not absorb IR radiation [19]. Therefore, the 

characteristic O-O bond within the endoperoxide bridge is unlikely to absorb IR and will not 

contribute a characteristic peak to the spectra for artemisinins.  With that said, the spectra 

obtained still appeared to be unique and were not found within existing spectral databases. The 

1750cm-1 C=O peak does not fit with the structure of DHA. Wild-type artemisinin does however 

have a C=O bond and this may suggest a level of impurity during the synthesis of DHA.   

 

The Erythrocytes experiment indicated artemisinin derivatives spectra were potentially 

identifiable within a complex environment.  The high dose used for this experiment is far in excess 

of those used elsewhere in the study or are attainable therapeutically, but follow a conventional 

progression in experimentation, starting with a strong effect that must be achievable for the 

system to show potential.  Concentrations will subsequently be lowered to find threshold 

detection levels. The subtraction spectra of DHA in Erythrocytes achieved an 80.87% match with 

the spectrum for pure DHA, so some of the compound entered the cells remaining relatively 

unaltered. This may be due to a lack of free Fe2+ within the ‘normal’ Erythrocytes.  It is noteworthy 

that DHA was the most cytotoxic of the three derivatives towards RTT112 bladder cancer cells in 

log phase growth. For ART and ARTE no match was found, indicating that the compounds may not 

have entered the Erythrocytes at all, or had been modified beyond recognition by metabolic 

processes. The former possibility is arguably more likely, as Erythrocytes contain limited capacity 

for active metabolism. 
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Identifying the spectra of artemisinins within more metabolically active nucleate cells introduces 

several factors that require consideration and further study. Firstly, as the concentrations of the 

artemisinin derivatives present are far smaller and much harder to identify within a mixture, a 

range of different concentrations more closely approximating to clinically achievable plasma 

values than used here, should be applied to cells to assess the concentration limits for detection. 

Among the highest human plasma concentrations reported in the literature is 443ng/ml [20] 

compared with the 1mg/ml applied to the washed erythrocytes in-vitro here. Secondly, a range of 

cell lines could be used to demonstrate differences in uptake and detection. Thirdly, artemisinins 

are reactive, with a short half-life in-vivo.  Oral artemisinins have been credited with a mean 

absorption time of 0.78 hours [21] and a residence time of 3.3hr.  This compares unfavourably 

(32%) with bioavailability from intramuscular injection in oil.  However, the mean residence time 

of the latter (10.6h) was three times longer than following oral administration.  Gordi et al [22] 

quotes a half-life of 0.7h and hepatic extraction ratio of 0.87.  When applying the derivatives to 

cells, key bonds may break (e.g., cleavage of the peroxide bridge) changing the molecular structure 

and altering the absorbance spectrum. Time series during exposure of live cells to drug may yield 

information on turnover as we have shown using time-lapse fluorescence in other contexts [23]. It 

may also with artemisinins, in the first instance be possible to tag the derivatives with a 

fluorochrome to allow parallel detection through fluorescent microscopy, adding validity to the 

images from a well-established method. Of course, the handling of a compound may be influenced 

by the label; circumventing that issue is an important driver towards IR imaging.  

 

Uptake in erythrocytes is a first step towards detection in tissues and ultimately live cells.  In this 

study it has already thrown up differences in detectability between the three variants used.  There 

are also variations in cytotoxicity against RT112 cells, with artemether proving markedly less toxic.  

The focus on bladder cancer reflects the interests of our group, but as noted in the introduction, 

activity against other cancer cells has been demonstrated (4,5).  Investigating the uptake and 

processing of artemisinins within cancer cells is therefore worthy of study and would ideally 

involve applying live cell imaging techniques [24] to provide valuable information in real time, 

particularly if rapid acquisition is possible using limited spectral information -for example on a 

QCL-based instrument [25]. 

 

TAKE-HOME MESSAGE 

This first demonstration that DHA uptake can be detected by its presence in erythrocytes using FT-
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IR spectroscopy, offers the possibility of localising the drug in fixed or potentially live cells without 

labelling, using IR imaging equipment.  The failure to detect the other analogues may indicate their 

speedy intracellular metabolism and might shed light on the differences in cytotoxicity that clearly 

exist between the analogues, at least to the RT112 cell line in-vitro. 
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LEGENDS TO FIGURES 
 
 
Figure 1: Original DHA spectrum (Day 0) 
FT-IR spectrum of DHA crystals on aluminium foil. The large peak at ~2450cm-1 is considered to be 
interference from carbon dioxide in the atmosphere and has been blanked out in subsequent 
spectra. 
 
Figure 2: Spectra for DHA obtained on (Day 52) 
Considerable changes have occurred since Day 0, notably the OH region broadening into a doublet, 
indicating O-H and N-H bonding.  
 
Figure 3: FT-IR absorption spectra for ART  
Two spectra are shown, obtained on Day 0  (upper) and the following Day 66 (lower). The Spectra 
do not have the degree of change seen with DHA. There is some change in the C-H bond section just 
under 3000cm-1. 
 
Figure 4: The FT-IR absorption spectra for ARTE 
Two spectra, taken on Day 0  (upper) and the following Day 66 (lower).  These show little change. 
ARTE is without an OH group or carbonyl bond, so there are no peaks between 3200 and 3600cm-

1 or  1690-1760cm-1. It has an additional methyl CH3 group, perhaps corresponding to the peaks at 
1373/1372cm-1.  
 
Figure 5: Subtraction and library search spectra for RBCs treated with DHA 
Lower plot – spectrum from ART ex-vivo.  Upper plot – subtraction of erythrocyte spectrum from 
DHA-loaded erythrocytes. 
  
Figure 6: Toxicity of DHA, ART and ARTE to RT112 cells 
MTT assay: Residual Viable Biomass as % control (OD experimental / OD control x 100) plotted as 
means ±SEM (n=8) against concentration of drug. 
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Figure 5:   
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