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Abstract 

Speed management represents an important strategy in order to improve road safety, 
because a strong relationship is between speed and crash occurrence and severity. Speed 
limits enforcement is the main measure to control operating speeds but to obtain the 
compliance of drivers, the limits must be safe but also credible. 
This means that road users have to regard the speed limit as logical under given conditions 
and so a speed limit is credible if it fits the image evoked by the road. 
This paper describes the development of a Decision Support System (DSS) for the selection 
of safe and credible speed limits for speed zones. The proposed DSS is based on Dominance-
based Rough Set Approach (DRSA), which presents interesting advantages in terms of 
transparency and manageability with respect to many other decision support competitive 
methodologies. In fact DRSA, after getting the preferred information necessary to set up the 
decision model, in terms of exemplary decisions, allows to build a multi-criteria model 
expressed in terms of ”if..., then ...” decision rules. 
The proposed multi-criteria decision approach aims to suggest to decision-makers a safe and 
credible speed limit for speed zones, taking into consideration many factors such as accident 
rate, roadway geometry, roadway development, traffic and others. 

 
 

Keywords 

Speed limits; Decision Support System; Dominance-based Rough Set. 
  



2 

 

1. Introduction 

Over the past five decades, individuals and societies have greatly benefited from a rapid 
improvement in road infrastructure. At the same time, industry has manufactured motor 
vehicles able to travel at increasingly higher speeds.  
High-speed vehicle transportation has facilitated the economic development of countries 
and also it has improved the quality of life. However, these high-speeds have considerably 
adverse impact, mainly in terms of road accidents (and consequent fatalities, injuries, and 
material damages), but also in environmental terms, including noise and exhaust emissions, 
and finally in terms of the comfort of residential and urban areas.  
Recently, the demand for strategies that reduce such adverse impacts of speed has 
increased. A growing portion of the population has required increasing road safety, reducing 
adverse environmental impacts and improving general quality of life.  
Speed management policies have become a high priority in many countries. Speed limits 
enforcement represents the core of every speed management policy and so a tool that helps 
the decision-makers to choose the most suitable speed limit for each speed zone can be 
useful in order to obtain the compliance of the drivers with limit.  
A method for setting speed limits with a Decision Support System (DDS) based on 
Dominance-based Rough Set Approach (DRSA) (Greco, Matarazzo and Slowinski 2001, 2005, 
2014) is presented in this paper. We have approached the assessment of speed limits in the 
context of newly emerging approach to knowledge discovery and data mining, called rough–
granular computing (Stepaniuk 2008). Indeed DRSA can be seen as a specific methodology 
for rough-granular computing (see Greco, Matarazzo and Slowinski 2008). In fact, the 
advantage of DRSA for decision support originated by its rough-granular computing nature is 
in its use a specific non-Boolean logic (Greco, Matarazzo and Slowinski 2012) which 
generalize to consideration of preference order the non-Bolean logic of rough sets (Cattaneo 
and Nisticò 1989, Cattaneo and Ciucci 2004).  
The proposed methodology suggests to the decision makers a safe and credible speed limit 
based on a decision model set up by means of preference information in terms of exemplary 
decisions provided by an expert panel. At the same time, the methodology produces some 
easily understandable decision rules that can help the decision makers to explain the 
reasons for the suggested speed limit.  
This paper has been divided into seven sections. Section 2 introduces the speed 
management question and presents a brief literature review of the expert systems for 
setting speed limits; Section 3 explains the aim of the present work, the methodology and 
the data used for the decision model development; Section 4 presents the DRSA multi-
criteria decision model for setting speed limits developing; Section 5 describes the 
application of the decision model; Section 6 reports a discussion on the presented 
methodology; finally, Section 7 provides the conclusions and some recommendations. 

2. Methods for Setting Speed Limits: a review 

The speed limit system is the basis of every speed management.  
Establishing a set of speed limits represents a complex trade-off between several factors - 
such as crash and injury risks, enforceability, travel time, societal attitudes, environmental 
concerns and political considerations - and the relative importance assigned to everyone. 
These different trades-off are variously reflected in a range of different philosophies (TRB, 
1998; Elvik & Vaa, 2004; Fildes at al., 2005; Aarts et al., 2009): 

 Engineering: speed limit system based on engineering and traffic characteristics 
(design speed); safety considerations are taken into account but not always 
explicitly.  
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 Drivers' choice: speed limit system based on the 85th percentile speed that is driven 
on the road (V85); safety as well as a kind of credibility is taken into account. 

 Economic optimization: speed limit system based on the optimal trade-off between 
costs and benefits of different speed related issues and policy fields; safety is one of 
the many issues that is or can be considered. 

 Harm minimization: speed limit system based on the concept that life and health 
cannot be measured or traded in terms of monetary costs, and that human trauma 
as a crash’s consequence is considered unacceptable. 

 Expert systems: speed limits determined by computer programs employing decision 
rules operating off a well-defined knowledge base relating to road conditions, to 
generate speed recommendations.  

The most common approach for setting speed limits is to determine them after conducting 
an engineering study of the road and traffic environment on the road section and 
surrounding roads. In an engineering study, a lot of information is collected such as traffic 
speeds, crash data, type and amount of roadside development, road geometry, and the 
number of type of road users. These factors allow engineers to define a road design speed. 
Alternative and very common, is the philosophy of setting speed limits by drivers’ choice of 
speed, which is otherwise known as the “basic law limit”. This approach leaves it up to 
drivers to determine what represents a reasonable and safe travel speed. This has been an 
accepted speed limit practice because it is politically popular, it appeals to road users and 
the public in general, and it is obeyed by the majority of drivers. However, speed limits 
arising from this philosophy often incorporate various engineering considerations, which 
may result in modified speeds if the speed chosen by drivers was not appropriate.  
The various economic optimization approaches are based on setting a dollar value to all the 
costs associated with travel and to the burden of injury and fatality from motor vehicle 
crashes. The method relies heavily on the quality of the data used to determine the costs of 
each of the factors involved. The lack of a universally accepted method for determining the 
economic costs of each transport factor has limited the objectiveness of these approaches, 
which have been rarely used to determine speed limit policy. Nevertheless, the approach 
has gained some recognition by virtue of its emphasis on what mobility factors are actually 
costing society, particularly in terms of injury costs. 
If economic optimizations approaches assume that it is legitimate to put a fiscal cost on 
human trauma, some alternative approaches are based on the argument that life and health 
are beyond the monetary costs associated with safety and good health is beyond the other 
benefits of transport. These approaches, known as harm minimization approaches, 
recognize that while it may not be possible to eliminate road trauma, it may be possible to 
create a transport system that does not view casualties and fatalities as an acceptable and 
inevitable cost of mobility. Examples of these philosophies are the Swedish Vision Zero 
(Tingvall & Haworth, 1999) and Dutch Sustainable Safety (Wegman & Aarts, 2006).  
Finally, the expert-based systems aim to develop a uniform and consistent approach to 
setting speed limits while still accounting for situation specific criteria that may not be 
incorporated into a standard engineering analysis. Let us remember that expert systems are 
computer programs used to solve complex problems in a given field by employing decision 
rules operating on a well-defined knowledge base.  
Expert systems and algorithms in setting speed limits in last years become very famous. In 
the next sub-paragraphs SaCredSpeed algorithm and the USLIMITS expert system are 
described. 

2.1 Harm minimization approach: SaCredSpeed algorithm 

The Dutch Sustainable Safety have been developed in 1992 and updated on 2006 (Wegman 
& Aarts, 2006) by the SWOV, the Institute of Road Safety Research.  
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One of the key concepts in a Sustainably Safe Traffic System is safe, credible limits and good 
information about them. First of all safe driving speed needs to be determined in order to 
set the corresponding speed limit; the safe speeds assessment depends on the legal traffic 
situation and further road design details. Speed limits also need to be credible - 'credible 
speed limits' (SWOV, 2007) - that means that the speed limit has to meet the expectations 
evoked by the road image, defined by the road's features and its surroundings. Road users 
also always have to be aware of the current speed limit, so information must be applied very 
consistently and, also, speed limits must be convincing for the road users.  
Recently the SWOV have presented the initial elaboration of an algorithm that concretizes 
its own speed management vision based on harm minimization (Aarts et al., 2009), (Aarts et 
al., 2010). This algorithm, called ‘SaCredSpeed’ (Safety and Credible Speed), is based on 
scientific knowledge about safe speed, speed management and credibility and is focused on 
the issues that are considered the most relevant on this; other variables such as traffic flow, 
environment and health are not taken into consideration.  
The SaCredSpeed algorithm consists in three separate algorithms, respectively for safety, for 
credibility and enforcement of speed limit (Aarts et al., 2009). First algorithm uses input data 
of a particular stretch of road - i.e. data about road construction, road layout, legal traffic 
situation – and assess, applying its logical rules, a safe speed and speed limit for that 
particular situation. The second part of the algorithm - stating that a speed limit is credible 
when the limit in force is conforms to what the road user considers to be reasonable for that 
particular road section - determines the credibility of speed limit by a broad range of road 
design and road layout characteristics based on existing studies (Aarts et al., 2009). The third 
part of the algorithm assesses the need for additional police enforcement checking existing 
police enforcement situation and speed data, when available. 
Finally the outcome of the three algorithms is combined resulting in possible directions for 
speed management, and precisely: 

 an indication of the safety of the speed limit and operation speed; 

 an indication of the credibility of the current speed limit on a road section; 

 a set of measures to be taken in order to improve the safety and credibility of the 
speed limit.  

SaCredSpeed nowadays is the unique approach in safe speed limits settings based on harm 
minimization, and is the only one that includes credibility of speed limit assessment.  
The algorithm permits to evaluate  safety and credibility of speed limits and, moreover, its 
suggestions gives a useful support for their adaptation. Its logical rules in setting safe speed 
limits - based on national guidelines on infrastructure design - only take into account road 
design and users, and does not consider operative conditions (i.e. traffic volume, percentage 
of heavy vehicles, accident rate) and maintenance conditions (i.e. status of pavement and 
road signs), that in different national politics can have a great importance and need to be 
considered. 
Furthermore, although users - i.e. managing authorities - know the decisional process, they 
cannot easily change or update it basing on their current policies, engineering criteria, 
practices, and experience if necessary. 

2.2 Expert-based systems: USLIMITS2 

The first expert-system based approach for setting speed limits in speed zones was 
developed in 1987 in the state of Victoria (Australia) (Jarvis & Hoban, 1988). This was a DOS-
based program, called VLIMITS, developed by ARRB for Victoria State using decision rules for 
different road and traffic conditions, developed by a panel of experts using field 
measurements at 60 locations. In 1992 VLIMITS was updated (TRB, 1998) and was developed 
for all Australian state roads authorities and for New Zealand, modifying the name and the 
rules: collectively, they are called XLIMITS. 
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Based on the Australian XLIMITS example, the USLIMITS expert system has been developed 
in United States by ARRB for FHWA, adapting decision rules to North American policies and 
practices. All the systems developed by ARRB are considered proprietary and their logic and 
decision rules are not available for the user, so users are not permitted to know which, and 
how many, variables influence the final recommendation. 
In 2006 the Final Report of NCHRP Project No. 3-67 “Expert System for recommending speed 
limits in speed zones” (Srinivasan et al., 2006) was presented: the Project was designed to 
develop an expert system to succeed USLIMITS. In contrast to all previous versions, 
USLIMITS2 (Srinivasan et al., 2006) (Lemer, 2007) (Srinivasan et al., 2008) is open source, 
available with complete information about the system’s logic and factors influencing speed 
limits recommendations, provided by the system. The Study Report, the User Guide and the 
Decision Rules are available on the official website (http://www2.uslimits.org). When 
logging in, it is possible to question the system about the most appropriate speed limit for a 
specific speed zone. 
In this system, although complete information about the system’s logic, factors influencing 
speed limits and the decision rules are known, the output is only a recommended speed 
limit for the new road section, basing on its characteristics, putted as input. With this type of 
output users has difficulty to understand which road section characteristics have influenced 
the result or which is the cause that runs to it, because the decision process is not evident 
and it is not possible to evaluate or update it.  

3. Problem definition 

Considering the lacks of the presented algorithms and expert-systems in terms of 
transparency and adaptability to different situations, the aim of the present work is the 
definition of a decision-support tool that can assist the decision makers in setting speed 
zone limits using a multi-criteria decision model.  
The basic idea of the presented research is to develop an intelligible and user friendly tool 
that can suggests to users a safe speed limit and can easily explains them the reasons of the 
recommendation, in order to avoid the “black box” effects of many alternative decision 
support methods. More precisely our aim is to represent the experience of one or more 
experts in a set of “if …, then …” decision rules that synthesize some exemplary decisions 
about speed limits supplied by them.  
Furthermore, in order to consider multiple attributes in the decision process for setting 
speed limits in speed zone, a multi-criteria decision model has been used.  

3.1 Methodology 

The multi-criteria decision model adopted in this study is based on the Dominance-based 
Rough Set Approach (DRSA) (Greco et al., 1999) (Greco et al., 2001) (Greco et al., 2002b) 
(Greco et al., 2005) (Slowinski et al., 2005). This approach is an evolution of Classical Rough 
Set approach (CRSA) developed by Pawlak (Pawlak, 1991) that allows applying it in multi-
criteria decision problems. We shall come back on the advantages of DRSA with respect to 
classical rough set approach at the end of the Section 4, after presenting the basic concepts 
of DRSA. 
DRSA has been chosen because it has two important advantages over other approaches: 

 DRSA requires the preference information in terms of exemplary decisions which are 
very natural and easy to be provided by the decision maker (contrary to some quite 
technical parameters required by other competitive multiple criteria methods, such 
as weights of criteria, trade-offs between criteria, thresholds, and so on) (Fishburn, 
1967) (Mousseau, 1993);  

http://www2.uslimits.org/
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 DRSA produces a decision model expressed in terms of easily understandable “if…, 
then…” decision rules which permits to control the decision process and to avoid the 
“black box” effects of many alternative decision support methods (Greco et al., 
2005) (Slowinski et al., 2009). 

The proposed multiple criteria decision support system aims to suggest the managing 
authority the most appropriate speed limit for every speed zone taking into account its 
geometric and operative characteristics and maintenance conditions, on the basis of a safety 
police described using a set of decision rules induced from some exemplary decisions taken 
by one or more experts. 

3.2 Data   

The first step in the decision-support system development was data selection. 
In the presented work, data is composed by a set of 100 road sections of Italian rural roads 
network, and specifically two lane roads with statutory speed limit of 90km/h. Road 
sections have been selected taking into account geometric, operative, maintenance 
characteristics and accident rate, obtaining speed zones with homogeneous characteristics 
and at least 300 meters extended.  
Speed zone features have been defined by a set of attributes that can well describe the real 
conditions of every road section. These features have been registered by field observations 
and data collection.  
The considered attributes are reported in the following together with their value scales, 
within parentheses: 

A1= Traffic Volume (high, moderate and low); 
A2= Percentage of heavy vehicles (high, moderate and low); 
A3= Lane width (in meters); 
A4= Shoulder width (in meters); 
A5= Road Signs (yes or no); 
A6= Pavement Condition (high, moderate and low); 
A7= Roadside Hazard Rating (1,2,3 or 4); 
A8= Accident Rate (high or low); 
A9= Adverse Alignment (yes or no). 

It is important to remark that other and different attributes can be considered in speed 
zone definition, in relation to available data and/or Decision Maker (DM) choice. 
Every attribute and its classification are described here in the following. 
The attribute “Traffic Volume” describes the traffic level on the investigated road section. It 
has been obtained from managing authorities’ data and it is classified as low, moderate and 
high considering as threshold 6,000 ad 20,000 vehicles/day. (Traffic Volume is low if lower 
than 6,000 vehicles/day, it is medium if it is not smaller than 6,000 and lower than 20,000 
vehicles/day, and it is high if it is not smaller than 20,000 vehicles/day). 
The attribute “Percentage of heavy vehicles” is classified into low, medium and high, 
considering low a percentage of heavy vehicles lower than 10% of the traffic volume, 
medium a percentage of heavy vehicles included between 10% and 20% of the traffic 
volume and high a value higher than 20%. 
The attributes “Lane width” and “Shoulder width” describe the lane and the shoulder size (in 
meters).  
The attribute “Road signs” indicates the presence or absence of pavement markings on the 
investigated road section. 
The attribute “Pavement Condition” describes the pavement condition as high, moderate 
and low.  
The “Roadside Hazard Rating (RHR)” is a measure of the roadside conditions including 
shoulder wide and type, side slope and presence/absence of fixed objects on the roadside 
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(Zegeer et al., 1988). Roadside hazard defined by Zegeer is ranked on a seven-point 
categorical scale from 1 (best) to 7 (worst). This scale has been adapted to Italian Roads and 
a four-point scale has been used.  
The four categories of roadside hazard rating are defined as follows: 

 RHR=1 

Presence of roadside barriers if required, correctly installed and by law. 
Roadside free from obstacles (trees, poles, etc.) or embankments. 
Recoverable in a run-off-road situation. 

 RHR=2 

Presence of roadside barriers if required, but either not properly or not legally 
installed. 
Possible presence of exposed trees, poles or other objects. 
Marginally recoverable in a run-off-road situation. 

 RHR=3 

Limited presence of roadside barriers in flyover, steep and high slope, etc. 
Exposed rigid obstacles (trees, poles, etc.) and embankments. 
Virtually non-recoverable in a run-off-road situation. 

 RHR=4 

Absence of roadside barriers. 
Cliff or vertical rock cut. 
Non-recoverable in a run-off-road situation. 

The attribute “Accident rate” describes the safety conditions of each section. For each 
section the accident rate is defined as the ratio between the observed number of accidents 
(only fatal and injury crashes are taken into account) and the risk exposure (given by the 
product of all traffic flows in the observed period for the section length); the investigated 
period has to be at least two years long to be significant and no longer than five years in 
order to avoid non stationary phenomena. In this study a five years long period is used. The 
evaluation of safety level is based on a statistical procedure and it is classified as low 
hazardous section or high hazardous section.  
Finally, the “Adverse Alignment” attribute includes road features with vertical and/or 
horizontal alignment, which differs significantly from the alignment of the general road. 
Adverse alignment segments typically reduce operating speeds below the general speed 
limit for the section. Examples of adverse alignment segments are: small radius curve, 
winding road, curve after long straight, narrow pavement widths and shoulders, road 
bumps, etc. The presence or the absence of an adverse alignment in the measured section 
has been marked.  

3.3 Expert Panel selection 

The set of the 100 road sections selected on Italian rural roads, each one described by the 
set of chosen attributes, has been submitted to an Expert Panel. 
The Expert Panel function is to assess a safe speed limit for every investigated speed zone, 
basing only on its features (classified as described above) and some photos. Every Expert 
Panel component has to select the most appropriate speed limit (in terms of safety) among 
60, 70, 80 and 90 km/h. The last one is the statutory speed limit for the investigated type of 
roads and so the chosen limit may not exceed this one. 
Different participants, with different priorities and purposes in speed limits selection, can be 
included in the Expert Panel. For example, it can be made-up by members of managing 
authority, road safety experts, road users, government delegates, and so on. 
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The final decision, in this case the safer speed limit for each selected speed zone, can be the 
mean of every Expert Panel member selected value or can be selected as the value on which 
they agree.  
In the present case study the Expert Panel was composed by three safety experts among 
professors of the Department of Civil and Environmental Engineering of the University of 
Catania.  
The final decision about the safe speed limit for every selected speed zone has been taken 
by common agreement. 
It is important to remark that, using DRSA, it is also possible to consider at the same time 
multiple decision makers (Greco et al. 2006) with different priorities and purposes in speed 
limits selection, and use the decision of every decision maker (or decision maker group) in 
the decision table to assess decision rules. 

4. Dominance Rough Set Approach to develop a multi-criteria decision model for setting 
speed limits  

In the following subsections, the application of DRSA in multi-criteria decision model for 
setting speed limits is presented. 

4.1 Information table and Dominance Relation 

The base of a Rough Set analysis is an information table. The rows of the table are labelled 
by objects, whereas columns are labelled by attributes and entries of the table are attribute-
values, called descriptors.  
In the present example, every row of the table is a road section, and every column contains 
technical and functional parameters conveniently selected to describe road sections.  
Formally, by an information table we understand the 4-tuple S=<U,Q,V,f>, where U is a 

finite set of objects, Q is a finite set of attributes, 
Qq

qVV


  and qV  is a value set of the 

attribute q, and f:UQV is a total function such that f(x,q)Vq for every qQ, xU, called 

information function (Pawlak, 1991). 
The set Q is, in general, divided into set C of condition attributes and set D of decision 
attributes. The notion of attribute differs from that of criterion, because scale of a criterion 
(its value set) has to be ordered according to decreasing or increasing preference, while the 
scale of a regular attribute does not have to be ordered. 
In the presented example, U is a set of 100 road sections on Italian rural roads, (two lane 
roads with statutory speed limit of 90km/h) and Q is composed by the attributes that 
describe them. C are the condition attributes and the speed limit recommended by an 
expert panel as the most appropriate, among 60, 70, 80 and 90 km/h, is  the  decision 
attribute D. The information table and the expert recommended speed limit that constitute 
the exemplary decision are shown in Table 1 (The complete table of experimental data is 
reported in attachment). 
In this case, all the condition attributes are criteria. For example, where the problem is to 
determine speed limits, considering the RHR a road section with good pavement condition 
will be preferable to a road section with bad ones, and therefore the higher speed limit will 
be assigned to the first one instead of the second one. 
It is important to observe that the criteria preference-order used in the presented case study 
are fixed by the expert panel but these can be modified according to the preference and 
knowledge of expert components. 

Assuming that all condition attributes qC are criteria, let q be a weak preference relation 

on U with respect to criterion q such that xqy means “x is at least as good as y with respect 
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to criterion q”. It is supposed that q is a total pre-order, i.e. a strongly complete and 

transitive binary relation, defined on U on the basis of evaluations f(,q).  
Furthermore, assuming that the set of decision attributes D (possibly a singleton {d}) makes 

a partition of U into a finite number of classes, let Cl={Clt, tT}, T={1,...,n}, be a set of these 

classes such that each xU belongs to one and only one CltCl. Assuming that the classes 

are ordered, i.e., for all r, sT, such that r>s, the objects from Clr are preferred to the objects 
from Cls.  

More formally, if  is a comprehensive preference relation on U, i.e., if for all x,yU, xy 

means “x is at least as good as y”: [xClr, yCls, r>s]  [xy and not yx]. For example, an 
object x dominating object y on all considered criteria (i.e. x having evaluations at least as 
good as y on all considered criteria) should also dominate y on the decision (i.e. x should be 
assigned to at least as good class as y). Objects satisfying the dominance principle are called 
consistent, and those which are violating the dominance principle are called inconsistent. 
The above assumptions are typical for consideration of a multiple-criteria sorting problem 
(also called ordinal classification problem) (Greco et al., 2002a).  
In the present case the set of decision D attributes is a singleton given by the attribute 
“recommended speed limit” which partitions the set U of the 100 road sections in the 
classes: 

 1Cl composed of road sections with recommended speed limit of 60 km/h; 

 2Cl  composed of road sections with recommended speed limit of 70 km/h; 

 3Cl  composed of road sections with recommended speed limit of 80 km/h; 

 4Cl  composed of road sections with recommended speed limit of 90 km/h. 

4.2 Dominance based approximation 

These classes are ordered according to the preference of recommended speed limit, such 

that xy whenever xClr, yCls and rs.  
Partition of the set U in classes, respecting dominance relationship, allows to approximate 
sets in unions of classes, called upward union and downward union of classes, respectively:  


ts

st ClCl


   


ts

st ClCl


   

with t={1,2,…n}. 

Thus, the statement Clx t
  means “x belongs to at least class Clt”, while Clx t

  means  “x 

belongs to at most class Clt”. 
In the case study the upward union of classes are: 

 


1Cl  composed of road sections with recommended speed limit “at least” 60 km/h;  

 


2Cl  composed of road sections with recommended speed limit “at least” 70 km/h; 

 

3Cl  composed of road sections with recommended speed limit “at least” 80 km/h; 

 


4Cl  composed of road sections with recommended speed limit “at least” 90 km/h; 

The downward union of classes are: 

 


1Cl  composed of road sections with recommended speed limit “at most” 60 km/h; 

 


2Cl  composed of road sections with recommended speed limit “at most” 70 km/h; 

 

3Cl  composed of road sections with recommended speed limit “at most” 80 km/h; 

 


4Cl  composed of road sections with recommended speed limit “at most” 90 km/h. 
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Let us remark that Cl

1 =Cln

 =U, Cln
 =Cln and Cl


1 =Cl1.  

In this application, the upward union classes 

1Cl and the downward union classes 

4Cl  

contain all the 100 road sections considered: in fact for all considered road sections the 
speed limit is always at least 60 km/h and at most 90 km/h. 

Furthermore, for t=2,...,n, we have: Cl t

1 = ClU t

 and  Cl t
 = ClU t


1 . 

The key idea of rough sets is approximation of knowledge expressed in terms of decision 
attributes by knowledge expressed in terms of condition attributes. This means to explain 
the partition of the decision attribute, according to the recommended speed limits, in terms 
of technical and functional parameters expressed by the conditional attributes.  
In DRSA, where condition attributes are criteria and classes are preference-ordered, the 
knowledge approximated is a collection of upward and downward unions of classes and the 
“granules of knowledge” are sets of objects defined using dominance relation. 
That is x dominates y with respect to CP   if Ux , the “granules of knowledge” used for 

approximation in DRSA are: 

 a set of objects dominating x, called P-dominating set,    xyDUyxD PP :  

 a set of objects dominated by x, called P-dominated set,    yxDUyxD PP :  

Moreover, above dominating sets and dominated sets are “granules of knowledge” in the 
sense that it is supposed that road sections dominating x should be classified with at least 
the same recommended speed limit than x as well as road sections dominated by x should 
be classified with at most the same recommended speed limit. 
For instance, if the considered criteria are “traffic volume” and “percentage of heavy 
vehicles”, both of them evaluated on three levels scale with high, moderate and low, and 
road section x is evaluated as moderate with respect to traffic volume as well as with respect 
to percentage of heavy vehicles, then: 

  xDP

  is composed of all road sections moderate or low with respect to traffic 

volume and percentage of heavy vehicles, 
and 

  xDP

  is composed of all road sections moderate or high with respect to traffic 

volume and percentage of heavy vehicles. 

For any PC, we say that xU belongs to Cl t
  without any ambiguity if xCl t

  and, for all 

objects yU dominating x with respect to P, we have yCl t
 , i.e.  xDP


Cl t

 . For example, 

considering the above road section x and P={“traffic volume”, “percentage of heavy 

vehicles”}, if x has a speed limit of 80 km/h, i.e. xCl3, and all road sections y belonging to 

 xDP

  (because evaluated moderate or low with respect to traffic volume and percentage 

of heavy vehicles) have a speed limit of at least 80 km/h (i.e. 3y Cl


  and consequently  

  3PD x Cl  ) then x is classified with recommended speed limit at least 80 km/h without 

ambiguity. In simple words, this means that according to the objects in the universe  U, not 
worse conditions than x with respect to the two criteria “traffic volume” and “percentage of 
heavy vehicles” imply a recommended speed limit of at least 80 km/h. Therefore, it is 
reasonable to recommend a speed limit of at least 80 km/h for any new road section not 
originally present in the universe, if it satisfies the same conditions, i.e. it is not  worse than x 
with respect to the two criteria “traffic volume” and “percentage of heavy vehicles”. 

Instead, we say that xU could belong to Cl t
  if there would exist at least one object yCl t

  

such that y is dominated by x with respect to P, i.e. y  PD x . For example, if considering 

again the above road section x and P={“traffic volume”, “percentage of heavy vehicles”}, 

there exists at least one road sections y belonging to  PD x  (because evaluated moderate or 
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high with respect to traffic volume and percentage of heavy vehicles) has a  recommended 

speed limit of at least 90 km/h (i.e. 
4y Cl


  and consequently    4PD x Cl   ) and then x 

could be classified with recommended speed limit at least 90 km/h. In simple words, this 
means that according to the objects in the universe  U, a recommended speed limit of at 
least 90 km/h could be taken into consideration in case of not worse  conditions than x on  
the two criteria “traffic volume” and “percentage of heavy vehicles”,  because in the 
universe there is road section y that is not better than x with respect to considered criteria 
but has a speed limit of 90km/h. This is due to the fact that there is an ambiguity between x 
and y with respect to criteria from P. 

Thus, with respect to PC, the set of all objects belonging to Cl t
  without any ambiguity 

constitutes the P-lower approximation of Cl t
 , denoted by  tClP , and the set of all objects 

that could belong to Cl t
  constitutes the P-upper approximation of Cl t

 , denoted by   

 tClP : 

 tClP ={xU:  xDP


Cl t
 } 

 tClP ={xU:  xDP


Cl t
 } 

for t=1,...,n. 

Analogously, one can define P-lower approximation and P-upper approximation of 
tCl : 

 tClP ={xU:  xDP


 
tCl } 

 tClP ={xU:  xDP


Cl t
 } 

for t=1,...,n. 

Observe that      tt ClPClP  , for all CP  and for all t=1,...,n. 

4.3 Decision Rules and procedures for generation of decision rules 

The dominance-based rough approximations of upward and downward unions of classes 
can help to induce a generalized description of objects contained in the information table in 
terms of ''if..., then...'' decision rules (Greco et al., 2002a) (Greco et al., 2005) (Slowinski et. 
al., 2005).  

In DRSA, for a given upward or downward union of classes, Cl t
  or Cl s

 , the decision rules 

induced under a hypothesis that objects belonging to  tClP  or  sClP  are positive and all 

the others negative, suggest a certain assignment to ''at least class Clt'' or to ''at most class 
Cls'', respectively; on the other hand, the decision rules induced under a hypothesis that 

objects belonging to the intersection )()(   ts ClPClP  are positive and all the others 

negative, are suggesting an approximate assignment to some classes between Cls and Clt 
(s<t). 

Assuming that, for each qC, VqR (i.e. Vq is quantitative) and that, for each x,yU, 

f(x,q)f(y,q) implies xqy (i.e. Vq is preference-ordered), the following three types of 
decision rules can be considered: 

1)  D-decision rules with the following syntax: 

 if  f(x,q1)rq1 and  f(x,q2)rq2 and … f(x,qp)rqp, then  xCl t
 , 

 where P={q1,...,qp}C, (rq1,...,rqp)Vq1Vq2...Vqp and t{2,…,n};  
for example: 
 if lane width is ≥ ”3.75 m”, road signs are ”present”, pavement condition are ”high” 

and Roadside Hazard Rating  is ≤ ”3”, then recommended speed limit have to be “at 

least” 80 km/h, i.e. road section x Cl

3 .

 

2)  D-decision rules with the following syntax: 
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 if  f(x,q1)rq1 and f(x,q2)rq2 and ... f(x,qp)rqp, then  xCl t
 , 

where P={q1,...,qp}C, (rq1,...,rqp)Vq1Vq2...Vqp and t{1,…,n1};  
for example: 
 if shoulder width is ≤ ”0.50 m”, Roadside Hazard Rating is ≥ ”2”, accident rate is ≥ 

”high” and adverse alignment are present, then recommended speed limit have to be 

“at most” 70 km/h, i.e. road section x Cl

2 .

 

An object xU supports decision rule r if its description is matching both the condition part 
and the decision part of the rule. The decision rule r covers object x if it matches the 
condition part of the rule.  
Each decision rule is characterized by its strength, defined as the number of objects 
supporting the rule. In the case of approximate rules, the strength is calculated for each 
possible decision class separately. 
Procedures for generation of decision rules from a decision table use an inductive learning 
principle. The objects are considered as examples of classification. In order to induce a 
decision rule with an univocal and certain conclusion about assignment of an object to 
decision class X, the examples belonging to the C-lower approximation of X are called 
positive and all the others negative. 
Analogously, in case of a possible rule, the examples belonging to the C-upper 
approximation of X are positive and all the others negative. Possible rules are characterized 
by a coefficient, called confidence, telling to what extent the rule is consistent, i.e. what is 
the ratio of the number of positive examples supporting the rule to the number of examples 
belonging to set X according to decision attributes. Finally, in case of an approximate rule, 
the examples belonging to the C-boundary of X are positive and all the others negative.  
With respect to Table 1 (information table) the DRSA gives back 391 decision rules in the 
“if….then…” form, and more precisely: 

 89 decisions recommend a speed limit  90 km/h;  

 63 decisions recommend a speed limit  80 km/h;  

 53 decisions recommend a speed limit  70 km/h;  
 67 decisions recommend a speed limit ≤ 60 km/h;  
 59 decisions recommend a speed limit ≤ 70 km/h;  
 60 decisions recommend a speed limit ≤ 80 km/h.  

Every decision rule specifies the recommended speed limit and the reasons why it has been 
suggested; for every rule it is also possible to know which objects (example cases on 
information table) support the rule. The possibility of recognizing the examples supporting 
specific decision rules allows the authority’ managers to understand and discuss the set of 
decision rules, which can be also revised easily if necessary. For example, taking into account 
the following decision rule: 
if Traffic Volume is ≤ ”low”, Shoulder Width is ≥ ”1.00 m”, Pavement Condition is ≤ ”medium” 
and Accident Rate is ≤ ”low” then recommended speed limit have to be “at least” 90 km/h 
it is possible to know that it is supported by the exemplary cases n. 7, 31, 44, 46, 47, 51 and 
70 of the information table. In Table 2 some examples of the 391 decision rules have been 
reported, indicating also the road sections from Table 1, which support the considered rule.  
It is worthy noting that an algorithm specifically developed by the authors has implemented 
the induction of decision rules, which is based on the DRSA methodology. For the induction 
of decision rules it is also available a free software, called jMAF (Błaszczyński, Greco, 
Matarazzo, Słowiński, Szela̧g 2013), free of charge at the web address: 
http://idss.cs.put.poznan.pl/site/139.html. For other methodologies to induce DRSA decision 
rules see Susmaga, Słowiński, Greco, Matarazzo 2000, Greco, Matarazzo,  Slowinski, 
Stefanowski 2001, Li, Li, Zhang, Chen, Zhang  2015. 
 

http://idss.cs.put.poznan.pl/site/139.html
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4.4. Advantages of DRSA with respect to the classical rough set approach 

We conclude this section by pointing out the advantages of the DRSA with respect to the 
classical rough set approach. The  first basic advantage is that classical rough set approach in 
its basic formulation is not able to deal with criteria because it does not take into 
consideration order relations on the set of values taken by attributes. Indeed, classical rough 
set approach is based on indiscernibility relations being equivalence relations, that is 
reflexive, symmetric and transitive binary relations,  instead of the preorder relations, that is 
reflexive and transitive relations in general not symmetric, used by DRSA. Without entering 
into technical the details, let us explain this point with a simple didactic example.  Suppose 
that the decision of the speed limit is taken considering  criteria “traffic volume” and 
“percentage of heavy vehicles”.  Suppose also to have the decision table showed in the 
following Table  3. 
 
Using classical rough set approach one can induce the following decision rules: 
 
Rule 1: if Percentage of heavy vehicles is ”low”, then recommended speed is 70 km/h 
(indeed, there is one road section, R1, which satisfies the condition of the rule and its 
recommended speed is 70 km/h); 
 
Rule 2: if Percentage of heavy vehicles is ”medium”, then recommended speed is 80 km/h 
(indeed, there are two road sections, R2 and R4, which satisfy the condition of the rule and 
their recommended speed is 80 km/h. 
  
It is apparent that the two rules are not coherent between them. In fact, one would expect 
that if the percentage of heavy vehicles passes from “low” to “high”, then the recommended 
speed should not increase, how instead is suggested by the two rules. The reason of the 
inadequate recommendation given by Rule 1 and Rule 2 is the indiscernibility relation 
according to which rules are induced considering conditions «Percentage of heavy vehicles is 
”low”» or  «Percentage of heavy vehicles is ”medium”», instead of «Percentage of heavy 
vehicles is ”at most low”» or  «Percentage of heavy vehicles is ”at most medium”». DRSA 
induce perfectly coherent rules such as 
 
Rule 3: if Traffic volume is (at most) ”low”, then recommended speed is (at least) 80 km/h 
(indeed, there are two road sections, R4 and R5, which satisfy the condition of the rule and 
their recommended speed is (at least) 80 km/h); 
 
Rule 4: if Traffic volume and Percentage of heavy vehicles are both is (at most) ”medium”, 
then recommended speed is 80 km/h (indeed, there are two road sections, R2 and R4, which 
satisfy the condition of the rule and their recommended speed is (at least) 80 km/h. 
Greco, Matarazzo and Slowinski (2007) proved that decision rules obtained by classical 
rough seta approach can be obtained by DRSA when the original information is recoded in a 
specific form. One could ask if also the inverse is not possible, i.e. if there is some 
recodification of the original information that permits to induce DRSA decision rules using 
classical rough set approach. Observe that this recodification would have the advantage to 
permit to use the rule induction algorithms of the classical rough set approach also in 
presence of criteria with its value set ordered according to decreasing or increasing 
preferences.  
Such a recodification there exists and consists in the substitution of the original criteria with 
a new set of attributes that for each possible value of original attributes, with the exclusion 
of the worst one, assigns value 1 if the considered object has a not worse value and 0 in the 
opposite case. For example the above Table 3 should be recoded as shown in Table 4. 
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Using the classical rough set approach applied to the decision table presented in Table 4 
following decision rules would be induced: 
 
Rule 5: if “Traffic volume not worse than low” = 1, then recommended speed is (at least) 80 
km/h (indeed, there are two road sections, R4 and R5, which satisfy the condition of the rule 
and their recommended speed is (at least) 80 km/h); 
 
Rule 6: if “Traffic volume not worse than medium” = 1 and “Percentage of heavy vehicles not 
worse than medium”=1, then recommended speed is 80 km/h (indeed, there are two road 
sections, R2 and R4, which satisfy the condition of the rule and their recommended speed is 
(at least) 80 km/h). 
 
It is straightforward to verify that Rule 5 and Rule 6 are equivalent to Rule 3 and Rule 4, 
respectively. Thus this example seems to suggest to handle decision table with criteria by  
recoding the information and after applying the classical rough set approach algorithm to 
induce decision rules taking into account preference order in the values taken by criteria. 
Unfortunately, this is not an efficient procedure from computational point of view. Indeed 
the algorithm to induce decision rules are exponential in the number of attributes and it is 
clear that the above recodifications transforms the original decision table with m=card(C) 

criteria, to another decision table with 



m

j

jn
1

)1(   dichotomic attributes, with nj being the 

cardinal of values taken by criterion qj (for example decision table in Table 4 recoded the 2 
criteria of the decision table in  Table 3 by 4 dichotomic attributes because each one of the 
two original criteria in Table 3 take 3 values). It is clear that this multiplication of attributes 
due to the recodification makes the application of rule induction algorithms of classical 
rough set approach highly inefficient and suggests to apply the rule induction algorithms 
developed for DRSA.   

5. Application of the decision model 

After discussion, the expert panel accepted the set of the 391 decision rules to be the 
decision model for setting speed limits on speed zone. Several methodologies can be used to 
apply the DRSA decision rules to classify new objects taking into account some goodness 
measures of the considered rules (see e.g. Błaszczyński, Greco and Słowiński  2007, Ko,Fujita 
and Tzeng 2013a, 2013b and 2014). In the proposed Decision Support System (DSS) the 
following original methodology is used.  
Giving as input the characteristics of the new road section, the procedure uses decision rules 
generated by DRSA and gives back a recommended speed limit, providing the most 
important decision rules that can help decision makers to understand the reasons of the 
suggested speed limit.  
An example on a road section is presented herein.  
The features of the considered road section have been listed below: 

 Traffic Volume (A1) = High 

 Percentage of heavy vehicles (A2) = Low 

 Lane width (A3) = 3.50 m 

 Shoulder width (A4) = 1.00 m 

 Road Signs (A5) = Yes 

 Pavement Condition (A6) = Moderate 

 Roadside Hazard Rating (A7) = 3 

 Accident Rate (A8)= Low 
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 Adverse Alignment (A9) = Yes 
The DSS suggests 70 km/h as speed limit and returns 20 decision rules (Table 5):  

- 8 of them recommend a speed limit  70 km/h;  
- 2 of them recommend a speed limit ≤ 70 km/h  
- 10 of them recommend ≤ 80 km/h. 

The speed limit value is calculated as the value that satisfy all decision rules returned by the 
DRSA: for the example case, the speed limit satisfying all the three suggestions is 70 km/h, 
because 70 km/h is not smaller than 70 km/h, not larger than 70 km/h and not larger than 
80 km/h.  
If it is not possible to satisfy all decision rules, then the rules supported by larger and larger 
numbers of road section in the original data base need to be considered, until the set of 
remaining rules becomes consistent with a unique value of the speed limit. For example, let 
us consider a road section with the following characteristics: 

 Traffic Volume (A1) = High 

 Percentage of heavy vehicles (A2) = Low 

 Lane width (A3) = 3.50 m 

 Shoulder width (A4) = 1.00 m 

 Road Signs (A5) = Yes 

 Pavement Condition (A6) = Moderate 

 Roadside Hazard Rating (A7) = 3 

 Accident Rate (A8)=  Low 

 Adverse Alignment (A9) =  No 
The DSS gives 25 rules matching the considered case and more precisely:  

- 13 decision rules suggesting speed limit  70 km/h, 

- 5 decision rules suggesting speed limit  80 km/h, 

- 2 decision rules suggesting speed limit  90 km/h, 

- 1 decision rules suggesting speed limit  70 km/h, 

- 4 decision rules suggesting speed limit  80 km/h. 
In this case, no speed limit is able to satisfy all the rules. Indeed there is not an unique speed 
limit value that can satisfy all the five suggestions. In fact, a value that is at the same time 
not smaller than 70 km/h, not smaller than 80 km/h, and not smaller then 90 km/h, and not 
greater than 70 km/h, and not greater than 80 km/h does not exists. 
The set of rules according to their support therefore needs to be reduced, taking 
progressively into account decision rules more and more supported. Considering decision 
rules supported by at least 21 road sections, the software returns: 

- 11 decision rules suggesting speed limit  70 km/h, 

- 1 decision rules suggesting speed limit  80 km/h, 

- 1 decision rules suggesting speed limit  70 km/h, 

- 4 decision rules suggesting speed limit  80 km/h. 
Also, in this case there is not a unique speed limit value that can satisfy all suggestions. 
Indeed, a value that is at the same time not smaller than 70 km/h, not smaller than 80 km/h, 
not greater than 70 km/h, and not greater than 80 km/h does not exists. 
Taking into account decision rules supported by at least 22 road sections, the software 
returns: 

- 7 decision rules suggesting speed limit  70 km/h, 

- 1 decision rules suggesting speed limit  80 km/h, 

- 4 decision rules suggesting speed limit  80 km/h. 
In this case, the speed limit that can satisfy all the three suggestions is 80 km/h. 
The decision rules aim to explain to the decision-maker the reasons why the expert panel 
suggests a specific speed limit for the considered road section. Obviously it is not reasonable 
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to submit too many decision rules to the decision maker, so only the most supported rules 
recommending the exact value of the speed limit (and precisely the lower and the upper 
limit) are presented to the decision maker. 
For the first example case, the final output is presented in table 6. 
 
The proposed methodology can be used also if the information of some road section feature 
is not available (for example traffic or crash data) as explained by the following examples. 
Let us consider a road section, for which accident rate data is not available, with  
characteristics listed below: 

 Traffic Volume (A1) = High 

 Percentage of heavy vehicles (A2) = Low 

 Lane width (A3) = 3.50 m 

 Shoulder width (A4) = 1.00 m 

 Road Signs (A5) = Yes 

 Pavement Condition (A6) = Moderate 

 Roadside Hazard Rating (A7) = 3 

 Accident Rate (A8)=  not available 

 Adverse Alignment (A9) =  Yes 
In this case, it is necessary to assign a value to the accident rate data.  We decide to work in 
behalf of security, putting the less favorable value (in terms of road security) of accident 
rate, i.e. A8= High. In this case our methodology suggests a 60 km/h speed limit and returns 
21 decision rules: 

- 2 of them recommend a speed limit ≤  60 km/h;  
- 3 of them recommend a speed limit ≤ 70 km/h;  
- 16 of them recommend ≤ 80 km/h. 

If we decide to put in the other possible value of accident rate (i.e. A8= Low) we return at the 
first example case, where recommended speed limit is 70 km/h. 
So, it is possible to insert some conjectured value for the characteristics with missing data 
and apply the proposed procedure. However, it is clear that the solution suggested by the 
software is strongly dependent on the conjectured values. Instead it could be interesting to 
try to get a result that, maintaining a cautionary principle, accepts that there is some missing 
value. 
Observe that in some cases, assigning different values to the missing data, the results may 
change (as in the above example), or may not  change as in the following example:  

 Traffic Volume (A1) = not available 

 Percentage of heavy vehicles (A2) = not available 

 Lane width (A3) = 3.50 m 

 Shoulder width (A4) = 1.00 m 

 Road Signs (A5) = Yes 

 Pavement Condition (A6) = Moderate 

 Roadside Hazard Rating (A7) = 3 

 Accident Rate (A8)=  Low 

 Adverse Alignment (A9) =  Yes 
Using the less favorable values (in terms of road security) of both attributes, i.e. A1= High 
and A2= High, our methodology suggests 70 km/h as speed limit and returns 21 decision 
rules: 

- 8 of them recommend a speed limit ≤  70 km/h;  
- 4 of them recommend a speed limit ≥ 70 km/h; 
- 18 of them recommend ≤ 80 km/h. 

Therefore, in this case, the recommended speed limit does not depend on the value 
assigned to the missing data (although the corresponding decision rules are different). 
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6. Discussion 

 
The conceptual model in figure 1 represents, in a simple way, the proposed methodology to 
assess speed limits.  
 
Figure 1. Conceptual model of the DRSA methodology to assess speed limits  
 
 
 
Thus, on the basis of some speed limits assigned by one or more experts for a sample of 
road sections, the presented model get some decision rules in the following form: “if road 
section characteristics are …, then the recommended speed limit have to be at least/at most 
…”. That means that, taking into account a new road section, every time that the 
antecedents, i.e. the “if-part” conditions, are satisfied, also the consequence, i.e. the “then-
part”, is satisfied. 
Moreover, for each decision rule, it is possible to know which are the exemplary decisions 
that the given rule is describing. This information is very useful because it allows the DM to 
evaluate critically the decision rules. If some decision rule is not convincing for the DM, 
possibly there is some example to which should correspond a different decision in terms of 
recommended speed limits. Therefore, after revising the not convincing exemplary 
decisions, a new set of decision rules can be induced and submitted again to the DM until 
(s)he is satisfied. This is concordant with posterior rationality of March (March, 1978), which 
advocates discovery of intentions of a decision maker instead of the interpretation of a priori 
position. In simple words for the experts is easier to give some examples of good decisions 
rather than explain the reasons for which a decision is good.  
So, using the proposed methodology, is asked to the experts what for them is easier, i.e. a 
set of exemplary decisions, and is given them what for them is more difficult, i.e. a set of 
explanations about the goodness of the decisions. Moreover this explanation is expressed in 
a clear way that permits the experts to see what are the exact relations between the 
provided information and the final recommendation. In fact, a lot of statistical methods such 
as the regression approach, express their results through a technical formulation that the 
users cannot understand without a specific background and consequently those results are 
perceived, very often, as a black box whose recommendations have to be accepted because 
the “scientific authority” of the model guarantees that the result is “right”. In this context, 
the aspiration of the DM to find good reasons to make decision is frustrated and (s)he feels 
the need of a more transparent methodology in which the relation between the original 
information and the final recommendation is shown clearly. Such a transparent 
methodology searched for has been called glass box (Slowinski et al., 2009) and DRSA has 
proved to be its typical representative.   
So, we developed a decision-support tool that can provide decision rules, synthesizing some 
exemplary decisions about speed limits supplied by the experts, in a very natural and clear 
form (like the “if… then…” form), easy to understand without a specific statistical 
background.  
Periodically the system can be evaluated and updated if necessary, basing on the managing 
authority’s current policies, engineering criteria, practices, and experience.  
In fact, the DRSA permits a simple and transparent system revision because it only requires 
updating the set of exemplary decisions from which the “if…, then…” decision rules are 
induced. The rules explain the decision policy adopted in the examples and, after 
acceptance, can be used to support new decisions. 
In the speed assessment problem based on DRSA, hierarchies of criteria (as proposed in 
Dembczynski, Greco and Slowinski 2002) can be taken into account also. For example, 



18 

 

geometry of the road can be considered as criterion having as sub criteria radius of 
horizontal and vertical curves, sight distances, etc. Moreover, let us observe that a new 
paradigm emerging in the domain of expert systems  is the hierarchical modeling of 
structural granules permitting to represent sensory information systems (see e.g. Skowron, 
Stepaniuk, Jankowski, Bazan and  Swiniarski  2012). In our context this means that one could 
consider as data of the model not only the measured speed, but we could take into account 
some more comprehensive information related to the behavior of the drivers in different 
contexts, such as weather conditions, traffic, different times in a day, different seasons. 
However, we defer the research on such more complex models for future investigation.    
 

7. Conclusions 

The first version of a multi-criteria decision support system to suggest the most appropriate 
speed limits for speed zones to managing authority has been presented in this paper.  
The model developed herein provides to decision makers a safe speed limit using geometric 
and operative characteristics and maintenance conditions; it provides also some easily 
understandable decision rules that can help to explain the reasons for the suggested speed 
limit for each investigated road section.  
The developed Decision Support System is based on Dominance-based Rough Set Approach 
(DRSA) which requires basic input information in terms of evaluation examples, i.e. 
exemplary decision about speed limits, and express the results of the decision analysis in a 
very understandable way using “if… then…” rules. 
The adopted Dominance-based Rough Set Approach presents several advantages over other 
approaches in terms of transparency and manageability and has permitted to develop an 
intelligible and user-friendly multi-criteria decision model for setting speed limits in speed 
zone.  
In fact DRSA produces a decision model expressed in terms of easily understandable “if… 
then…” decision rules which permits to control the decision process and to avoid the “black 
box” effects of many alternative decision support methods, ensuring a high degree of 
transparency. The DRSA also permits a simple revision of the decision model because it only 
requires to update the set of exemplary decisions from which the “if… then…” decision rules 
are induced. So, on the basis of the managing authority’s current policies, engineering 
criteria, practices, and experience, the system can be evaluated and updated periodically. 
Moreover the model can be easily changed using different “condition attributes”, or using a 
“decision attribute” suggested by different decision makers with different purposes and 
priorities. In this way the system can be adapted to every approach, such us harm 
minimization, economic optimization, driver’s choice, etc… 
In this paper a sample application of the built Decision Support System is also developed 
using a software which can easily interface with the DRSA output. Putting as input the 
investigated road section features, the software gives back a recommended speed limit and 
only the more important decision rules that can help decision makers to understand the 
reasons of the suggested speed limit. The obtained results are very encouraging and were 
found to be very interesting for decision makers, because they are clear and very helpful in 
decision-making process. 
The developed Decision Support System aims the similar purpose of the above-mentioned 
models, i.e. USLIMITS and SaCredSpeed, but presents some important difference with them. 
The first difference is the adopted method for the DSS developing, because in the presented 
model a Dominance-based Rough Set Approach (DRSA) has been used, which offers the 
numerous advantages presented above in terms of transparency and manageability. 
In the final output the developed DSS, besides recommending a speed limit value (like 
USLIMITS), also provides some decision rules that can help decision makers to understand 
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the reasons of the suggested speed limit and, consequently, to discover the most 
appropriate measure to improve road safety and drivers’ compliance with speed limits. 
Finally, because of its versatility, the methodology we are proposing can be adapted to every 
road management strategy only changing the attributes and/or the decision examples that 
form the information table. 
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