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Abstract—There have been intensive research interests in ship
detection and segmentation due to high demands on a wide range
of civil applications in the last two decades. However, existing
approaches, which are mainly based on statistical properties of
images, fail to detect smaller ships and boats. Specifically, known
techniques are not robust enough in view of inevitable small
geometric and photometric changes in images consisting of ships.
In this paper a novel approach for ship detection is proposed
based on correlation of maritime images. The idea comes from
the observation that a fine pattern of the sea surface changes
considerably from time to time whereas the ship appearance
basically keeps unchanged. We want to examine whether the
images have a common unaltered part, a ship in this case. To this
end, we developed a method - Focused Correlation (FC) to achieve
robustness to geometric distortions of the image content. Various
experiments have been conducted to evaluate the effectiveness of
the proposed approach.
Index Terms—Vessel detection, ship detection, object detection,

phase correlation, orientation correlation, matching, registration.

I. INTRODUCTION

Robustly detecting ships plays a crucial role in civil applica-
tions such as drug-smuggling ships detection. Ship detection
problems have been researched intensively. A review [1] on
this topic includes up to 500 literature entries. Generally speak-
ing, two types of techniques have been used for ship detection
[2]. The most popular one is the synthetic aperture radar (SAR)
technique, which is fairly robust to various weather conditions.
It is based on an invasive technology - the scene is illuminated
with radio rays. The detection is achieved through a series of
processing of reflected signals. A side-effect of this technique
is that the airborne surveillance system reveals itself. As a
result, people on the detected ship may be aware that they are
under surveillance. For smaller ships and boats SAR technique
is less efficient [3], and thus remains an open problem which
is commonly interpreted as the need for “accurate empirical
modelling of sea” to separate the boat from the sea.

An alternative, either optical, or visual based detection
is lesser developed [2], [4], though it is considered to be
important. For example, in [5] it is stated that UK will have
“a range of maritime surveillance resources available in 2020,
operating in the audio, visual and electronic spectra”. It should
be non-invasive and does not require special equipments. Then
it is preferable for the purpose of non-invasive detection of
small vessels by unmanned aerial vehicle (UAV), and therefore
it is appropriate for improving maritime border surveillance of

small ships and boats in order to detect illegal activities such
as drug and human trafficking and illegal fishing activities etc.

To the best of our knowledge, most ship detection methods
currently operate with one image, and apply thresholding that
follows a preprocessing procedure [6]. The rationality behind
this is straightforward: an experienced human operator is able
to distinguish a ship in the surrounding sea based on the fact
that a ship has a specific color and shape, and the sea surface
has a particular texture. Computers can rely upon the same
assumptions. Hence those standard approaches are mainly
based on a variety of segmentation techniques and shape
analysis methods for suspected inclusions [7]–[11], where most
advanced techniques model sea patterns by specially designed
random fields, and they also model a ship as an elongated
inclusion.

Here in this paper we propose a completely different
paradigm. Instead of analysing a single picture, a pair of
pictures is considered. The method is based on the observation
as follows. During a short time tsea the wave pattern changes
and hence the water area cannot match with its previous state.
On the contrary, a ship’s shape does not change much within
this time interval, and she can be merely displaced and/or
undergo a small rotation in the image, due to movement of
the ship and the aerial based camera. Hence, the two images
of the sea do not correlate, whereas the two images of the
same boat do correlate. This observation forms the principle
of the presented research in this paper. We correlate the
two images, and if the correlation value is significant, it is
concluded that a boat is present in the image. However, in
practice a problem arises due to such changes in the ship
appearance that the correlation algorithm overlooks the ship
presence. To overcome this difficulty, we re-interpret the visual
information by creating a controlled uncertainty to combat
possible changed in the ship appearance in the video sequence.

The reminder of this paper is organised as follows: Section
II presents an explanation of the task and scenarios of ship
detection; Section III gives an overview of available correlation
methods, shows a need of their improvement, and suggests
such an improvement; Section IV explains how a ship and sea
can be separated, and the presence of the ship can be detected.
However, the obtained there information is not equivalent to
segmentation of the ship. In the Section V we compare differ-
ent methods for ship detection. Section VI eventually provides
segmentation of the detected ship. Finally, we conclude this
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paper with discussion in Section VII.

II. TASK AND PROBLEM FORMULATION

Imagine an unmanned aeriall vehicle (UAV) hovering over
the sea as a part of a maritime surveillance system. An on-
board camera takes images and sends them to the base for
human operators. In this scenario two problems arise. Firstly,
most of images contain inadequate information, majority show-
ing an empty sea, or repeatedly sending the same information
back to the base already observed previously. Secondly, the
human operator is overloaded with a bulk of redundant in-
formation and thus can make mistakes when human attention
is eventually required to analyse a non-standard situation. An
ideal solution to these problems would be to enable on-board
computer to automatically analyse images, and send out only
those images that do require human attention. Moreover, an
on-board computer can take a part in controlling the flight of
the UAV [12], taking more pictures of a discovered boat from
different perspective, and send them to the base. One of the
most important steps of this procedure is an ability to detect
and delineate ships and boats, because only images containing
boats and ships can raise further interest. We present our work
in this direction.

To narrow the task and to specify the visual information
of interest, we point to the following advantages that an UAV
can provide. The first advantage is a high definition camera
and a powerful computer. This means that we can rely upon
high resolution images. Another advantage is a highly accurate
positioning system employed by UAV. With this information
we can estimate position of the ship/boat in the image. If a
boat is present in one image, then it is assumed to present in
another image taken within few seconds. On the other hand, we
also know that if the fist image does not contain the boat, then
the second image also does not contain it (except the fringe of
the image). Assumed high resolution allows to proceed images
by parts, where boats will have a better representation in their
sizes. Thus we formulate our task as detecting whether a boat
is present on the both images taken with a time interval up to
a threshold of a few seconds.

The two images of boats in the described scenarios are
shifted and geometrically distorted comparatively to one an-
other, a method is sought that is robust in case of small
geometric distortions. In spite of their variety, existing cor-
relation methods in Section III share the same characteristics
concerning geometric distortion of images. A new modification
is required to meet the needs of our task.

III. CORRELATION METHODS

A. Standard methods
To examine whether two images f and g have a common

area, that is a boat in our case, a few standard options are
available. The general procedure is described as follows. The
common area may be shifted from the its original position,
so then one has to try all possible shift vectors, displacing the
first image, and compare such displaced image with the second
image. The comparison includes computation of a similarity

or dissimilarity measure. Note that this is not excessively
time consuming since the computation uses FFT algorithm.
To specify the process, we denote the shift vector by s and
denote by x a variable pixel in the picture. The measure depend
on s only, so we obtain a function S(s) which is called a
matching surface [13]. The usage of the matching surface is
as follows. The position of maximum (or minimum in case
of dissimilarity) of the matching surface S gives the sought
shift vector between the images. If the maximum is not high
enough, then it indicates that there is no common area in the
two images.

We consider standard ways of defining the matching sur-
face. The first formula is a regular cross-correlation,

S0(s) =
∑

x

f(x− s)g(x), (1)

and this can be used as a similarity measure. It can be argued
that it is not the best way to compare images, so then we
consider its standard alternatives.

Instead of the initial images, one can firstly correlate
modified images, then a more general approach would be to
define an operation O that transforms images to new functions
f1 = O(f) and g1 = O(g) and correlate them instead of the
initial images. Thus, the generalisation of (1) is the formula

Sgeneral(s) =
∑

x

f1(x− s)g1(x). (2)

There are three well known ways to define the operation O in
this context. They are

• “Orientation correlation” [14]. The operation O is taking
gradient of the image at each pixel and then normal-
ize it, that is O(f) = ∇(f)/∥∇(f)∥, then (2), where
multiplication means scalar product of vectors, represents
orientation correlation. We will refer to this particular O
as to an “orientation operator”.

• “Phase correlation” [15]. The operation O is retaining
only phase information in the image, and ignoring the
amplitude information in the frequency domain, that is
O(f) = F(f)/|F(f)|, (where F(f) is Fourier transform
of f ) and then (2) represents phase correlation. For better
results one will need to take care of the image borders,
this is discussed in [16].

• “Normalized correlation” [17]. To define it, a size n of a
small sliding window should be chosen. The operation O
is defined as O(f) = (f −m(f, x, n))/σ(f, x, n), where
m(f, x, L) is the mean value of the function f in the
sliding square window with side n and with its center
at x, and σ(f, x, L) is the standard deviation of all the
values of this function in the square.

The image O(f) looks more random than the initial f (and
this can be proved by statistical tests), so the operation O
randomises the underlying image, for details see [18]–[21].
Other standard alternatives to formula (1) follow: a dissimilar-
ity measures

S1(s) =
∑

x

(f(x− s)− g(x))2,



S2(s) =
∑

x

|f(x− s)− g(x)|,

and even a general measure

S3(s) =
∑

x

H(f(x− s)− g(x)),

where H is a loss function associated with robust statistics.
For the sake of generalization, the images f and g here also
can be substituted by f1 and g1.

Let us analyse these surveyed methods of correlating im-
ages. Firstly, S1(s) can be reduced to S0(s) in (1). For this one
can open the parentheses, and get S1(s) = Const − 2S0(s),
where Const =

∑

x f(x − s)2 +
∑

x g(x)
2 is independent of

s.
Secondly, reduce formulas S2 and S3 to (1), they are

expressed through cross-correlation in [13]. Therefore S2 and
S3 can be approximated with any desired precision by a sum
of a few cross-correlations of functions which are obtained
from f and g by simple procedures in form fp = cos(cpf) or
fp = sin(cpf) (where cp ∈ R).

It is concluded that known standard methods for investi-
gating similarity of images can be presented in the form of
correlation (2) or in a sum of a few (P ∈ N) such correlations,
that is in the form

Sstandard(s) =
P
∑

p=1

∑

x

fp(x− s)gp(x), (3)

where fp and gp are modified images obtained from the initial
f and g by applying an operation Op, and each operation Op

is shift-invariant, that is it commutes with an arbitrary image
displacement.

B. Drawback of standard methods and an idea of focusing: a
heuristic consideration

The observation (3) allows critically judge all the considered
method in a unified scheme. We are going to demonstrate a
drawback of (1), and the rest of the described methods inherit
this drawback from formulas (2) and (3). The drawback is
that it has over-sensitive reaction to geometric distortion of
the ship in the two images, and this does not suit well our
purposes. Rather small rotations of the ship will make the
sought correspondence undetectable. This effect also is shown
in this paper in experiments.

The drawback is presented in a heuristic form. It starts from
a general observation that an actual image changes its values
gradually from pixel to pixel, at least in most of its parts,
and at some distance between two pixels these values become
independent. We accept a simplification assuming that the
image consists of small squares of constant values and these
values are values of independent random variables. This is an
approximation to a real image illustrated in Fig. 1. Suppose
we have such an image f and its rotated version g. Consider a
square grid of the introduced small squares covering the image
f , they are shown in Fig. 1(A) in white color. After rotation,
these squares are changed to those in Fig. 1(B).

A                                    B                                  C

 

 

Fig. 1. Correlation of rotated images. (A) squares; (B) squares after rotation;
(C) each square matches with its rotated version.

We will examine how each square in Fig. 1(A) matches
with its rotated version in Fig. 1(B). The matched areas are
depicted in Fig. 1(C). It can be seen from the Fig. 1(C) that the
number of the matched squares does depend on the angle of
rotation only, and it is independent of size of the squares. The
correlation (more precisely, its mathematical expectation) of f
and g is proportional to the white area in Fig. 1(C) divided by
an area of one square.

From this heuristic construction, we draw the following
conclusions:

(I) Described matching methods are expected to be rather
sensitive to rotation of a ship. It can be seen from
Fig. 1(C), where rotation significantly diminishes num-
ber of white parts.

(II) Improving resolution of images will not improve detec-
tion of of the ship. This is illustrated by the fact that
number of white parts in Fig. 1(C) is fixed.

(III) The matching can be improved if square areas change
its size, smaller in the center, and gradually becoming
bigger to the fringe. This can be interpreted as making
the image artificially smoother when farther from the
center, and then using such an unevenly smoothed image
for further correlation. While applying this idea to the
whole image, we call it “focusing”, because a chosen
part is well focused, and the other parts are out of focus,
as shown in Fig. 2.

The property (I) is widely presumed. For example, in [22] it is
said that correlation methods are too sensitive in applications
due to “distortion of the object surface under test”. In appli-
cations usually a small window is used, like in [23], to make
distortions less noticeable. In our opinion, property (I) is the
reason why the general problem of image registration is not yet
solved satisfactory, and, instead of relying on machine vision
(which necessitates perfect registration), other techniques are
developed, [24].

The effect (II) was empirically discovered in other cir-
cumstances such as [25], where it was soundly proved in
experiments that phase correlation method paradoxically ben-
efits from down-sampling of the images when it concerns
robustness to affine distortions.

The idea (III) is widely used for small neighbourhoods
of feature points as an empirical technique for articulating
a feature point. The purpose is to make its neighbourhood
more resilient to small rotations [26], and therefore it formally
belongs to feature-based approach of registration techniques
[27]. In the next section we modify this idea for area-based
techniques.



 

 

Fig. 2. Left: Initial crisp image; Center: Result of focusing with parameters:
ε = 0.06; focus p∗ is chosen in the center of an eye. Intuitively, it is obvious
that such an image, being rotated for small angle, would coincide with the
itself better than a crisp image would do, and therefore the image information
is present here in a way that suits better for image registration in case of small
rotation or, more generally, linear distortion with the fixed point at the focus;
Right: Result of focusing of the whitened image.

C. Focused correlation: a way of interpretation of spatial
information

We define focusing procedure F with parameter ε > 0
and focus p∗, which is a position of a pixel. The parameter
ε determines strength of the focusing. For each point in the
plane x set a value σ = ε∥x− p∗∥, then the definition is

(F(f))(x) ≡
∫

R2

1

2πσ2
e−

∥y−x∥2

2σ2 f(y)dy. (4)

The illustration follows on an example of the standard image
”Lena” in Fig. 2. However, note that in the presented method
we do not apply the focusing directly to the image, but
for its whitened (randomised) version, because then we have
controlled blurring, that is we know in which degree the image
is blurred in its different parts. If we would apply the focusing
to the initial image, the resulting variable smoothness would
not be known since the initial image already has different
unknown smoothness degree in different its parts. Moreover,
our research demonstrates that application of focusing to the
initial image produces rather negligible benefit, and, as we
can suppose, this is the reason why the idea of [26] was used
locally only.

In short, we introduce an artificial controlled sensor mea-
surement uncertainty for purpose to cope with really happening
uncertainty of unknown geometric distortion.

We define a focused correlation as a cross-correlation of
images Ff1 and g1, where f1 = O(f) and g1 = O(g). Two
cases are considered in the paper:

• O is the orientation operator defined above, then we have
”Focused orientation correlation”;

• O is phase retaining operation defined above, then we
have ”Focused phase correlation”.

The operation F is not shift-invariant, therefore focused cor-
relation differs from (3), and thus we genuinely present a new
method.

Intuitively it is apprehensible that the bigger the parameter
ε, the bigger distortion the method can tolerate, however it
is at expense of losing overall reliability since for bigger
parameter varepsilon information is lost due to smoothing.
Therefore, a trade-off necessitates, and we use in our experi-
ments varepsilon = 0.06 which is defined empirically.

t=3.7

t=4.7 t=12

t=1.5t=0

t=2.3

Fig. 3. A video scene taken during 12 seconds. The boat rocks, and at times
t = 2.3 and t = 4.7 it is less rotated than at times t = 1.5 and t = 3.7. By
courtesy of SAGEM.

According to our task, we use two images and find a
displacement which retains the most unchanged mutual infor-
mation in them, and this should be a displacement of the ship
since nothing else is expected in the open sea. The method in
some sense is opposite to detection of vehicles in the land
and cannot use an advantage of an unchanged background
[28], [29]. Focused correlation method correlates minuscule
features in the image, and those change in the wave pattern
and do not change in the ship pattern. On the contrary, coarser
patterns, like a wake (i.e. long waves or a track left by a
vessel) may remain stable. This is why we focus on fine
structures, and it follows that we would prefer higher resolution
in images, less compression in image information, and better
randomised images, – all these underline minuscule patterns.
Another property of the focused correlation is that it is rather
more robust, in comparison with ordinary correlation, to small
rotation and alike geometric distortion which the ship can
undergo. All these properties are demonstrated in the presented
experiments as follows.

IV. SEA AND SHIP SEPARATION IN MATCHING SURFACE

To solve the task posed in Section II, we have to determine
how to let the water under the UAV be gathered into one
place, so that a dry ship may appear. Firstly we do this not
in the initial real images, but in the matching surface; for the
initial images the separation is introduced later in Section VI.
Each point s in the matching surface S expresses the shift s
between the two initial images f and g. However, the shift
s is meaningful, that is an area in the image with such shift
exists, only if the value S(s) is a few times above the standard
deviation of all the values of S. To demonstrate this idea,
consider images of a boat in Fig. 3. The first image is an
initial image taken at time t = 0 sec, and the rest of images
were taken at times t =1.5, 2.3, 3.7. 4.7 and 12 seconds.

We scrutinize the initial period from t = 0 to t = 2.3 sec.
in Fig. 4. We show the process of sea and ship separation.



 

 
t=0 sec

Ship and sea

t=0.5 sec Ship

Sea

t=1.0 sec Ship

Sea

t=2.3 sec
Ship

Sea is not detected

Fig. 4. Matching surface at different times corresponding video at Fig. 3.
The shift vector of the boat and the shift vector of the sea gradually separate,
then the shift vector of the sea disappears, while the shift vector of the ship
becomes presented by a blob due to rotation of the ship.

At the starting moment t = 0 the sea and the ship both have
zero displacement yet. This is reflected in the first image in
Fig. 4. After 0.5 sec. they have different motions: the sea
pattern moves down quicker that the ship. In this, the second
image of Fig. 4, one can see that shift vector of the sea starts
to loose its certainty, because different parts of the sea move
differently. In the next image, t = 1.0, this effect is even
more prominent. Eventually, in the last image of the matching
surface the sea shift vector disappeared. The shift vector of the
ship also suffered: it is not concentrated as before, because the
ship changed it geometric appearance. From this experiment
we conclude, that in about a second, the sea vanished from the
matching surface, but the ship is still present.

This experiment is also illustrated in Fig. 5, where two
graphs are presented. The both graphs present signal-to-noise
ratio (SNR) which is defined as a ratio of a maximum value
of the matching surface to the standard deviation of the values
of the surface, that is

SNR(S) =
max(S)

stdev(S)
. (5)

The upper graph is SNR of the matching surface between

the initial frame at t = 0 and a frame at t > 0 from
the video sequence partly shown in Fig. 3. It is seen that
when the ship’s appearance in the images differ less, then
SNR is higher. Since the ship rocks, the graph has a periodic
appearance. The lowest SNR occurred at the moment t = 12
sec. The latter demonstrates the limit of the method, and
then for this particular image at t = 12 sec. we estimate a
geometric transform between the images as follows. Ship’s
rotation (comparatively with the time t = 0) is 0.21 radian, and
the scale along its length is 0.88. More precise description of
the happened distortion of the ship from time t = 0 to t = 12
is given by an affine transform, which we estimated as

C =

(

0.92 −0.20
0.08 0.87

)

The strength of the distortion in terms of norm is

∥C − I∥ = 0.24, (I is an identical matrix). (6)

The second, lower, graph in the Fig. 5, presents SNR of
the the same images but without the boat. To eliminate the
boat form the images, we just retained the left one third of
the images, see Fig. 3, and cut out the rest two third of it.
This graph allows us to extract two bounding characteristics
tsea and SNRsea of the sea defined by their properties:

• After passing a time interval of tsea sec presence of the
sea vanishes in the matching surface.

• The SNR of the sea (without boat) is bounded by SNRsea.
Now we can formulate results of this experiment. From

comparison of the two graphs in Fig. 5 we can conclude that
tsea = 1 sec and SNRsea = 7. We also observed that the
maximum detectable deviation of the ship is described by (6).
Therefore, presence of the boat in the image is indicated by
conditions:

SNR > SNRsea at a moment t > tsea.

The value of tsea is empirical, while the value of SNRsea has
some theoretical backing. Assuming that the matching surface
is a Gaussian random field, we can estimate an expected value
of SNRsea as

√
2 logN , see [30], where N is the number of

pixels in the matching surface. Taking SNRsea slightly bigger
than that, we again come to the value SNRsea = 7.

V. COMPARISON OF THE METHODS

In the previous section we demonstrated how focused ori-
entation correlation can benefit detecting a ship. In this section
we compare different methods and come to a conclusion that
a combination of two methods is necessary.

A. Example of prevalence of Focused Phase correlation
Using the same video in Fig. 3, we consider four methods:

orientation correlation, phase correlation, and their focused
versions. The results are present in Fig. 6. Each of the methods
produces two graphs, as shown in Fig. 5, and the graphs from
that figure are also presented in the Fig. 6. The lowest four
graphs are not labelled, they present SNR of the boatless
left one third part of the scene. The greatest difficulty for
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Fig. 5. SNR of the matching surface corresponding to the video in Fig. 3.
The used method is focused orientation correlation. Compare with caption of
Fig. 3 for explanation of moments t = 1.5, 2.3, 3.7, 4.7.
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Fig. 6. Example of prevalence of focused correlation method. The graphs
from Fig. 5 are present here for comparison of all the tried methods.

ship detection is moment t = 12 sec, and it is demonstrated
separately by four matching surfaces in Fig. 7. From these
data it is concluded that for this particular maritime scene the
focused phase correlation method outperforms the rest.

 

 

Focused
Orientation
Correlation

Focused
Phase
Correlation

True shift
was found

True shift
was found

Orientation
Correlation

Phase
Correlation True shift

was not 
found
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was not 
found

Fig. 7. Matching surfaces for the four methods for the last frame (at t = 12)
in Fig. 3. Focused versions of the methods could detect the presence of the
ship, while the original methods couldn’t.

t=0 sec t=2.7 sect=1.1 sec

Fig. 8. A scene with lower frequency information in the ship area, and
this leads to failure to detect presence/absence of a boat while using phase
information for correlation; however, the gradient orientation information (in
the form of focused orientation correlation) suffices for detecting. By courtesy
of SAGEM.
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Fig. 9. Four methods applied to the scene in Fig. 8. The upper graphs
(thick lines) present SNR of the matching surfaces of the whole picture. For
comparison, the lower graphs (thin lines) present SNR for the left part of the
picture which does not contain the boat.

B. Example of prevalence of Focused Orientation correlation
Consider an example of images with less hight frequency

information, they are present in Fig. 8. For the four considered
methods we have following graphs in Fig. 9 arranged as
before. These graphs show that in this case focused orientation
correlation is the most reliable, while focused phase correlation
is unable to provide a proper solution for ship detection.

C. Conclusion: Reliable method
These two experiments illustrated our following findings:
• Focused correlation can solve the task, while correlation

itself only does not suit the task due to sensitivity to
geometric distortion of the boat. We also tried other,
simpler methods such as S0, S1, S2, and found that they
cannot provide a decent result for the scenes.

• For different kinds of scenes there is always one of the
two variants of the focused correlation that works better,
so we applied the both of them.

• The boat was detected if one of the focused correlations
robustly exceed value of SNRsea = 7 at the time in
between one and three seconds.

• The maximum detectable deviation of the ship is de-
scribed by (6), however the reliable condition was found
as ∥C − I∥ < 0.1, (this corresponds to rotation less
than 6◦). The bound t ≤ 3 sec is an empirical value
to guarantee that the ship normally rotates no more that



Fig. 10. Upper row: two pictures of a boat by courtesy of SAGEM. Lower
row: matchability map and the segmented common area.

to 6◦.
These findings were confirmed in our experiments with

more than 20 available maritime scenes.

VI. SEA AND SHIP SEPARATION IN IMAGES

To build an intelligent vision system we eventually will need
the location of an object [31], that is to segment it in the image.
Suppose a ship is detected, that is SNR > SNRsea at time
t > tsea. The displacement between the ship images is found
as a 2D vector smax at which the matching surface reaches its
maximal value (5). If we align the second image, that is, obtain
the shifted image g(x+smax), then it should coincide with the
first image f(x) while x belongs to the (unknown yet) ship
area. With this observation we can determine the ship area.

Our solution is to use the orientation operator O, and
compare images Of and Og(x+ smax). The ship area is then
found as a set of points where the angle between Of(x) and
Og(x + smax) is less than a particular number, which was
empirically chosen to be arccos 0.4. The result is visible on
the matchability map which is defined as a cosine between
unit vectors Of(x) and Og(x + smax) at each pixel x. The
matchability map shows which parts of the image can match
its counterpart in the second image by displaying a degree of
matching quality as a correlation coefficient ranging from −1
to 1. The results of this automatic segmentation are present
in Figs. 10, 11 and 12. These scenes present different degrees
of difficulty for a human operator: obviously, for a human it
would be the easiest to delineate the ship in Fig. 12.

VII. CONCLUDING REMARKS

Due to long history of matching and correlating images, it
seems rather difficult to propose a better and feasible approach
for applications. Papers on this topic appear at a rate of at least
100 papers each year, [27]. The same situation is with the ship
detection topic, where many attempts were made, which seems
to leave only a possibility for incremental further development.

Fig. 11. Upper row: two pictures of a boat by courtesy of SAGEM. Lower
row: matchability map and the segmented common area.

Fig. 12. Upper row: two pictures of a boat by courtesy of SAGEM. Lower
row: matchability map and the segmented common area.

We, however, proposed a novel way of substantial im-
provement of the most known method of correlation – phase
correlation. This enables us to arrive at a new approach for
boat detection and then resolve difficult cases when no prior
information about statistical properties of the sea is available.
The novelty presented in the paper can be therefore listed

1) A new correlation method was proposed, and it shows
reinforced robustness to geometric distortions of the in-
volved images;

2) A new boat detection method was proposed, which is
based entirely on comparison of images;

3) A usage of the observation that a fine pattern of the sea
changes completely was proposed.

The broader implication is that the proposed more robust
modified phase correlation can be used everywhere where other
similar correlation techniques are used. The proposed focused
correlation benefit from higher resolution, therefore it can



substitute the standard methods especially when larger images
come about, for example medical images which usually have
very high resolution. The main advantage is that the method
needs no tuning and can even cope with scenes that are difficult
to analyse for a human operator.

We presented a novel correlation techniques that is able to
align geometrically mutually translated and distorted pairs of
2D images. The method recovers the translational component
of misalignment and it is more robust to small geometric
distortion than known similar techniques. The method is based
on a new way of interpreting spatial sensor information in the
presence of geometric distortions.

We examined the performance of the method in several
maritime scenes compared to a few other methods as reference.
The proposed method showed a low sensitivity to geometric
distortion of the common areas and low sensitivity to surround-
ing changing background. In the considered maritime scene
the common area is a ship (or boat) area, and the changing
background is the image of the surrounding water in the sea.
This enabled us to detect whether a ship is present in both
images, since its presence manifests itself as an unchanged
area that can be aligned. We also considered a direct extension
of the method for further segmenting of the detected ship. This
step proceeds by comparing aligned images.

The method’s behaviour was stable, which is promising for
its usage for large variety of data. The detection of the ship
was conducted by computation of movement between the two
images only, and without taking into consideration the image
content as opposed to other methods. Therefore, the proposed
method for ship detection can serve as a complement to the
previously published work and then can be added as a new
element to already working surveillance systems.
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