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Abstract 

 

The theoretical treatise of the companion paper produced three distinct approaches of increasing 

complexity. Just as the presented theory is equally applicable to other medical, scientific or 

engineering applications, so the systematic numerical investigation now reported is relevant to these 

fields of study. An independently developed finite element analysis (FEA) solution is used to show 

that the commercial package selected provides critical pressure predictions of a consistent order of 

magnitude. The FEA sensitivity analysis considers five distinct elements with up to seven 

alternative strain-energy functions and different combinations of uniaxial, equi-biaxial and pure 

shear data sets to identify the effect on critical pressure prediction and overall behaviour of a 

pressurised distensible tube. This represents the most comprehensive comparative study available in 

the open literature. For a selected strain-energy function the impact of the variation of length to 

initial radius and wall thickness to initial radius are investigated. Thereafter it is demonstrated that 

these two ratios rather than actual dimensions are the driving factors behind pressurised tube 

behaviour. 
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1. Introduction 

 

In the previous paper [1] three distinct numerical techniques with differing levels of prediction 

capability and efficiency were discussed. The limited qualitative results presented, for various 

strain-energy functions, used the combined uniaxial, equi-biaxial and pure shear stress strain data 

made available by Treloar [2] and Kawabata et al. [3]. It is rather surprising that no other 

experimental data set exists in the open literature; where authors have claimed to provide their own 

data, close examination seems to suggest that the material is not significantly different to that used 

by Treloar in the 1940s. The semi-analytic, very long thin walled tube approach of Section 3.1 of 

[1] is useful in providing basic estimates to initiate the more complex membrane analysis outlined 

in Section 3.2 of [1]. This latter analysis established some confidence in the FEA predictions 

presented by providing comparable values of critical pressure and 3D tube shapes at different stages 

of inflation. The FEA sensitivity are then further appreciated through observation of the influence 

of the element choice made, the strain-energy function selected and the extent of the data sets used. 

 

1.1 Organization of paper 

 

In this paper alternative FEA elements, are considered to further establish confidence in this 

approach. Within the theoretical companion paper [1], sample FEA was only based on the S4R shell 

element. In Section 2 different alternative boundary conditions are justified regarding specific 

applications.  In Section 3 reworking of the analysis of Shi & Moita [4] indicates consistency of 

predictions whether using their particular FEA or the package selected by the authors. Finite 

element application sensitivity is addressed through variation of the total number of elements and 

the element distribution utilized, and the impact upon predicted behaviour of the inflated distensible 

tube. In the in-depth numerical study of Section 4 alternative finite elements are each considered in 

turn for several strain-energy functions and various combinations of uniaxial, equi-biaxial and pure 

shear data sets using Treloar [2] and Kawabata et al. [3] experimental measurements. Some of the 

strain-energy functions applied in medical studies, such as hemodynamic related aneurysm [5] and 

arterial stenoses [6], and distensible tubes consist of differing body tissues are  either quite distinct 

[5] or similar to those used in engineering [6,7]. In Section 5 variation of behaviour through 

geometric characteristics such as tube length to initial radius and wall thickness to initial radius is 

explored. Finally predictions based on the small scale tube (consistent with most of the publications 

cited in the theoretical paper [1]) are compared. The finite element method is finally applied to a 

slightly more complex rubber geometry analogous in form and dimension to that of abdominal aorta 
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and its iliac branches. The results are presented and discussed in Section 6.  Key observations 

provide paper closure in Section 7. 

 

2. Justification of boundary condition selection 

 

The procedure presented in this research is quite general and can be used for different applications. 

A parametric analysis on the effect of different boundary conditions, on the predicted value of the 

pressure, is not carried out because when a particular problem is analysed, appropriate boundary 

conditions should be selected. For example, in [7] the abdominal aorta is constrained in longitudinal 

displacement at the upper and lower ends of the aorta due to existence of specific important arteries 

and organs. In contrast fully clamped conditions are deliberately used in the experimental set up of 

a wave energy device known to experience aneurysm under certain conditions [8]. In references [9, 

10] end conditions are not explicitly stated within the context of the finite element analysis 

undertaken, but within the experiments used to provide comparing measurements it would appear 

that fully clamped boundary conditions is the most likely description of the experimental set-up. 

Yet another boundary condition is the clamped-rolled FEA model presented in Figure 10 of [1]. The 

variation of critical pressure in this case is just 1.93% different to the corresponding clamped-

clamped analysis represented in Figure 9 of [1]. Out of curiosity a comparisons of fully clamped 

and pinned conditions were compared for different strain-energy function and again the difference 

in critical pressure varied from 0.02% to 1.52%. With this small apparent differences due to 

changes in boundary conditions and the large matrix of studies to be undertaken through variation 

of element selection, strain-energy function choice and data sets combination for calibration of two 

different materials, no further investigation of boundary conditions will be undertaken in this paper 

and the mesh sensitivity is carried out assuming both tube ends are fully clamped. As consequence 

of this decision we will demonstrate later that the length of the tube is not affecting the magnitude 

of the predicted critical pressure. 

 

3. Reworking of Shi & Moita problem 

 

Shi & Moita [4] developed their own finite element solution based on a hyper-elastic material with 

an axisymmetric membrane element. This permits comparison of two distinct FEA, rather than 

limited finite element comparison for different elements available in a single commercial package.  

The length of the tube in [4] is partitioned into an unknown number of elements of two nodes, with 

the strain-energy function corresponding to an Ogden fitting [11] of all the original Treloar data 
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using a third-order Ogden model. The numerical values of the parameter pairs 3&2,1:, iii   

[4, 11] are: 

3.11  , 0.52  , 0.23   and  2

1 3.6 cmkg , 2

2 012.0 cmkg , 2

3 1.0 cmkg .   (1) 

Tube dimensions correspond to 202 00 rl  and 1.000 rtw  for an initial length of 02l  200mm, 

initial mean radius of 0r 10mm and initial wall thickness 0wt  1mm. The predicted critical 

pressure of Shi & Moita [4] is compared with predictions from a commercial package using the 

same Ogden parameters for three distinct finite element types. To appreciate sensitivity of analysis 

to assigned values of parameters 3&2,1:, iii  , the same three finite elements and the Ogden 

strain-energy function with least-squares fitted parameters recovered from the Treloar data 

(Appendix A of  [1]) is presented. The three distinct finite elements used together with the tube 

particulars are provided in Figure 1.  

 

Fig. 1.   Different finite element representations of the physical model 

 

Variation of the finite element meshes, adopted by the authors, in their use of the solid and shell 

elements are presented in Figure 2.  

 

Fig. 2.   Different refinement of finite element mesh 
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The meshes of Figure 2 are defined by tlc NNN   representing number of circumferential, 

longitudinal and through-wall elements respectively. For the simplified axisymmetric element 

representations (CAX4H, CAX8H) the finite element distribution longitudinally is the same, but no 

elements are required circumferentially. cN  is still used in the total element count for the simplified 

axisymmetric elements for comparison purposes. For solid elements and shell elements the 

geometric aspect ratio is approximately unity.  

 

Each mesh refinement consists of the doubling of the number of elements longitudinally and 

circumferentially. Meshes 1 and 2 are deliberately small to determine whether their associated 

predictions are radically different to the more extensive meshes. Mesh 3 is considered adequate 

since this discretization uses approximately twice the elements used in [9, 10] and is comparable 

with [7]. Mesh 4 represents a more extreme level of discretization. Meshes 5 to 8 are reserved for 

the solid element, since in this case wall thickness is modelled using two elements. For solid or 

axisymmetric elements the initial internal and external radius is int

0r 9.5mm and extr0 10.5mm. 

For a shell element the mean initial radius of 0r 10mm represents the middle plane. 

 

3.1 Mesh sensitivity 

 

A three-term Ogden [11] model is used to describe material behaviour. Shi & Moita [4] provide no 

tabulated values of critical pressure and so numerical values are recovered from their  plot of *P . 

The critical pressure *

crP  corresponds to 08.0* P . Using values of ),( ii  defined in column 3 

of Table 1, the value of 2/225.4 cmkg  is obtained using 
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1

2
1

i

ii  and 

hence PaPcr

4* 1032.3  .  Since the actual number of axisymmetric membrane elements used by Shi 

& Moita [4] is not specified the estimated *

crP  is treated as invariant with the number of elements.  

The sensitivity analysis will be presented in two parts. Initially the influence of each selected 

ABAQUS
®
 element for each Figure 2 mesh is compared with the estimated Shi & Moita based 

prediction of critical pressure. In the second case the influence of using slightly different Ogden 

parameters is demonstrated using the ABAQUS
®
 software to fit the Treloar data (Appendix A of 

[1]) and Ogden’s fitting of Treloar data [11]. Table 1 sets out the corresponding Ogden’s parameter 

derived from the ABAQUS
®
 fitting of Appendix A [1] data using Equations (15) and (16) of [1] 

together with the Shi & Moita values. 
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Table 1 Variation in Ogden strain-energy function parameters 

ABAQUS
®
 fitting of Appendix 

A [1] based on Equation (16) 

of [1] 

ABAQUS
®
 fitting of Appendix 

A [1] based on Equation (15) 

of [1] 

Original values used by Shi & 

Moita [4] consistent with 

Equation (15) of [1] 

1 398206.801Pa 1   7.173 2cmkg  1    6.3 2cmkg  

2 5377.71517Pa 2  0.023 2cmkg  2   0.012 2cmkg  

3 7647.41545Pa 3 –0.073 2cmkg  3 – 0.1 2cmkg  

1   1.13176086 1   1.13176086  1 =   1.3 

2   4.73211925 2  4.73211925  2 =   5.0 

3 –2.14619240 3 –2.14619240  3 = –2.0 

 

Figures 3a & b illustrate how critical pressure varies with each finite element selected and total 

number of elements utilized. In Figure 3a the Ogden fitted parameter values are those used by Shi & 

Moita, whereas in the Figure 3b the parameter values correspond to the second column of Table 1. 

Figure 3b clearly indicates the influence of different fitting of the Ogden model to the Treloar data. 

 

In the companion paper [1], and in subsequent studies reported in this paper, we have not used the 

third-order Ogden fitted parameters [11], column 3 of Table 1, since this could adversely affect the 

comparison predictions based on alternative strain-energy functions. The differences between 

Figures 3a & b clearly reflect the influence of different researchers fitting of the Treloar data. When 

exactly the same material parameters are forced into the finite element analysis (Figure 3a) the 

comparison with Shi & Moita is very consistent despite not having details of Shi & Moita mesh 

distribution. 
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Fig. 3a.  Mesh sensitivity with different elements for Ogden [11] Treloar-data fit  
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Fig. 3b.  Mesh sensitivity with different elements for ABAQUS
®
  Treloar-data fit based on 

Appendix A [1] 

The ABAQUS
®
 elements selected in the comparisons of Figure 3 are not membrane elements, so it 

is worthwhile recalling that the solid elements (axisymmetric or 3D) are the most general and 

involve no fundamental assumptions regarding solution of the elastic problem formulation. The 

shell element takes advantage of the thinness of the structure. Hence a representative middle plane 

bounded by the faces of the structure is used as if it were the material surface. The shell element 

selected may adopt thin or thick shell theory; the difference being maintenance or relaxation of 

shear deformation. When all the moment expressions of a shell formulation are disregarded, the 

resulting element degenerates to that of a membrane element. Having summarised these differences 

one may readily deduce from Figure 3 that: meshes 3 & 4 do not lead to substantial differences; two 

layers model provide no improvement; as the sophistication of the element chosen increases the 

difference between selected element and Shi & Moita membrane. However, the maximum 

difference (rejecting meshes 1 & 2, as might be anticipated) does not exceed 1.88% (relative to Shi 

& Moita value) on inspection of the ordinate of Figure 3 or the numerical values of Table 2 

providing critical pressure for the two cited alternative fittings of the Treloar data, using mesh 3.  
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Table 2  Sensitivity of critical pressure with element variation and Treloar-data fit adopted. 

 

Element (Mesh 3) Ogden data fit & 

(Relative Error) 

ABAQUS
®
 data fit & 

(Relative Error) 

Shell element S4R 33010.0Pa  ( –0.45%) 32487.7Pa  ( –2.02%) 

Solid element C3D8H (1 layer) 32819.1Pa  ( –1.02%) 32157.9Pa  ( –3.02%) 

Solid element C3D8H (2 layers) 32821.7Pa  ( –1.01%) 32160.6Pa  ( –3.01%) 

Solid element C3D20H (1 layer) 32636.0Pa  ( –1.57%) 31964.8Pa  ( –3.60%) 

Solid element C3D20H (2 layers) 32645.7Pa  ( –1.54%) 31975.7Pa  ( –3.57%) 

Axisymmetric element CAX4H 32533.1Pa  ( –1.88%) 31848.6Pa  ( –3.95%) 

Axisymmetric element CAX8H 32616.0Pa  ( –1.63%) 31942.1Pa  ( –3.67%) 

 

 

Therefore one may conclude that giving the same geometry and the same material properties, the 

physical problem is consistently modelled by each selected element by authors or Shi & Moita. 

Furthermore, there is no need for mesh 4 or adoption of 2 layers through the wall thickness. This 

comparison of ABAQUS
®
 based predictions with an independent finite element suite and the 

following comparison with a semi-analytic method provides objective confidence (rather than blind 

faith) in the use of the selected suite.     

Reverting to Figures 3a & b we observe the following regarding the specific behaviour of each 

chosen element: 

 Geometrically the reduced integration shell element S4R and the Shi & Moita axisymmetric 

membrane element are very similar in terms of structure idealization, using the middle plane 

or line respectively to represent the whole structure. This is probably why prediction 

differences are minimal. 

 Convergence of the linear solid hybrid element (C3D8H) is significantly slower than that of 

the quadratic solid hybrid element (C3D20H), which is almost instantaneous. The predicted 

critical pressures for meshes 1 and 2 are sufficiently different to be rejected. Meshes 3 and 4 

provide more consistent values.  

 The axisymmetric element based predictions are relatively insensitive to the total number of 

elements used. The difference between linear (CAX4H) and quadratic (CAX8H) hybrid 

axisymmetric elements is small (less than 0.3%) compared with the behaviour of 

corresponding solid elements. 
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 The quadratic solid element (C3D20H), which is the most demanding in computer processor 

time, provides essentially the same prediction as the less demanding quadratic axisymmetric 

element (CAX8H) for each mesh. 

 

Comparison with the Shi & Moita study indicates that the quadratic solid element (C3D20H), the 

linear shell element (S4R) and the quadratic axisymmetric element (CAX8H) are sufficient to 

represent the finite element technique.  

 

 

4. A generalized comparative study of critical pressure predictions 

 

Earlier representative pressure predictions against radial stretch [1] and the comparative studies of 

the previous section have used all three distinct sets of experimental data to determine the 

parameters of the selected strain-energy function. In this general comparative study the following 

choices will be collectively explored:  

 

 Influence of Treloar [2] and Kawabata et al. [3] rubber materials. 

 Seven distinct combinations of data for a selected material; three individual data sets 

(where meaningful), three different pairings and one complete data sets. 

 Sensitivity to selected strain-energy functions (and variants where meaningful) using 

parameters fits reported in Appendix A. 

 Variation of pressure predictions with three alternative analysis methods; in the case of the 

finite element approach three different elements (S4R, C3D20H & CAX8H) are 

investigated.   

 

The tube geometry will initially remain unchanged from that used in Section 2 and illustrated in 

Figure 1. Data fitting for the parameters of each strain-energy function will be undertaken using 

ABAQUS
®
 software. The initial product of this comparative study is two sets of tabulated data 

indicating variation of critical pressure with each strain-energy function for each of the 7 possible 

combinations of data using: (i) the simple long thin-walled tube analysis, (ii) the axisymmetric 

membrane theory and (iii) the finite element method for each of the three selected element types.  
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4.1 Comparison of different approaches 

 

Tables B1(a) to (f) and B2(a) to (f) utilizes the Treloar and Kawabata et al. data respectively. These 

tables are presented in Appendix B so that the flow of discussion is not adversely affected within 

the main text. Some combinations of material selected and strain-energy functions can lead to a 

failure to predict critical pressure. Each possibility is addressed next. 

 

Within each table the phrase ‘not possible’ is inserted when pure shear data alone is utilised with 

the Mooney-Rivlin and Ogden strain-energy functions. For pure shear 13  ,  1  and so 

 12  . Hence 21 II   and the dependence of Mooney-Rivlin (explicitly) and Ogden (implicitly) 

upon 1I  and 2I  cannot be resolved. The phrase ‘not-possible’ associated with the Marlow model 

indicates that this approach does not permit combining distinct experimental data sets.  

Depending upon the material selected and the strain-energy function used the phrase ‘unstable’ 

indicates that the curve fitting procedure, within the ABAQUS
®
 finite element software, declares 

the material to be unstable over the specified range of strain. Whilst Figures 2 & 3 of companion 

paper [1] indicate that the range of strain is much larger for the Treloar data, it is the Treloar data 

that is deemed ‘unstable’ more often than the much smoother stress-strain curves of the Kawabata 

et al. data.  

 

Finally the phrase ‘no max.’ indicates that critical pressure is not explicitly identifiable since the 

pressure is monotonically increasing. 

 

Inspection of parts (a) to (f) of Appendix B tables, irrespective of material selected, allows direct 

comparison of:  

 Critical pressure for the three specific methods of analysis.  

Direct comparison of parts (a), (b) & (c) or parts (a), (b), & (d) or parts (a),(b) & (e) permit 

comparison of selecting a particular finite element with the other semi-analytic approaches. 

 Consistency, or otherwise, of the finite element approach per se is achieved directly by 

comparing parts (c), (d) & (e). 

 For the shell S4R element comparison of parts (c) and (f) demonstrate that the exploitation 

of geometric symmetry, to reduce computational effort, does not reduce prediction accuracy. 

 Inspection of any single row, within any part of the table, permits understanding of the 

impact of using different combinations of experimental data for a selected strain-energy 
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function. A complementary study is to select any column of any table to appreciate the 

influence (and applicability) of a strain-energy function with selected sets of material data. 

 Finally comparing Tables B1 & B2 in any of the above respects permits assessment of the 

rubber material selected.   

 

 

4.2 Comparison of different finite elements 

 

In the companion paper [1] it was observed that only the Yeoh and the third-order Ogden strain-

energy function yielded a pressure versus 1  curve that permitted determination of propagation 

pressure according to the Maxwell equal area rule. In view of the generality of the Ogden model, 

and its utilization for rubber [4, 12 -18] and medical applications [6, 19, 20, 21], the third-order 

Ogden model is now investigated to highlight the following comparisons: 

 Pressure variation with radial stretch parameter for the three selected finite elements using 

the complete Treloar and Kawabata data sets.  

 The shell element will be reworked exploiting geometric symmetry to demonstrate that this 

slightly faster analysis can produce consistent results irrespective of data sets selected. 

 For each complete data set pressure variation with radial stretch parameter is reported for the 

three particular strain-energy functions that capture the maximum likely extent of pressure 

variation. 

 Maximum variation of critical pressure is then presented for each strain-energy function 

previously defined [1] for each of the three finite elements selected and for all the seven 

possible combinations of both the Treloar and Kawabata et al. data sets. 

 

Graphical results for each specific comparison purpose are presented next. For reasons stated earlier 

mesh 3 is used in all subsequent finite element analyses.  

  

4.2.1 Presentation of results 

 

Comparison of parts (c), (d) & (e) of Tables B1 & B2 demonstrates that the choice of finite element 

in the discretisation process is not particularly significant in terms of critical pressure predictions. 

This tendency is confirmed for each strain energy function and each of the seven possible 

combinations of experimental data sets.  

 

The most and least computationally expensive elements are the solid and axisymmetric elements. 

These elements exhibit excellent agreement in terms of critical pressure and pressure variations 
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with 1 . The maximum critical pressure difference of 1.59kPa, using these two elements, occurs 

when using the Marlow strain-energy function with the uniaxial Treloar data (see Table B1(d) & 

(e)). The largest discrepancy recorded for all analyses is 1.73kPa. This is associated with the shell 

and solid elements using a Marlow strain-energy function with Treloar uniaxial data (see Table 

B1(d) & (f)). 

 

The axisymmetric element, solid and shell element, have slightly different theoretical assumptions 

[22] and yet provide consistent predictions for the same physical problem, as illustrated in Figures 

4a & b. 

 
Fig. 4a.   Variation of pressure for different elements using complete set of Treloar 

experimental data. 

 

 

 
Fig. 4b.   Variation of pressure for different elements using complete set of Kawabata et al. 

experimental data. 

 

Given the similarity of Figure 4a & b, Figure 5 illustrates the evolution of the aneurysm shape as 

radial stretch is increased for the Treloar material only. The evolution of the aneurysm, for the three 
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different elements, is captured at two different steps in the solution of the nonlinear elastic 

equilibrium path with the use of the Riks algorithm [23].  

 

 

Fig. 5.   Evolution of aneurysm shape using mesh 3 with different finite elements 

 

Figure 5 demonstrates that variation of geometry is self consistent irrespective of element type 

selected. 

 

4.2.2 Exploitation of geometric symmetry 

 

Most numerical procedures exploit geometric symmetry to reduce mesh size and hence 

computational effort. For the shell element (only) symmetry across the central x–y plane 

corresponds to 0zu  & 0 yx  . Figures 6a & b provide pressure variation against radial 

stretch for the equivalent clamped-clamped and the clamped-symmetry boundary condition 

specified. The clamped-clamped pressure variations of Figures 6a & b are identical with the shell 

element pressure plots of Figure 4a & b.  

 
Fig. 6a.   Variation of pressure for different boundary conditions using shell element with 

complete set of Treloar experimental data. 
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Fig. 6b.   Variation of pressure for different boundary conditions using shell element with 

complete set of Kawabata et al. experimental data. 

 

Figure 6 demonstrates that alternative boundary conditions have no particular effect on the 

predicted critical pressure. Numerically the proposed symmetry boundary conditions leads to a 

maximum difference of 0.26kPa when using combined uniaxial and pure shear data with the Yeoh 

model for the Kawabata et al. material; compare part (c) and (f) of Table B2. Figure 6c provides 

comparative 3D shapes of the distensible tube for approximately
1
 corresponding 1 -values. 

 

 
 

Fig. 6c.   Evolution of aneurysm shape using mesh 3, shell element with different BC 

 

 

 

                                                 
1
 Variation of 1 -values within the finite element procedure is automatic. Hence for a reworked analysis using a 

different element or boundary condition the same sequence of 1 -values is not repeated. 
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4.3 Comparison of different strain-energy functions 

 

The motivation to examine the impact of the selected strain-energy function upon predicted critical 

pressure is their role in the simulation of rubber behaviour using the finite element analysis. In 

general, within the scientific literature, too often only one strain-energy function is used [4, 9, 10, 

12, 15, 16]. Even if two or more strain-energy functions are utilized tabulated numerical values are 

rarely provided, despite their significant benefit when comparing alternative analyses. The different 

strain-energy functions explored, defined in the companion paper [1], are generally available within 

commercial finite element codes. However, the authors have failed to locate any research paper in 

which several distinct strain-energy functions are utilized with alternative combinations of stress-

strain data sets. Figures 7a & b clearly illustrate sensitivity of critical pressure to strain-energy 

function selected for all possible data set combinations for Treloar and Kawabata et al. materials. 
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Fig. 7a.   Value of critical pressure for alternative finite elements and constitutive rubber-

model using Treloar data 
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Fig. 7b.   Value of critical pressure for alternative finite elements and constitutive rubber-

model using Kawabata et al. data 
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The maximum value of 38752.9Pa and minimum value of 23951.7Pa achieved within the Treloar 

data (Figure 7a) are readily identified in Tables B1(c) & (e). The maximum value is associated with 

a shell element utilizing the Mooney-Rivlin strain-energy function with the combined uniaxial and 

equi-biaxial data sets. The minimum value is related to the axisymmetric element using a first-order 

Ogden model based on uniaxial data. 

 

For the Kawabata data the difference between maximum and minimum values is significantly 

smaller. The maximum and minimum critical pressure values are 34798.6Pa (Table B2 (c)) and 

28988.7Pa (Table B2 (e)). The maximum value is now associated with the shell element using the 

Mooney-Rivlin strain energy function with equi-biaxial data. The minimum value is for the 

axisymmetric element using the Arruda-Boyce strain-energy function with uniaxial data. 

 

Other key observations are: 

 For both materials the smallest range of critical pressure values are those associated with the 

second-order and third-order Ogden models.  

 The range of predicted critical pressure associated with the Arruda-Boyce and Marlow 

strain-energy functions are comparable for both materials.  

Hence it would appear that the use of different data set combinations with a reasonably 

complex Arruda-Boyce strain energy function is no better than the Marlow strain-energy 

function restricted to a single data set.  

 From Tables B1 (c), (d) & (e) we note that using equi-biaxial data only, irrespective of 

element choice considered, the predicted critical pressure is maximal for Neo-Hookean, 

Yeoh, Arruda-Boyce, first and second order Ogden models. For these four strain-energy 

functions the range of critical pressure values is greatest when using uniaxial data only, 

although the variation due to element choice is negligible.  

 Irrespective of the method of analysis employed the minimum critical pressure is always 

associated with use of uniaxial data alone, whereas the maximum critical pressure is always 

associated with the use of equi-biaxial data. 

 

These observations demonstrate how finite element predictions can be severely affected through the 

selection of a strain-energy function. This variability of predictions is due to the fact that some of 

the strain-energy functions are not capturing the essential behaviour of the physics of material 

deformation or the intrinsic characteristic of the material [1]. Furthermore, good comparison 

between numerical/theoretical and experimental results may be achieved as a consequence of an 
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arbitrary selection of the strain-energy function. Establishing the validity of this choice is often 

difficult because very often only the fitting parameters of the strain-energy function are reported 

without any indication of the actual experimental data used [15, 16, 17, 18].  

 

Irrespective of the finite element selected the tabulated numerical values of critical pressure tends to 

suggest that the strain-energy functions of Arruda-Boyce, Mooney-Rivlin and third-order Ogden 

models captures the likely range of inflation pressure. This is readily demonstrated in Figures 8a & 

b, for pressure variation versus radial stretch. This observation is true for both materials selected. 

 

 

Fig. 8a.   Variation of pressure for shell element (S4R) using different constitutive rubber 

models with a complete set of experimental Treloar data. 

 

 

Fig. 8b.   Variation of pressure for shell element (S4R) using different constitutive rubber 

models with a complete set of experimental Kawabata et al. data. 
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Figure 7 indicated that the Ogden models have reduced sensitivity to data sets used as the order of 

models is increased. Since third-order Ogden and Yeoh models consistently satisfy the Maxwell 

equal area condition for aneurysm propagation, and the variance of the Yeoh model is greater than 

the third-order Ogden model, Yeoh sensitivity to data set selection is presented in Figures 9a & b 

using the S4R shell element.  

This exploration of the influence of different experimental data sets is a novel occurrence in 

distensible tube research.  

The uniaxial tension test is the most commonly used method [9, 10] to acquire material behaviour 

information, although this test has been replaced by equi-biaxial test [12], as used by Guo [17], or 

by uniaxial and pure shear data [15]. Ideally a complete set of experimental data (uniaxial, equi-

biaxial and pure shear) should be used to capture the intrinsic behaviour of the material. Figures 9 

clearly indicate that pressure distribution is significantly affected by data set(s) selected to identify 

the Yeoh strain-energy parameters. 
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Fig. 9a.   Variation of pressure using S4R element and Yeoh model with different 

combinations of experimental Treloar data 
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Fig. 9b.   Variation of pressure using S4R element and Yeoh model with different 

combinations of experimental Kawabata et al. data 
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Numerical results presented confirm that combined uniaxial and equi-biaxial experimental data is 

suitable for critical pressure prediction. 

 

5. Scaling the model for engineering applications 

 

The distensible tube analysis undertaken previously for fixed values of 202 00 rl  and 1.000 rtw  

is more appropriate to scientific or medical investigations, see Table 3.  

 

Table 3 Medical distensible tubes dimensions based on [Table B6.1 of 24] 

Vessel Diameter [mm] Wall thickness [mm] Length [mm] 

Ascending aorta 32 1.6 50–55 

Arch of aorta 25–30  40-50 

Thoracic aorta 20 1.2 160 

Abdominal aorta 17–20 0.9 150 

Femoral artery 8 0.5 320 

Carotid artery 9 0.75 180 

Radial artery 4 0.35 230 

Large artery 2–6   

Capillaries 0.005–0.01   

Large veins 5–10   

Vena cava 20   

 

To widen the scope of the study critical pressure is next investigated for a tube of engineering 

proportions, mainly: 

 For a fixed radius of 0r  = 10mm the ratio 002 rl  is varied between 10 and 60, whilst the 

ratio 00 rtw  lies within the range 0.02 to 0.1. 

 For length fixed at 02l = 600mm the ratio 002 rl  is varied between 10 to 60, whilst 00 rtw  

varies within the range 0.02 to 0.1. 

Initially  mml 600,1002 0   and  mmtw 1,2.00   and in the second case  mmr 60,100   and 

 mmtw 6,2.00  . These two approaches are essentially equivalent and should generate the same 

predictions of critical pressure.  

 

Continuing with the shell element, the complete sets of Treloar data and the third-order Ogden 

model yields the tabulated critical pressures of Tables 4 and 5 respectively.  
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Table 4 Fixed radius FEM critical pressure (Pa) for shell element (S4R) with clamped-symmetry 

boundary condition, complete Treloar data and third-order Ogden model 

 
002 rl = 10 

002 rl  = 20 
002 rl  = 30 

002 rl  = 40 
002 rl  = 50 

002 rl  = 60 

00 rtw
 = 0.02   6577.7   6474.6   6509.8   6515.9   6518.2 not conv. 

00 rtw
 = 0.04 13047.6 12968.7 13021.6 13027.6 13044.0 13054.8 

00 rtw
 = 0.06 19757.3 19480.1 19536.5 19546.6 19571.0 19552.1 

00 rtw
 = 0.08 26351.2 26038.4 26053.6 26076.9 26091.9 26111.0 

00 rtw
 = 0.10 32905.4 32485.4 32561.1 32571.5 32585.8 32609.5 

 

Table 4 is easier to read because the radius is fixed. Critical pressure is constant for different values 

of tube aspect ratio 002 rl , in each row of Table 4. That is, critical pressure is insensitive to the tube 

length. This result is consistent with Shi & Moita [4]. Column variation of critical pressure is 

almost linear with variation of thickness. This result is in agreement with [10].  

 

Table 5 Fixed length FEM critical pressure (Pa) for shell element (S4R) with clamped-symmetry 

boundary condition, complete Treloar data and third-order Ogden model 

 
002 rl = 10 

002 rl  = 20 
002 rl = 30 

002 rl  = 40 
002 rl  = 50 

002 rl  = 60 

00 rtw
 = 0.02   6574.6   6471.3   6509.8   6516.1   6518.2   6526.0 

00 rtw
 = 0.04 13157.8 12982.7 13021.3 13030.4 13030.7 13054.7 

00 rtw
 = 0.06 19749.4 19506.7 19536.3 19546.4 19552.4 19552.0 

00 rtw
 = 0.08 26341.0 26036.3 26053.2 26076.7 26091.9 26110.8 

00 rtw
 = 0.10 32885.3 32477.3 32571.5 32591.1 32583.2 32637.9 

 

In Table 5 the length is fixed, and the numerical values reported are almost the same as those of 

Table 4. Essentially in each row the radius is decreasing from left to right, meanwhile wall 

thickness is increasing down the columns. In a given column the ratio for any two critical pressure 

values is almost equal to the corresponding ratio of the 00 rtw values. That is, for any length, if the 

thickness is doubled the critical pressure is also doubled, due to higher tube stiffness. The graphical 

representation of Table 5 is Figure 10.   
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Fig. 10   Critical pressure plane defined by Table 5  

 

The circled values in Figure 10 represent the underlined values in Table 5, which correspond to 

variation in radius for indicated fixed tube length of 600mm and wall thickness of 1.2mm. Explicit 

variation of critical pressure with radius is provided in Figure 11, which shows that higher radius 

values correspond to lower critical pressure values due to 00 rtw decreasing, and hence tube stiffness 

is reducing.    
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Fig. 11   Influence of tube radius on critical pressure for fixed length and wall thickness  

 

The highlighted values in Tables 4 & 5 indicate the post-buckling shape corresponds to two 

decentred bulges as illustrated in Figure 12, and not a single centrally located bulge. Clearly the 

ratio 00 rtw  is the principal factor influencing aneurysm formation, whilst the ratio 002 rl assumes 

importance in total rubber costs in engineering applications. The ratio 002 rl cannot avoid aneurysm 

formation once 00 rtw  is selected. 
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Fig. 12.  One of the two decentred bulges for a half tube 

 

 

Variation of pressure versus radial stretch is plotted in Figure 13a for each 002 rl  value of Table 4 

with 00 rtw = 0.10. The three dimensional form of the pressurized distensible tube is illustrated in 

Figure 13b for different values of 002 rl , for values of 1  closest to 3.15, (see footnote 2). 

Extension of the aneurysm compared with the overall tube length is clearly controlled by 002 rl . 
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Fig. 13a.   Inflation pressure versus radial stretch for different 002 rl  ratios 

 

 

Fig. 13b.   Representation of the aneurysm for different 002 rl  ratios 
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Having considered a single tube we next consider a branched tube. The relative dimension of the 

principal tube and branched tubes are consistent with the abdominal aorta and its iliac branches. In 

engineering, larger scaled branched tubes have been considered to form part of the power take off 

unit of a wave energy extraction device. Here we consider application of FEA to assessment of 

critical pressure in a distensible tube, with a geometry analogous to the corresponding abdominal 

aorta and iliac branches. 

 

6. Analysis of branched tube 

 

The finite element model discussed in the previous sections was of relevance to an existing realistic 

engineering geometry. The new selected geometry is representative of the abdominal aorta and its 

iliac branches. Geometric and dimensional details are presented in Figure 14a. 

Throughout the wall thickness is considered constant and equal to 0.002m. This value is consistent 

with data available in the literature [21]. The material properties selected do not reflect human 

tissue, but the earlier used Treloar rubber presented as uniaxial, equi-biaxial and pure shear data. 

Hence, the material does not represent the properties of a blood vessel, but is consistent with 

previous single tube analysis performed. 

 

Fig. 14.   Geometric dimensions of branched distensible tube used in finite element model [25] 
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For the finite element simulation a discretization is realized using the quadratic tetrahedral solid 

element (C3D10H), as illustrated in Figure 14b, with a mixed formulation. The tetrahedral element 

is analogous to the hexahedral element C3D20H used in previous analyses. The tetrahedral element 

is preferred in this case to permit an easier automatic mesh generation. The controlling parameter 

influencing number of tetrahedral elements generated is the maximum allowable tetrahedral edge 

length presented in Table 6; clearly tetrahedral height does not exceed the wall thickness. As 

boundary conditions all tube ends are treated as fully clamped. This choice is in agreement with 

medical investigations [21]. 

 

Table 6 Mesh sensitivity 

 

 

 

 

 

 

 

 

 

The sensitivity of critical pressure predictions to meshing levels within the FEA is reported in Table 

6. This variation of critical pressure also plotted in Figure 15 with rubber data based on a 

combination of all three Treloar data sets to determine the third order Ogden strain-energy function 

parameters.   
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Fig. 15.   Mesh sensitivity 

Number of 

C3D10H elements 

Tetrahedral 

control length 

Critical pressure 

4764 0.0080m 68963.4Pa 

5686 0.0055m 62716.4Pa 

7553 0.0040m 62585.4Pa 

28643 0.0020m 62528.4Pa 

80204 0.0015m 62555.9Pa 
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Figure 15 suggests that a correct order of magnitude of critical pressure is provided using 7553 

elements. 

 

Examination of the sensitivity of critical pressure to the strain-energy functions adopted is 

summarised in Table 7 for the cited discretization level. For the single distensible tube, Figure 7a 

indicates that the predicted critical pressure based on the third order Ogden model is the least 

sensitive to number of data set used. Other strain-energy functions are considerably more sensitive 

to the number and type of data sets used. Here, Table 7, based on using all the Treloar data reflects 

an expected wide variation of predicted critical pressure as a function of strain-energy function 

selected.  It is not our intention to report influence of data sets combination for different strain-

energy functions to provide an equivalent figure to Figure 7a. Given our observations concerning 

smaller variance of critical pressure prediction using third order Ogden, Figure 16 illustrates the 

change in geometry of a branched distensible tube once aneurysm development is commenced.  

 

Table 7 Values of critical pressure for different strain-energy functions.  

 

Strain-energy function Critical pressure 

     Neo-Hookean 58736.9Pa 

     Yeoh 57008.4Pa 

     Arruda-Boyce 52206.0Pa 

     Mooney-Rivlin 65065.3Pa 

     Ogden N = 1 55243.9Pa 

     Ogden N = 2 64067.8Pa 

     Ogden N = 3 62585.4Pa 
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Fig. 16.   Branched distensible tube with geometry analogous to abdominal aorta and iliac 

branches before and after aneurysm formation 

 

Figure 16 differs from medical based aneurysm studies in so far as here the aneurysm has been 

developed from a branched distensible tube which was originally formed from purely cylindrical 

tubes. This is clearly different to artificially deforming the tube initially and then studying how 

pressure variation modifies the geometry. With due modesty, this analysis may be considered as a 

first attempt to formulate and solve the initiation of an aneurysm in a branched tube using FEA with 

a geometry comparable with an abdominal aorta and its iliac branches. 

 

7. Conclusion and future work  

 

The results presented allowed the making of the following observations: 

 Consistency of finite element prediction is not affected by strain-energy function selected. 

 The simple method is more useful as a solution starter for the membrane method. 

 There is good consistency between the membrane method and the finite element method 

with membrane theory being slightly more consistent with the shell finite element analysis. 

 Exploiting geometric symmetry does not adversely affect predicted results. 

 The range of strain in Kawabata et al. data is smaller than that for the Treloar data, 

consequently the Kawabata stress-strain curves are simpler in geometric form and hence the 
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fitting of strain-energy functions, irrespective of data selected, has significantly smaller 

variance.  

 The larger range of strain in the Treloar data leads to points of the inflexion in the resulting 

stress-strain curves and it is this characteristic that appears to be responsible for the 

significantly larger variance of the critical pressure arising from combining different data 

sets to fit a selected strain-energy function. 

 Engineering expectations would naturally select the maximum strain range possible for each 

form of data acquisition and having maximized the available data one might select strain-

energy functions with a richer number of parameters to capture material behaviour. 

 Equi-biaxial alone and uniaxial alone provide upper and lower boundaries of inflation 

pressure variation with the radial stretch parameter 1 . 

 Combined uniaxial, equi-biaxial and pure shear data provide inflation pressure variation 

with radial stretch parameter 1  that almost matched using a combination of uniaxial and 

equi-biaxial data. 

 Use of the pure shear data alone is limited to the Neo-Hookean, Yeoh and Arruda-Boyce 

strain-energy functions dependent on 1I . Critical pressures of Neo-Hookean and Arruda-

Boyce for Treloar and Kawabata are identical for each part of Tables B1 and B2. 

 For the Kawabata et al. data Neo-Hookean and Arruda-Boyce strain-energy functions 

provide identical results irrespective of data sets used. 

 For the more complex strain-energy functions dependent on both 1I  and 2I , pure shear data 

is not possible and for some data sets or combinations of data sets the data is deemed 

unstable. For these more complex functions critical pressure values tend to increase (in 

general, but not always) as the mathematical complexity of the function is increased. 

 To verify, or otherwise, our conclusion in part A that higher Ogden and Yeoh models are 

preferable in the context of critical pressure and propagation pressure analysis, there is a real 

need to generate complete exhaustive testing of real rubber compounds to produce a greater 

choice of data sets. Whilst Kyriakides & Chang [15] provide Ogden parameters to their 

experimental data the rubber does not appear to be very different to the Treloar rubber. The 

raw experimental data is not provided and the i  and i  fitted Ogden parameters  2cmkg  

are: 6.29, 0.019, –0.1 and 1.30, 5.08, –2.00 respectively, which are very similar to the Ogden 

fitting [11] of the original Treloar data provided in Equation (1) and column 3 of Table 1. 
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This research has concentrated on how critical pressure may be predicted, provided derivation of 

governing equations where deemed necessary, identified the consistencies of the alternative 

prediction methods and the variation of finite element applications for two readily available rubber 

data sets. Selection of 00 rtw  determines likelihood of aneurysm inception, not tube length, and 

hence single material tubes may require modification to prevent aneurysms, medically or 

engineering-wise. This is currently being investigated theoretically.  

 

In this paper three distinct static approaches have been compared for the first time to demonstrate 

how they are related in terms of critical pressure predictions. This means we have clarified aspects 

about numerical simulation and provided guidelines about selection of strain-energy functions, their 

calibrations, selection of theoretical approach and elements for finite element formulations. All 

these aspects are of primarily concern for researchers in engineering fields where the aneurysm 

development assumes an important role. Furthermore, the scaling effect is explored for the first time 

and it has been demonstrated how all the different choices in the modelling steps can heavily affect 

the results of the simulation and its match with experimental data. The researcher can take 

advantages of these alternative approaches to produce different level of prediction accuracy 

according to time and resources available for the associated numerical analyses. 

 

All the analyses within this paper and many of the cited references are based on static analysis. 

Detailed modelling in most cases will require a complete fluid-structure interaction model to give 

better insight. Such fluid structure interaction analyses are extremely time-consuming and situation 

dependent, especially when incompressible materials and fluids are involved. Here it is sufficient to 

say that the static analysis is a very necessary initial analysis to insure that new ideas and design 

have reason to be subject to the implied more complex dynamic analysis.  

 

For engineering purposes the single distensible tube has relevance, whereas the branched distensible 

tube has relevance to both engineering and medical research. 
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Appendix A 

 

This appendix provides strain-energy function parameters estimates for different combinations of 

uniaxial (U), equi-biaxial (E) and pure shear (P) for Treloar and Kawabata et al. materials. It will be 

observed that the Mooney-Rivlin and Ogden strain-energy functions have no parameter derivations 

based on use of pure shear data alone. For pure shear 13  ,  1  and so  12  . Hence 21 II   

and the dependence of these strain-energy functions upon 1I  and 2I  cannot be captured using pure 

shear data. In other cases parameter values are omitted due to software detected instability during 

the fitting process. This ABAQUS
®
 software state of instability is diagnosed using a test finite 

element to investigate behaviour of stress with changing strain [26]. When very large stress 

increases occur for very small strain increments numerical instability is declared. 

 

Table A1   Mooney–Rivlin parameters 

Treloar data (Appendix A of [1])  

Data sets 

Kawabata et al. data [3] 

][10 PaC  ][01 PaC  ][10 PaC  ][01 PaC  

210587.307 1504.76719   U/E/P 165640.263   4283.64967 

225654.810   723.077386   U/E 168199.752   4002.21852 

Unstable    U/P 151205.212 18659.3698 

171395.981 4484.88823   E/P 171187.089   3258.40312 

Unstable    U 132399.391 69720.4796 

188677.067 3336.49811   E 206808.190 –1639.89324 

 

 

Table A2   Ogden parameters 

 Treloar data (Appendix A of [1])  

Data sets 

Kawabata et al. data [3] 

N ][Pa    ][Pa    

1 1 359237.938 1 2.11120130 U/E/P 1 396198.165 1 1.65607343 

2 1 42073.4586 1 3.60405498 U/E/P 1 360506.823 1 1.69468344 

 2 360636.118 2 –0.03270528  2 32067.6210 2 –1.16772196 

3 1 398206.801 1 1.13176086 U/E/P 1 371516.221 1 1.45516761 

 2 5377.71517 2 4.73211925  2 7642.20260 2 3.98590415 

 3 7647.41545 3 –2.14619240  3 15126.4287 3 –1.62520533 
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1 1  351146.363 1  2.18594351 U/E 1 396960.176  1 1.67730181 

2 1  50935.0027 1  3.49453801 U/E 1 313856.488  1 1.85486372 

 2  341658.313 2  –0.08026203  2 76794.6149  2 –0.56981938 

3 1 397104.353 1 1.16713591 U/E 1 365848.437  1 1.51122161 

 2 3475.35302 2 4.97913398  2 3085.44716  2 4.85887601 

 3 7685.76954 3 –2.16788790  3 24242.5426 3 –1.33309384 

1 1 312445.091 1 2.22398921 U/P 1 389885.113  1 1.64600146 

2 Unstable  U/P 1 7134.83485   1 4.07772362  

    2 385806.221  2 1.43803039 

3 1 68511.5465 1 3.12460724 U/P 1 389404.031   1 1.44987755 

 2 0.07034262 2 10.3384903  2 3791.64258         2 4.68810661 

 3 342108.701 3 0.02241924  3 –0.10926884  3 –12.2916732 

1 1 415943.662 1 1.87886044 E/P 1 401039.902   1 1.67510981 

2 1 416910.689 1 1.73012318 E/P 1 377603.874     1 1.62206426  

 2 727.119636 2 –3.06563173  2 18258.0747    2 –1.54908746 

3 1 415000.046 1 1.30510587 E/P 1 372203.856     1 1.47327487 

 2 3237.62981 2 4.98702130  2 7648.68250    2 3.69167649 

 3 3192.12249 3 –2.47905674  3 15998.1343    3 –1.62642942 

1 1 263263.880 1 2.41450103 U 1 384747.397 1 1.66804487 

2 1 794.174092  1 5.73957674 U 1 137.317773    1 7.25441873 

 2 367442.306 2 1.53404686  2 388286.692     2 1.55758121 

3 1 93246.9186 1 2.91596359 U Unstable  

 2 0.11550173      2 10.1311383    

 3 308210.545       3 –0.23814740    

1 1 427052.184        1 2.08748534 E 1 406487.857   1 1.90701322 

2 1 433437.288         1 1.70547134 E 1 374794.147   1 1.39728754  

 2 338.366920    2 –3.34932555  2 18488.5573     2 –1.76217330 

3 Unstable  E Unstable  
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Table A3   Neo–Hookean parameters 

Treloar data (Appendix A of [1])  

Data sets 

Kawabata et al. data [3] 

][10 PaC  ][10 PaC  

191999.034 U/E/P 183028.478 

197482.041 U/E 185198.822 

182901.819 U/P 176775.086 

197537.128 E/P 188291.952 

185263.958 U 174489.162 

219910.806 E 201056.504 

179383.516 P 179188.915 

 

Table A4   Yeoh parameters  

Treloar data (Appendix A of [1])  

Data sets 

Kawabata et al. data [3] 

][10 PaC  ][20 PaC  ][30 PaC  ][10 PaC  ][20 PaC  ][30 PaC  

190592.559 –1634.89996 41.3399927 U/E/P 197187.709 –4488.25309 177.629075 

188258.146 –1386.21156 37.8669378 U/E 196726.363 –4053.13634 166.901802 

179902.428 –1661.85611 42.2411003 U/P 193713.186 –4702.74588 172.404185 

211077.700 –2974.55327 74.7048652 E/P 201084.695 –3912.25117 146.177404 

167636.559 –1376.96240 39.9150124 U 190793.456 –5198.87204 219.299572 

222164.258 –1892.78629 48.9352453 E 203941.679 –453.675959 3.12876288 

201377.664 –3668.20550 99.9279490 P 197033.799 –4298.88146 133.444512 

 

Table A5   Arruda–Boyce parameters  

Treloar data (Appendix A of [1])  

Data sets 

Kawabata et al. data [3] 

][Pa  
m  ][Pa  

m  

332366.997 5.37292266 U/E/P 366056.948 6420.20926 

332902.114 5.30761544 U/E 370397.638 7151.01182 

306892.917 5.10704686 U/P 353550.168 8340.26732 

383191.292 9.25324894 E/P 376583.898 7606.61247 

288547.627 4.89038912 U 348978.321 9090.78585 

415842.174 7.35966897 E 402113.005 8874.20437 

358767.024 8904.31621 P 358377.827 9626.90878 
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Appendix B 

 

Tables B1 provide critical pressure for different analyses using alternative Treloar data set 

combinations and various strain-energy functions. Tables B2 provide corresponding results for 

Kawabata et al. data. 

 

Table B1 (a) Numerical results for critical pressure (Pa) using simple theory and Treloar data 

Model Uniaxial 

Equi-biaxial 

Pure shear 

Uniaxial 

Equi-biaxial 

 

Uniaxial 

 

Pure Shear 

 

Equi-biaxial 

Pure shear 

Uniaxial 

 

 

Equi-biaxial 

 

 

 

Pure shear 

Neo-Hookean 28794.5 29616.8 27430.1 29625.0 27784.4 32980.5 26902.5 
Yeoh 28060.1 27787.9 26450.0 30726.3 24701.7 32712.8 29078.9 
Arruda-Boyce 25681.4 25742.6 23792.3 29018.6 22440.8 31675.1 26902.5 
Mooney-Rivlin 31961.0 34024.3 unstable 26839.8 unstable 29139.3 not possible 
Ogden N=1 27060.6 26544.8 23665.7 31061.5 20177.5 32135.8 not possible 
Ogden N=2 31567.7 31098.1 unstable 31125.3 27330.6 32277.7 not possible 
Ogden N=3 30857.8 30589.6 32211.9 31441.5 32233.4 unstable not possible 

 

Table B1 (b) Numerical results for critical pressure (Pa) using membrane theory and Treloar data 

Model Uniaxial 

Equi-biaxial 

Pure shear 

Uniaxial 

Equi-biaxial 

 

Uniaxial 

 

Pure Shear 

 

Equi-biaxial 

Pure shear 

Uniaxial 

 

 

Equi-biaxial 

 

 

 

Pure shear 

Neo-Hookean 32508.4 33436.7 30968.1 33446.1 31368.0 37234.3 30372.4 
Yeoh 31491.1 31214.1 29670.5 34357.1 27731.6 36714.6 32430.7 
Arruda-Boyce 29072.1 29143.5 26942.6 32789.7 25420.1 35810.9 30372.4 
Mooney-Rivlin 36018.0 38380.9 unstable 30102.3 unstable 32750.0 not possible 
Ogden N=1 30890.0 30518.6 27305.9 34643.8 23612.3 36598.6 not possible 
Ogden N=2 32104.3 31742.7 unstable 34190.7 29559.3 35381.9 not possible 
Ogden N=3 32355.3 32090.2 33010.0 33386.6 33083.4 unstable not possible 

 

Table B1 (c) Numerical results for critical pressure (Pa) using FEM with shell element (S4R) and 

Treloar data 

Model Uniaxial 

Equi-biaxial 

Pure shear 

Uniaxial 

Equi-biaxial 

 

Uniaxial 

 

Pure Shear 

 

Equi-biaxial 

Pure shear 

Uniaxial 

 

 

Equi-biaxial 

 

 

 

Pure shear 

Neo-Hookean 32870.4 33721.8 31171.0 33730.1 31686.3 37668.5 30207.1 
Yeoh 31275.9 30970.5 29980.7 34634.4 28013.6 36826.1 32121.8 
Arruda-Boyce 29106.7 29164.4 27256.7 33131.3 25676.1 36162.2 30207.1 
Mooney-Rivlin 36397.2 38752.9 unstable 30411.8 unstable 33022.3 not possible 
Ogden N=1 31065.0 30469.0 27693.2 34722.6 24123.8 37046.1 not possible 
Ogden N=2 32260.0 31920.1 unstable 34278.0 29465.4 35554.2 not possible 
Ogden N=3 32487.7 32247.8 33188.5 33608.8 33286.3 unstable not possible 
Marlow not possible not possible not possible not possible 27291.5 34628.4 30185.6 
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Table B1 (d) Numerical results for critical pressure (Pa) using FEM with solid element (C3D20H) 

and Treloar data 

Model Uniaxial 

Equi-biaxial 

Pure shear 

Uniaxial 

Equi-biaxial 

 

Uniaxial 

 

Pure Shear 

 

Equi-biaxial 

Pure shear 

Uniaxial 

 

 

Equi-biaxial 

 

 

 

Pure shear 

Neo-Hookean 32671.8 33606.5 31216.0 33617.0 31611.0 37513.4 30469.8 
Yeoh 31700.2 31421.2 29864.6 34389.7 27527.1 36671.3 32615.1 
Arruda-Boyce 29295.4 29339.4 27032.6 32919.5 25515.4 36060.2 30469.8 
Mooney-Rivlin 36290.5 38679.6 unstable 30100.9 unstable 32309.0 not possible 
Ogden N=1 30975.7 30718.0 27436.6 34761.8 23961.0 36942.0 not possible 
Ogden N=2 32125.0 31753.3 unstable 34248.5 29645.5 35404.2 not possible 
Ogden N=3 31964.8 31105.6 33019.1 32970.7 33104.9 unstable not possible 
Marlow not possible not possible not possible not possible 25566.9 34601.7 30064.3 

 

Table B1 (e) Numerical results for critical pressure (Pa) using FEM with axisymmetric element 

(CAX8H) and Treloar data 

Model Uniaxial 

Equi-biaxial 

Pure shear 

Uniaxial 

Equi-biaxial 

 

Uniaxial 

 

Pure Shear 

 

Equi-biaxial 

Pure shear 

Uniaxial 

 

 

Equi-biaxial 

 

 

 

Pure shear 

Neo-Hookean 32674.9 33602.9 31216.1 33613.4 31612.0 37515.4 30473.3 
Yeoh 31699.6 31420.2 29865.4 34393.6 27531.6 36634.0 32614.7 
Arruda-Boyce 29298.0 29363.7 27027.3 32918.3 25518.6 36053.7 30473.3 
Mooney-Rivlin 36287.9 38521.3 unstable 30104.7 unstable 32314.7 not possible 
Ogden N=1 30980.0 30722.0 27433.1 34751.2 23951.7 36940.4 not possible 
Ogden N=2 32125.8 31754.4 unstable 34239.0 29644.0 35390.6 not possible 
Ogden N=3 31942.1 31043.0 33020.3 32937.9 33103.8 unstable not possible 
Marlow not possible not possible  not possible not possible  27156.2 34601.5 30063.8 

 

Table B1 (f) Numerical results for critical pressure (Pa) using FEM with shell element (S4R) with 

clamped-symmetry boundary condition and Treloar data 

Model Uniaxial 

Equi-biaxial 

Pure shear 

Uniaxial 

Equi-biaxial 

 

Uniaxial 

 

Pure Shear 

 

Equi-biaxial 

Pure shear 

Uniaxial 

 

 

Equi-biaxial 

 

 

 

Pure shear 

Neo-Hookean 32869.3 33720.2 31184.6 33728.5 31691.0 37668.4 30205.8 
Yeoh 31334.5 30969.1 29980.6 34632.8 28012.7 36850.9 32197.8 
Arruda-Boyce 29105.4 29163.2 27255.6 33129.9 25675.0 36168.8 30205.8 
Mooney-Rivlin 36401.0 38751.3 unstable 30415.5 unstable 33020.7 not possible 
Ogden N=1 31083.4 30507.5 27696.0 34720.7 24126.6 37049.0 not possible 
Ogden N=2 32262.8 31921.7 unstable 34275.8 29463.3 35567.5 not possible 
Ogden N=3 32485.4 32245.7 33190.8 33474.1 33285.6 unstable  not possible 
Marlow not possible not possible not possible not possible 27297.8 34626.0 30186.0 
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Table B2 (a) Numerical results for critical pressure (Pa) using simple theory and Kawabata et al. 

data 

Model Uniaxial 

Equi-biaxial 

Pure shear 

Uniaxial 

Equi-biaxial 

 

Uniaxial 

 

Pure Shear 

 

Equi-biaxial 

Pure shear 

Uniaxial 

 

 

Equi-biaxial 

 

 

 

Pure shear 

Neo-Hookean 27449.1 27774.6 26511.3 28238.5 26168.5 30152.8 26873.3 
Yeoh 28248.6 28299.8 27666.3 28983.1 27112.0 30431.1 28261.6 
Arruda-Boyce 27449.1 27774.6 26511.3 28238.5 26168.5 30152.8 26873.3 
Mooney-Rivlin 25925.6 26237.3 27489.2 26496.9 38484.8 30603.6 not possible 
Ogden N=1 29417.5 29487.7 28942.7 29789.3 28574.7 30382.3 not possible 
Ogden N=2 29878.5 30083.5 29237.1 29914.8 28804.2 29648.0 not possible 
Ogden N=3 29805.3 29824.2 29227.8 29916.9 unstable unstable not possible 

 

Table B2 (b) Numerical results for critical pressure (Pa) using membrane theory and Kawabata et 

al. data 

Model Uniaxial 

Equi-biaxial 

Pure shear 

Uniaxial 

Equi-biaxial 

 

Uniaxial 

 

Pure Shear 

 

Equi-biaxial 

Pure shear 

Uniaxial 

 

 

Equi-biaxial 

 

 

 

Pure shear 

Neo-Hookean 30989.5 31357.0 29930.7 31880.7 29543.7 34042.0 30339.4 
Yeoh 31432.5 31533.3 30754.5 32311.8 30092.9 34298.6 31453.2 
Arruda-Boyce 30989.5 31357.0 29930.7 31880.7 29543.7 34042.0 30339.4 
Mooney-Rivlin 29079.2 29443.6 30147.6 29770.3 no max. 34621.4 not possible 
Ogden N=1 32102.8 32244.3 31554.1 32567.3 31218.4 33982.1 not possible 
Ogden N=2 32204.9 32335.3 31512.8 32222.6 31173.5 31309.9 not possible 
Ogden N=3 31930.5 31911.7 31482.2 32039.1 unstable  unstable not possible 

 

Table B2 (c) Numerical results for critical pressure (Pa) using FEM with shell element (S4R) and 

Kawabata et al. data 

Model Uniaxial 

Equi-biaxial 

Pure shear 

Uniaxial 

Equi-biaxial 

 

Uniaxial 

 

Pure Shear 

 

Equi-biaxial 

Pure shear 

Uniaxial 

 

 

Equi-biaxial 

 

 

 

Pure shear 

Neo-Hookean 31201.2 31673.2 29852.0 32250.6 29536.2 34253.0 30180.8 
Yeoh 31700.5 31795.7 30774.7 31986.8 30354.4 34496.8 31720.6 
Arruda-Boyce 31201.2 31673.2 29852.0 32250.6 29536.2 34253.0 30180.8 
Mooney-Rivlin 29146.0 29583.3 30489.5 29920.8 no max. 34798.6 not possible 
Ogden N=1 32365.1 32506.5 31817.0 32813.0 31465.8 34161.5 not possible 
Ogden N=2 32347.0 32472.3 31754.4 32389.6 31411.9 31501.8 not possible 
Ogden N=3 32096.9 32062.9 31723.3 32201.0 unstable  unstable not possible 
Marlow not possible not possible not possible not possible 29001.3 34758.5 31410.5 
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Table B2 (d) Numerical results for critical pressure (Pa) using FEM with solid element (C3D20H) 

and Kawabata et al. data 

Model Uniaxial 

Equi-biaxial 

Pure shear 

Uniaxial 

Equi-biaxial 

 

Uniaxial 

 

Pure Shear 

 

Equi-biaxial 

Pure shear 

Uniaxial 

 

 

Equi-biaxial 

 

 

 

Pure shear 

Neo-Hookean 31237.5 31600.3 30082.6 32098.7 29734.2 33429.1 30441.3 
Yeoh 31529.4 31646.9 30910.8 32491.8 30176.2 33663.0 31549.9 
Arruda-Boyce 31237.5 31600.3 30082.6 32098.7 29734.2 33429.0 30441.2 
Mooney-Rivlin 29211.2 29544.1 30360.1 29851.9 no max. 34125.5 not possible 
Ogden N=1 32177.5 32312.3 31663.8 32607.5 31347.8 33466.3 not possible 
Ogden N=2 31160.2 32285.6 31581.4 32104.9 31279.6 31037.4 not possible 
Ogden N=3 31631.5 30763.3 31552.8 31967.6 unstable unstable not possible 
Marlow not possible not possible not possible not possible 29298.1 34565.7 31318.0 

 

Table B2 (e) Numerical results for critical pressure (Pa) using FEM with axisymmetric element 

(CAX8H) and Kawabata et al. data 

Model Uniaxial 

Equi-biaxial 

Pure shear 

Uniaxial 

Equi-biaxial 

 

Uniaxial 

 

Pure Shear 

 

Equi-biaxial 

Pure shear 

Uniaxial 

 

 

Equi-biaxial 

 

 

 

Pure shear 

Neo-Hookean 31237.7 31601.2 30085.6 32100.7 29736.5 33435.2 30444.7 
Yeoh 31533.9 31644.3 30911.8 32491.0 30167.6 33669.4 31552.8 
Arruda-Boyce 31237.7 31601.2 30085.6 32100.7 28988.7 33435.2 30444.7 
Mooney-Rivlin 29213.9 29547.2 30359.8 29855.2 no max. 34108.0 not possible 
Ogden N=1 32179.7 32314.7 31665.3 32607.2 31348.9 33415.9 not possible 
Ogden N=2 31101.2 32276.8 31582.9 32102.6 31280.7 31039.9 not possible 
Ogden N=3 31835.0 30730.2 31554.5 31958.9 unstable unstable not possible 
Marlow not possible not possible not possible not possible 29299.2 34131.1 31318.8 

 

Table B2 (f) Numerical results for critical pressure (Pa) using FEM with shell element (S4R) with 

clamped-symmetry boundary condition and Kawabata et al. data 

Model Uniaxial 

Equi-biaxial 

Pure shear 

Uniaxial 

Equi-biaxial 

 

Uniaxial 

 

Pure Shear 

 

Equi-biaxial 

Pure shear 

Uniaxial 

 

 

Equi-biaxial 

 

 

 

Pure shear 

Neo-Hookean 31214.1 31678.1 29850.7 32251.1 29534.9 34251.5 30179.5 
Yeoh 31699.5 31797.8 31036.9 31985.2 30353.6 34495.2 31719.6 
Arruda-Boyce 31214.1 31678.1 29850.7 32251.1 29534.9 34251.5 30179.5 
Mooney-Rivlin 29166.6 29599.1 30489.7 29936.5 no max. 34797.1 not possible 
Ogden N=1 32364.0 32505.2 31817.5 32811.4 31468.6 34159.7 not possible 
Ogden N=2 32344.8 32481.4 31753.6 32387.5 31413.7 31500.3 not possible 
Ogden N=3 32094.8 32060.7 31722.6 32198.9 unstable unstable not possible 
Marlow not possible not possible not possible not possible 29061.2 34757.8 31416.6 

 

 

 

 



 36 

References  

 

[1] A. Bucchi, G.E. Hearn, Predictions of Aneurysm Formation in Distensible Tubes – Part A – 

Theoretical Background to Alternative Approaches, International Journal of Mechanical Sciences, 

71 (2013) 1–20. 

[2] L.R.G. Treloar, Stress–strain data for vulcanised rubber under various types of deformation, 

Transactions of the Faraday Society, 40 (1944) 59–70. 

[3] S. Kawabata, M. Matsuda, K. Tei, H. Kawai, Experimental Survey of the Strain Energy 

Density Function of Isoprene Rubber Vulcanizate, Macromolecules, 14 (1981) 154–162. 

[4] J. Shi, G.F. Moita, The post-critical analysis of axisymmetric hyper-elastic membranes by the 

finite element method, Computer Methods in Applied Mechanics and Engineering, 135 (1996) 265–

281. 

[5] J.F. Rodriguez, C. Ruiz, M. Doblaré, G.A. Holzapfel, Mechanical Stresses in Abdominal Aortic 

Aneurysms: Influence of Diameter, Asymmetry, and Material Anisotropy, Journal of 

Biomechanical Engineering, 130 (2008) 021023–1 – 021023–10. 

[6] D. Tang, C. Yang, D.N. Ku, A 3-D thin-wall model with fluid-structure interactions for blood 

flow in carotid arteries with symmetric and asymmetric stenoses, Computers and Structures, 72 

(1999) 357–377. 

[7] M.L. Raghavan, D.A. Vorp, Toward a biomechanical tool to evaluate rupture potential of 

abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its 

applicability, Journal of Biomechanics, 33 (2000) 475–482. 

[8] J.R. Chaplin, V. Heller, F.J.M. Farley, G.E. Hearn, R.C.T. Rainey, Laboratory testing the 

Anaconda, Philosophical Transaction of the Royal Society of London. Series A, 370 (2012) 403–

404. 

[9] D. Pamplona, P.B. Goncalves, S.R.X. Lopes, Finite deformations of cylindrical membrane 

under internal pressure, International Journal of Mechanical Sciences, 48 (2006) 683–696. 

[10] P.B. Goncalves, D. Pamplona, S.R.X. Lopes, Finite deformations of an initially stressed 

cylindrical shell under internal pressure, International Journal of Mechanical Sciences, 50 (2008) 

92–103. 

[11] R.W. Ogden, Large deformation isotropic elasticity – on the correlation of theory and 

experiment for incompressible rubber-like solids, Proceedings of the Royal Society of London, 326 

(1972) 565–584. 

 

 



 37 

[12] A. Needleman, Inflation of spherical rubber balloons, International Journal of Solids and 

Structures, 13 (1977) 409–421. 

[13] D.M. Haughton, Post-bifurcation of Perfect and Imperfect Spherical Elastic Membranes, 

International Journal of Solids and Structures, 16 (1980) 1123–1133. 

[14] E. Chater, J.W. Hutchinson, On the propagation of bulges and buckles, Journal of Applied 

Mechanics, 51 (1984) 269–277. 

[15] S. Kyriakides, Y.C. Chang, On the inflation of a long elastic tube in the presence of axial load, 

International Journal of Solids and Structures, 26 (1990) 975–991. 

[16] S. Kyriakides, Y.C. Chang, The initiation and propagation of a localized instability in an 

inflated elastic tube, International Journal of Solids and Structures, 27 (1991) 1085–1111. 

[17] X. Guo, Kinematic modeling of finite axisymmetric inflation for an arbitrary polymeric 

membrane of revolution, Polymer-Plastics Technology and Engineering, 40 (3) (2001) 341–361. 

[18] X. Guo, Large deformation analysis for a cylindrical hyperelastic membrane of rubber-like 

material under internal pressure, Rubber Chemistry and Technology, 74 (2001) 100–115. 

[19] M. Kohandel, S. Sivaloganathan, G. Tenti, J.M. Drake, The constitutive properties of the brain 

parenchyma Part 1. Strain energy approach, Medical Engineering & Physics, 28 (2006) 449–454. 

[20] Z. Gao, K. Lister, J.P. Desai, Constitutive Modeling of Liver Tissue: Experiment and Theory, 

Annals of Biomedical Engineering, 38 (2010) 505–530. 

[21] B.J. Doyle, T.J. Corbett, A. Callanan, M.T. Walsh, D.A. Vorp, T.M. McGloughlin, An 

Experimental and Numerical Comparison of the Rupture Locations of an Abdominal Aortic 

Aneurysm, Journal of Endovascular  Therapy, 16 (2009) 322–335. 

[22] K.J. Bathe, Finite Element Procedures, Prentice Hall, Upper Saddle River (N.J.), 1996. 

[23] E. Riks, An Incremental Approach to the Solution of Snapping and Buckling Problems, 

International Journal of Solids and Structures, 15 (1979) 529–551. 

[24] J. Black, G. Hastings, Handbook of Biomaterial Properties, Chapman & Hall, London, 1998 

[25] M. Street, Personal communication providing geometrical model for branched tube analysis,  

EDMC, Faculty of Engineering and the Environment, University of Southampton (2012). 

[26] D. Cadge, A. Prior, Finite Element Modelling of Three-Dimensional Elastomeric Components, 

in: D. Boast, V.A. Coveney (Eds.), Finite Element Analysis of Elastomers, Professional 

Engineering Publishing, Bury St Edmunds, 1999, pp. 187–205. 


