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Abstract—This paper proposes a novel framework to segment
hand gestures in RGB-D images captured by Kinect using
human-like approaches for human-robot interaction. The goal
is to reduce the error of Kinect sensing and consequently to
improve the precision of hand gesture segmentation for robot
NAO. The proposed framework consists of two main novel
approaches. Firstly, the depth map and RGB image are aligned
by using the genetic algorithm to estimate key points, and
the alignment is robust to uncertainties of the extracted point
numbers. Then a novel approach is proposed to refine the edge
of the tracked hand gestures in RGB images by applying a
modified Expectation-Maximisation (EM) algorithm based on
Bayesian networks. The experimental results demonstrate the
proposed alignment method is capable of precisely matching the
depth maps with RGB images, and the EM algorithm further
effectively adjusts the RGB edges of the segmented hand gestures.
The proposed framework has been integrated and validated in
a system of human-robot interaction to improve NAO robot’s
performance of understanding and interpretation.

Index Terms—RGB-D, Alignment, Hand Gesture Segmenta-
tion, HCI

I. INTRODUCTION

Recently, the problem of acquisition and recognition of
human hand gestures from RGB-Depth (RGB-D) sensors, such
as Microsoft’s Kinect, is an important subject in the area of the
computer vision and pattern analysis. In order to extract and
recognise hand gestures from RGB-D data, many researchers
conducted significant contribution, including the hand gesture
extracting, tracking, recognising and so on [1]-[3]. These
achievements are of much importance for research in areas
of human-computer interaction (HCI). Researchers largely
welcome the Kinect developed by Microsoft Corporation, as it
can simultaneously acquire data of RGB image and depth map
of the scene by its IR emitter and camera sensors. Its broad
applications cover 3D reconstruction [4], [5], image processing
[6], human-machine interface [2], [7]-[10], robotics [11], [12],
object recognition [13], [14], just to name a few [15], [16].
However, there are many problems such as distortion and
disaccord of depth and RGB images in corresponding pixels,
especially the limitations in extracting of correct human hand
gestures [17]. Due to the noises and holes in the RGB-D data,
precisely segmenting the hand gestures is still a challenge.
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In computer vision, camera calibration is a necessary step
in scene reconstruction in order to extract metric informa-
tion from images [18]. This includes internal calibration of
each camera as well as external parameters of relative pose
calibration between the cameras. Colour camera calibration
has been studied extensively and different calibration tech-
niques have been developed for depth sensors depending on
the circumstances [3], [19], [20]. In a similar manner, the
calibration of RGB image and depth map is much essential
for their consistency and synchronisation. For recovering and
tracking the 3D position, orientation and full articulation of a
human hand from markerless visual observations, an algorithm
of minimising the discrepancy between the appearance and 3D
structure of hypothesised instances of a hand model and actual
hand observations was developed in [21]. Li implemented a
novel algorithm for contactless hand gesture recognition, and it
is a real-time system which detects the presence of gestures, to
identify fingers and to recognise the meanings of nine gestures
in a predefined popular gesture scenario [22]. For handling the
noisy hand shapes obtained from the Kinect sensor, Zhang
designed a approach of distance metric for hand dissimilarity
measure, called Finger-Earth Mover’s Distance [18]. As it only
matches fingers while not the whole hand shape, it can better
distinguish hand gestures of slight differences. In [23], Van
et al. designed a robust and real-time system of 3D hand
gesture interaction with a robot for understanding directions
from humans. The system was implemented to detect hand
gestures in any orientation and more in particular pointing
gestures while extracting the 3D pointing direction.

Because of the complexity and dexterity of the human
hand, recognising the unconstrained human hand motions is
a fundamental challenge in existing algorithms [24]. Kinect
provides a promising way to realise stable, effective and
natural human-computer interaction [1], [25]-[27]. The rest of
this paper is organised as follows. The problem of hand gesture
segmentation via Kinect is given and the proposed framework
is introduced in Section II; Depth and RGB image alignment is
investigated in Section III. Hand gesture segmentation using an
EM algorithm is proposed in section IV. Experimental results
are discussed in Section V, followed by conclusions in Section
VL

II. PROBLEMS OF HAND GESTURE SEGMENTATION VIA
KINECT

Depth and colour/RGB images are simultaneously captured
by Kinect at a frame rate of up to 30 fps. More than 300,000
depth-coloured points are captured in each frame. One “per-
fect” frame will consist of these points with absolutely correct



alignment of the depth and colour data. However, due to the
limitations of the systematic design and the random errors, the
alignment of the depth and RGB images highly relies on the
identification of the mathematical model of the measurement
and the calibration parameters involved. The characterisation
of random errors is important and useful in further processing
of the depth data, for example in weighting the point pairs or
planes in the registration algorithm [28]—[30].
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Fig. 1: Hand gesture segmentation (a) RGB image;
(b)uncalibrated; (c) Calibrated using official calibration

A proprietary algorithm is used to calibrate Kinect devices
when manufacturing, and these calibrated parameters stored in
the devices’ internal memory are used to perform the image
construction. The official calibration is adequate for human
body motion analysis or casual use, but it lacks accuracy in
hand gesture segmentation and recognition. Fig. 1b shows
the result of hand segmentation based on depth threshold
without official calibration from the RGB image in Fig. la,
and it shows the colourful finger can not be seen and the
mismatch between the depth and colour images is huge. Fig.
Ic shows the result using the official calibration. It clearly
indicates that only half of the finger can be seen in the
segmented RGB image, and this will severely affect the further
hand gesture recognition. Other calibration algorithms have
been proposed to solve the problem of the disparity/depth
distortion [20], e.g. Smisek et al. [31] introduced a depth
distortion correction component as the average of the residuals
in metric coordinates, while Daniel et al. [3] proposed a
disparity distortion correction that depends on the observed
disparity which further improves accuracy. These algorithms
require a lot calibrating images and the optimisations are
based on the whole scene, which means they are not practical
and may sacrifice the precision of local space to achieve an
overall minimisation. Since depth range of the Kinect devices
is around 50cm to 5Sm and the resolution is about 1.5mm at
50cm and Scm at 5m, the hand, as a small part of the body,
needs to be closer to the camera to get a clearer image and it
asks for higher precision in depth and RGB image alignment
for hand segmentation and then for hand gesture recognition.
In addition, due to the noise and holes of the depth data, the
image segmentation based on the depth information has lots of
mismatched pixels including the background pixels in the seg-
mented objects and object pixels left in the background [16].
This problem with mismatched pixels has not been addressed

in the current literature. Recently, more advanced methods
have been reported to recognise hand gestures [32]. Fabio et
al. introduced an effective way of exploiting depth information
for hand gesture recognition, with a limited and not always
required colour information aid for hand identification only,
and achieved a very high recognition rate [33]. It used finger
distance from the hand centroid as feature, which however is
not always available as the fingertips might not be found due
to occlusion or noise. Yuan et al. proposed a novel framework
for recognising hand gestures, which is inspired by the current
depth image-based body pose estimation technology, via a
semiautomatic labeling strategy using a Kinect sensor and
coloured glove. The accuracy of the recognition is limited by
the hand segmentation and hand part classification [34].

The resolution of the kinect depth image is 640x480, which
works well to track human body gestures. For smaller object,
e.g. the highly articulated human hand which takes up only
a small part in the whole image, it is very hard to detect
and segment through the depth image. Based on the captured
depth data from Kinect, e.g. in Fig. 2, there are a lot of noise
with missing bits and flickering issue [35], [36]. These noises
and holes will effect feature extraction and pattern recognition
[37]. This paper focuses on precise segmentation of the hand
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Fig. 2: The holes and mismatches in the hand images captured
by Kinect

gestures using RGBD image, trying to get rid of the mismatch
and holes. It will potentially provide help to extract hand
features and further to strengthen recognition accuracy. In
this paper, an integrative framework is proposed to precisely
segment the hand gestures using RGBD image, shown in Fig.
3, similar to the human’s approach, which normally tracks
and locates the both hands based on the global human body
gesture firstly and then extracts the details of the fingers based
on the local colour clues. In this framework, genetic algorithm
is firstly used to match the depth mag with RGB image,
and then an EM algorithm is proposed to further adjust the
segmentation edge based on the depth map, RGB image and
locations of the pixels. The localisation of the human hand is
realised by spatio-temporal filtering method [38], [39] based
on the filtering global interest points on the dynamic images.
After the whole hand is located, the edge of the hand will be



precisely detected and refined through assigning pixels around
the edge with both the depth and RGB information. The
contributions of this paper include two main approaches: 1)
the proposed alignment method employs genetic algorithms to
estimate the key points from both depth and RGB images, and
it is robust to the uncertainties of the point numbers identified
by using the common image processing tools such as corner
and edge detectors. It is capable of correctly positioning the
depth image with the RGB image. 2) due to the noise and
holes in the depth map, the segmented result using the depth
information has lots of mismatched pixels, which need further
adjustment. To solve this problem, a novel approach has been
proposed to further refine the edge of the segmented hand
gesture via EM algorithm. The proposed approach has been
further implemented to interact a humanoid robot using hand
gestures.
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Fig. 3: An integrative framework of hand gesture segmentation
with human-like approaches for human robot interaction.

III. DEPTH AND RGB IMAGE ALIGNMENT
A. Mathematical Model

Depth and RGB image alignment is essential for human
motion analysis using Kinect, especially for the hand gesture
recognition, which requires a much more accurate hand loca-
tion and segmentation. It plays a key role in extracting motion
features from the segmented images including both RGB and
depth information.

Pinhole model is used to describe the RGB camera [3]. The
calibration is to find the transformation matrix from 3D world
coordinates to 2D image coordinates or between two 2D image
coordinates by solving the unknown parameters of the camera
model [40]. Let P be an arbitrary 3D point located in the
scene and p. be its projection on the RGB image plane. The

coordinates of P in the RGB camera coordinate system are
[¥e,¥e,zc)7 and in the world coordinate system are [X,Y,Z]T.
The coordinates of p. in RGB image frame are [u.,v.]” and
their relation can be expressed by the following transformation
given by the homogeneous coordinates
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where A. is a scale factor and F_ is the perspective transfor-
mation matrix,
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A, is the camera intrinsic parameter matrix; o, and f. are
the scale factors in the RGB camera image coordinate system,
(ug,v() are the coordinates of the principal points, ¥, is the
skewness of the two image axes and M, is a 4 by 4 matrix
describing the transformation from world coordinate system
to camera coordinate system:
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where t. = [t5,2,1€]T describes the translation between the
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two systems, anzl R, is a 3 by 3 orthonormal rotation matrix
which can be defined by the three Euler angles along three
axis respectively.

The depth camera typically outputs an image with depth
values, denoted by py = [ug,vaq,z4]", where (ug,vy) are the
pixel coordinates, and z; is the depth value. The mapping
from pg to the point in the world coordinate system [X,Y,Z]”
follows a similar model to that used for the RGB camera:
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where A, is the depth camera’s intrinsic parameter matrix. If
the same point P is captured simultaneously by the RGB and
depth cameras, according to the Eq. 1 and 4, the transforma-
tion between the coordinates in the RGB and depth camera
coordinate systems can be expressed as

Ue Ug
ve| =KcHacKy" | va (5)
1 1
where the homographs matrix Hy, is
T
in
Hye=R— =7~ (6)

R is the rotation matrix by which the depth camera is rotated
in relation to the RGB camera; ¢ is the translation vector from
the depth camera to the RGB camera; n and d are the normal

vector of the plane and the distance to the plan respectively.

K. =A, {(I)] Ky =A4Ay {(1)] are the cameras’ intrinsic parameter

matrices.



Based on the above calibration model, we can use key points
P; in the scene to estimate the transformation matrix, Ty, =
KL.HdCKd’I, which translate depth image coordinates to RGB
image coordinates. Key points identified in both RGB and
depth map are used to build the mapping relationship between
them. Suppose there are m key points p' = [u/,v/, 1]7,1 <i<m,
captured simultaneously by both cameras, one estimation of
the transformation matrix can be achieved by considering any
three points and the overall estimation can be found by
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(a) RGB image

(b) Depth image

Fig. 4: Checkerboard captured via Kinect

A checkerboard is employed and displaced around 50cm to
100cm in front of the Kinect, and the distance of the checker-
board needs to be adjusted properly to achieve a satisfying
performance of the crossing point and apex identification. It
would be ideal to put the checkerboard about 0.80 meters
away from the Kinect as it is the place where the Kinect
can better track the hand with a proper resolution, shown in
Fig. 4. The board consists of exact 5 x 4 black and white
square boxes. Different from RGB images, depth images can
not identify the crossing points automatically and thus these
crossing points can not be regarded as the key points [20]. The
four apexes of the checkerboard are selected as the key points
in this paper. From the depth image of the checkerboard, we
can easily achieve the edges of the board, based on which the
four apexes can be estimated. In the RGB image, the crossing
points can be automatically identified and the apexes can also
be estimated. We employ genetic algorithm to estimate these
key points.

B. Apex Estimation in the Depth Image

Fig. 5 shows the edges extracted by using the Sobel approxi-
mation to the derivative. It returns edges on those points where
the gradient is maximum. Assume there are n extracted edge
points e; = [ef ,ei 17 where 1 < i < n; the four estimated apexes
are a; = [u';,v',]", where 1 <i <4, and the four estimated edges
are £ = (al,az),Ez (a2,a3);Ex = (a3,a4);Eq = (ag,a1).
The distance between ith extracted edge point e; and all the

estimated edges {E;,i € (1,2,...,4)} is defined as the distance
between this edge point with its nearest estimated edge:

D; = min(d} ,d?,d?,d}) 8)
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and as = ay.

(b) Estimated edge points

(a) Depth image

Fig. 5: Checkerboard edge

To use the genetic algorithm to find the four apexes in depth
image, the fitness function is set as follows:

D=(XL,Di)/n ©)

where D is the average distance between the extracted edge
points and the estimated edges. To make the genetic algorithm
find the solution more efficiently, the bounds for the four points
are set as follows:

emin 10 < ud,ud < epean
e’”“”’<ud,ud<em“"+10 (10)
eg”” 10 < vd,vd < ey

ey

mean - Vd’vd < emax_|_ 10;

where e = min({e},i = 1,2,...,n}) is the minimum of
max

the x-coordinates in the extracted edge points; ef“ =

max({ef,i = 1,2,..,n}); &/ = min({e],i = 1,2,...,n});
ey = max({e],i = 1,2,. n} e = Y ef/n; eyt =
Yisie/n.

C. Apex Estimation in the RGB Image

To estimate the apexes in RGB image, first we need to
extract the corner points. Fig. 6 shows the corners extracted by
using the Harris corner detector. The estimated apexes based
on the depth edge points are shown in blue stars in Fig. 6b
from Sec. III-B. The corners in the middle the checkerboard
can be easily selected using a sub-rectangle shown in black in
Fig. 6b, which is achieved by shrinking the rectangle shaped
by the blue stars. If there are g corners identified ¢; = [c],c}]”
where 1 <i < g; the four estimated apexes are a; = [ud,vd]T
where 1 <i < 4. Thus the 12 estimated crossing point shown
in Fig. 4a can be calculated from the four estimated apexes

as:
(4-i) {(5—j>a1+ja2} +i [ja3+(5—j>a4)}
Tij = 20
where i € (1,2,...4) and j € (1,2,3).
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(a) Corners identified in RGB image

300

280 -

260

240 * # *

s

2201

200

, ,
1805 300 350 e

(b) Corners selected by the estimated apexes in
Sec. III-B

Fig. 6: Checkerboard corners identification and selection

The distance between ith extracted corner ¢; and all the
estimated crossing points is defined as the distance between
this corner with its nearest estimated crossing point:

D; = min({d/ ,where j=1,2,...,12}) (12)

where d/ = norm2(c;,a;).
The fitness function for the genetic algorithm is set as
follows:

D= (Zf:lDi)/g

where D is the average distance between the corners and
the estimated crossing points. The bounds for the four points
are set similarly as above, and the initial values of the four
apexes are set as the estimated depth apexes achieved in
the previous subsection, since they are supposed to be very
close when employing official calibration of the Kinect. The
distance of the checkerboard needs to be adjusted properly
to achieve a satisfying performance of the crossing point and
apex identification. It would be ideal to put the checkerboard
about 0.80 meters away from the Kinect as it is the place where
the Kinect can better track the hand with a proper resolution
and at the same time the hand can move freely to perform
motions and gestures.
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IV. HAND GESTURE SEGMENTATION USING EM
ALGORITHM

The depth and RGB images have been roughly adjusted and
aligned using the alignment method in Sec. III. However, due
to the noises and holes in the RGB-D data, the colour map

of the human hand can not be effectively segmented using
only the depth information [16]. In this session, we will apply
EM algorithm to further estimate the boundary of the hand
gestures and more precisely segment hand images.

A. The proposed EM Algorithm

Each pixel in the Kinect image has RGB values, a depth
value and its 2D location, based on which the estimation of
the probability of this pixel belonging to the hand gesture can
be expressed by p(H = 1|R,D,L) or p(H|R,D,L). R is the
pixel RGB value; D is the pixel depth value; L is the location
of the pixel. H is a binary variable indicating whether a pixel
belongs to a hand or not, when H =1 or H means this pixel
belongs to a hand and H = 0 or A means this pixel does not.
The events of R, D and L can be reasonably assumed to be
independent, and according to the Bayesian Network, we can
have

p(H)p (R\H) (L|H)p(D|H)

p(H|R,D,L) = Y p(H)p(RIH) p(LIH) p(DIH))

(14)

— P(H)P(RIH)P(L(\H)P(DIH)

~ p(H)p(RIH)p(LIH)p(DIH)+p(H)p(R|H)p(LIH)p(D|H)

where p(H) is prior probability of the hand gesture; p(R|H)
is the probability of the RGB value given that this pixel is
part of a hand and it assumes to be a Gaussian distribution
with a mean of Ugy and a covariance of Xgy; p(D|H) is the
probability of the depth value given this pixel is part of a hand
and it assumes to be Gaussian distributed with a mean of up
and a covariance of Yp; p(L|H) is the probability of the pixel
location given this pixel belongs to a hand and its distribution
is given below:

p(LIH) = 5 (erf(S5E) +1) (15)
where function erf is a Gauss error function:
erf(x) = 2= l (16)

and the function dist(L) is to get the minimum distance
between the pixel and the hand edge. dist(L) is negative when
the pixel is inside of the edge and positive when outside of
the edge. Gauss error function is frequently used since it is
obtained by integrating the normalised Gaussian distribution,
which is often used in the natural and social sciences to
represent real-valued random variables whose distributions
are not known. p(H) is the probability of this pixel not
belonging to a hand, and p(H) =1— p(H); p(R|H) is the
probability of the RGB value given that this pixel is part of
the background and it assumes to be a Gaussian distribution
with a mean of g and a covariance of Ygp; p(D|H) is
the probability of the depth value given this pixel is part of
the background and it assumes to be of uniform distribution
unif (depthy,,depthy,,), where the depthy, is the minimum
of the depth value in the scene and depth,,,, is the maximum;
p(Location|H) is the probability of the pixel location given
this pixel belongs to the background and p(L|H) = 1—p(L|H).



The parameters are ® = (Urp, ZrH, UDH Zpfi» Zriis Mpi)-
The resulting density for the samples is

n

p(%10) = 11 p(x|®) = Z2(0|%) (17)
where 7/ means all the captured pixel information including
the RGB, Depth and Location and % = {uy,...,un}, u; =
{Ri,D;,L;} and n is the number of the pixels.The function
Z(0|%) is called the likelihood of the parameters given the
data, or the likelihood function. The likelihood is considered
as a function of the parameters ® where the data 7% is fixed. In
the maximum likelihood problem, the objective is to estimate
the parameters set ® that maximizes .. That is to find ®*
where

O =argmax.Z(O|% ) (18)

c)

Usually, the EM algorithm (e.g., [41], [42]) is proposed to
maximise the .. The iteration of an EM algorithm estimating
the new parameters in terms of the old parameters is proposed
and given as follows:

o E-step: compute “expected” classes of all pixels for
hand gesture and background, p(H|R;,D;,L;) and
p(H|R,,D,,L,) using Eq. 14.

e M-step: compute maximum likelihood given the pixel
class membership distributions according to equations 19-
24.

n
p(H) =1 zlp(H R:, Dy, Ly); (19)
t=
p(H)™ =1—p(H) (20)
% p(H|R:.Dy L) [R;.Dy]
[#ﬁf}vaﬂﬁ‘}y] ==l 7 (21)
gl p(H|R; Dy Ly)
e >’flp(H\Rf7Dtm<RGB,—u;;;,W)<Rt—u;sz“>T ”
== 7 ( )
RGBH £ p(HIR.D. L)
% p(HIR: Dy L) (D — ) (D — i)
ey = =l 0 (23)
):1 p(H|R;.Dy L)
1=
edge"™ = f(p(H|R,D,L)) (24)

where Upy and Xy are the new estimated mean and
covariance of the hand in RGB values; tpy and Xpy are
the new estimated mean and covariance of the hand in
depth values; f() is the function to estimate the new edge
of the hand according to the probabilities of all pixels
belonging to the hand gesture, and its details are given
in Sec. IV-B .

B. Edge Estimation
The probability of p(H|R;,D;,L;) can be normalised as:
0, if p(H|Ri,Di,L;) < 0.01

P/(H|R,Di,Li) =4 1, if p(H|R:,Di,L;) > 0.99
p(H|R;,D;, L),

(25)
else

according to p'(H|R;,D;,L;), we can easily have two edges:
external edges {xf},i=1,...,nf for all pixels whose proba-
bilities are less than 0.01 and internal edges {x/},i=1,...,n
whose probabilities are more than 0.99. nf and n! are the
number of the edge points on external edge and internal edge
respectively. A proper threshold needs to be chosen to balance
the effectiveness and efficiency of the EM algorithm. Based on
experimental results, a threshold of 0.01 is chosen to assign
“definite” hand and “definite” background pixels. For each
point xlE on the external edge, there is a point xi who has a
minimum distance between xf and the internal edge points;
similarly, for each point xlI on the internal edge, there is a point
xf who has a minimum distance between x/ and the internal
edge points. Assume the points pairs (x/,xF);i=1,...,n"
are the unique pairs with such minimum distances, n” is the
number of those unique pairs. Assume a line /; is determined
by the pair points (x/,xf), we can find the pixels x; which
are near to this line and whose probabilities are less than 0.99
and more than 0.01, as shown in green circle in Fig. 7. Based
on the near points and their projection point, we can estimate
the edge model on this line by
nP iy E
[61,ai] = argminkz1 (% (erf(%) +1) —p(H\xi))
Gia; k= '
(26)
where pr(xi) is the projection point of x; and D(x;,x;) is the
distance between the location x; and x ;; The minimum problem
can be solved by Least-Square Fitting method. One example
of the fitting results is given in Fig. 8. Then the edge point on
the line /; can be found by

edgel™ = ot () —xF) +af

as shown in red circle in Fig. 7.

27)

C. Implementation

To initialise the parameter set ®, the hand gesture will
be segmented based only on the depth information. Firstly,
Spatial-temporal filtering (STF) [38], [39] is employed to track
the hand position and based on the tracking result the hand
initial depth can be automatically chosen, as shown in Fig.
9. The initial edge of the hand gesture can be achieved using
Sobel method [43]. The pixels in the hand edge belong to hand
with a full probability to the hand gesture, p(H|R;,D;,L;) =
1, and others have a full probability to the background,
p(H|R;,D;,L;) = 1. The parameter set can be achieved by
equations 19 to 23. The EM algorithm for segmenting the
hand gesture is shown in Algorithm 1, where the threshold is
set to stop the iteration of the EM algorithm with an acceptable
error. The smaller the threshold is, more precise the fitting of
the EM algorithm will be and more computational cost will
be taken.
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Fig. 7: An example shows three edge lines (external edge in
green, original edge in magenta and internal edge in red) based
on the probabilities of the pixels belonging to a hand (the
probability is shown in a grayscale), and the estimated edge
point in red circle has been identified based on the pixels in
green circles near to the projection line
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Fig. 8: An example of the fitting result. The projection points
on the line are in blue dots; the fitting curve is in red line; the
estimated edge point is in blue star.

Fig. 9: Hand tracking using Spatio-Temporal filtering [38],
[39], and the hand trajectory is shown in white dots.

V. EXPERIMENT RESULTS

A. Alignment

The above algorithm has been implemented in Matlab.
Various data have been collected and vaulted to show its
performance. Genetic algorithm can always find the best

Algorithm 1 EM algorithm to segment hand gesture

Require: Fix R {R is the depth range used to segment hand
gesture via only depth information.}.
1: DO« STF [38], [39] {Use Spatial-temporal filtering to
track the hand and get the hand depth value}
2: p(H|R;,D;,L;) = 1/0 {Use Sobel method to get the edge
of the hand according to the R and D, and set the initial
probability for each pixel}
3: repeat
{p(H)" p(H)""} < Eq.19 and 20 {Compute the
new prior probabilities of the hand gesture and back-
ground using Eq. 19 and 20}
5o {uRS ups”} < Eq. 21{Compute the new RGB and
Depth centres of the hand gesture and background using
Eq. 21}

6. {X§y,Sigmajy } < Eq. 22 and 23 {Compute the RGB
variance of the hand gesture and background using Eq.
22 and the Depth variance of the hand gesture using
Eq. 23}
edge™” + Eq. 24{Get the new edge using Eq. 24}
p"(H|R,D,L) < Eq. 14{Upgrade the probabilities
using Eq. 14 }

9:  log(Z(®|%)"") + Eq.

likelihood using Eq. 17}

10: until % — 1 < threshold {Stop if the relative
difference of the log-likelihood between two adjacent
iterations is below the preset threshold}

17{Compute the log-

(b) Four apexes (blue stars)
found in the RGB image

(a) Four apexes (red stars)
found in the depth image

Fig. 10: Solutions of the genetic algorithm

solution due to the pre-set searching bound for each variable
and the close precise initialisation. One example of the genetic
algorithm results for the above depth images is shown in Tab.
I. The best average distance, 0.767 pixel, is found after five
generations. The four apexes for both depth and RGB images
are shown in Fig. 10a and 10b respectively. It demonstrated
that the proposed algorithm is able to find the best key points
based on the images captured. In addition, the numbers of edge
points are not constant and the corners identified in the RGB
image are more than 12 crossing points on the checkerboard,
which may cause problems for the algorithms using the edge
points/corners as the key points. The method in this paper uses
four estimated apexes instead of the edge points/corners as the
key points, and can find the optimised solution independent of
the numbers of edge points or corners.

Fig. 1la compares these estimated apexes in the RGB



(a) “One” (b) “Two”
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Fig. 13: Segmentation results of hand gestures “one”, “two”,

(c) “Three”

(e) “Good luck”

(d) “I love you”

three”, “I live you” and “good luck” using different methods.

Row one: segmented gestures with official calibration; row two: segmented gestures with the proposed alignment method; row
three: segmented gestures with the proposed alignment and EM algorithm, and their iterations are 4, 6, 4, 5 and 4 respectively

with a threshold of le-4.

Best Max Stall
Generation | f-count f(x) | Constraints | Generations
1 1060 1.06589 0 0
2 2100 0.793731 0 0
3 3140 0.784879 0 0
4 4180 0.767132 0 0
5 5220 0.76685 0 0

TABLE I: Depth apexes optimisation using genetic algorithm

image. The difference between them will be used to determine
the transformation matrix from the depth coordinates to RGB
coordinates. The final transformation is achieved through
Eq. 7. Then we transform the depth edge into RGB image
coordinate system shown in red in Fig. 11b and the original
depth edge is in blue. It is clear to see that using the red edge

to segment the checkerboard is much better than the blue.

B. Hand Gesture Segmentation

Hand gesture segmentation has been evaluated based on
the proposed alignment method. Improvements have been
achieved and segmentation results of hand gesture “five” are
shown with the comparison between the official calibration and
the proposed alignment algorithm in Fig. 12a and 12b, where
the proposed algorithm corrects the alignment of the depth
image with RGB image, and almost all the coloured fingers
have been extracted. It can also see that though the segmented
hand gesture shown in Fig. 12b is much better aligned than
the one in Fig. 12a, there are still some mismatched pixels,
some of which belonging to the background are selected as



(a) Comparison between Apexes estimated
in depth image (green) and RGB image
(red)

transformed
depth edge points (red) and original edge
points (blue)

(b) Comparison between

Fig. 11: Data comparison

hand pixels and some of which being part of the hand are
misplaced into the background. To correct these mismatched
pixels, the edge of the segmented hand gesture is further
refined by the proposed EM algorithm and the results for the
gesture “five” are given in Fig. 12c¢, which shows the result
of the EM algorithm with 2 iterations. Fig. 12d shows the
result of the EM algorithm with 4 iterations. The refined hand
gestures contains less mismatched points and are much cleaner
than those in figures 12a and 12b. Results on five other hand
gestures, (i.e. “one”, “two”, “three”, “I love you” and “good
luck”) are shown in Fig. 13, where gestures in the first raw
are the segmented hand gestures with official calibration, the
ones in the second raw are results with only the proposed
alignment method, and the third raw gives the final refined
results by further applying the proposed EM algorithm on the
aligned gestures from the second raw.

C. Implementation in Human Robot Interaction

NAO is the most widely used humanoid robot for aca-
demic purposes worldwide, which is fully interactive, fun,
and constantly evolving [44]. NAO also offers the flexibility
for developing and attracting more interdisciplinary research
projects in the near future. Many sensors and actuators on
NAO, convenient size, and attractive appearance, combined
with sophisticated embedded software, make it a unique hu-
manoid robot ideal for many research fields. However, cameras
on the NAO are not suitable to recognise human hand gestures

(a) With the official calibra- (b) with the proposed align-
tion method ment method

\/,

(c) with the EM algorithm with
2 iterations

(d) with the EM algorithm
with 4 iterations

Fig. 12: Segmentation results of the gesture “five” using
different methods

Fig. 14: The proposed integrative framework is implemented
and evaluated to interact with a humanoid robot, NAO.

due to low resolution and limited computing speed [45]. As a
mature commercial produce, Kinect has been used extensively
to understand and recognise human motions. In this work,
Kinect has been integrated with NAO robot to strengthen its
capabilities to understand and interpret human hand gestures,
with the help of proposed framework, shown in Fig.14. Not
only can NAO respond to human voice commends, but it is
also able to react effectively to human hand gestures.



VI. CONCLUDING REMARKS

In this paper, a novel integrative framework has been
proposed to segment hand gestures in RGB-D data using the
Kinect device. Image alignment and refinement have been
addressed in this framework to improve the precision of hand
segmentation based on human-like approaches. The proposed
alignment method employs the genetic algorithm to estimate
the key points from both depth maps and RGB images, and it
is robust to the uncertainties of the point numbers identified
by using the common image processing tools such as corner
and edge detectors. It is capable of correctly positioning the
depth image with the RGB image. However, due to the noise
and holes in the depth map, the segmented result using only
the depth information has lots of mismatched pixels, which
need further adjustment. To solve this problem, a novel
approach has been proposed to further refine the edge of the
segmented hand gesture using a modified EM algorithm. The
experimental results show that the results by the proposed
methods precisely segment the hand gestures and are much
better than the official calibrated images and the results with
only the proposed alignment method. The proposed framework
has been implemented and validated in a system combining
the Kinect with the NAO robot. It provides a significant
improvement to the performance of the hand segmentation,
which will potentially contribute to hand gesture recognition
in the human-robot interaction.

A quantitative validation will be further investigated to
demonstrate the effectiveness of the proposed methods. Since
the proposed EM algorithm is based on the pixels, which takes
more time than traditional segmentation methods. The com-
putational cost could be alleviated by the sampling strategies
or faster convergence process introduced in [24], [42], [46].
Our future research will be on the efficiency improvement of
the proposed methods to adapt to different environments and
conditions in the real-time applications, such as the dynamic
gesture interaction with humanoid robots.
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