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ABSTRACT

We present measurements of the normalized redshift-space three-point correlation function
(3PCF) (Q.) of galaxies from the Sloan Digital Sky Survey (SDSS) main galaxy sample. These
measurements were possible because of a fast new N-point correlation function algorithm
(called npt) based on multiresolutional k-d trees. We have applied npt to both a volume-limited
(36738 galaxies with 0.05 < z < 0.095 and —23 < Moo, < —20.5) and magnitude-limited
sample (134 741 galaxies over 0.05 < z < 0.17 and ~M" + 1.5) of SDSS galaxies, and find
consistent results between the two samples, thus confirming the weak luminosity dependence
of O, recently seen by other authors. We compare our results to other O, measurements in
the literature and find it to be consistent within the full jackknife error estimates. However,
we find these errors are significantly increased by the presence of the ‘Sloan Great Wall’
(at z ~0.08) within these two SDSS data sets, which changes the 3PCF by 70 per cent on
large scales (s > 10 A~'Mpc). If we exclude this supercluster, our observed Q. is in better
agreement with that obtained from the 2-degree Field Galaxy Redshift Survey (2dFGRS) by
other authors, thus demonstrating the sensitivity of these higher order correlation functions to
large-scale structures in the Universe. This analysis highlights that the SDSS data sets used
here are not ‘fair samples’ of the Universe for the estimation of higher order clustering statistics
and larger volumes are required. We study the shape dependence of Q. (s, g, 6) as one expects
this measurement to depend on scale if the large-scale structure in the Universe has grown
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via gravitational instability from Gaussian initial conditions. On small scales (s < 6 2~ Mpc),
we see some evidence for shape dependence in Q., but at present our measurements are
consistent with a constant within the errors (Q. ~ 0.75 £ 0.05). On scales >10 2~'Mpc, we
see considerable shape dependence in Q.. However, larger samples are required to improve
the statistical significance of these measurements on all scales.

Key words: methods: statistical — surveys — galaxies: statistics — cosmology: observations —
large-scale structure of Universe.

1 INTRODUCTION

Correlation functions are some of the most commonly used statistics
in cosmology. They have a long history in quantifying the clustering
of galaxies in the Universe (see Peebles 1980). There is a hierarchy
of correlation functions. The two-point correlation function (2PCF)
compares the number of pairs of data points, as a function of sep-
aration, with that expected from a Poisson distribution. Next in the
hierarchy is the three-point correlation function (3PCF), which com-
pares the number of data triplets, as a function of their triangular
configuration, to that expected from Poisson. Higher order correla-
tions are defined analogously.

As discussed by many authors, the higher order correlation func-
tions contain a variety of important cosmological information,
which complements that from the 2PCF (Groth & Peebles 1977;
Balian & Schaeffer 1989). These include tests of Gaussianity and the
determination of galaxy bias as a function of scale (Suto 1993; Jing
& Borner 1998; Takada & Jain 2003; Jing & Borner 2004; Kayo et al.
2004; Lahav & Suto 2004). Such tests can also be performed using
the Fourier-space equivalent of the 3PCF, the bispectrum (Peebles
1980; Scoccimarro, Couchman & Frieman 1999; Scoccimarro et al.
2001a; Verde et al. 2002) or other statistics such as the void prob-
ability distribution and Minkowski functionals (Mecke, Buchert &
Wagner 1994). Recent results from these complementary statistics
using the SDSS main galaxy sample include Hikage et al. (2002,
2003, 2005) and Park et al. (2005).

While the 3PCF is easier to correct for survey edge effects than
these other statistics, measurements of the 3PCF have been lim-
ited by the availability of large redshift surveys of galaxies (see
Szapudi, Meiksin & Nichol 1996; Frieman & Gaztafiaga 1999;
Szapudi et al. 2002, for 3PCF analyses of large solid angle cata-
logues of galaxies) and the potentially prohibitive computational
time needed to count all possible triplets of galaxies (naively, this
count scales as O(N?), where N is the number of galaxies in the
sample).

In this paper, we resolve these two problems through the ap-
plication of a new N-point correlation function (NPCF) algorithm
(Moore et al. 2001) to the galaxy data of the Sloan Digital Sky
Survey (SDSS; York et al. 2000). We present herein measurements
of the 3PCF from the SDSS main galaxy sample. Our measure-
ments illustrate the sensitivity of the 3PCF to known large-scale
structures in the SDSS (Gott et al. 2005). They are complementary
to the work of Kayo et al. (2004) who explicitly explored the lu-
minosity and morphological dependence of the 3PCF using SDSS
volume-limited galaxy samples. These measurements of the 3PCF
will help facilitate constraints on the biasing of galaxies and will
aid in the development of theoretical predictions for the higher or-
der correlation functions (Scoccimarro et al. 2001b; Takada & Jain
2003). Throughout this paper, we use the dimensionless Hubble
constant 4 = H (/100km s~! Mpc~!, the matter density parameter

Qmn = 0.3 and the dimensionless cosmological constant 2, = 0.7,
unless stated otherwise.

2 THE 3PCF COMPUTATIONAL ALGORITHM

To facilitate the rapid calculation of the higher order correlation
functions, we have designed and implemented a new NPCF algo-
rithm based on k-d trees, which are multidimensional binary search
tree for points in a k-dimensional space. The k-d tree is composed of
a series of interconnected nodes, which are created by recursively
splitting each node along its longest dimension, thus creating two
smaller child nodes. This recursive splitting is stopped when a pre-
determined number of data points is reached in each node (we used
<20 data points herein). For our NPCF algorithm, we used an en-
hanced version of the k-d tree technology, namely multiresolutional
k-d trees (mrkdtree) with cached statistics, which store additional
statistical information about the search tree, and the data points in
each node, e.g. we store the total count and centroid of all data in
each node.

The key to our NPCF algorithm is to use multiple mrkdtrees
together, and store them in main memory of the computer (rather
than on disc), to represent the required N-point function, e.g. we use
three mrkdtrees to compute the 3PCF, four mrkdtrees for the 4PCF,
and so on. The computational efficiency is increased by pruning
these trees wherever possible, and by using the cached statistics on
the tree as much as possible. The details of mrkdtrees and our NPCF
algorithm (known as npr) have already been outlined in several
papers (Moore et al. 2001; Nichol et al. 2003; Gray et al. 2004).
Similar tree-based computational algorithms have been discussed
by Szapudi et al. (2001).

3 SDSS DATA

The details of the SDSS are given in a series of technical papers by
Fukugita et al. (1996); Gunn et al. (1998); York et al. (2000); Hogg
et al. (2001); Strauss et al. (2002); Smith et al. (2002); Pier et al.
(2003); Blanton et al. (2003b); Ivezic et al. (2004); Abazajian et al.
(2005). For the computations discussed herein, we use two SDSS
catalogues. The first is a volume-limited sample of 36 738 galaxies in
the redshift range of 0.05 < z < 0.095 and absolute magnitude range
of —23 < Moo, < —20.5 [for h = 0.7 and the z = 0.0 SDSS r filter,
or %0 7 in Blanton et al. (2003b) terminology'], covering 2364 deg”
of the SDSS photometric survey. All the magnitudes were reddening

! Blanton et al. (2003b) use redshifted SDSS filters to minimize the effects of
k-corrections. As discussed in their paper, they propose the use of an SDSS
filter set redshifted to z = 0.1 for their ‘rest-frame’ quantities. These filters
are written as ! u,O'1 g,O" r,O'I i,o'1 z.
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corrected using Schlegel, Finkbbeiner, & Davis (1998) and the -
corrected software (Blanton et al. 2003b; v1.16). The second sample
is the same as ‘Sample 12’ used by Pope et al. (2004) and contains
134741 galaxies over 2406 deg”. This latter sample is not volume
limited, but is constrained to the absolute magnitude range of —22 <
Mo, < —19 (or M* £ 1.5 magnitudes) for 4 = 1, and using the z =
0.1 SDSS r filter system, or *!7 (Blanton et al. 2003b; Zehavi et al.
2005). To compare the two samples, our volume-limited sample
has the absolute magnitude range of —23.54 < Moi, < —21.04 in
the same *!r filter as used for the Pope et al. sample; assuming a
conversion of ' ~ %% 4 0.23 for the SDSS main galaxy sample
with a median colour at z = 0.0 of *°(g — r) ~ 0.8. This gives a
mean space density of 8.25 x 1073 h3 Mpc~3, which is comparable
to the space densities of the SDSS main galaxy sample given in
table 2 of Zehavi et al. (2005).

We have made no correction for missing galaxies due to fi-
bre collisions (i.e. two SDSS fibres cannot be placed closer than
55 arcsec on the sky). We do not expect this observational con-
straint to bias our correlation functions as the adaptive tilting of
SDSS spectroscopic plates reduces the problem to ~7 per cent of
possible target galaxies being missed (see Blanton et al. 2003a, for
details). Furthermore, this bias will only affect pairs of galaxies
separated by less than 100 2~! kpc, which is significantly smaller
than the scales studied herein. In each case, we also constructed
catalogues of random data points (containing 8 x 10° points) over
the same area of the sky and with the same selection function as
discussed in Pope et al. (2004). These random catalogues are then
used to calculate edge effects on the NPCF using the estimators
presented in Szapudi & Szalay (1998).

4 RESULTS
There are two common parametrizations of Q.. One defines

S =812, u:sﬁ and U:M, (€))
S12 S12

where 55, 523 and s3; are the three sides of a triangle in redshift

space. Then, Q(s, u, v) is defined by the ratio of the 3PCF ¢(s1,,

S23, §31), to sums of products of 2PCFs (e.g. £(s12)&(s13) and per-

mutations):

¢(s12, 523, 831)

£(512)E(523) + £(523)6(531) + £(531)E (512)

The second parametrization has Q.(s, ¢, #) with s = 51, being the
shortest side of the redshift-space triangle, ¢ = s,3/51, and 0 is the
angle between these two sides (s, and s53).

Fig. 1 shows Q,(s, u, v) for both our volume-limited sample
(filled circles) and the Pope et al. (2004) sample (filled stars). Dif-
ferent panels show results for a range of triangle configurations. To
facilitate a direct comparison with results from the literature, we
have used the same binning scheme as Jing & Borner (1998, 2004),
in their analyses of the Las Campanas Redshift Survey (LCRS) and
2-degree Field Galaxy Redshift Survey (2dFGRS). The open circles
show their results. Overall, our Q. (s, u, v) values are consistent with
theirs, but with some obvious disagreements. For example, on large
scales (s;2 > 1027! Mpc), we find larger Q. ~1, while Jing &
Borner (2004) find much smaller values. Although the different se-
lection passbands of the 2dFGRS (b ;) and SDSS (r band) might
account for this difference, it cannot account for the disagreement
with the LCRS measurements of Jing & Borner (1998) since the
LCRS was also r-band selected.
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Figure 1. Our SDSS measurements of the normalized redshift-space 3PCF
as a function of triangle configuration, i.e. Q.(s, u, v). We compare our
measurement with that of Jing & Borner (1998, 2004) for both the 2dFGRS
(open circles and error bars) and LCRS (dashed line) galaxy surveys. These
two estimates of O (s, u, v) do not agree because of the different passbands
used for these two surveys. We also provide two values of u (namely u =
1.29 and u = 3.04) from the Jing & Borner (2004) data, i.e. we have not
plotted the u = 2.09 data to avoid overcrowding. The binning has been cho-
sen to be identical to that of Jing & Borner (2004). The solid (blue) circles
are the SDSS Q. for the volume-limited sample as discussed in Section 3,
while the solid (red) star symbols are the SDSS Q. for the SDSS magni-
tude limited sample. The solid error bars shown on these data points are
estimated using jackknife resampling (see the text), but with subregions 3
and 4 in Fig. 2 removed (i.e. excluding the supercluster from these error
bars). For comparison, the dot—dashed error bars on the red star symbols
are our estimate of the jackknife errors (the diagonal elements of the covari-
ance matrix) using all 14 subregions to estimate the error (i.e. the effect of
the supercluster is now including in the size of the error bar). In some cases,
the error bars are smaller than the plotting symbols. The solid (green) triangle
symbols are the SDSS Q. for the jackknife resample excluding subregions
3 and 4.

To quantify the disagreement, we estimated the covariances of
our 3PCF estimates using the jackknife resampling technique (dis-
cussed in detail in Scranton et al. 2002 and Zehavi et al. 2002, 2005).
Briefly, the jackknife resampling technique provides an estimate of
the ‘cosmic variance’ within a sample. It is calculated by splitting
the data set into subregions and then measuring the variance seen be-
tween the estimated correlation functions as subregions are omitted
one by one (therefore, if there are N subregions, there are N correla-
tion function estimates). As shown in fig. 2 of Zehavi et al. (2005),
the jackknife errors accurately reproduce the ‘true error’ (the dis-
persion measured between 100 mock galaxy catalogues), especially
for the diagonal terms of the covariance matrix of the 2PCF on large
scales (for r > 0.5 h*IMpc , the difference between the two error
estimates is always <10 per cent). In what follows, we assume that
the jackknife error estimates are also accurate for the 3PCE.

The SDSS data set is built up of thin ‘wedge-shaped’ regions that
are 2.5° thick in declination and hundreds of degrees wide in right
ascension (see York et al. 2000). We divided the total volume of our
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Figure 2. Part of the SDSS volume-limited sample defined in Section 3. This redshift slice is approximately 500 by 200 2~!Mpc in the dimensions shown,
and ~100 2~ 'Mpc thick (although here we have collapsed the slice in this third dimension). Most noticeable is the supercluster, which has been called the
‘Sloan Great Wall’ by Gott et al. (2005) and is 1.37 billion light years long. This supercluster is a combination of the Leo A and SCL126 superclusters (Einasto
et al. 2001), and is associated with tens of known Abell clusters of galaxies. The two regions labelled 3 and 4 are two of the 14 subregions used in deriving the
covariance matrices on our correlation functions as shown as error bars in Fig. 1.
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Figure 3. Left-hand panel: the percentage difference between the 2PCFs for the 14 SDSS jackknife data sets and the 2PCF as measured for the whole data
set (without any subregions excluded). The open stars are for the 12 jackknife data sets with the supercluster shown in Fig. 2 included, while solid triangles
are for the data set with subregion 4 excluded (Fig. 2) and solid circles are for the data set with subregion 3 excluded. Right-hand panel: the percentage difference
between the 3PCFs for the 14 SDSS jackknife data sets and the 3PCF as measured for the whole data set. The x-axis (S2) is the redshift-space distance for
the shortest side of the triangle (see equation 2). The open stars are for jackknife data sets with the supercluster shown in Fig. 2 included, while solid triangles
are for the data set with subregion 4 excluded (Fig. 2) and solid circles are for the data set with subregion 3 excluded. All triangle configurations are plotted

here, i.e. one point per triangle configuration in Fig. 1, which explains why there are many data points with the same values of s and s15>.

volume-limited catalogue up into 14 subregions when estimating the
covariance matrix. These were selected in right ascension along the
SDSS scans. To illustrate, Fig. 2 shows one of the redshift wedges;
two of the subregions (namely subregions 3 and 4) are highlighted
to provide an impression of the typical size of a subregion, but also
because these two particular regions will feature prominently in
what follows.

The error bars shown in Fig. 1 show the diagonal elements of
the covariance matrices we estimate from the jackknife method.
The sizes of these diagonal elements (as well as the off-diagonal
elements) are extremely sensitive to the inclusion or exclusion of
subregions 3 and 4. This sensitivity is quantified in Fig. 3 which
shows the scatter between the 14 2PCFs and 3PCFs used to construct
the covariance matrices. The scatter in the 2PCFs between 12 of
the 14 jackknife data sets, which contain the supercluster seen in
Fig. 2, is less than 10 per cent on all scales probed herein (s <
40 h~'Mpc ) which is consistent with the findings of Zehavi et al.
(2005). The two data sets which exclude subregions 3 and 4, have
significantly different 2PCFs, up to 40 per cent different on the
largest scales, which is again consistent with Zehavi et al. (2005)

who find that this supercluster greatly affects their 2PCF on large
scales and is not accounted for by their estimates of the jackknife
errors. The effect on the 3PCF of the ‘Sloan Great Wall’ is much
greater. The jackknife data sets that exclude subregions 3 and 4
(which contain the supercluster) differ by up to 70 per cent (on
large scales) compared to all other 3PCFs.

In Fig. 1, we show the normalized 3PCF Q. for the whole data set
as well as for the data sets with subregions 3 and 4 excluded. With the
bulk of this supercluster excluded, the SDSS 3PCF has much lower
Q.(s,u, v) values on large scales and is now in good agreement with
the Jing & Borner (2004) 2dFGRS 3PCF on these large scales. This
is also demonstrated in the error bars shown in Fig. 1 which were
estimated using all 14 jackknife data sets (dot—dashed error bars)
and for the 12 jackknife data sets (solid error bars) which excluded
the supercluster (i.e. subregions 3 and 4 removed). As expected,
the sizes of these error bars are sensitive to the inclusion of the
supercluster: if we exclude the supercluster, then our error bars are
similar to those of Jing & Borner (2004), who assume an analytical
approximation for their errors. In addition, Jing & Borner (2004)
used the 100k data release of the 2dFGRS and excluded areas of the
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2dFGRS with R(#) < 0.1 (areas with low redshift completeness).
As shown in fig. 15 of Colless et al. (2001), the northern strip of the
2dFGRS 100k data release has a large hole in its coverage between
12.5 and 13.5 h in RA (due mainly to tilting constraints), which
coincides with subregion 3 in Fig. 2. Therefore, the sample used by
Jing & Borner (2004) does not include the main core of the ‘Sloan
Great Wall’ and explains why our measurements of the 3PCF agree
with theirs 3PCF when we exclude subregions 3 and 4.

Baugh et al. (2004), Croton et al. (2004) and Gaztafaga et al.
(2005) present an analysis of the higher order correlation functions
for the full 2dFGRS catalogue. In fig. 1 of Baugh et al. (2004), the
‘Sloan Great Wall’ is visible in the North Galactic Pole strip of the
full 2dFGRS. Baugh et al. (2004) also found that the presence of
this supercluster, and another in the 2dFGRS SGP area, significantly
affected their measurement of the higher order correlations on scales
>4 h~'"Mpc, consistent with our findings in Figs 1 and 3 (see also
Gaztafiaga et al. 2005). The influence of these superclusters on the
higher order correlation functions indicates that we have not yet
reached a ‘fair sample’ of the Universe with the 2dFGRS and SDSS
samples used herein. This was also examined by Hikage et al. (2003)
using the Minkowski functions of the SDSS galaxy data (see their
fig. 8).

5 DISCUSSION

In Fig. 1, we find similar Q.(s, u, v) values for the two different
samples discussed in Section 3, even though the Pope et al. sam-
ple probes ~M* galaxies, while our volume-limited sample traces
more luminous galaxies at M., < —21. This confirms the findings
of Kayo et al. (2004) and Jing & Borner (2004) that there is no
strong luminosity dependence in the Q. (s, u, v) parameter (from
—23 < Moa, < —19). Croton et al. (2004) also report a weak lu-
minosity dependence in the volume-averaged 3PCF, which could
be consistent with our measurements given the error bars (see also
Gaztaiiaga et al. 2005). The lack of strong luminosity dependence
in 3PCF may be surprising given the strong luminosity dependence
seen in the 2dFGRS and SDSS 2PCFs (Norberg et al. 2001; Zehavi
et al. 2005). Kayo et al. (2004) discuss this behaviour further and
conclude that galaxy bias must be complex on weakly non-linear
to non-linear scales (but see Verde et al. 2002; Croton et al. 2004;
Gaztafiaga et al. 2005, for alternative interpretations). We will ex-
plore this weaker luminosity dependence in future papers.

Fig. 4 presents the shape dependence of Q. for the Pope et al.
SDSS sample of galaxies, using the second of the two common
conventions for Q. Recall that this parametrization has Q. (s, g, 0)
with s = 5, being the shortest side of the redshift-space triangle, ¢ =
$23/5 12 and 0 is the angle between 5,3 and s1,. Our choice of triangles
is motivated by Fig. 5 in the halo-model (Cooray & Sheth 2002)
based analysis of Takada & Jain (2003) (although their analysis
was restricted to real space rather than redshift-space triangles). To
minimize overcrowding, we only show a subset of the error bars
(the diagonal of the covariance matrix) on these data points. We
also show the same error bars but with subregions 3 and 4 omitted
from the calculation of the covariance matrix. (Figs 1 and 2 show
that these two estimates of the error are similar on small scales but
become significantly different on large scales.)

On small scales (s, < 2.5 h*IMpc ), the shape of the normalized
3PCF is consistent (within the errors) for the different ¢ values (see
Figs 4 and 5), and is close to a constant value (within the errors)
as a function of 6, i.e. Q.(s;2 < 2.5h7! Mpc) >~ 0.75 £ 0.05.
We see some evidence for a ‘U-shaped’ behaviour in Q. on these
small scales, which is predicted by recent theoretical models of the

0.85
0.5<8,,<1.5 (k' M C
080l 12 p
Z 075 %JP ‘? ‘% %
)
g 0.70
@®qg=2
0.65F *q=3 T
Yg=4
0.60 L. ‘ ‘ ‘ ‘ ‘

0.0 02 04 06 08 1.0
O/ 1.8

0.0 02 04 06 08 1.0
o/n

Figure 4. The SDSS Q. as a function of 6, ¢ and s> for the Pope et al.
sample discussed in the text. We show three bins in 51 (as labelled), while
6 is given in radians along the x-axis (binwidth of A8 % 0.05 rad about the
central value plotted). The solid (green) circles are for g = 2, solid (red) stars
are for ¢ = 3 and the solid (blue) triangles are for ¢ = 4 (Ag £ 0.5 about
the central value). We also include a set of data points at the extremes of the
6 range, specifically 0.0 < 6 < 0.02 and 0.98 < 6 < 1.00. The ¢ = 2 and
g = 4 data points are offset by —0.02 and +0.02 rad, respectively, to reduce
overcrowding. Likewise, we only plot the full error bars (solid lines) on a
fraction of the data points. The dot—dashed error bars have been calculated
with subregions 3 and 4 omitted (see Fig. 2).
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Figure 5. The same as Fig. 4 but now with subregion 3 omitted from the
calculation of Q,(s12, g, 8) for the Pope et al. (2004) sample. We have not
plotted error bars.
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3PCF (Gaztafiaga & Scoccimarro 2005). For example, Gaztafiaga
& Scoccimarro (2005) see a strong ‘U-shaped’ pattern in Q. on
small scales, i.e. in figs 2 and 3 of their paper, they measure a factor
of ~2 increase in both the Q.(6 ~ 5°) and Q.(6 >~ 175°) values,
relative to the Q.(6 =~ 90°) values. We do not see as strong an
effect as they claim, but this could be due to our relatively coarse
binning scheme as Gaztafiaga & Scoccimarro (2005) claim. We
will explore this further in a future paper, with large data sets from
the SDSS, but our Q. does have the same qualitative shape as they
witnessed. We also note that our small-scale O, measurements are in
excellent agreement with the 2dFGRS measurements of Gaztafiaga
et al. (2005), who also see the same weak ‘U-shaped’ behaviour
(compared to simulations) and also have a near constant value of
0.(s12 <6 h~! Mpc) 2= 0.75 for their two different luminosity bins.
This is remarkable agreement given the differences in the 2dFGRS
and SDSS galaxy surveys. Finally, we comment that our values
for Q. on small scales are significantly smaller than the theoretical
predictions for Q in real space (which are O ~ 3), but consistent
with the expected decrease in Q as one moves to redshift space (see
fig. 2 of Gaztafiaga & Scoccimarro 2005). The value and shape of
our (., measurements are robust to the omission of the supercluster
(see Fig. 5).

The lack of any strong small-scale shape dependence of Q. is
consistent with the 2dFGRS findings of Croton et al. (2004) and
Baugh et al. (2004), using volume-averaged 3PCFs. They found
that the volume-averaged 3PCF scaled as

&(s) = S; Ez(S)z, 3)

where S; displayed an weak luminosity dependence. Assuming lit-
tle shape dependence in Q.(s, g, 0), then we can relate S3 to Q.
by assuming the denominator in equation (1) of Q, simply becomes
~3(£,(s))?, and thus S5 ~ 3 Q.. The value of S5 = 1.95 + 0.18 de-
rived for L* galaxies in the 2dFGRS volume-averaged 3PCF (Baugh
et al. 2004) is therefore in good agreement (within the errors) with
our measured value of O, >~ 0.75 on small scales for the Pope et al.
sample (Fig. 4), which was designed to probe ~L* in the SDSS.
This again demonstrates the relative insensitivity of the 3PCF (in
redshift space) to the details of the selection of the galaxy sample.
The simple scaling relationship given in equation (3) is expected for
hierarchical structure formation models originating from Gaussian
initial conditions (Peebles 1980; Baugh et al. 2004).

On larger scales (10 4! Mpc), the amplitude and shape depen-
dence of Q. changes significantly once the supercluster has been
removed (comparing Figs 4 and 5). For example, for the g = 2 tri-
angle configurations (circle symbols), the ‘U shape’ in Q, is only
seen once the core of the ‘Sloan Great Wall’ has been removed.
Likewise, ‘U-shape’ behaviour of Q, for the ¢ = 3 triangle config-
urations (star symbols) is enhanced (by nearly a factor of 3) when
the supercluster is removed, and is then in better agreement with
the numerical simulations of Gaztafiaga & Scoccimarro (2005) and
measurements for the 2dFGRS (Gaztafiaga et al. 2005). Therefore,
the expected ‘U-shaped’ signal in Q. due to filamentary structures
in the Universe has been overwhelmed by the presence of the super-
cluster, and is only seen when the ‘Sloan Great Wall’ is removed.
This indicates that the ‘Sloan Great Wall’ has a different topology
than filaments (e.g. sheet like) or this difference is caused by the
orientation of this supercluster in the SDSS (it appears to be per-
pendicular to the line of sight). Overall, the 3PCF is hard to measure
on these large scales using the samples presented herein, and the er-
rors are dominated by the ‘Sloan Great Wall’. Larger samples, in
both volume and numbers of galaxies, are required to explore the

shape dependence of the 3PCF in greater detail on these large scales,
and that should be possible with future SDSS samples.
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APPENDIX A: THE 3PCF DATA

In Tables A1 and A2, we present here the data points from Figs 4
and 5. We present the upper and lower limits of the bins used. We
stress that these data are affected by large-scale structures in the
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Table Al. The data presented in Fig. 4 of this paper.
SIS gl gt v 6N 0.(510,g0)  50:(s12.9.0)
05 150 150 250 0000 002 07284 0.0220
05 150 150 250 005 0.150 07157 0.1302
05 150 150 250 0250 0350  0.695 0.0226
05 150 150 250 0450 0550  0.7086 0.1033
05 150 150 250 0650 0750  0.7364 0.0244
05 150 150 250 0850 0950  0.759%4 0.1024
05 150 150 250 0980 1.000  0.7602 0.0258
05 150 250 350 0000 002  0.75% 0.0258
05 150 250 350 005 0.150 0747 0.0255
05 150 250 3.50 0250 0350  0.7375 0.0237
05 150 250 3.50 0450 0550  0.7409 0.0237
05 150 250 3.50 0650 0750  0.7608 0.0250
05 150 250 3.50 0850 0950  0.7807 0.0263
05 150 250 3.50 0980 1.000  0.7812 0.0263
05 150 350 450 0050 0.150  0.7704 0.0251
05 150 350 450 0250 0350  0.7505 0.0245
05 150 350 450 0450 0550  0.7446 0.0239
05 150 350 450 0650 0750  0.7609 0.0249
05 150 350 450 0850 0950  0.7782 0.0259
150 250 150 250 005 0150 07533 0.0231
150 250 150 250 0250 0350  0.7396 0.0206
150 250 150 250 0450 0550  0.7627 0.0217
150 250 150 250 0650 0750  0.7936 0.0230
150 250 150 250 0850 0950 08112 0.0239
150 250 250 350 0000 002 0809 0.0238
150 250 250 350 0050 0.150  0.7985 0.0236
150 250 250 350 0250 0350  0.7818 0.0418
150 250 250 350 0450 0550  0.7694 0.0271
150 250 250 350 0650 0750  0.7976 0.0278
150 250 250 350 0850 0950 08138 0.0286
150 250 250 350 0980 1.00 0813 0.0289
150 250 350 450 0050 0.150  0.8026 0.0293
150 250 350 450 0250 0350  0.7908 0.0314
150 250 350 450 0450 0550 07812 0.0357
150 250 350 450 0650 0750  0.8067 0.0360
150 250 350 450 0850 0950  0.8227 0.0366
950 10.5 150 250 0050 0.150  1.085 0.267
950 10.5 150 250 0250 0350  1.16920 0.3501
950 10.5 150 250 0450 0550  1.19640 0.4286
950 10.5 150 250 0650 0750 134880 04817
950 10.5 150 250 0.850 0950 140760 05118
950 10.5 250 350 0000 002 140680 0.6107
950 10.5 250 350 0050 0.150 137250 0.5392
950 10.5 250 350 0250 0350 134150 0.6721
950 10.5 250 350 0450 0550 124310 0.8343
950 10.5 250 350 0650 0750 145970 09198
950 10.5 250 350 0850 0950 157340 0.9453
950 10.5 250 350 0980 1.00 158970 1.18550
950 10.5 3.50 450 0050 0.150 155410 1.23750
950 10.5 350 450 0250 0350 143730 1.207 10
950 10.5 3.50 450 0450 0550  1.29870 1.208 90
950 10.5 350 450 0650 0750 157040 122310
950 10.5 3.50 450 0850 0950 174220 1.24910

data and, therefore, should be used with caution. We present these
data to aid in the comparison with other observations and theoretical
predictions.
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Table A2. The data presented in Fig. 5 of this paper.

S S g g ey e 0.(12g8)  80:(12.0.6)
0.5 1.50 1.50 2.50 0.05 0.150 0.7259 0.0269
0.5 1.50 1.50 2.50 0.250 0.350 0.7032 0.0178
0.5 1.50 1.50 2.50 0.450 0.550 0.7208 0.0965
0.5 1.50 1.50 2.50 0.650 0.750 0.7477 0.0180
0.5 1.50 1.50 2.50 0.850 0.950 0.7744 0.0957
0.5 1.50 2.50 3.50 0.05 0.150 0.7595 0.0194
0.5 1.50 2.50 3.50 0.250 0.350 0.7481 0.0187
0.5 1.50 2.50 3.50 0.450 0.550 0.751 0.0193
0.5 1.50 2.50 3.50 0.650 0.750 0.7751 0.0197
0.5 1.50 2.50 3.50 0.850 0.950 0.7968 0.0202
0.5 1.50 3.50 4.50 0.05 0.150 0.7851 0.0199
0.5 1.50 3.50 4.50 0.250 0.350 0.7612 0.0209
0.5 1.50 3.50 4.50 0.450 0.550 0.7534 0.0213
0.5 1.50 3.50 4.50 0.650 0.750 0.7719 0.0221
0.5 1.50 3.50 4.50 0.850 0.950 0.7893 0.0226
1.50 2.50 1.50 2.50 0.05 0.150 0.751 0.0190
1.50 2.50 1.50 2.50 0.250 0.350 0.7332 0.0193
1.50 2.50 1.50 2.50 0.450 0.550 0.7564 0.0205
1.50 2.50 1.50 2.50 0.650 0.750 0.788 0.0217
1.50 2.50 1.50 2.50 0.850 0.950 0.806 0.0225
1.50 2.50 2.50 3.50 0.05 0.150 0.7906 0.0224
1.50 2.50 2.50 3.50 0.250 0.350 0.7694 0.0356
1.50 2.50 2.50 3.50 0.450 0.550 0.7504 0.0230
1.50 2.50 2.50 3.50 0.650 0.750 0.7781 0.0242
1.50 2.50 2.50 3.50 0.850 0.950 0.7933 0.0249
1.50 2.50 3.50 4.50 0.05 0.150 0.7803 0.0245
1.50 2.50 3.50 4.50 0.250 0.350 0.7627 0.0234
1.50 2.50 3.50 4.50 0.450 0.550 0.747 0.0236
1.50 2.50 3.50 4.50 0.650 0.750 0.773 0.0249
1.50 2.50 3.50 4.50 0.850 0.950 0.7882 0.0258
9.50 10.5 1.50 2.50 0.05 0.150 0.8173 0.1145
9.50 10.5 1.50 2.50 0.250 0.350 0.8273 0.1512
9.50 10.5 1.50 2.50 0.450 0.550 0.7843 0.1846
9.50 10.5 1.50 2.50 0.650 0.750 0.8816 0.2177
9.50 10.5 1.50 2.50 0.850 0.950 0.9102 0.2364
9.50 10.5 2.50 3.50 0.05 0.150 0.8398 0.2343
9.50 10.5 2.50 3.50 0.250 0.350 0.6645 0.2523
9.50 10.5 2.50 3.50 0.450 0.550 0.4031 0.299
9.50 10.5 2.50 3.50 0.650 0.750 0.5397 0.3653
9.50 10.5 2.50 3.50 0.850 0.950 0.6475 0.4195
9.50 10.5 3.50 4.50 0.05 0.150 0.3295 0.3391
9.50 10.5 3.50 4.50 0.250 0.350 —0.1497 0.4041
9.50 10.5 3.50 4.50 0.450 0.550 —0.8885 0.5331
9.50 10.5 3.50 4.50 0.650 0.750 —1.26670 0.7041
9.50 10.5 3.50 4.50 0.850 0.950 —1.53840 0.8304
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