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1. Abstract 13 

Antidepressants are among the most commonly detected human pharmaceuticals in the 14 

aquatic environment.  Since their mode of action is by modulating the neurotransmitters 15 

serotonin, dopamine, and norepinephrine, aquatic invertebrates who possess transporters and 16 

receptors sensitive to activation by these pharmaceuticals are potentially affected by them.  17 

We review the various types of antidepressants, their occurrence and concentrations in 18 

aquatic environments, and the actions of neurohormones modulated by antidepressants in 19 

molluscs and crustaceans.  Recent studies on the effects of antidepressants on these two 20 

important groups show that molluscan reproductive and locomotory systems are affected by 21 

antidepressants at environmentally relevant concentrations.  In particular, antidepressants 22 

affect spawning and larval release in bivalves and disrupt locomotion and reduce fecundity in 23 

snails.  In crustaceans, antidepressants affect freshwater amphipod activity patterns, marine 24 

amphipod photo- and geotactic behavior, crayfish aggression, and daphnid reproduction and 25 

development.  We note with interest the occurrence of non-monotonic dose responses curves 26 

in many studies on effects of antidepressants on aquatic animals, often with effects at low 27 

concentrations, but not at higher concentrations, and we suggest future experiments consider 28 

testing a broader range of concentrations. Furthermore, we consider invertebrate immune 29 

responses, genomic and transcriptomic sequencing of invertebrate genes, and the ever-present 30 

and overwhelming question of how contaminant mixtures could affect the action of 31 

neurohormones as topics for future study. In addressing the question, do antidepressants 32 

affect aquatic invertebrates at concentrations currently found in the environment, there is 33 

strong evidence to suggest the answer is yes. Furthermore, the examples highlighted in this 34 

mailto:pfong@gettysburg.edu


review provide compelling evidence that the effects could be quite multifaceted across a 35 

variety of biological systems. 36 

 37 

2. Antidepressants in the aquatic environment 38 

 39 

a. Background 40 

The release of human pharmaceuticals and personal care products into aquatic ecosystems 41 

continues to be a serious environmental problem.  There is a staggering list of prescription drugs 42 

passed from humans to wastewater treatment plants and into receiving streams, estuaries, or 43 

oceans by direct consumption, metabolism, and excretion or by toilet flushing of old prescriptions, 44 

that have been detected in water, sediment, and organisms.  Environmental scientists and aquatic 45 

toxicologists have been aware of the problem since the 1970-80’s (Hignite and Azarnoff, 1977; 46 

Richardson and Bowron, 1985), but starting in the late 1990’s concern over the problem became 47 

more intensified.  In 1999, a seminal paper by Daughton and Ternes brought the problem of 48 

pharmaceutical and personal care product pollution to the forefront of aquatic research and set into 49 

motion studies in the current fields of fate, effects, and assessments of such pharmaceutical 50 

pollution.  Thus, there has been a growing number of studies addressing effects of human 51 

pharmaceuticals on aquatic animals.  There are excellent reviews by Kummerer, 2008; Daughton and 52 

Brooks, 2011; Boxall et al., 2012; Brausch et al., 2012; Brooks and Huggett, 2012. 53 

 54 

     While there are literally hundreds of human pharmaceuticals excreted and which end up in the 55 

aquatic environment, those that are destined to have an effect on the physiology of aquatic 56 

invertebrates are ones that would interact with evolutionarily well conserved transporter and 57 

receptor proteins.  Furthermore, there are model organisms whose physiological systems and their 58 

regulation by such proteins are well understood.  Since molluscs such as the sea hare Aplysia and 59 

crustaceans like crayfish have been model organisms in neurophysiological research for decades, 60 

these systems and the drugs that modulate them are well understood.  Human antidepressants are 61 

widely prescribed drugs throughout the developed world and their mode of action is by modulating 62 

neurotransmission in the human brain. But in addition, early laboratory studies (Kulkarni et al., 1992; 63 

Sarojini et al., 1993) showed that some antidepressants have an effect on critical invertebrate 64 

physiological functions such as ovarian and testicular growth.  65 

      In this paper we review the modulatory effects of antidepressants on various physiological 66 

systems in molluscs and crustaceans, two groups of aquatic invertebrates that are numerically 67 

dominant and speciose, and thus ecologically important.  We review the data on environmental 68 

concentrations of antidepressants, link this information with the known action of neurohormones, 69 



discuss recent studies showing effects of antidepressants on molluscs and crustaceans, and suggest 70 

important questions for future research. 71 

 72 

b.  Types of antidepressants 73 

 74 

     There are several different types of antidepressants from tricyclics like imipramine and 75 

chlomipramine which block serotonin and norepinephrine reuptake transporters to 76 

monoamine oxidase inhibitors which blocks the enzyme that digests neurotransmitters such 77 

as serotonin and dopamine.  By far the most widely prescribed antidepressants in are 78 

selective serotonin reuptake inhibitors (SSRIs) such as Prozac (fluoxetine) and Zoloft 79 

(sertraline) and selective serotonin-norepinephrine reuptake inhibitors (SSNRIs) such as 80 

Effexor (venlafaxine) and Cymbalta (duloxetine).  The mode of action of SSRIs and SSNRIs 81 

is similar to that of tricyclics in that they bind to and inhibit pre-synaptic reuptake transport 82 

proteins.  These proteins normally recycle neurotransmitters back into the pre-synaptic 83 

terminal.  Inhibition of these transporters allows neurotransmitters to remain in the synaptic 84 

cleft longer.  Thus, all of the aforementioned antidepressants work by modulation of 85 

serotonergic, dopaminergic, or noradrenergic neurotransmission.  Because SSRIs and 86 

SSNRIs are the most widely prescribed antidepressants, they are the most commonly detected 87 

in samples of wastewater influent, effluent, raw sewage, and downstream from treatment 88 

plants.  The vast majority of published studies on the effects of antidepressants on molluscs 89 

and crustaceans have utilized these antidepressants. 90 

 91 

c. Concentrations in the aquatic environment. 92 

 93 

     Within the last decade, a large number of studies have measured active pharmaceutical 94 

ingredients (APIs) in various aquatic systems worldwide. Studies of measured 95 

pharmaceutical concentrations include those from freshwater (Kolpin et al., 2002), from 96 

estuaries (Thomas and Hilton, 2004; Roberts and Thomas, 2006; Benotti and Brownawell, 97 

2007; Madureira et al., 2010), in the open ocean (Choong et al. 2006; Pait et al., 2006), in 98 

drinking water (Zwiener, 2007), and biosolids (Jones-Lepp and Stevens, 2007).  There are 99 

some excellent reviews by Calisto and Estevez (2009), Pai et al., (2010), and Santos et al., 100 

(2010). 101 

     Not surprisingly, antidepressants were among the myriad of pharmaceuticals detected at 102 

measureable concentrations.  Historically, fluoxetine was the most commonly detected 103 



antidepressant in wastewater.  Kolpin et al., (2002) measured fluoxetine at 0.012 µg/L 104 

downstream from wastewater treatment plants and from livestock production facilities in the 105 

United States.  Their study was one of the first large scale studies of API contamination in 106 

North America.  However. their measured concentrations for fluoxetine were lower than 107 

those reported by Weston et al., (2001) of from 0.32 to 0.54 µg/L in municipal effluent and 108 

surface waters and 0.509 µg/L in Canadian wastewater effluent (Chen et al. 2006). 109 

     Sertraline is the active ingredient in the antidepressant Zoloft and is one of the most 110 

commonly prescribed antidepressants in the world (Schultz et al., 2010).  It has been 111 

measured at concentrations similar to fluoxetine.  The highest environmental concentrations 112 

of sertraline measured to date have been reported from raw sewage in Norway at 0.0084 µg/L 113 

Vasskog et all, (2006), in Canada at 0.006 µg/L and in Canadian effluent at 0.005 µg/L 114 

(Lajeunesse et al.,2008). 115 

     In recent years, the SSNRI venlafaxine and SSRI citalopram have surpassed fluoxetine as 116 

the antidepressant occurring in the highest environmental concentrations.  These 117 

antidepressants have been measured at concentrations up to 10X higher than any for 118 

fluoxetine.  Lajeunesse et al., (2008) measured venlafaxine concentrations from Canadian 119 

treatment plants of from 0.195 – 0.213 µg/L in raw sewage, 0.176 – 0.214 in effluent and 120 

0.013 -0.045 in receiving streams flowing into the St. Lawrence River.  In the same year 121 

Schultz and Furlong (2008) measured venlafaxine at 2.19 µg/L in wastewater effluent in 122 

Minnesota and at 1.31 µg/L downstream from treatment plants in Texas.  These are the 123 

highest environmental concentrations reported for any antidepressant.  Later, Schultz et al. 124 

(2010) published mean concentrations of venlafaxine from Boulder Creek, Colorado as high 125 

as 0.22 µg/L.  Metcalfe et al. (2010) measured mean concentrations of venlafaxine > 1.0 µg/L 126 

in raw wastewater and 0.5 µg/L at sampling sites 10 meters downstream from the treatment 127 

plant in the Grand River watershed of southern Ontario.   128 

     For citalopram, Lajeunesse et al., (2008) reported concentrations of 0.052 µg/L in raw 129 

sewage, 0.057 in effluent, and 0.011 µg/L in receiving water.  It has been measured as high as 130 

0.07 µg/L in American wastewater effluent by Schultz et al., (2010).  Metcalfe et al., (2010) 131 

reported higher mean concentrations of citalopram in raw Canadian wastewater 132 

(approximately 0.25 µg/L) and 10 meters downstream (approximately 0.125 µg/L). 133 

Styrishave et al., (2011) measured concentrations of citalopram in raw wastewater from 0.19 134 

– 10.3 µg/L in a Danish treatment plant. 135 

     While the antidepressants mentioned above are indicated for the treatment of anxiety, 136 

panic disorder, and obsessive-compulsive disorder to name a few, and all work by 137 



modulation of the neurotransmitters serotonin, dopamine, and norepinephrine at the pre-138 

synaptic terminal, these drugs can have multiple biological effects in humans such as weight 139 

gain, fatigue, and sexual dysfunction.  Furthermore, since the genes for the reuptake 140 

transporters and/or receptors undoubtedly evolved in invertebrates such as molluscs and 141 

crustaceans, and quite possibly even in plants (e.g. serotonin and dopamine are both widely 142 

distributed in plants), release of drugs designed to modulate evolutionarily ancient 143 

neurotransmitters would be expected to have multiple biological effects on these organisms. 144 

 145 

 146 

3. Overview of neurohormones impacted by antidepressants 147 

a. Mollusca: 148 

     A thorough review of the roles of neurohormones in the regulation of physiological and 149 

behavioral mechanisms in molluscs encompasses research from more than 50 years ago, and 150 

thus goes well beyond the scope of this paper.  We present here a cursory look at some of the 151 

physiological systems that are regulated by two principal biogenic monoamines, serotonin 152 

and dopamine.  There are excellent reviews by Weiger, 1997 (on behavior), Dayan and Huys, 153 

2009; Wu and Cooper, 2012 (on receptors and synaptic transmission at neuromuscular 154 

junction) and Birmingham and Tauck, 2006 (on neuromodulation).   155 

 156 

     A number of studies have shown serotonergic and dopaminergic regulation of locomotion 157 

in gastropods.  It has been known for decades that serotonin has cilioexcitatory properties 158 

(Gosselin, 1961).  Serotonin controls pedal ciliary activity in marine snails, such as Tritonea 159 

diomedea (Audesirk et al., 1979) and freshwater snails, Lymnaea stagnalis (Syed and 160 

Winlow, 1989) and Planorbis corneus (Deliagina and Orlovsky, 1990).  Serotonin also 161 

controls pedal muscle contractions and it has been shown to regulate swimming in the 162 

nudibranch Melibe leonine (Lewis et al. 2011).  In land snails, Helix lucorum, serotonin 163 

accelerates locomotion and stimulates crawling while dopamine causes muscular contractions 164 

of the foot regulating its length (Pavlova, 2001).  Dopamine antagonists cause “sole 165 

detachment” in Helix by causing the lateral edge of the foot to lift off of the substrate 166 

(Sakharov and Salanki (1982).  Tsyganov and Sakharov (2000) found that fictive muscular 167 

locomotion in L. stagnalis could be induced by both serotonin and dopamine as well as their 168 

precursors, 5-HTP and DOPA, respectively. 169 

     While locomotion is limited in most bivalves, serotonin activates structures similar to 170 

those it activates in gastropods.  Serotonin regulates the gill ciliary activity in mussels and 171 



oysters (Aiello, 1970, Saimi et al. 1983) and increases both the ciliary activity and diameter 172 

of gill ostia in zebra mussels (Gardiner et al., 1991).   When zebra mussel siphons and 173 

adjacent mantle tissue are exposed to high (1 mM) concentrations of serotonin, the siphons 174 

open and the muscles contract, but at low (1 µM) concentrations the muscles relax (Ram et 175 

al. 1999). 176 

 177 

     Serotonin regulates several reproductive processes in bivalves.  Serotonin receptors have 178 

been identified on egg cell membranes (Krantic et al. 1991, Guerrier et al. 1996) and 179 

serotonin has been detected in bivalve ovaries by immunocytochemistry and HPLC (Ram et 180 

al. 1992).  Oocyte maturation and germinal vesicle breakdown (GVBD) can be induced in a 181 

number of different bivalve species by serotonin and its receptor ligands (Osanai and 182 

Kuraishi, 1988, Hirai et al. 1988, Kadam and Koide, 1989, Fong et al. 1994).  Because of its 183 

importance in aquaculture, the induction of spawning in bivalves has been well studied.  184 

Serotonin and its receptor ligands induce spawning in both marine (Matsutani and Nomura, 185 

1982, Gibbons and Castagna, 1984) and freshwater (Ram et al. 1993) bivalves.  Furthermore, 186 

it induces spawning in species that release oocytes arrested at prophase I (Spisula spp.) or 187 

metaphase I (Dreissena polymorpha).  In the live bearing, freshwater fingernail clams, 188 

serotonin induces parturition (Fong and Warner, 1995).  Recently Meechonkit et al. (2012) 189 

showed that exposure of the freshwater mussel Hyriopsis bialatus to different concentrations 190 

of serotonin significantly induced release of viable glochidia which developed normally. 191 

While dopamine has been detected in bivalve gonads (Osada and Nomura 1989), its role in 192 

regulating reproductive processes is unclear.  However, dopamine has been shown to reduce 193 

the intensity of serotonin-induced spawning in zebra mussels (Fong et al. 1993a).   194 

 195 

     In freshwater gastropods, serotonin regulates several reproductive processes. In Lymnaea 196 

stagnalis, a serotonin receptor (5-HTLym) binds several serotonin receptor ligands with high 197 

affinity (Sugamori et al., 1993).  Bath-applied serotonin induces the contraction of the penis 198 

retractor muscle thus it is likely involved with penis withdrawl (Croll et al. 1991).  199 

Furthermore, the penis nerve in L. stagnalis produces 8 neuropeptides as well as serotonin.  200 

By contrast, a serotonin receptor antagonist, methiothepin induces the eversion of the 201 

preputium containing the penis, but reduces egg laying and copulatory behavior in the snail 202 

Biomphalaria glabrata (Muschamp and Fong, 2001).  Earlier studies by Manger et al. (1996) 203 

showed that B. glabrata, exposure to serotonin increased ovulation and oviposition in mature 204 

snails (Manger et al., 1996).  Serotonin-induced rotation of embryos within egg capsules has 205 



been shown by Diefenbach et al.,(1991) in the freshwater snail Helisoma trivolvis.  The 206 

rotation is cilia driven and postulated to increase oxygen availability in embryos during 207 

periods of low oxygen.  Recently, Shartau et al., (2010) showed that embryos exposed to 208 

serotonin lived > 2x as long as untreated embryos subjected to anoxia.  Filla et al., (2009) 209 

showed that in the embryonic development of L. stagnalis, both dopamine and its 210 

synthesizing enzyme increase continuously, whereas levels serotonin remained low.  211 

However both serotonin and dopamine enhanced embryonic rotation. 212 

 213 

     The veliger larvae of some marine snails (Ilyanassa obsoleta) contain a large number 214 

serotonergic and dopaminergic neurons.  When exposed to exogenous serotonin the larvae 215 

undergo metamorphose (Couper and Leise,, 1996).  In the nudibranch Phestilla sibogae, 216 

competent larvae metamorphose when exposed to a factor from their bryozoan prey.  217 

Treatment of larvae with the dopamine precursor, L-Dopa increases dopamine concentration, 218 

and potentiated the frequency of larval metamorphosis when exposed to low concentrations 219 

of the natural inducer.   220 

 221 

b. Crustacea 222 

     Neurohormones control a wide variety of biological systems within the Crustacea 223 

including: reproduction, growth, maturation, larval development, immune function; 224 

metabolism, behaviour and colour physiology (Diwan, 2005; Fingerman, 1997; Fingerman, 225 

1987; Sarojini et al 1995; Huber et al 1997; Cheng et al 2006; Li et al 2005; Fingerman, 226 

1983). For example, both serotonin and dopamine has been found to stimulate the release of 227 

multiple other crustacean hormones including hyperglycaemic hormone, red and black-228 

pigment dispersing/concentrating hormone, neurodepressing hormone, moult-inhibiting 229 

hormone and gonad stimulating hormone (see Fingerman, 1997; Chen et al 2003; 230 

Wongprasert et al 2006; and papers within), Consequently, any chemicals in the environment 231 

that have the ability to modulate these hormones conceivably have the ability to disrupt the 232 

normal endocrine and biological function in exposed organisms in a vast number of ways. 233 

Pasztor and MacMillan (1990) reported in a study of the crayfish, Cherax destructor and the 234 

lobster, Homarus americanus that some instances neurohormones that have excitatory 235 

responses whereas in other species may be ineffective or depressive. Therefore, those wishing 236 

to extrapolate the roles and effects of exogenous neurological modulators in one species may 237 

find it more difficult to discern those occurring in other species. Here we provide an overview 238 



and examples of the different functions some neurohormones linked to antidepressant 239 

function. 240 

 241 

     The roles of serotonin, dopamine and octopamine have attracted a lot of attention within 242 

the aquaculture sciences for their potential to speed up growth, maturation and spawning 243 

(Diwan, 2005; Wongprasert et al. 2006). The results of which has considerably increased our 244 

understanding of crustacean endocrinology. For example, Wongprasert et al (2006) reported 245 

that the black tiger shrimp Penaeus monodon, when injected with serotonin (5-246 

Hydroxytryptamine, 5HT) developed its ovary at a similar rate to unilateral eyestalk ablated 247 

shrimp. In addition, the authors reported that the hatching rate and the amount of nauplii 248 

produced per spawner were also significantly higher in 5HT injected shrimp. Similar results 249 

have been observed for the crayfish Procambarus clarkia, the white Pacific shrimp 250 

Litopanaeus vannamei, the freshwater giant prawn, Macrobrachium rosenbergii, the fiddler 251 

crab Uca pugilator (Vacu and Alfaro, 2000; Chen et al 2005; Sarojini et al 1995). 252 

Conversely, Chen et al (2003) has shown that dopamine is able to inhibit the ovarian 253 

maturation and Sarojini et al. (1995) found that dopamine has a dose dependant inhibitory 254 

effect on the testicular maturation. 255 

  256 

     Crustacean biologists have long established links between serotonin levels and changes in 257 

behaviour amongst the Crustacea. For example, during daylight hours the common shore crab 258 

Carcinus maenas are strongly photonegative. McPhee and Wilkens (1989) found that during 259 

daylight they spent around 76 % of their time hidden under rocks or buried in sand. However, 260 

when crabs were injected with serotonin this photonegative behaviour was reduced and the 261 

crabs spent only 32 % of their time hidden or buried. Serotonin is also known to affect 262 

phototaxis and geotaxis behaviour in amphipods (Tain et al., 2006). Acanthocephalan and 263 

trematode parasites have the ability to modify amphipod phototactic and geotactic behaviour 264 

as a means of increasing their likelihood of being eaten by their definitive hosts (Bauer et al., 265 

2005, Bethel and Holmes, 1973, Lagrue et al., 2007, Cezilly et al., 2000). Tain et al. (2006) 266 

has shown that infection with acanthocephalan parasites is associated with increased brain 267 

serotonergic activity which instigates the behaviour alterations. Work by Guler and Ford 268 

(2010) recently established that serotonin altering parasites, serotonin and the anti-depressant 269 

drug fluoxetine can significantly affect the phototaxis and geotaxis behaviour of amphipods 270 

at concentrations as low as 10 ng/l. Recently Perrot-Minnot et al (2013) recently provided 271 



some evidence for the role of 5HT receptors in modulating phototaxis behaviour specifically 272 

highlighting 5-HTR2 subtype. 273 

 274 

     In decapod crustaceans, serotonin has been suggested to serve important roles in 275 

mediating aggressive behaviours (Huber et al 1997a; Huber and Delago 1998. Sneddon et al 276 

2000). Doernberg et al (2001) investigated the role(s) of serotonin in the fighting behaviour 277 

of lobsters, Homarus americanus. In some individuals, 5,7-dihydroxytryptamine (neurotoxin) 278 

was injected in order to deplete the animals of serotonin in their nervous tissue. They found 279 

that the treated animals showed an increased tendency to engage in agonistic encounters. This 280 

result was similar to the lobsters that had been injected with serotonin. Therefore, the authors 281 

concluded that either high or low levels of serotonin increased the tendency of lobsters to 282 

engage in fights. In crayfish, Astacus astacus, Huber and Delago (1998) noted that if the 283 

animals were injected with serotonin then the fighting behaviour altered and the fights lasted 284 

considerably longer. 285 

 286 

     The immune systems of crustaceans are also known to be influenced by neurohormones. 287 

For example, Li et al (2005) injected the freshwater giant prawn Macrobrachium rosenbergii 288 

with dopamine at a range of concentrations and recorded biomarkers relating to immune 289 

function. The study reported that a wide variety of immune parameters were impacted 290 

through dopamine (DA) injection. Interestingly, the authors also observed an increased 291 

mortality in DA treated M. rosenbergii when challenged with the bacterial pathogen, 292 

supporting the evidence for a reduced immune function. Reduced immune function has also 293 

been found in white shrimp Litopanaeus vannamei across a range of immune parameters 294 

measured (Chen et al 2006). Similarly, when challenged with a bacterial pathogen increased 295 

mortality was observed in noradrenaline (norepinephrine) injected individuals than controls 296 

(Chen et al 2006). 297 

 298 

     The regulation of blood glucose through crustacean hyperglycaemic hormone (CHH) is 299 

under the control from a variety of neurohormones (Fingerman, 1997). Hsieh et al (2006) 300 

reports that dopamine, serotonin, norepinephrine, epinephrine and octopamine are all 301 

effective in inducing hypergylcemic responses in a variety of crustaceans. Crustacean 302 

hyperglycaemic hormone is synthesised and released from the x-organ sinus complex. The 303 

release of CHH has been shown to be promoted through injection with 5HT in a variety of 304 

species (Fingerman, 1997) whereas DA can have an inhibitory effect (Sarojini et al 1995). 305 



The evidence suggests as with many of the biological systems that serotonin and dopamine 306 

play a counteractive control. 307 

 308 

     Colour within the crustaceans is controlled through a number of neurohormones which act 309 

upon chromatophores within the epithelial tissues. A considerable body of research exists that 310 

have studied the function of neurohormones on specific group of peptide hormones that can 311 

concentrate or disperse the pigments within the chromatophores (Fingerman, 1997). These 312 

have been named after the colours of the pigments under their control (e.g. red-pigment 313 

dispersing hormone; RGDH) and whether they have concentrating or dispersing properties 314 

(e.g. red-pigment concentrating hormone). Serotonin has been shown to influence red-315 

pigment dispersing hormone whilst dopamine influences red- and black-pigment 316 

concentrating hormone. Fingerman (1997 and papers within) report norepinephrine triggers 317 

release of black-pigment dispersing hormone but not RGDH. 318 

 319 

 320 

 321 

  322 



4. Effects of antidepressants in Molluscans and Crustaceans 323 

a. Mollusca  324 

     Molluscs have been model organisms for the study the effects of released pharmaceuticals 325 

on aquatic organisms, because of their abundance, diversity in different aquatic 326 

environments, and ecological importance.  Since antidepressants exert their effects mainly 327 

through serotonergic neurons, and since serotonin receptors have been well studied in 328 

molluscs, this group is a logical choice of test organism for such effects.  Not surprisingly, 329 

fluoxetine (“Prozac”) was one of the first SSRI’s tested for its effect on aquatic invertebrates 330 

since it is commonly detected in wastewater influent, effluent, and in receiving streams.  331 

With one exception all of studies of the effects of antidepressants on molluscs have been on 332 

the two largest groups, the gastropods and bivalves.  Furthermore, with few exceptions, 333 

reproductive processes (egg laying, embryo production in gastropods and spawning, larval 334 

release, parturition in bivalves) have been the focus of these studies. 335 

 336 

i. Gastropods  337 

     In one of the first papers to document an effect of an antidepressant on any mollusc, 338 

Couper and Leise (1996) microinjected veliger larvae of the marine gastropod Ilyanassa 339 

obsoleta to fluoxetine (1 µM).  They found that fluoxetine significantly induced larval 340 

metamorphosis compared with controls, and at a lower but not significantly different 341 

percentage than bath applied serotonin.  While their study was cell physiological in nature as 342 

opposed to environmental, in that larvae were injected with fluoxetine, it did suggest that 343 

externally applied antidepressants could also have salient effects on critical life cycle events 344 

in aquatic invertebrates. 345 

     Much of the subsequent work on antidepressants and aquatic molluscs employed bivalves 346 

as test organisms.  But, Nentwig 2007 working on an invasive species, the New Zealand mud 347 

snail Potamopyrgus antipodarum found that snails exposed to fluoxetine had significantly 348 

reduced embryo production.  His 10 percent effect concentration of fluoxetine was 0.81 µg/L.  349 

While P. antipodarum had been used previously as a test organism in aquatic toxicity testing 350 

(Duft et al. 2003), this study was the first to use the mud snail as a suitable gastropod for 351 

antidepressant testing.  Pery et al.(2008) also working with P. antipodarum found that 352 

fluoxetine did not effect growth, but did reduce the number of offspring at 69 µg/L.  353 

Furthermore and in the same laboratory, Gust et al. (2009), again working with P. 354 

antipodarum found that mud snails exposed to high (100 µg/L) fluoxetine produced 355 

significantly fewer embryos or eggs compared with controls.  But at low concentrations (3.7 356 



and 11.1 µg/L) fluoxetine-exposed snails produced more embryos than the control. They also 357 

found a generational effect of fluoxetine on mud snail reproduction.  The F1 generation of P. 358 

antipodarum grew faster and reproduced more slowly than their fluoxetine-exposed parents 359 

regardless of concentration.  In the same year, Sanchez-Arguello et al. (2009) working with 360 

another freshwater gastropod, Physa acuta found that fluoxetine stimulated reproduction at 361 

31.25 and 62.5 µg/L but at the highest concentration 250µg/L reproduction was inhibited.  362 

These results are similar to those of Pery et al. (2009), but at different concentrations and in a 363 

different species. 364 

      365 

     Recently, two studies of antidepressants effects have focused on locomotion in freshwater 366 

and marine gastropods.  The regulation of gastropod locomotion and ciliary movement by 367 

serotonin has been well documented for decades (Audesirk et al., 1979, Sakharov and Salanki 368 

1982).  Furthermore, Uhler et al., (2000) found that fluoxetine stimulated cilia-driven rotation 369 

in freshwater snail (Physa) embryos.  However, up to now, no studies have shown an effect 370 

of antidepressants on gastropod locomotion.  Fong and Hoy (2012) and Fong and Molnar 371 

(2013) found that various antidepressants cause foot detachment from the substrate in 372 

freshwater and marine gastropods.  Freshwater gastropods, Leptoxis carinata and Stagnicola 373 

elodes, were exposed to venlafaxine. This antidepressant was reported to be the most 374 

common measured in North American (Metcalfe et al, 2010, Schultz et al. 2010) and 375 

European (Styrishave et al. 2011) wastewater treatment plants and receiving streams.  376 

Exposure to venlafaxine at an LOEC of 313 pg/L induced foot detachment from the substrate 377 

in L. carinata and 31.3 ng/L in S. elodes.  These concentrations are orders of magnitude 378 

lower than concentrations in wastewater effluent (Fong and Hoy, 2012).   379 

     Fong and Molnar (2013) measured foot detachment from substrate in five species of 380 

marine snail from the Pacific and Atlantic coasts of North America exposed to four different 381 

antidepressants.  They found that trochids (Chlorostoma, Tegula) and turbinids (Lithopoma) 382 

were more sensitive to antidepressants than were muricids (Urosalpinx, Nucella). Their 383 

lowest LOEC was 43.4 µg/L fluvoxamine on L. americanum and 157 µg/L venlafaxine on C. 384 

funebralis.  Foot detachment from the substrate is a potential sub-lethal effect that could 385 

result transport to unfavorable habitats and which would be difficult to detect in nature.  386 

While the effective concentrations found by Fong and Molnar are higher than environmental 387 

concentrations, antidepressants and their sub-lethal effects can accumulate over time (Seiler, 388 

2002) and can be enhanced by the concomitant release of other pharmaceuticals (Silva et al. 389 

2012). 390 



 391 

ii. Bivalves 392 

     Because of its importance in bivalve aquaculture protocols, spawning had been shown to 393 

be inducible by external application of serotonin and its receptor ligands (Gibbons and 394 

Castagna, 1984, Ram et al 1993, Fong et al. 1993b). Fong (1998) tested the effect of the 395 

antidepressants fluvoxamine and fluoxetine on spawning in the zebra mussel (Dreissena 396 

polymorpha).  He found that low concentrations of both antidepressants induced male 397 

mussels to spawn when exposed to 1 nM fluvoxamine and to 50 nM fluoxetine.  In the same 398 

year, Fong et al., (1998) showed that parturition in the freshwater fingernail clam (Sphaerium 399 

striatinum) was induced by 10 nM fluvoxamine.  Since zebra mussels are a serious aquatic 400 

pest species that have spread throughout Europe and are moving rapidly throughout North 401 

America, and since fingernail clams are a prominent member of the freshwater benthos 402 

worldwide, the finding that low concentrations of antidepressants could induce reproductive 403 

processes in them triggered a number of subsequent studies on effects of different 404 

antidepressants on aquatic animals. 405 

     Over a decade later, Lazzara et al. (2012) exposed zebra mussels to environmentally 406 

relevant concentrations of fluoxetine over several days.  Gonads of fluoxetine-exposed 407 

mussels showed a reduction in both oocytes per follicle and spermatozoa per seminiferous 408 

tubule compared with controls at concentrations as low as 20 ng/L. This concentration is even 409 

lower than that found to induce spawning by Fong (1998).  However, Lazzara et al did not 410 

actually observe spawning, but rather noticed differences in gonads between exposed and 411 

control mussels, and from this they concluded that zebra mussel spawning may be inducible 412 

at even much lower fluoxetine concentrations following exposure for a period of several 413 

days. 414 

     Working with the marine bivalve Macoma balthica, Honkoop et al. (1999) found that its 415 

spawning season could be extended in the laboratory by the combination of temperature 416 

shock with 1 mg/L fluoxetine.  Their finding was valuable not only because it was the first to 417 

show an effect of an antidepressant on a marine bivalve, but it was also important to bivalve 418 

mariculture managers seeking ways to maintain spawning stock for an extended period of 419 

time. 420 

     Exposure to antidepressants also has an effect on release of larvae and reproductive 421 

behaviour the freshwater unionids.  Populations of North American unionids have been 422 

declining for decades due to habitat loss and alteration, water quality degradation, and 423 

competition from exotic species such as zebra mussels (Ricciardi and Rasmussen, 1999).  424 



The additional physiological stressor of antidepressant and other pharmaceutical pollution 425 

does not bode well for this threatened and endangered group.  Cunha and Machado (2001) 426 

induced parturition in Anodonta cygnea.  By contrast to Fong’s 1998 work, they found that 427 

fluoxetine was more potent than fluvoxamine inducing strong release of glochidial larvae at 1 428 

µM.  Bringolf et al. (2010) measured the concentration of fluoxetine in water, sediment, and 429 

mussel tissue downstream from wastewater effluent and in freshwater mussels (Elliptio 430 

complanata) living within the sediment.  Mussel tissues accumulated fluoxetine (79 ng/L) 431 

compared with that measured in water (104-119 ng/L) and in sediment (17.4 ng/L).  In 96-432 

hour lab tests, mussels exposed to fluoxetine at 300 and 3000 µg/L significantly released non-433 

viable glochidia.  Male E. complanata exposed to 3000 µg/L significantly released 434 

spermatozeugmata over a 48-hour period.  Interestingly, but not surprisingly, exposure to the 435 

same fluoxetine concentrations also stimulated lure display behavior in female Lampsilis 436 

fasciola and L. cardium.  Female Lampsilis spp. have mantle edges modified to resemble 437 

small fishes in order to attract larger predatory fishes that act as hosts for glochidia larvae.  438 

As host fish approach the mantle “lure” the female releases a cloud of glochidia which then 439 

attach to and parasitize the host fish.  In addition, Hazelton et al (2013) studied the 440 

reproductive behavior and life cycle of three species of L. fasciola exposed to fluoxetine. 441 

Exposure to fluoxetine 29.3 µg/L significantly increases the probably of lure display 442 

compared with controls.  The reproductive consequences of this altered behavior is difficult 443 

to assess, but increasing the probability of lure displays during times when glochidia are not 444 

mature or during a time when host fishes are less likely to be active could have negative 445 

effects on overall recruitment. 446 

     In the only study to date on the effects of externally applied antidepressants on a 447 

cephalopod, Di Poi et al., (2013) measured several learning variables in newborn cuttlefish, 448 

Sepia officianlis exposed to 1 and 100 ng/L fluoxetine.  Fluoxetine did not affect feeding 449 

motivation, but it did inhibit cuttlefish efficiency at striking prey at 1 ng/L which is lower 450 

than environmental concentrations.  Interestingly, at 100 ng/L fluoxetine, the learning 451 

performance of cuttlefish was closer to that of control cuttlefish.  Furthermore, memory 452 

retention was inhibited by both low and high fluoxetine concentrations.  Thus fluoxetine 453 

exposure could have serious consequences on feeding behavior at a young age and could 454 

possibly affect other behaviors as animals grow. 455 

 456 

 457 

 458 



b. Crustacea 459 

 460 

     To date, despite a considerable body of work using decapod models to investigate the 461 

neurobiology of Crustacea, the studies investigating the effects of antidepressants have 462 

focussed on more traditional ecotoxicological models such as amphipods and daphniids. The 463 

work with amphipods has mainly focused on behaviour whilst the work with daphniids has 464 

looked at mortality and reproductive endpoints. De Lange et al. (2006) exposed the 465 

freshwater amphipod, Gammarus pulex to a variety of chemicals, including fluoxetine, and 466 

measured their activity using the multispecies freshwater biomonitor (MFB). The MFB uses a 467 

quadruble impediance conversion technique to record movements of aquatic organisms in a 468 

test chamber (Gerhardt et al. 1994). The activity of G. pulex were recorded every 10 minutes 469 

for 1.5 hours following a 30 minute acclimation period. The authors recorded a significant 470 

decrease in activity at low (10-100ng/L) fluoxetine, but no significant differences from the 471 

controls at higher concentrations (1µg/L-1mg/L). De Lange et al. (2009) re-analysed the 472 

previous experiments using multivariate statistical analysis to differentiate patterns in 473 

locomotion and ventilation changes. The authors report that recording ventilation can be used 474 

to measure signs of stress. The re-analysis revealed that G. pulex in fluoxetine showed 475 

increased ventilation at 10-100ng/L whilst the higher concentrations were closer to the 476 

control. 477 

 478 

Guler and Ford (2010) studied the effects of a variety of pharmaceuticals and the hormone 479 

serotonin on the preference to lights vs dark choice chambers in the marine/estuarine 480 

amphipod Echinogammarus marinus.  The authors exposed the amphipods over a period of 481 

one, two and three weeks and recorded the preference to light or dark areas and depth, every 482 

30 seconds, over a ten minute period. The authors reported a significant preference of light 483 

and negative geotaxis in the amphipods exposed to fluoxetine and serotonin. Interestingly the 484 

dose response was linear for serotonin whereas it followed a non-monotonic concentration 485 

response for fluoxetine with the lower concentrations (10-100ng/L) differing from the 486 

control. E. marinus exposed to 100ng/L fluoxetine spent 5 times more time in lights areas 487 

than control animals which prefer dark. The authors highlighted that parasites such as 488 

acanthocephalans and trematodes known to induce increased levels of cerebral serotonin also 489 

invoke similar behaviours reversing the preference to light and have been demonstrated to 490 

increase the likelihood of predation. For example, Perrot-Minnot et al. (2007) studied the 491 

predation vulnerability of G. pulex infected by the fish acanthocephalan, P. tereticollis, both 492 



in laboratory and field conditions. In field studies, the final host predator (Bullhead fish) had 493 

10 times higher proportions of infected G. pulex it its gut than uninfected individuals sampled 494 

within the same river. In addition, microcosm experiments showed that uninfected 495 

individuals increased the use of refuges in the presence of bullhead predators (Perrot-Minnot 496 

et al., 2007). In a similar study, Lagrue et al. (2007) found 26.3–28.3 times higher proportion 497 

of infected G. pulex amphipods in the stomach content of one of the definitive hosts of P. 498 

laevis, the bullhead Cottus gobio. Huber et al (1997) studied the effects of serotonin on 499 

aggression in crayfish and found that whilst injection with 5HT made crayfish more 500 

aggressive, exposure to fluoxetine had no effect. When fluoxetine was injected in 501 

combination with serotonin the aggressive behaviour was reduced compared to serotonin 502 

alone leading the authors to suggest that serotonin uptake plays an important role in these 503 

behaviour reversals. 504 

 505 

      Henry et al. (2004) studied the acute and chronic effects of five SSRIs (fluoxetine, 506 

fluvoxamine, paroxetine, citralopram and sertraline) on the daphnid, Ceriodaphnia dubia. 507 

The 48-h LC50s for the SSRIs ranged from 0.12 to 3.9mg/L in terms of increasing toxicity 508 

could be ranked as: Citralopram < Fluovoxamine < Paroxatine < Fluoxetine < Sertraline. The 509 

authors also observed that SSRIs negatively affect reproduction either through reducing the 510 

number of neonates per female or by reducing the number of broods per female. Sertraline 511 

and Citalopram were found not to significantly affect the number of broods per female 512 

whereas the lowest-observed-effect concentration for the other three could be ranked in 513 

increasing toxicity from: Fluvoxamine (1.466mg/L) < Fluoxetine (0.447mg/L) < Paroxetine 514 

(0.44mg/L). The Lowest-observed-effect concentration for numbers of neonates per female 515 

were, in increasing toxicity, ranked: Citralopram (4mg/L) < Fluovoxamine (1.466mg/L) < 516 

Fluoxetine (0.447mg/L) < Paroxatine (0.44mg/L) < Sertraline (0.045mg/L). The authors 517 

noted the different SSRIs differed in their rank effects on spawning from other species (Fong 518 

et al. 1998) but noted this maybe down to interspecies differences or the SSRIs acting 519 

through different mechanisms. 520 

 521 

     Christensen et al. (2007) observed in Daphnia magna that the EC50s (immobility) for the 522 

same SSRIs ranged from 0.92 to 20mg/L and were ranked increasing toxicity: Citralopram < 523 

Fluovoxamine < Fluoxetine < Paroxatine < Sertraline; and hence broad agreement of 524 

increasing toxicity with Henry et al (2004). The authors also conducted three different binary 525 

mixture experiments with the SSRIs Citalopram, Fluoxetine and Sertraline. They found no 526 



evidence synergism or antagonism, however a concentration addition (CA) model best 527 

explained the observed data and concluded that because several SSRIs can be found in the 528 

environment that mixture effects for these compounds must be included in their risk 529 

assessment. 530 

 531 

      Campos et al. (2012a) investigated offspring production in Daphnia magna following 532 

exposure to the SSRIs, fluoxetine (10, 40 & 80µg/L) and fluvoxamine (7 & 30µg/L) and 533 

compared clones, life-stages and food rations. In the fluvoxamine exposures juveniles 534 

developed earlier and subsequently reproduced earlier relative to controls whereas fluoxetine 535 

increased offspring production relative to controls. When individuals were exposed from 536 

birth, enhanced offspring production per female was only observed at low and intermediate 537 

food rations. The authors suggested that this could be due to the compounds interference with 538 

endogenous serotonin which may differ with high vs low food rations. Campos et al (2012b) 539 

further tested this hypothesis repeating experiments also with the 5-HT serotonin receptor 540 

antagonist cyproheptadine. The authors found that exposure to SSRIs increased juvenile 541 

development rate, clutch size, and decreased offspring size at low and intermediate levels of 542 

food rations. These results were reversed by the presence of the 5-HT receptor agonist and 543 

concluding that the 5-HT receptor was pivotal to the effects of fluvoxamine and fluoxetine. 544 

Using a transcriptomic response Campos et al (2013) recently used a 15,000 probe custom 545 

made microarray to determine the differential gene expresson of Daphnia magna exposed to 546 

SSRIs (fluoxetine 40µg/L and fluvoxamine 7µg/L). Serotonin metabolism, neuronal 547 

development processes, carbohydrate and lipid metabolism functions were found to be 548 

differentially expressed when annotated against the Drosophila. 549 

 550 

 551 

  552 



5. Conclusions/Summary 

     In this review we have shown that the capability for antidepressants to disrupt the normal 

biological systems of two highly abundant and ecologically important invertebrate groups is 

extensive. Through the interference of neurohormones such as serotonin, dopamine and 

norepinephrine, for which antidepressants are deliberately designed to modulate; 

antidepressants have the potential to effect multiple biological processes including 

reproduction, growth, metabolism, immunity, feeding, locomotion, colour physiology and 

behaviour. 

 

     A body of evidence is building that suggest that antidepressants, at concentrations 

currently found in surface, waste and groundwaters are sufficient to cause a wide variety of 

effects (based on laboratory studies). This is despite that fact that reports suggest that these 

types of drugs only take up 4% of the known relative proportions of pharmaceuticals detected 

in the environment (Santos et al. 2010). Whether such effects are occurring within the field 

are currently unknown and represent an important and challenging question for 

ecotoxicologists to address. In this review we have highlighted fluoxetine can impact learning 

and retention efficiencies in cuttlefish between 1-100ng/L (Di Poi et al 20130) induce 

phototactic responses in amphipods as low as 10ng/L; impact swimming activity in 

amphipods as low as  1-100ng/L (De Lange et al. 2006; Bossus et al., in review) and induce 

gonadal aberrations in zebra mussels as low as 20ng/L. Studies with another antidepressants, 

fluvoxamine (SSRI) have induce spawning in zebra mussel at ~318ng/L (Fong, 1998) and 

exposure to venlafaxine (SNRI) causes foot detachment as low as 313 pg/L and 31.3 ng/L 

from the substrate in L. carinata in S. elodes respectively (Fong and Hoy, 2012; Fong and 

Molnar, 2013). Further effects on reproductive output in terms of frequency of broods, 

offspring production, gamete release and gene expression have been revealed in the ug/L 

concentrations. 

 

     In reviewing the current literature, a number of interesting research questions have been 

highlighted: An increasing number of studies are finding biological effects at lower 

concentrations but not at higher concentrations. For example, Sanchez-Arguello et al., 2009 

found a stimulation of reproduction in the snail, Physa acuta at lower fluoxetine 

concentrations and got the opposite effect at higher concentrations. Conners et al (2009) 

found that Xenopus tadpoles in low and moderate concentrations of sertraline (0.1 and 1.0 

µg/L) and moderate concentrations of fluoxetine (1.0 µg/L) metamorphosed sooner whereas 



those tadpoles in high concentrations (10.0 µg/L) were most similar to controls. Guler and 

Ford (2010) observed stronger phototaxis responses in the amphipod E. marinus at low (10-

100 ng/L) concentrations of fluoxetine whereas no significant differences from the controls at 

higher concentrations (1000 ng/L). Di Poi et al (2012) found that whilst 1ng/L fluoxetine 

influenced learning in the cuttlefish, 100ng/L did not, but did significantly influence the 

retention of memory. Some of the studies mentioned in this review only conducted 

experiments at higher concentrations (µg-mg/L). Considering the non-monotonic 

concentration curves revealed by these studies (De Lange et al 2006; Sanchez-Arguello et al., 

2009; Conners et al. 2009; Guler and Ford, 2010; Di Poi et al 2012); would the endpoints 

measured revealed greater effects at lower concentrations? This suggests that in designing 

future experiments, ecotoxicologists should be mindful of the range of concentrations used 

and will certainly add to the debate about hormesis effects in toxicology. 

  

     Many of the studies were also conducted over relatively short time periods, and thus 

bearing in mind the role serotonin and dopamine play in maturation and reproduction; would 

antidepressants impact aquatic organisms over long exposure periods and at critical stages 

in their development? These neurohormones play important roles in biological systems not 

yet currently tested as endpoints in antidepressant ecotoxicity studies. For example, do 

antidepressants effect aquatic organisms in ways that impact their immune systems leaving 

them more susceptible to pathogens and parasites? Do antidepressants impact an organism’s 

ability to change colour and remain cryptic in their environment? Can antidepressants subtly 

effect the way they interact within their populations through e.g. aggression towards 

conspecifics or competition for mates?  

 

     The evolution of the neuroendocrine systems throughout the animal kingdom are 

‘relatively’ well conserved compared to the reproductive systems. For example, those genes 

under considerable sexual selection within the reproductive systems undergo rapid change 

(Ellegren and Parsch, 2007) and the hormonal control of reproductive systems of invertebrate 

groups vary considerably (Crane and Tattersfield 1999). Consequently this made making 

interspecies biomarker development both within and between the invertebrate phyla more 

difficult. This has hampered the assessment of reproductive endocrine disruption in many 

invertebrate groups due to a lack of knowledge of general endocrinology and molecular 

biology required to determine mechanisms of toxicology. The neuroendocrine systems of 

invertebrates have considerably more depth of knowledge, especially considering that many 



invertebrate groups have been used as model organisms to study the nervous systems in 

general. The mechanisms by which chemical and electrical signals are mediated along and 

across neural junctions are relatively well conserved throughout the animal kingdom.  As a 

result, there are now numerous methods for which to measure and visualise the neurological 

activity within tissues and there are a variety of standard chemical biomarkers for the 

measurement of neurohormones. Through the advent of affordable genomic and 

transcriptomic sequencing we also have the ability to measure entire gene pathways in 

organisms which in previous genomic data did not exist. This should enable us to determine 

the molecular unpinning of specific or generic aberrant behaviour such as phototaxis or 

general activity caused by antidepressant exposure. However, the difficulties will arise, as is 

often the case, through the interpretation of genomic through to behavioural data in the risk 

assessment of these chemicals within the natural populations. For example, can we answer 

what might an altered behaviour below some sewage outfall might be extrapolated to in 

terms of loss of feeding, increased predation and mate finding? Clotfelter et al. (2004) 

highlighted the need for a better dialogue between ecotoxicologists and behavioural 

ecologists to understand these problems. Can we also differentiate those impacts of 

antidepressants from the myriad of other pharmaceuticals in wastewater effluent?; do other 

environmental contaminants such as industrial chemicals have the ability to interfere with the 

synthesis, breakdown and action of neurohormones? and finally do antidepressants act 

synergistically, additively or antagonistically in mixtures with each other drug or other 

environmental pollutants. Whilst we have outlined quite a large number of unknowns we 

have come a long way since the first studies on antidepressants. There does appear to be 

compelling evidence that environmental levels of antidepressants have the ability to impact 

invertebrate populations.  
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