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We apply a new non-parametric Bayesian method for reconstructing the evolution history of the
equation-of-state w of dark energy, based on applying a correlated prior for w(z), to a collection of
cosmological data. We combine the latest supernova (SNLS 3-year or Union2.1), cosmic microwave
background, redshift space distortion and the baryonic acoustic oscillation measurements (including
BOSS, WiggleZ and 6dF) and find that the cosmological constant appears consistent with current
data, but that a dynamical dark energy model which evolves from w < −1 at z ∼ 0.25 to w > −1
at higher redshift is mildly favored. Estimates of the Bayesian evidences show little preference
between the cosmological constant model and the dynamical model for a range of correlated prior
choices. Looking towards future data, we find that the best fit models for current data could be well
distinguished from the ΛCDM model by observations such as Planck and Euclid-like surveys.

PACS numbers: 95.36.+x, 98.80.Es

Dark energy (DE), the source driving the accelera-
tion of the universe in the framework of general rela-
tively (GR), has remained an enigma since its discovery
[1]. The accumulating observational data, including su-
pernovae (SN), cosmic microwave background radiation
(CMB) and large scale structure (LSS), constrains its
equation-of-state w(z), which can be a general function
of redshift z. An accurate reconstruction of w(z) can help
us understand DE and gravity: a w 6= −1 would indicate
a dynamical DE, while a w(z) evolving across −1 would
imply an additional intrinsic degree of freedom of DE and
could be a smoking gun of the breakdown of Einstein’s
theory of general relativity on cosmological scales.

The evolution of w can be reconstructed from data
using either parametric or non-parametric methods [2],
with the latter having the advantage of not assuming any
ad hoc form of w(z). A common non-parametric approach
is to bin w in z, or the scale factor a, and fit the bin
amplitudes to data. This assumes that w(z) is constant
within each bin, while the neighboring bins are treated as
independent. But it seems rather unphysical to assume
perfect correlation of w(z) within a bin, while having
no correlation between different bins. This approach also
leads to a practical problem – when fitting many bins to
data one finds that the uncertainties of binned w’s are
very large and highly correlated, corresponding to flat
directions in the likelihood function and a very slow con-
vergence of Monte Carlo Markov chains (MCMC). Using
only a few bins improves the convergence, but leads to
unphysical discrete structures caused by the coarse bin-
ning.

A principal component analysis (PCA) shows [3] that
relatively few uncorrelated linear combinations of the
bin amplitudes are well-constrained by data, while most
are practically unconstrained. PCA provides a consistent

framework for forecasting and comparing the information
content of future surveys, as well as a tool for data com-
pression [4]. It has also been used to reconstruct w(z)
[3, 5] by first performing a Fisher forecast to determine
the eigenmodes of the covariance matrix based on a par-
ticular fiducial model, and then fitting the few best con-
strained modes to data, while setting the amplitudes of
the poorly constrained modes to zero. This simple trun-
cation can lead to significant biases and unrealistically
small errors in the reconstruction at high z, where the
data are poor or absent entirely [3]. Ignoring the poorly
constrained modes is equivalent to the unreasonable as-
sumption that their amplitudes are measured to be zero
with infinite accuracy. In addition to biasing, zeroing the
noisy modes introduces a hidden prior on the smoothness
of w(z) that is difficult to interpret and quantify.

To address these issues, we recently introduced a new
reconstruction method which imposes an explicit prior di-
rectly on the space of w(z) functions, which is combined
with observations in a straightforward Bayesian frame-
work and is simple to implement [4, 6]. (The Gaussian
Process method [7–9] is close in spirit to our approach,
but the methods and interpretation of the results dif-
fer significantly.) The prior is independent of the choice
of w basis, and can be chosen to prefer smoothness in
the reconstructions, naturally constraining the flat direc-
tions in parameter space which are most likely dominated
by noise. And while some bias in reconstructions is in-
evitable, particularly when one attempts to reconstruct
w(z) in regimes where the data are weak, by choosing
a prior based on theoretically plausible w(z), we ensure
that the biases are minimised for the most interesting
models. Here we apply this new method to a collection of
the latest cosmological data to investigate whether there
is evidence for dynamical dark energy.
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The choice of the prior is intrinsically subjective be-
cause it quantifies the initial probability distribution for
the ‘true’ model. In principle, it should be determined
by purely theoretical considerations, e.g. by considering
ensembles of possible quintessence potentials, but here
we take a more phenomenological approach. We impose
a smooth equation of state by assuming w(a) is a Gaus-
sian field with a covariance described by a correlation
function

ξw(|a− a′|) ≡
〈

[w(a) − wfid(a)][w(a′)− wfid(a′)]
〉

, (1)

which we take to be translationally invariant in a. We as-
sume the correlation function to have the form proposed
by Crittenden, Pogosian and Zhao (CPZ) [4],

ξCPZ(δa) = ξw(0)/[1 + (δa/ac)
2] , (2)

where ac describes the typical smoothing distance, and
ξw(0) is a normalisation factor related to σ2

w̄ , the ampli-
tude of the expected variance of the mean w. The CPZ
correlation function essentially requires that the w bins
within the correlation length ac are positively correlated,
while the correlation falls off when δa > ac. In [6] we
have considered other choices of correlation functions and
found that changing the shape of the correlation function
does not significantly impact the reconstruction results.
The two parameters, ac and ξw(0) (or σ2

w̄) can be
tuned to adjust the smoothing scale and the strength
of the prior. A very weak prior (large σ2

w̄, small ac)
results in a noisy reconstruction (large variance), but
which will match the true model on average (unbiased).
A stronger prior results in a smaller variance, but pulls
the reconstructed model towards the peak of the prior,
which will lead to a bias when the prior conflicts with
the true model. In [6], we considered reconstructing a
range of models and found that, by setting ac = 0.06 and
σw̄ = 0.02, we were able to reconstruct them all without
a sizeable bias. However, as the functions we considered
may not fully represent the full range of possible models,
we also consider a weaker prior with a larger variance in
the mean, σw̄ = 0.04, which is still sufficient to curtail
flat directions in the parameter space.
We parametrize w(z) using a set of bins w ≡ {wi},

i = 1, ..., N , spaced uniformly in scale factor a within
[amin, 1]. To make w(z) differentiable for the calculation
of the dark energy perturbations, we interpolate between
the bins using narrow tanh functions [4]. As long as the
bin width is small compared to the correlation length,
the prior largely wipes out the dependence on the choice
of binning. The number of bins and the range are chosen
to be large enough so that the results are stable to these
choices, and alternative binning schemes, e.g. logarithmic
in z, do not affect the results. Given a binning scheme,
it is straightforward to construct the prior bin covari-
ance matrix C [4, 6]. The resulting prior in this space is

Pprior(w) ∝ e−(w−w
fid)TC

−1(w−w
fid)/2, where w

fid is the
fiducial model.

The reconstructed model is that which maximizes the
posterior probability, which by Bayes’ theorem is pro-
portional to the likelihood of the data times the prior
probability, P(w|D) ∝ P(D|w) × Pprior(w). Effectively,
the prior results in a new contribution to the total χ2

of a model, χ2
prior = (w − w

fid)TC−1(w − w
fid), which

penalizes models that are less smooth. One can then use
standardMCMC techniques to search for the minimum of
χ2 = χ2

data+χ2
prior. The prior curtails the flat directions in

the likelihood corresponding to the unconstrained eigen-
modes of w, giving fast convergence of MCMC chains
even with a large number of bins.
We wish to avoid explicit dependence on the fiducial

model and there are several ways to marginalize over
it [6]. Here, we adopt the ‘floating’ average method pro-
posed in [6], taking the fiducial model to be a flat local
average of trial bin amplitudes within a range ∆a = 0.06.
Choosing this fiducial model weakens the priors on the
long wavelength modes, particularly the average mode
which is given infinite variance.

standard prior weak prior
SNLS3 Union2.1 SNLS3 Union2.1

prior +1.2 +0.44 +0.68 +0.29
SN −1.7 +0.24 −2.2 +0.38
RSD −1.1 −1.8 −1.0 −1.8

∆χ2 BAO −1.4 −1.2 −1.8 −1.4
others −2.1 −1.1 −2.0 −1.1
All −5.1 −3.4 −6.3 −3.6

S/N All 2.3 1.8 2.5 1.9
i = 1 0.06± 0.2 0.1± 0.2 0.06 ± 0.2 0.2± 0.2
i = 2 −0.3± 0.3 −0.3± 0.3 −0.2± 0.3 −0.2± 0.4

αi i = 3 1.3± 0.6 0.9± 0.6 1.4± 0.8 0.8± 0.8
i = 4 − − 0.6± 0.4 0.5± 0.4

TABLE I. The ∆χ2 rows: the improved χ2 of the best fit
w(z) model with respect to that of the best fit ΛCDM model,
namely, χ2

w(z) − χ2
ΛCDM. The S/N row: the significance of

w(z) deviating from −1, which is simply
√

|∆χ2
tot|. The αi

rows: the mean and 68% CL error on the principal component
amplitudes.

We apply our method to a joint dataset of the latest
cosmological observations including SN, CMB, LSS and
the measurement of Hubble parameter at various red-
shifts. We compare two different SN samples: SNLS 3-
year [10] and Union2.1 [11]. We used the WMAP 7-year
CMB spectra [12], the H(z) data compiled by [13], the
fσ8 estimates from the redshift space distortions (RSD)
and the baryonic acoustic oscillations (BAO) measure-
ments from SDSS-II [14], SDSS-III BOSS [15], 6dF [16]
and the WiggleZ survey [17]. Given this joint dataset,
we use MCMC [18] to sample the parameter space P ≡
(ωb, ωc,Θs, τ, ns, As, w1, ..., w20,N ) where ωb and ωc are
the baryon and cold dark matter densities, Θs is the ra-
tio of the sound horizon to the angular diameter dis-
tance at decoupling, τ is the optical depth, ns and As

are the primordial power spectral index and amplitude
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FIG. 1. Panels (A1-A4): The best fit w(z) with marginalized 68 and 95% CL error (shaded bands) reconstructed from a joint
data set of the latest data including SN, CMB, H(z), RSD and BAO. This best-fit w(z) is used to construct mock data for
future Planck and Euclid-like surveys, and the resulting reconstruction is shown by the magenta dots (with 68% CL error
bars.) The four panels show the result using different combinations of priors (standard and weak) and supernovae data sets
(SNLS3 and Union2.1). Panels (B1-B4): The 68% CL constraints on w(z) using different data subsets: SN+CMB+H(z)(black
solid), SN+CMB+H(z)+RSD(magenta dashed), SN+CMB+H(z)+RSD+BAO(blue band). Panels (C1,C2): These recon-
structed models affect the fit to the BAO and RSD data; we compare the reconstruction from the combined data (using
SNLS3 and weak prior) with the ΛCDM model (green dashed).

and w1, ..., w20 denote the 20 w bins uniform in a from
amin = 0.4 to a = 1, corresponding to z ∈ [0, 1.5]. We fix
w = −1 at z > 1.5 1. We also marginalize over parameters
accounting for the calibration uncertainty in measuring
the intrinsic SN luminosity. We use a modified version of
CAMB [19] to calculate the observables and include dark
energy perturbations for an arbitraryw following the pre-
scription in [20].
Fig. 1 shows the reconstruction results obtained with

MCMC sampling of the parameter space P to find the
minimum of χ2

data + χ2
prior. The shaded regions in panels

(A1-A4) illustrate the 68 and 95% CL uncertainty of the
reconstruction, while the solid curves show the best fit
w(z) models. We show separately the results using stan-
dard or weak priors, and using the SN data of SNLS3
or Union2.1, combined with all the other data. Looking
at the different priors, we see similar trends, but the re-
construction uncertainties for the weaker prior are larger
at low z(z ≃ 0) and high z(z & 0.6), where the con-
straints from data are weak. At the sweet spot, z ≃ 0.15,
the error (∆w|z=0.15 ≃ 0.12) is independent of the prior,
since there the data are sufficiently strong to outweigh
the priors. Interestingly, the most likely reconstruction
using the SNLS3 data favors a transition from w < −1

1 Adding a w bin from z = 1.5 to 1100 has a negligible effect on

our results.

at low redshift to w > −1 at higher redshift, a behav-
ior that is consistent with the quintom model which al-
lows w to cross −1 [21]. The result for Union2.1 shows
a similar trend, but at a lower significance. As shown in
Table I, for SNLS3 combined with all other data, the sig-
nificance of w departing from −1 is 2.3(2.5)-σ under the
standard(weak) prior.

To understand this result, we show the reconstruc-
tion ranges using different data combinations in panels
(B1-B4). Without the RSD and BAO data (black solid),
SNLS3 data slightly prefers a model with w < −1 at
z ∼ 0.25, but Union2.1 is very consistent with w = −1.
With the RSD data (magenta dashed), the reconstruction
at z & 0.25 is better constrained, and w(z) is slightly in-
creased at z > 0.25. After adding BAO, the evolution
from w < −1 at low redshifts to w > −1 at high red-
shifts becomes more evident, particularly when using the
SNLS3 data; this suggests that the BAO data is at least
partially responsible for the trend. As shown in panel C1
for the SNLS3 data and a weak prior, the best fit w(z)
can fit the BAO data (the comoving angular diameter
distance DV ) better than the ΛCDM model, especially
for the BOSS BAO data point at z ∼ 0.57 (the χ2 for
BAO is reduced by 1.8 as shown in Table I). This natu-
rally explains the result we found: w needs to be less than
−1 at low redshifts to get a higher DV at z ∼ 0.6 com-
pared to ΛCDM, while CMB requires the average w to
be close to −1, so the high redshift behaviour is pushed
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FIG. 2. Panels (A1,A2): Eigenvalues of the covariance matrix of the w bins obtained from the data plus prior (diamonds
and circles) and prior alone (shaded region) using MCMC. Panels (B1,B2): The first 3 (4) data-dominated eigenmodes of the
covariance matrices. These panels show only small differences arise when different SN datasets (SNLS3 and Union2.1) are
combined with other data. Results for the standard prior (A1,B1) and weak prior (A2,B2) are shown separately. Panels C1
and C2 show the improved likelihood (∆lnL), the reduced fraction of the sampled parameter space (∆lnV ), and the logarithm
of the evidence ratio as a function of σbin relative to the ΛCDM model (which is the small σbin limit.) C1 and C2 are for the
present data (SNLS3) and the simulated Planck and Euclid-like data respectively.

above −1 to compensate. This quintom behavior is also
favored by SNLS3, where the contribution to χ2 from SN
is reduced by 2.2.
We also perform a PCA on the posterior distribution,

identifying the uncorrelated collective w(z) degrees of
freedom after marginalizing over the other parameters.
In Fig, 2, panels (A1,A2) show the eigenvalues of data
plus prior (points) and prior alone (shaded regions). The
choice of the standard (weak) prior allows the informa-
tion in the strongest 2(3) data modes to survive the
addition of the prior. In panels (B1,B2), we show the
data-dominated eigenmodes ei(z). We can project w(z)
onto this orthonormal basis, i.e. 1 +w(z) =

∑

i αiei(z).
Note that if w = −1, all the α′s should be zero. Pro-
jecting the best fit w(z) models onto the eigenbasis,
we obtain the constraint (central value and 68% CL
error) on the α’s shown in Table I. We can see that

∆χ2 ≃
∑4

i=1[αi/σ(αi)]
2, meaning that the improvement

in the fits is almost entirely accounted for by these three
or four principal components.
The reconstructed models necessarily provide a better

fit than ΛCDM (Table I), but the crucial issue is whether
the improvement in fit is enough to compensate for the
increased parameter space in the prior model. Naively,
the non-parametric binning has 20 additional degrees of
freedom, but this far overestimates the true parameter
volume when the correlated prior is imposed; in the limit
of a very strong prior, the model can become equivalent
to the cosmological constant model itself.

To quantify this, we estimate the evidence ratio, called
the Bayes’ factor, within a family of models which inter-
polates smoothly between the prior described above and
ΛCDM; this is implemented by adding a larger and larger
diagonal term to the prior which shrinks the variance in
each bin, χ2

prior = (w + 1)T [C̃−1 + σ−2
binI](w + 1), and

shifts all the eigenvalues by a constant. We calculate the
evidence [22], E ≡

∫

dnPP(D|P)Pprior(P), by assum-
ing a Gaussian prior for all parameters P, described by a
more general covariance matrix, Cprior, and also assume
the resulting posterior is a Gaussian function of the pa-
rameters around the best fit, with covariance described
by Cpost. We find:

E ∝

(

det Cpost
det Cprior

)1/2

e−χ2

b.f.
/2, (3)

where χ2
b.f. is the minimum total χ2 given the data and

prior. The first term quantifies the fraction of the initial
prior parameter volume which remains consistent with
the measured data, while the second term accounts for
how well the model is capable of fitting the data.
We plot the logarithm of the Bayes’ factor in Fig.

2, comparing a range of models approaching ΛCDM
to ΛCDM itself. For the original prior discussed above,
marginalizing over fiducial models formally set the vari-
ance in the mean to infinity, meaning det Cprior diverges
and the evidence ratio approaches zero. However, choos-
ing a more reasonable variance in the mean equation of
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state, one finds evidences comparable to ΛCDM. Perhaps
surpisingly, for some choices of this variance, dynamical
dark energy is actually preferred over ΛCDM. However,
choosing a particular prior after seeing the evidence is
post hoc, and to be convinced one would need to see it
for a range of priors most people would find reasonable.
While current data is unable to distinguish ΛCDM

from the best fit models, it is interesting to see what the
future data could do. For this purpose, we perform a fu-
ture forecast assuming that today’s best fit model was the
true model. We assume a future dataset of a deep SN sur-
vey [23] which is similar to the expected Euclid mission
[24], and the CMB data from Planck[25]. The reconstruc-
tion can be performed using the Wiener filter projection
[6] and the reconstruction is shown in Fig 1. The yellow
dots with error bars show w(z), which would be recon-
structed with very little bias. In both cases, the dynam-
ical models can be clearly distinguished from w = −1.
This is supported by the evidence calculation in the lower
right of Fig. 2; for the Euclid-like data, the evidence ratio
is large and sustained over a wide range of priors.
Our non-parametric reconstruction is simple to imple-

ment and allows for straightforward interpretation and
calculation of evidence ratios. While we see tantalizing
hints for dynamical dark energy, the case is by no means
conclusive. It is interesting that, except for Union2.1, the
fits to all the data are improved with our reconstructed
model (Table I). Note that while SNLS3 and Union2.1
overlap significantly, SNLS3 has a more homogeneous
higher redshift sample, which may make it less suscepti-
ble to systematic errors. Future data will be able to dis-
tinguish this reconstruction from ΛCDM, while Planck
and the full three-year SDSS SN sample might help in
addressing this question in the near term.
We thank Chris D’Andrea and Will Percival for useful

discussions. GBZ and RC are supported by STFC grant
ST/H002774/1, and LP by NSERC. XZ is supported in
part by NSFC.
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