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Abstract: The sesquiterpene hydroquinone avarol (1) was isolated from the marine sponge 
Dysidea avara, whereas the corresponding quinone, avarone (2), was obtained by 
oxidation of avarol, and the significantly more lipophilic compounds [3’-(p-chloro-
phenyl)avarone (3), 3’,4’-ethylenedithioavarone (4), 4’-isopropylthioavarone (5), 4’-tert-
butylthioavarone (6), 4’-propylthioavarone (7), 4’-octylthioavarone (8)] were obtained by 
nucleophilic addition of thiols or p-chloroaniline to avarone. All these compounds were 



Molecules 2007, 12                            
 

1023

tested, at concentrations ranging from 0.5 to 50 µg/mL, for their effect on the settlement of 
the cyprid stage of Balanus amphitrite, for toxicity to both nauplii and cyprids and for their 
growth inhibitory activity on marine bacteria (Cobetia marina, Marinobacterium stanieri, 
Vibrio fischeri and Pseudoalteromonas haloplanktis) and marine fungi (Halosphaeriopsis 
mediosetigera, Asteromyces cruciatus, Lulworthia uniseptata and Monodictys pelagica). 
 
Keywords: Antifouling activity, settlement inhibition, antimicrobial activity, avarol, 
avarone. 

 
 
Introduction 

 
One of the most serious problems that marine technology is currently facing is the control of 

biofouling on man-made structures [1, 2]. Efficient antifouling paints are based on copper compounds 
and booster biocides that when submerged, release toxic compounds causing adverse environmental 
effects [3-8]. Organotin-based paints have been linked to pollution of food webs and are of particular 
concern to human consumers [9, 10]. Environmental protection is now a major concern in the search 
for new active compounds. New environmental regulations generate further restrictions on the use of 
biocides in industrial formulations [11] for the protection of rivers, lakes, estuaries, coastal waters and 
groundwater from further deterioration and for protection of biodiversity. There is clearly a need to 
develop new non-toxic or environmentally benign antifouling alternatives that would be efficient 
against the most severe fouling organisms such as barnacles, blue mussels, bryozoans and algae [12]. 
On one hand, there are solutions based on interference with biological adhesion to surfaces; the so-
called foul-release coatings. On the other hand, there is an increasing interest in exploring the 
antifouling potential of natural compounds. In the marine environment, where all surfaces are 
constantly exposed to the threat of surface colonization, many sessile organisms remain relatively 
clean and control epibiont growth using effective antifouling mechanisms. In addition to physical 
defense mechanisms comprising structural elements made of lignin, CaCO3, silica, etc., sessile 
organisms such as sponges, soft corals, and seaweeds are known to elaborate chemical defense 
mechanisms against predation and epibiont growth. Many sponges have been shown to synthesize 
toxic metabolites to prevent predation, and because of this, frequently other organisms attach sponges 
to themselves for their protection [13]. 

In continuation of our studies towards the discovery of natural products that are effective against 
marine biofouling [14, 15], we investigated barnacle settlement inhibition and marine bacterial growth 
inhibition with the sponge metabolites avarol (1), avarone (2) and the synthetic derivatives 3-8. 
Barnacles were selected as test organisms because they are one of the most significant forms of animal 
fouling [14]. We also assayed the same set of compounds on fouling bacteria since it is widely 
accepted that biofilm formation is problematic on even the most effective antifouling and foul-release 
coatings [16]. 

A great number of marine quinones and hydroquinones are of considerable interest with regard to 
their diverse biological activities. Furthermore, sesquiterpenes in which a decaline type unit and a 
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quinoid moiety are structurally associated, often exhibit pronouced cytotoxicity [17-20]. Another 
reason that led us to evaluate the barnacle settlement inhibition of D. avara metabolites is that a 
significant number of other sponge metabolites have exhibited promising activities in an array of 
antifouling assays [21-24]. 
 
Results and Discussion 

 
The redox couple avarol (1) and avarone (2), isolated for the first time from the sponge Dysidea 

avara by Minale and coworkers [25], has shown strong activity against mouse lymphoma cells [26-
28], antiviral activity [29-31], antiinflammatory activity [32], antipsoriatic properties [33], as well as 
moderate antifungal and antibacterial activity against Gram-positive strains [34, 35]. Intrigued by the 
wide range of biological activities of these metabolites and the fact that avarol (1) is biosynthesized in 
large amounts by the sponge, implying an important ecological role [36], we decided to investigate 
their antifouling activity and prepare a number of lipophilic derivatives that would reduce their 
solubility in sea water and improve their incorporation in a potential antifouling preparation. 
 

Figure 1. Structures of assayed compounds 1-8. 

 
 
Antimicrobial activity against Cobetia marina, Marinobacterium stanieri, Vibrio fischeri and 
Pseudoalteromonas haloplanktis 

 
Compounds 1-8 were tested against the marine bacteria C. marina, M. stanieri, V. fischeri and P. 

haloplanktis (Table 1). Among the eight compounds tested, only compound 4 did not exhibit 
antimicrobial activity with a minimum inhibitory concentration (MIC) above 50µg/mL. High levels of 
inhibition against C. marina were observed with compounds 5 and 7 (MIC = 0.5 µg/mL), as well as 
with avarone (2) and compounds 3, 8 (MIC =1 µg/mL). Avarol (1) and 6 were noticeably less active 
with MIC of 2.5µg/mL and 5µg/mL, respectively. 
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M. stanieri growth was strongly inhibited in the presence of compounds 5 and 7 (MIC = 0.5 
µg/mL), and avarone (2) (MIC = 1 µg/mL). Compound 8 gave a MIC of 2.5µg/mL. MIC values of 
5µg/mL were recorded when bacteria were incubated with avarol (1) and compounds 3 and 8. 

Compounds 5 and 7 were the most efficient growth inhibitors of V. fischeri (MIC = 1.0 µg/mL). 
Moderate levels of activity with MIC ranging between 2.5 and 5 µg/mL were found for avarone (2), 
compounds 3, 8 and 6. The less active compound was found to be avarol (1) with a MIC = 10 µg/mL. 

Growth of P. haloplanktis was strongly inhibited by compounds 5, 6 and 7, with MICs = 1µg/mL. 
Moderate levels of activity with MIC ranging between 2.5 and 5 µg/mL were found for avarone (2), 8 
and 3. Finally, avarol (1) showed weak activity (MIC = 10 µg/mL). 

 
Table 1. Evaluation of antimicrobial activity (MIC, µg/mL). 

No Compound 
Cobetia 

marina 

Marinobacterium 

stanieri 

Vibrio 

fischeri 

Pseudoalteromonas 

haloplanktis 

1 Avarol 2.5 5.0 10.0 10.0 

2 Avarone 1.0 1.0 2.5 2.5 

3 3’-(p-Chlorophenyl)avarone 1.0 5.0 2.5 5.0 

4 3’,4’-Ethylenedithioavarone >50.0 >50.0 >50.0 >50.0 

5 4’-Isopropylthioavarone 0.5 0.5 1.0 1.0 

6 4’-tert-Butylthioavarone 5.0 5.0 5.0 1.0 

7 4’-Propylthioavarone 0.5 0.5 1.0 1.0 

8 4’-Octylthioavarone 1.0 2.5 2.5 2.5 

 
 
Antifungal activity against Halosphaeriopsis mediosetigera, Asteromyces cruciatus, Lulworthia 
uniseptata and Monodictys pelagica 

 
The inhibition of marine fungal growth by compounds 1-8 is presented in Table 2. Compounds 4 

and 6 were inactive towards the four strains of marine fungi tested.  
 

Table 2. Evaluation of antifungal activity (MIC, µg/mL). 

No Compound 
Halosphaeriopsis 

mediosetigera 

Asteromyces 

cruciatus 

Lulworthia 

uniseptata  

Monodictys 

pelagica 

1 Avarol 10.0 10.0 25.0 25.0 

2 Avarone 1.0 2.5 1.0 1.0 

3 3’-(p-Chlorophenyl)avarone 25.0 25.0 25.0 50.0 

4 3’,4’-Ethylenedithioavarone >50.0 >50.0 >50.0 >50.0 

5 4’-Isopropylthioavarone 5.0 10.0 10.0 5.0 

6 4’-tert-Butylthioavarone >50.0 >50.0 >50.0 >50.0 

7 4’-Propylthioavarone 1.0 1.0 2.5 1.0 

8 4’-Octylthioavarone 10.0 10.0 5.0 5.0 
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The two most active compounds were avarone (2) and compound 7, which exhibited a MIC < 2.5 
µg/mL against the four strains. Moderate levels of inhibition (MIC < 10.0 µg/mL) were obtained 
against all strains with compounds 5 and 8. Low levels of inhibition (MIC < 25.0 µg/mL) were 
recorded for avarol (1) and compound 3. 
 
Cyprid settlement and mortality 
 

The effects of compounds 1-8 on cyprid settlement and mortality are presented in Table 3. Only 
avarol (1) and avarone (2) were toxic at high concentrations. Avarol was the most toxic, with a 
concentration inducing 50% mortality in comparison to the control (LC50) of 13.28 µg/mL, while 
avarone had an LC50 of 27.12 µg/mL. All compounds had concentrations inhibiting settlement by 50% 
in comparison to the control (EC50) lower than the corresponding LC50. The three most active 
compounds were avarol (1), 3 and 7 with EC50 < 1 µg/mL. Avarone (2), 5, 6 and 8 had EC50 between 1 
and 5 µg/mL. Compound 4 was the least active, with  EC50 = 26.22 µg/mL. 

 
Toxicity of compounds 1–8 to nauplii 

 
The toxicity test results are presented in Table 3. Six compounds (3–8) showed no toxicity at the 

tested concentrations (LC50 >50 µg/mL). Mortality was noted only for avarol (1) and avarone (2) 
which had LC50 1.58 µg/mL and 25.12 µg/mL respectively. 

 
Table 3. Evaluation of anti-settlement and toxicity of compounds 1-8 on B. amphitrite. 

Balanus amphitrite 

No Compound 
EC50 (µg/mL) 

Cyprid 

LC50 (µg/mL) 

Nauplii 

LC50 (µg/mL) 

1 Avarol 0.65 ± 0.03 13.28 ± 0.70 1.58 ± 0.05 

2 Avarone 3.41 ± 0.12 27.12 ± 1.51 25.12 ± 0.93 

3 3’-(p-Chlorophenyl)avarone 0.65 ± 0.02 >50.0 >50.0 

4 3’,4’-Ethylenedithioavarone 26.22 ± 0.27 >50.0 >50.0 

5 4’-Isopropylthioavarone 1.33 ± 0.06 >50.0 >50.0 

6 4’-tert-Butylthioavarone 4.23 ± 0.12 >50.0 >50.0 

7 4’-Propylthioavarone 0.45 ± 0.02 >50.0 >50.0 

8 4’-Octylthioavarone 1.46 ± 0.05 >50.0 >50.0 

 
Conclusions 
 

Biofouling is one of the most serious problems the maritime domain currently faces. It has been 
estimated that the growth of marine fouling organisms costs the shipping and other marine industries 
over $6.5 billion per year [37]. Biofouling is considered to have four distinct stages, the first one 
starting from the moment a man-made object is immersed in water. The surfaces of these objects 
quickly accumulate dissolved organic matter and molecules, such as polysaccharides and protein 
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fragments. Gradually, bacteria and single-cell diatoms sense the surface and start settling on it, forming 
a microbial film [38]. Subsequently, the adhesive substances and rough irregular microbial colonies 
trap more particles and organisms. Spores of algae, e.g. species of Enteromorpha intestinalis, Ulothrix 
zonata, marine fungi and ciliate protozoa soon appear on the film [39]. In the final stage, other marine 
organisms, such as barnacles, tunicates, mussels, bryozoans, polychaetes and tubeworms, settle on the 
submerged surfaces [40]. 

Many marine sponges, as well as other benthic organisms, are relatively free of settlement by 
fouling organisms [41] due to the production of biogenic compounds that possess antibacterial, 
antialgal, antifungal, antiprotozoan and antimacrofouling properties. Therefore, the isolation and 
production of these natural products from marine organisms could be used for the prevention of 
biofouling. 

To gain a better understanding of chemical antifouling mechanisms of marine organisms, it is 
necessary: a) to identify the settling preferences of common fouling species, b) to determine the 
concentrations of secondary metabolites that settlers would experience in the field and c) to develop 
assay methodologies that deploy compounds in ecologically realistic ways [42]. 

For marine antifouling research, bioactive substances of particular interest should be ones that 
show deterrence properties and can be used for the development of antifouling coatings. Natural 
products rarely are available in sufficient quantity to be commercially harvested from marine 
macroorganisms. Moreover, most potent natural product compounds are structurally too complex to be 
commercially synthesized. 

The observation that the sponge D. avara maintains an epibiont-free surface, in conjunction to the 
fact that the main metabolite avarol (1), which as already mentioned exhibits a wide range of 
biological activities, can be relatively easily synthesized in eight steps with a 28% overall yield [43], 
prompted us to evaluate its antifouling properties. 

Avarol (1) showed promising antisettlement activity, but showed significant toxicity towards 
barnacle larvae. Therefore, unless rapidly biodegradable, it seemed unlikely to be a good candidate for 
new antifouling agents. For that reason, we proceeded with the preparation of simple synthetic 
derivatives aiming at an analogue that would maintain the levels of activity but without toxicity. 

Avarone (2) and 3 showed significant antisettlement activity, but were almost equally toxic to 
barnacle larvae as avarol (1). Conversely, compound 4 possessed insufficient antimicrobial and 
antisettlement activity to be a promising antifoulant. The most active antisettlement compounds were 
1, 3 and 7 with EC50 values < 1 µg/mL. 

With the exception of compound 4, all tested compounds showed significant antibacterial activity. 
Compounds 5 and 7 were found to be the most active with MIC < 1 µg/mL. A comparison of activity 
in relation to structure suggests that steric hindrance exerted by bulky substituents on the quinone ring 
significantly reduced antimicrobial activity. Blockage of both positions 3’ and 4’ also deprived the 
compounds of their antimicrobial properties, as was the case for compound 4. The low activity of 
compounds 1 and 2 compared to some derivatives (3–8) can be explained by their higher polarity and 
therefore lower membrane permeability. A summary of all results obtained in this study is shown in 
Figure 2. 
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Figure 2. Effect of compounds 1-8 on the growth of marine bacteria, settlement (EC50 in 
µg/mL) and mortality (LC50 in µg/mL) of Balanus  amphitrite larvae. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The therapeutic ratio, LC50/EC50 is a way of expressing the effectiveness of the compound in 

relation to its toxicity. From the perspective of potency for use in an antifouling coating, the desired 
target ratio should be much greater than 1.0 [44]. 

Compounds 5 and 7 are of particular interest because they showed good antisettlement and 
antimicrobial activity at concentrations that were not acutely toxic to barnacle larvae, with an 
LC50/EC50 > 40, thus satisfying the above mentioned criterion. In the future, field assays are planned to 
determine how specific or broadly active these bioactive compounds are. 
 
Experimental  
 
Isolation of avarol (1) and avarone (2) 

 
Dysidea avara specimens (5.1 kg wet tissue) were collected from the Gulf of Kotor, Monte Negro, 

Yugoslavia, at 5-15 m by SCUBA diving. The freshly collected sponge was initially freeze dried and 
then exhaustively extracted at room temperature with CH2Cl2/MeOH (2/1, v/v) mixtures. The residues 
were subjected to vacuum chromatography using silica gel and a step-wised gradient solvent system 
ranging from 100% cyclohexane to 100% ethyl acetate. The medium polarity fractions, containing 
avarone (2) and avarol (1) (identified by TLC comparison with authentic material) were further 
purified either by vacuum/column chromatography and HPLC until pure metabolites 1 (0.15% wet 
weight) and 2 (0.02% wet weight) were isolated. Structural elucidation of the natural products was 
based on their spectral data (NMR, MS, IR, UV) and comparison with literature values [25] (Figure 1). 
 
Preparation of compounds 3-8 

 
Alkylthio and p-chlorophenylamino derivatives of avarone 3-8 were synthesized by nucleophilic 

addition of thiols and p-chloroaniline, respectively, to avarone, as previously described [45]. In a 
typical experiment, the nucleophile (1.6 mmol) was added to a solution of avarone (2, 1.6 mmol) in 



Molecules 2007, 12                            
 

1029

ethanol-water (1:1, 50 mL). To improve the reactivity of aliphatic thiols, the solution was made weakly 
alkaline with NaHCO3 and the reaction was carried out under an inert nitrogen atmosphere to prevent 
polymerization of the quinone moiety. Following purification by chromatographic methods, the 
structure of the obtained quinones was determined using 1H-NMR and 13C-NMR spectroscopy (Figure 
1). 
 
Antibacterial assays 

 
Compounds were tested for inhibitory activity against four strains of marine bacteria: Cobetia 

marina (ATTC 25374), Marinobacterium stanieri (ATCC 27130), Vibrio fischeri (ATCC 7744) and 
Pseudoalteromonas haloplanktis (ATCC 14393). Experiments were performed as previously described 
[46]. Compounds (at concentrations of 0.5, 1, 2.5, 5, 10, 25 and 50µg/mL) were incubated with the 
bacteria (2x108 cells/mL) in 96-well plates (MERCK) in MHB medium (Mueller Hinton Broth, 
SIGMA), supplemented with NaCl (15g/L), at 25°C for 24 h. Each treatment and the seawater control 
were replicated six times. MICs compared to the seawater control, were determined by the microtitre 
broth dilution method [47]. 
 
Antifungal assays 

 
Compounds were tested for inhibitory activity against four strains of marine fungi obtained from 

the culture collection of the School of Biological Sciences, University of Portsmouth, UK: 
Halosphaeriopsis mediosetigera, Asteromyces cruciatus, Lulworthia uniseptata and Monodictys 
pelagica. Experiments were performed as previously described [48]. Compounds (at final 
concentrations of 0.5, 1, 2.5, 5, 10, 25 and 50µg/mL) were incorporated into maize agar 12% (SIGMA) 
into Pyrex Petri dishes (15mm x 30mm, Fisher, UK). Plates were inoculated aseptically at their centre 
with an 8 mm diameter agar plug of mycelia. After incubation for 4 weeks at 25°C, MIC were 
determined. Assays were performed in duplicate. 
 
Balanus amphitrite adult broodstock maintenance 

 
Adult barnacles, Balanus amphitrite Darwin, were supplied courtesy of Prof. Dan Rittschof (Duke 

University Marine Laboratory, Beaufort, North Carolina). After removal of epibionts, adults were 
maintained in 20-L plastic aquaria containing 10 µm filtered and UV-irradiated seawater. Tanks were 
aerated and kept at 22oC on a 14:10 L:D cycle. The adults were fed daily with Artemia sp. nauplii and 
the water was changed every other day, at which time the adults were cleaned again as previously 
described [49]. 
 
Larval culture 

 
Egg hatching was synchronized by drying adult barnacles overnight followed by re-immersing them 

in fresh seawater. Nauplii were attracted to a point source of light over a 1.5 h period and collected 
using a Pasteur pipette. Larvae were then transferred to a 2-L beaker containing filtered seawater. They 
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were then reared to the cyprid stage by conventional methodology [40] in aerated 0.7 µm filtered 
seawater laced with antibiotics (streptomycin at 36.5 mg/mL and penicillin at 21.9 mg/mL) at 28°C on 
a 14:10 L:D cycle. Larvae were fed daily on a diet of Skeletonema costatum (1 L of 2x105 cells/mL) 
[50]. When the majority of larvae had metamorphosed into cyprids (4 days), the culture was filtered 
through a series of plankton mesh filters (300 µm, 250 µm and 160 µm). Cyprids were retained on the 
250µm filter and subsequently transferred to fresh 0.45 µm filtered seawater [51] and stored at 6°C 
[52]. 
 
Algal culture 

 
Seed cultures of S. costatum were purchased from Seasalter Shellfish Ltd (Whitstable, U.K.) and 

cultured in f/2 medium [53] at 18 °C under constant illumination. Cultures were enriched by gassing 
with CO2 (20 mL/min for 30 sec day-1). 
 
Balanus amphitrite cyprid settlement assay 

 
Settlement assays were conducted by adding 10-15 cyprids (3 days old) to the wells of a 24-well 

microplate (Iwaki) containing 2 mL of the compounds in seawater. The compounds were tested at 
concentrations of 0.5, 1, 2.5, 5, 10, 25 and 50 µg/mL. Test plates were incubated at 28 ºC in the dark 
and results were recorded after 24 hours incubation. Each larva was examined under a dissecting 
microscope and its condition recorded. Cyprids that did not move, had extended appendages and did 
not respond after a light touch by a metal probe were regarded as dead [54]. Both permanently attached 
and metamorphosed individuals were counted as settled, the remaining living cyprids were counted as 
swimmers. The EC50 and LC50 values of each compound were calculated using Sigma Plot (SYSTAT 
Software Inc.). All bioassays were conducted with six replicates per treatment. 
 
Toxicity tests on Balanus amphitrite nauplii 

 
Toxicity tests on nauplii of B. amphitrite were conducted as described [55]. Only positively 

phototactic stage II nauplii were used. Compounds were tested at concentrations of 0.5, 1, 2.5, 5, 10, 
25 and 50 µg/mL with 6 replicates of each concentration and the seawater control. Tests were 
conducted by adding 10-15 nauplii to wells of a 24-well plate containing 2 mL of solution. The 
number of swimming nauplii was recorded after a 24 h exposure to the compounds. Non-swimming 
larvae were regarded as dead. LC50 values of each compound were calculated using Sigma Plot. All 
bioassays were conducted with six replicates per treatment. 
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