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Estimer l’impact et les limites de l’ordonnancement en régime

permanent sur plates-formes hétérogènes pour le parallélisme

mixte.

Résumé : Dans ce rapport, nous appliquons des techniques d’ordonnancement en régime permanent pour
ordonnancer une suite de graphes d’application sur une plate-forme hétérogène de type “grille de calcul”.
Nous prônons l’usage de l’ordonnancement en régime permanent pour résoudre ce problème difficile. Nous
montrons que les instances les plus ardues de ce problème sont NP-complètes, alors que la plupart des
situations présentant un intérêt pratique peuvent être résolues par une solution périodique qui admet une
description compacte (de taille polynomiale) et qui est asymptotiquement optimale.

Mots-clés : Parallélisme mixte, Ordonnancement, régime permanent, plates-formes hétérogènes
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Figure 1: The application and platform graphs

1 Introduction

The traditional objective of scheduling algorithms is makespan minimization: given a task graph and a set of
computing resources, find a mapping of the tasks onto the processors, and order the execution of the tasks so
that: (i) task precedence constraints are satisfied; (ii) resource constraints are satisfied; and (iii) a minimum
schedule length is provided. However, makespan minimization turned out to be NP-hard in most practical
situations [37, 1]. The advent of more heterogeneous architectural platforms is likely to even increase the
computational complexity of the process of mapping applications to machines.

An idea to circumvent the difficulty of makespan minimization is to lower the ambition of the scheduling
objective. Instead of aiming at the absolute minimization of the execution time, why not consider asymptotic
optimality? After all, the number of tasks to be executed on the computing platform is expected to be very
large: otherwise why deploy the corresponding application on computational grids? To state this informally:
if there is a nice (meaning, polynomial) way to derive, say, a schedule whose length is two hours and three
minutes, as opposed to an optimal schedule that would run for only two hours, we would be satisfied.

This approach has been pioneered by Bertsimas and Gamarnik [9]. Steady-state scheduling allows to
relax the scheduling problem in many ways. Initialization and clean-up phases are neglected. The initial
integer formulation is replaced by a continuous or rational formulation. The precise ordering and allocation
of tasks and messages are not required, at least in the first step. The main idea is to characterize the activity
of each resource during each time-unit: which (rational) fraction of time is spent computing, which is spent
receiving or sending to which neighbor. Such activity variables are gathered into a linear program, which
includes conservation laws that characterize the global behavior of the system.

In this paper, we consider the execution of a complex application on heterogeneous computing platforms.
The complex application consists of a suite of identical, independent problems to be solved. In turn, each
problem consists of a set of tasks, modeled as an application graph. There are dependences (precedence
constraints) between these tasks. A typical example is the repeated execution of the same algorithm on
several distinct data samples. Consider the simple application graph depicted in Figure 1(a). This graph
models the algorithm. There is a main loop which is executed several times. Within each loop iteration,
there are four tasks to be performed. Each loop iteration is what we call a problem instance. Each problem
instance operates on different data, but all instances share the same application graph, i.e. the acyclic graph
of Figure 1(a). For each node (task type) in the application graph, there are N distinct tasks to be executed,
where N is the number of iterations in the main loop. Similarly, for each edge (file type) in the application
graph, there are N different files to be transmitted.

We use another graph, the platform graph, for the grid platform. We model a collection of heterogeneous
resources and the communication links between them as the nodes and edges of an undirected graph. See the
example in Figure 1(b) with four processors and five communication links. Each node is a computing resource
(a processor, or a cluster, or even a router with no computing capabilities) capable of computing and/or
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4 O. Beaumont, A. Legrand, L.Marchal, Y. Robert

communicating with its neighbors at (possibly) different rates. The underlying interconnection network may
be very complex and, in particular, may include multiple paths and cycles (just as the Ethernet does).

Because the problem instances to be solved are independent, their execution can be pipelined. At a given
time-step, different processors may well compute different tasks belonging to different problem instances. In
the example, a given processor Pi may well compute the tenth copy of task T1, corresponding to problem
number 10, while another processor Pj computes the eighth copy of task T3, which corresponds to problem
number 8. However, because of the dependence constraints, note that Pj could not begin the execution of
the tenth copy of task T3 before that Pi has terminated the execution of the tenth copy of task T1 and sent
the required data to Pj (if i 6= j).

Deriving a steady-state solution for this complex mapping problem amounts to characterize the usage of
processors and communication links: for a given processor, which fraction of time is spent executing which
task type? for a given communication link, which fraction of time is spent communicating which file type?
The objective is to maximize the throughput, which is the number of problem instances solved per time-unit,
i.e. the number of copies of the application graph which are processed per time-unit. Of course, the previous
activity fractions and the throughput are rational numbers. To derive the actual periodic schedule there will
remain to scale everything, so as to derive an integer time-period. But the beauty of steady-state scheduling
is that this reconstruction can be automatically computed from the rational values. We can derive a periodic
schedule and express it in compact form, contrarily to the traditional makespan minimization approach which
would require a scheduling date for all tasks and files.

The objective of the paper is to assess the limits of steady-state scheduling when applied to the difficult
mapping problem that we just described. When is this approach asymptotically optimal? What is the
inherent complexity of computing the optimal steady-state throughput? The first major contribution of
the paper is a complexity result assessing that the most general instance of the problem is NP-complete.
Showing that the problem does belong to the class NP (i.e. that a solution can be verified in polynomial time)
already is a challenging problem. The second major result is positive: the optimal steady-state throughput
can be computed in polynomial time for most practical instances, and the corresponding actual schedule is
asymptotically optimal.

The rest of the paper is organized as follows. In Section 2, we introduce our base model of computation
and communication, and we formally state the steady-state scheduling problem to be solved. Then we deal
with problems of increasing difficulty:

� We start (Section 3) with the most simplified version of the problem, in order to introduce the main
ideas: we address the case where the application graph is reduced to a single node. In Section 3.1, we
use a linear programming approach to derive the optimal throughput. We give an algorithm to find a
schedule that achieves this optimal throughput in Section 3.2.

� Then, we deal with arbitrary application graphs in Section 4. In Section 4.2, we provide the optimal
solution to this problem, using the same kind of method as in Section 3.1. We give an algorithm to
find a schedule that achieves this optimal throughput in Section 4.3. Section 4.5 states the complexity
of the previous method and gives some insights for a practical implementation.

� In Section 5, we prove that the most general instance of the problem is NP-Complete.

� At last, in Section 6, we describe some related works and we give some remarks and conclusions in
Section 7.

2 Models

2.1 The application

The application is a suite of problem instances, each instance being modeled by the same application graph.
More precisely:

� Let P(1),P(2), . . . ,P(N) be the N problems to solve, where N is large.

INRIA



Impact and limits of steady-state scheduling 5

� Each problem P(m) corresponds to a copy G
(m)
A = (V

(m)
A , E

(m)
A ) of the same application graph GA =

(VA, EA). The number |VA| of nodes in GA is the number of task types. In the example of Figure 1(a),
there are four task types, denoted as T1, T2, T3 and T4.

� Overall, there are N.|VA| tasks to process, since there are N copies of each task type.

For technical reasons it is simpler to have a single input task (a task without any predecessor) and a
single output task (a task without any successor) in the application graph. To this purpose, we introduce two
fictitious tasks, Tbegin which is connected to the roots of the application graph and accounts for distributing
the input files, and Tend which is connected to every task with no successor in the graph and accounts for
gathering the output files.

2.2 The architecture

The target heterogeneous platform is represented by a directed graph, the platform graph GP = (VP , EP ).
More precisely:

� There are p = |VP | nodes P1, P2, . . . , Pp in VP that represent the processors. In the example of
Figure 1(b) there are four processors, hence p = 4. See below for processor speeds and execution times.

� Each edge represents a physical interconnection. Each edge eij ∈ EP : Pi → Pj is labeled by a value ci,j

which represents the time to transfer a message of unit length between Pi and Pj , in either direction:
we assume that the link between Pi and Pj is bidirectional and symmetric. A variant would be to
assume two unidirectional links, one in each direction, with possibly different label values. If there
is no communication link between Pi and Pj we let ci,j = +∞, so that ci,j < +∞ means that Pi

and Pj are neighbors in the communication graph. With this convention, we can assume that the
interconnection graph is (virtually) complete.

� We assume a full overlap, single-port operation mode, where a processor node can simultaneously
receive data from one of its neighbor, perform some (independent) computation, and send data to
one of its neighbor. At any given time-step, there are at most two communications involving a given
processor, one in emission and the other in reception. Other models have been considered in [6, 4].

2.3 Execution times

� Processor Pi requires wi,k time units to process a task of type Tk.

� Note that this framework is quite general, because each processor has a different speed for each task
type, and these speeds are not related: they are inconsistent with the terminology of [14]. Of course,
we can always simplify the model. For instance we can assume that wi,k = wi × δk, where wi is the
inverse of the relative speed of processor Pi, and δk the weight of task Tk. Finally, note that routers
can be modeled as nodes with no processing capabilities.

Because the task Tbegin is fictitious, we let wi,begin = 0 for each processor Pi holding the input files and
wi,begin = +∞ otherwise.

Using Tend , we model two different situations: either the results (the output files of the tree leaves) do
not need to be gathered and should stay in place, or all the output files have to be gathered to a particular
processor Pdest (for visualization or post processing, for example).

In the first situation (output files should stay in place), no file of type ek,end is sent between any processor
pair, for each edge ek,end : Tk → Tend . It is modeled by letting datak,end = +∞ (see below the definition of
datak,l).

In the second situation, where results have to be collected on a single processor Pdest then, we let
wdest ,end = 0 (on the processor that gathers the results) and wi,end = +∞ on the other processors. Files of
type ek,end can be sent between any processor pair since they have to be transported to Pdest .
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6 O. Beaumont, A. Legrand, L.Marchal, Y. Robert

2.4 Communication times

� Each edge ek,l : Tk → Tl in the application graph is weighted by a communication cost datak,l that
depends on the tasks Tk and Tl. It corresponds to the amount of data output by Tk and required as
input to Tl.

� Recall that the time needed to transfer a unit amount of data from processor Pi to processor Pj is

ci,j . Thus, if a task T
(m)
k is processed on Pi and task T

(m)
l is processed on Pj , the time to transfer the

data from Pi to Pj is equal to datak,l × ci,j ; this holds for any edge ek,l : Tk → Tl in the application
graph and for any processor pair Pi and Pj . Again, once a communication from Pi to Pj is initiated,
Pi (resp. Pj) cannot handle a new emission (resp. reception) during the next datak,l × ci,j time units.

2.5 Allocations and cyclic schedules

We need the following definitions: allocation, schedule, makespan, cyclic schedule, K-periodic schedule,
throughput. Although some are fairly intuitive, we formally state them all. The important result is Theo-
rem 1, but the proof is technical (and boring).

Definition 1 (Allocation). A valid allocation is a pair of mappings π : VA 7→ VP and σ : EA 7→
{paths in GP } such that for each edge ek,l : Tk → Tl:

σ(ek,l) = (Pi1 , Pi2 , . . . , Pip
) with

{

Pi1 = π(Tk), Pip
= π(Tl) and

(
Pij
→ Pij+1

)
∈ EP for all j ∈ J1, p− 1K

.

Obviously, π maps the tasks of the application graph GA onto the platform nodes and σ maps the (files
associated to the) edges of GA onto the paths of the platform network.

Definition 2 (Schedule). A valid schedule associated to a valid allocation (π, σ) is a pair of mappings
tπ : VA 7→ Q and tσ : EA ×EP 7→ Q satisfying to the following constraints:

�
precedence: For all ek,l : Tk → Tl, if σ(ek,l) = (Pi1 , Pi2 , . . . , Pip

) then

tπ(Tk) + wi1,k 6 tσ(ek,l, Pi1 → Pi2)

tσ(ek,l, Pi1 → Pi2) + datak,l × ci1,i2 6 tσ(ek,l, Pi2 → Pi3)

...

tσ(ek,l, Pip−1
→ Pip

) + datak,l × cip−1,ip
6 tπ(Tl)

� computations: A processor cannot execute two tasks simultaneously: for all Tk 6= Tl, we have

π(Tk) = π(Tl)⇒ [tπ(Tk), tπ(Tk) + wπ(Tk),k[∩[tπ(Tl), tπ(Tl) + wπ(Tl),l[= ∅

�
communications: Two different files cannot simultaneously circulate on the edge from Pi to Pj : for
all ek1,l1

6= ek2,l2
∈ EA and for all Pi → Pj we have

[tσ(ek1,l1 , Pi → Pj), tσ(ek1,l1 , Pi → Pj) + datak1,l1 × ci,j [

∩ [tσ(ek2,l2 , Pi → Pj), tσ(ek2,l2 , Pi → Pj) + datak2,l2 × ci,j [= ∅

�
one-port for outputs A processor cannot send messages to two processors simultaneously: for all
ek1,l1

, ek2,l2
∈ EA and for all (Pi → Pj1) 6= (Pi → Pj2 ) we have

[tσ(ek1,l1 , Pi → Pj1 ), tσ(ek1,l1 , Pi → Pj1 ) + datak1,l1 × ci,j1 [

∩ [tσ(ek2,l2 , Pi → Pj2), tσ(ek2,l2 , Pi → Pj2) + datak2,l2 × ci,j2 [= ∅

INRIA



Impact and limits of steady-state scheduling 7

� one-port for inputs A processor cannot receive messages from two processors simultaneously: for all
ek1,l1

, ek2,l2
∈ EA and for all (Pi1 → Pj) 6= (Pi2 → Pj) we have

[tσ(ek1,l1 , Pi1 → Pj), tσ(ek1,l1 , Pi1 → Pj) + datak1,l1 × ci1,j [

∩ [tσ(ek2,l2 , Pi2 → Pj), tσ(ek2,l2 , Pi2 → Pj) + datak2,l2 × ci2,j [= ∅

Definition 3 (Makespan of a schedule). The makespan of a valid schedule (tπ, tσ) is

max
Tk∈VA

(
tπ(Tk) + wπ(Tk),k

)
− min

Tk∈VA

tπ(Tk)

The next definitions are more technical:

Definition 4 (Extended graph). Let GA = (VA, EA) be an application graph and S a set. We write:

VA ⊗ S = VA × S

EA ⊗ S =
{(

(Tk, n), (Tl, n)
)∣
∣ek,l : Tk → Tl ∈ EA et n ∈ S

}

GA ⊗ S = (VA ⊗ S, EA ⊗ S)

GA ⊗ S is the extended graph of GA along S.

Definition 5 (Cyclic schedule). A cyclic schedule of an application graph GA on a platform graph GP is
a valid scheduling of GA ⊗ N on GP .

Definition 6 (Makespan of a cyclic schedule). The makespan of the first N tasks of a cyclic schedule
is

DN = max
(Tk ,n)∈VA×J1,NK

(
tπ(Tk, n) + wπ(Tk,n),k

)
− min

(Tk ,n)∈VA×J1,NK
tπ(Tk, n)

Definition 7 (K-periodic sequence). A sequence u is K-periodic if it is nondecreasing and if there exists
an integer n0 and a rational Tp > 0 such that

∀n > n0 : un+K = un + Tp

K is the periodicity factor, Tp is the period, and K
Tp

is the throughput of the sequence. If n0 = 0, we say that

the sequence is strictly K-periodic.

Definition 8 (K-periodic schedule). To simplify the notations, f(x, n) and f(x)(n) are considered as
equivalent. A cyclic schedule (tπ, tσ) is K-periodic with period Tp if for all Tk ∈ VA, the sequence tπ(Tk) is
strictly K-periodic with period Tp, and if for all ek,l ∈ EA and for all Pi → Pj , tσ(ek,l, Pi → Pj) is strictly
K-periodic with period Tp.

Intuitively, this amounts to say that the scheduling of K consecutive instances of the application graph
is periodic.

Definition 9 (Throughput of a cyclic schedule). The throughput of a cyclic schedule is defined as the
following limit, if it exists:

lim
N→∞

N

DN

Remark 1. A K-periodic schedule of period Tp is fully characterized by the first K values of the tπ (Tk)
and of the tσ (ek,l,Pi → Pj), and its throughput is K

Tp
.

The previous remark leads to an important question: is there a one-to-one correspondence between K
periodic schedules of period Tp and“patterns”of length Tp for the execution of K consecutive instances of the
application graph? The answer is positive, and this is good news: if we show that resource constraints are
satisfied during the period, then this guarantees the existence of a valid schedule with the desired throughput.
This result is formally proved in the rest of the section, which can be omitted by the reader.
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8 O. Beaumont, A. Legrand, L.Marchal, Y. Robert

2.6 Patterns and periodic schedules

Definition 10 (K-pattern of length Tp). A K-pattern of length Tp is defined by an allocation (π, σ) from
GA ⊗ J1, KK onto GP , and by two mappings t̃π : VA ⊗ J1, KK 7→ [0, Tp[ and t̃σ : (EA ⊗ J1, KK)×EP 7→ [0, Tp[
satisfying all resource constraints and all one-port constraints modulo Tp.

Definition 11 (MK,Tp
). MK,Tp

denotes the canonical mapping from the set of K-periodic schedules of
period Tp onto the set of K-pattern of length Tp: we let MK,Tp

(tπ , tσ) = (t̃π , t̃σ) such that:

∀Tk ∈ VA, ∀n ∈ J1, KK : t̃π(Tk, n) = tπ(Tk, n) mod Tp

∀ek,l ∈ EA, ∀Pi → Pj ∈ EP , ∀n ∈ J1, KK : t̃σ(ek,l, n, Pi → Pj) = tσ(ek,l, n, Pi → Pj) mod Tp

Lemma 1 (M1,Tp
is surjective). Let Tp ∈ Q∗

+. Let (π, σ) be an allocation from GA onto GP . Given
t̃π : VA 7→ [0, Tp[ and t̃σ : EA × EP 7→ [0, Tp[ satisfying all resource constraints and all one-port constraints
modulo Tp, there exists a 1-periodic schedule (tπ, tσ) from GA onto GP (hence also satisfying to all precedence
constraints), of period Tp, such that

∀Tk ∈ VA, ∀n ∈ N : tπ(Tk, n) = t̃π(Tk) mod Tp

∀ek,l ∈ EA, ∀Pi → Pj ∈ EP , ∀n ∈ N : tσ((ek,l, n), Pi → Pj) = t̃σ(ek,l, Pi → Pj) mod Tp

Proof. We look for tπ and tσ expressed as

tπ(Tk, n) = t̃π(Tk) + (n + ∆π(Tk))Tp

tσ((ek,l, n), Pi → Pj) = t̃σ(ek,l, Pi → Pj) + (n + ∆σ(ek,l, Pi → Pj))Tp,

where ∆σ and ∆π take their values in Z. We give necessary and sufficient conditions on ∆σ and ∆π for
(tπ, tσ) to be a 1-periodic schedule from GA onto GP .

� Precedence constraints: Let ek,l ∈ EA, and σ(ek,l) = (Pi1 , Pi2 , . . . , Pip
).

∀n ∈ N : tσ((ek,l, n), Pip−1
→ Pip

) + datak,l × cip−1,ip
6 tπ(Tl, n)

⇔

t̃σ(ek,l, Pip−1
→ Pip

) + ∆σ(ek,l, Pip−1
→ Pip

)Tp + datak,l × cip−1,ip
6 t̃π(Tl) + ∆π(Tl)Tp

⇔

t̃σ(ek,l, Pip−1
→ Pip

) + ∆σ(ek,l, Pip−1
→ Pip

)Tp + datak,l × cip−1,ip
6 t̃π(Tl) + ∆π(Tl)Tp

⇔

∆σ(ek,l, Pip−1
→ Pip

) 6

⌊

t̃π(Tl)− t̃σ(ek,l, Pip−1
→ Pip

)− datak,l × cip−1,ip

Tp

⌋

+ ∆π(Tl)

Similarly, we have

∀n ∈ N : tσ((ek,l, n), Pi1 → Pi2 ) + datak,l × ci1,i2 6 tσ((ek,l, n), Pi2 → Pi3 )

⇔

∆σ(ek,l, Pi1 → Pi2) 6

⌊

t̃σ(ek,l, Pi2 → Pi3)− t̃σ(ek,l, Pi1 → Pi2)− datak,l × ci1,i2

Tp

⌋

+ ∆σ(ek,l, Pi2 → Pi3),

and

∀n ∈ N : tπ(Tk) + wi1,k 6 tσ(ek,l, Pi1 → Pi2 )

⇔

∆π(Tk) 6

⌊

t̃σ(ek,l, Pi1 → Pi2 )− t̃π(Tk)− wi1,k

Tp

⌋

+ ∆σ(ek,l, Pi1 → Pi2 )

INRIA



Impact and limits of steady-state scheduling 9

(tπ, tσ) satisfies all precedence constraints if and only if the following system of potential constraints
has a solution:

∀ek,l : Tk → Tl






∆π(Tk)−∆σ(ek,l, Pi1 → Pi2) 6

⌊

t̃σ(ek,l, Pi1 → Pi2)− t̃π(Tk)− wi1 ,k

Tp

⌋

∆σ(ek,l, Pi1 → Pi2)−∆σ(ek,l, Pi2 → Pi3) 6

⌊

t̃σ(ek,l, Pi2 → Pi3)− t̃σ(ek,l, Pi1 → Pi2)− datak,l × ci1,i2

Tp

⌋

...

∆σ(ek,l, Pip−1
→ Pip

)−∆π(Tl) 6

⌊

t̃π(Tl)− t̃σ(ek,l, Pip−1
→ Pip

)− datak,l × cip−1,ip

Tp

⌋

The graph GA is acyclic, hence the potential graph associated to the previous equations is acyclic too.
In particular, there are no cycles of negative weight, and the system admits a solution that can be
computed in polynomial time [16].

� Resource constraints: For all I1, I2 ⊂ [0, Tp[, we have (I1 + TpZ) ∩ (I2 + TpZ) = (I1 ∩ I2) + TpZ.
Since (t̃π,t̃σ) satisfies to all resource constraints, the same holds true for (tπ, tσ).

� 1-periodicity of period Tp: for all Tk, tπ(Tk) is 1-periodic of period Tp and for all ek,l, tσ(ek,l) also

is 1-periodic of period Tp.

Lemma 2. If MK1,Tp
et MK2,Tp

are surjective, then MK1+K2,Tp
is surjective too.

Proof. Let (t̃π, t̃σ) be (K1 + K2)-pattern of length Tp. Then we define t̃
(1)
π : VA × J1, K1K 7→ [0, Tp[ as

t̃
(1)
π (Tk, n) = t̃π(Tk, n) and t̃

(1)
σ : (EA × J1, KK) × EP 7→ [0, Tp[ as t̃

(1)
σ ((ek,l, n), Pi → Pj) = t̃σ((ek,l, n), Pi →

Pj); then (t̃
(1)
π , t̃

(1)
σ ) is a K1-pattern of length Tp. Similarly, we define t̃

(2)
π : VA × J1, K2K 7→ [0, Tp[ as

t̃
(2)
π (Tk, n) = t̃π(Tk, K1 +n) and t̃

(2)
σ : (EA×J1, K2K)×EP 7→ [0, Tp[ as t̃

(2)
σ ((ek,l, n), Pi → Pj) = t̃σ((ek,l, K2+

n), Pi → Pj); then (t̃
(2)
π , t̃

(2)
σ ) is a K2-pattern of length Tp.

Since MK1,Tp
et MK2,Tp

are surjective, let (t
(1)
π , t

(1)
σ ) (resp. (t

(2)
π , t

(2)
σ )) be a schedule of pattern (t̃

(1)
π , t̃

(1)
σ )

(resp. (t̃
(2)
π , t̃

(2)
σ )). Then define tπ : VA × N 7→ Q as

tπ(Tk, n) =

{

t
(1)
π (Tk, n) if n ∈ J1, K1K + (K1 + K2)Z

t
(2)
π (Tk, n) otherwise

and define tσ : (EA × N)×EP 7→ Q as

tσ((ek,l, n), Pi → Pj) =

{

t
(1)
σ ((ek,l, n), Pi → Pj) if n ∈ J1, K1K + (K1 + K2)Z

t
(2)
σ ((ek,l, n), Pi → Pj) otherwise

,

We have derived a (K1 + K2)-cyclic schedule of period Tp and of pattern (t̃π, t̃σ).

Theorem 1. For all K ∈ N∗, MK,Tp
is surjective.

Proof. By straightforward induction, using the previous two lemmas.

2.7 From allocations to periodic schedule

We are ready for the main result of this section, which captures a very important feature of steady-state
scheduling, namely the guarantee that it is always possible to reconstruct a periodic schedule from a set of
weighted allocations satisfying all resource (computation and communication) constraints.
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10 O. Beaumont, A. Legrand, L.Marchal, Y. Robert

Intuitively, we aim at“mapping”instances of the application graph onto the platform graph. An allocation
simply is the recording of one possible mapping (i.e. where everything takes place, from computations to file
transfers). Interleaving several different allocations looks promising to squeeze the most out of the platform
graph. Distinct allocations may use different resources, and their simultaneous use is easy in that case; but
they may also share some resources, and we then have to ensure that those shared resources are accessed in
exclusive mode. In other words, we have to orchestrate resource utilization requested by different allocations
to reconstruct a valid periodic schedule. Given a set of allocations, each of them having to be used with a
prescribed frequency, is it possible to reconstruct a valid periodic schedule with optimal throughput? The
answer is positive, and we state it now formally. Consider an application graph GA = (VA, EA) and a
platform graph GP = (VP , EP ):

Definition 12 (Weight of an allocation). The weight of an allocation A = (π, σ) is a positive rational
number α representing the number of times that the allocation is to be used every time-unit.

Definition 13 (Resource-compliant weighted allocations). A set of r weighted allocations (Am, αm)16m6r,
where Am = (πm, σm), is resource-compliant if ∀Pi ∈ VP the following three relations hold:

�
Computations:

r∑

m=1




∑

Tk/πm(Tk)=i

wi,k.αm



 6 1

�
Incoming communications:

r∑

m=1




∑

e
k,l

∈EA




∑

(Pj→Pi)∈σm(e
k,l

)

datak,l.cj,i.αm







 6 1

� Outgoing communications:

r∑

m=1




∑

e
k,l

∈EA




∑

(Pi→Pj )∈σm(e
k,l

)

datak,l.ci,j .αm







 6 1

Basically, the first constraint states that within a time-unit, each processor can compute as many tasks
as required by each allocation counted as many times as its weight. The second and third constraint are the
counterpart for incoming and outgoing communications under the one-port model.

Theorem 2. Given a set of r weighted allocations (Am, αm), we can reconstruct a valid periodic schedule
of throughput ρ =

∑r
m=1 αm.

The significance of Theorem 2 is that it allows to go from purely local constraints to a global steady-state
schedule. We provide a formal proof below but the reader may want to skip it and follow the derivation
conducted in Section 3.2 for a simple particular case (where the application graph is reduced to one input
task, one main task and one output task). Section 3.2 can be read independently of the proof below.

Proof. For each weighted allocation (Am, αm), let s(Pi → Pj , ek,l,Am) denote the fraction of time spent
by Pi to send to Pj data involved by the edge ek,l for the allocation. We have s(Pi → Pj , ek,l,Am) =
datak,l.ci,j .αm if the edge Pi → Pj is used to transmit files of type ek,l by the allocation Am (that is if
Pi → Pj ∈ σm(ek,l)), and s(Pi → Pj , ek,l,Am) = 0 otherwise.

Bipartite graph of the communications We build a weighted bipartite multigraph GB = (VB , EB)
as follows: for each node Pi in GP , we create two nodes P send

i and P recv
i , so that |VB | = 2|VP |. For each

non-zero value of
∑

k,l,m s(Pi → Pj , ek,l,Am) we insert an edge between P send
i and P recv

j , whose weight is
∑

k,l,m s(Pi → Pj , ek,l,Am), i.e. the overall communication time between Pi and Pj . The number of edges in
GB is such that |EB | 6 |EP |. We are looking for a decomposition of the bipartite multigraph GB into a set
of subgraphs where a node (sender or receiver) is occupied by at most one communication. This means that
at most one edge reaches each node in the subgraph. In other words, only communications corresponding
to a matching in the bipartite graph can be performed simultaneously, and the desired decomposition of the
graph is in fact an edge coloring.

The total weight of a node P send
i , defined as the sum of the weight of its incident edges, does not exceed

1 because of the constraint of the incoming communications. Similarly, the total weight of a node P recv
i is

not larger than 1.

INRIA



Impact and limits of steady-state scheduling 11

Decomposition into matchings The weighted edge coloring algorithm for bipartite graphs of [34, vol.A
chapter 20] provides a polynomial number of weighted matchings (M1, γ1), . . . , (Ms, γs) such that χGB

=
∑

u γu.χu and
∑

u γu 6 1. Here, χu denotes the characteristic function of the matching (χu(e) = 1 iff
edge e belongs to the matching Mu). The number of matchings is bounded by |EB | and the complexity of
the algorithm is O(|EB |

2), hence polynomial in the size of the application and platform graphs, and of the
number of allocations.

Link between matchings and allocations For each edge Pi → Pj , the sum of the weight of the matching
containing this edge is equal to the weight of this edge in the bipartite graph. Let us call Mi,j the set of
matchings including edge Pi → Pj and Si,j the set of values (k, l, m) such that s(Pi → Pj , ek,l,Am) 6= 0. We
have:

∑

u∈Mi,j

γu =
∑

(k,l,m)∈Si,j

s(Pi → Pj , ek,l,Am)

which is also:

∑

u∈Mi,j

γu =
∑

(k,l,m)∈Si,j

datak,l × ci,j × αm

The time intervals of length γu involved in the left sum are represented on the first line of the following
figure, whereas the intervals of length s(Pi → Pj , ek,l,Am) appearing in the second sum are represented on
the second line. We have to split both types of intervals into sub-intervals so that each of them is at the
same time part of a single interval of the first sum and part of a single interval of the second sum.

{

transfers of different files ek,l occuring on link Pi → Pj

intersection matchings-transfers

Mu

s(Pi → Pj , ek,l,Am)

s(Pi → Pj , ek,l,Am, Mu)

for different allocations Am: (k, l, m) ∈ Mi,j

matchings including link Pi → Pj : u ∈ Si,j

The above figure presents a simple way to split and distribute the communications of the intervals s(Pi →
Pj , ek,l,Am) into the matchings. We denote by s(Pi → Pj , ek,l,Am, Mu) the fraction of s(Pi → Pj , ek,l,Am)
corresponding to the matching Mu in the distribution. As datak,l and ci,j are integers, if we let γu = au

bu
,

∀m, αm = cm

dm
where au, bu, cm, dm are integers, the size of all chunks obtained in the decomposition of the

previous figure is a multiple of 1/P where P is the least common denominator of all bu’s and du’s. In other
words, s(Pi → Pj , ek,l,Am, Mu) is a multiple of 1

lcmu{bu} × lcmm{dm} .

Building a periodic schedule Let us define B = lcmu{bu} × lcmm{dm} × lcmk,l{datak,l} × lcmi,j{ci,j}.
In what follows, we aim at building a pattern of length B such that all communications and all computations
corresponding to (

∑
αm)B = ρB application graphs can be realized (α1B according to allocation A1,...,

and αmB according to allocation Am). This amounts to construct a ρ.B-pattern of length B. Owing to
Theorem 1, we know that the existence of such a pattern induces the existence of periodic schedule (that
can be built in polynomial time) with period B and achieving ρB application graphs every B time units,
thus the optimal throughput.

The period of size B will be decomposed in (s+1) intervals of respective size (γ1B, . . . , γsB, (1−
∑

γu)B,
corresponding to the matchings. For each processor pair (Pi, Pj), the communications between P send

i and
P recv

j will take place in time intervals u 6 s such that (P send
i , P recv

j ) ∈Mu, so that during one interval, com-
munications will take place independently, since one processor can be involved in at most one send and one re-
ceive operation. During the uth interval, processor Pi sends to Pj exactly s(Pi → Pj , ek,l,Am, Mu) B

datak,l×ci,j

files of type ek,l corresponding to allocation Am (thanks to the definition of B, this is a integer number of
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12 O. Beaumont, A. Legrand, L.Marchal, Y. Robert

files). This transfer lasts s(Pi → Pj , ek,l,Am, Mu) × B time-units. The time needed to send all files for all
allocations during the interval corresponding to matching Mu is:

δu =
∑

Am

∑

e
k,l

s(Pi → Pj , ek,l,Am, Mu)×B = γu ×B

which is the length of the uth interval. The total number of files ek,l sent by Pi to Pj for allocation Am

during one whole period is:

∑

u∈Mi,j

s(Pi → Pj , ek,l,Am, Mu)×
B

datak,l × ci,j
= s(Pi → Pj , ek,l,Am)×

B

datak,l × ci,j
= αm ×B

so every files ek,l for allocation Am may be transfered during one period of length B.

Computation Since communication and computations can be overlapped, computations will take place
independently during the whole time period B. Let us now prove that processor Pi is able to process all the
tasks assigned to it. The number of tasks of type Tk assigned to Pi is given by

Wi,k = (
∑

m

∑

πm(Tk)=i

αm)B,

and by construction of B, Wi,k is an integer since ∀m, αmB is an integer.
By construction,

∑

m

∑

πm(Tk)=i

wi,k.αm 6 1,

so that ∑

m

∑

πm(Tk)=i

wi,k .(αmB) 6 B.

Thus, during the time period of duration B, Pi can process αmB tasks of kind Tk, ∀(k, m) such that
πm(Tk) = i. Thus, Pi is able to process all tasks assigned to it within the request time-frame.

Thus, it is possible to organize all the communications and all the computations corresponding to ρB
application graphs in a time period of duration B. Owing to Theorem 1, there exist a periodic schedule
(with period B) that achieves ρB application graphs every B time units.

Finally, define the size of the mapping problem I as the size of the application and platform graphs. If
the number r of resource-compliant allocations is polynomial in I (which means that there is a reasonably
bounded number of allocations), and their weights are polynomial in I (which means that their weight can
be expressed in reasonable compact way) then log B has a size polynomial in I too, so that the construction
and the description of the schedule are fully polynomial in I . We will use this property in the proof of
Theorem 6.

3 Steady-state scheduling of independent tasks

In this section we focus on scheduling independent tasks. Such an application is modeled with the very
simple application graph depicted on Figure 2(a), which includes only three task types on a linear path:
an input task, the main task and an output task. However, we point out that all the results shown in this
section also hold true when the application graph is a tree.

3.1 Optimal throughput

In this section we derive a bound on the optimal throughput that can be achieved in steady-state mode,
using a linear programming approach. Later in Section 3.2, we show how to build a periodic schedule that
achieves this throughput. This is the beauty of the steady-state approach: all the information needed to
construct the actual schedule lies in the solution of the linear program.
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Impact and limits of steady-state scheduling 13

3.1.1 Steady-state activity variables

� For each edge ek,l : Tk → Tl in the task graph and for each processor pair (Pi, Pj), we denote by
s(Pi → Pj , ek,l) the (average) fraction of time spent each time-unit by Pi to send to Pj data involved
by the edge ek,l. Of course s(Pi → Pj , ek,l) is a nonnegative rational number. Think of an edge ek,l as

requiring a new file to be transferred from the output of each task T
(m)
k processed on Pi to the input of

each task T
(m)
l processed on Pj . Let the (fractional) number of such files sent per time-unit be denoted

as sent(Pi → Pj , ek,l). We have the relation:

s(Pi → Pj , ek,l) = sent(Pi → Pj , ek,l)× (datak,l × ci,j) (1)

which states that the fraction of time spent transferring such files is equal to the number of files times
the product of their size by the elemental transfer time of the communication link.

� For each task type Tk ∈ VA and for each processor Pi, we denote by α(Pi, Tk) the (average) fraction
of time spent each time-unit by Pi to process tasks of type Tk, and by cons(Pi, Tk) the (fractional)
number of tasks of type Tk processed per time unit by processor Pi. We have the relation

α(Pi, Tk) = cons(Pi, Tk)× wi,k (2)

3.1.2 Steady-state equations

We search for rational values of all the variables s(Pi → Pj , ek,l), sent(Pi → Pj , ek,l), α(Pi, Tk) and
cons(Pi, Tk). We formally state the first constraints to be fulfilled.

Activities during one time-unit All fractions of time spent by a processor to do something (either com-
puting or communicating) must belong to the interval [0, 1], as they correspond to the average activity
during one time unit:

∀Pi, ∀Tk ∈ VA, 0 6 α(Pi, Tk) 6 1 (3)

∀Pi, Pj , ∀ek,l ∈ EA, 0 6 s(Pi → Pj , ek,l) 6 1 (4)

One-port model for outgoing communications Because send operations to the neighbors of Pi are
assumed to be sequential, we have the equation:

∀Pi,
∑

Pj∈n(Pi)

∑

e
k,l

∈EA

s(Pi → Pj , ek,l) 6 1 (5)

where n(Pi) denotes the neighbors of Pi. Recall that we can assume a complete graph owing to our
convention with the ci,j .

One-port model for incoming communications Because receive operations from the neighbors of Pi

are assumed to be sequential, we have the equation:

∀Pi,
∑

Pj∈n(Pi)

∑

e
k,l

∈EA

s(Pj → Pi, ek,l) 6 1 (6)

Note that s(Pj → Pi, ek,l) is indeed equal to the fraction of time spent by Pi to receive from Pj files of
type ek,l.

Full overlap Because of the full overlap hypothesis, there is no further constraint on α(Pi, Tk) except that

∀Pi,
∑

Tk∈VA

α(Pi, Tk) 6 1 (7)
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14 O. Beaumont, A. Legrand, L.Marchal, Y. Robert

3.1.3 Conservation laws

The last constraints deal with conservation laws. Consider a given processor Pi, and a given edge ek,l in
the application graph. During each time unit, Pi receives from its neighbors a given number of files of type
ek,l: Pi receives exactly

∑

Pj∈n(Pi)
sent(Pj → Pi, ek,l) such files. Processor Pi itself executes some tasks Tk,

namely cons(Pi, Tk) tasks Tk, thereby generating as many new files of type ek,l.

What does happen to these files? Some are sent to the neighbors of Pi, and some are consumed by Pi to
execute tasks of type Tl. We derive the equation:

∀Pi, ∀ek,l ∈ EA : Tk → Tl,
∑

Pj∈n(Pi)

sent(Pj → Pi, ek,l) + cons(Pi, Tk) =

∑

Pj∈n(Pi)

sent(Pi → Pj , ek,l) + cons(Pi, Tl) (8)

It is important to understand that equation (8) really applies to the steady-state operation. At the
beginning of the operation of the platform, only input tasks are available to be forwarded. Then some
computations take place, and tasks of other types are generated. At the end of this initialization phase, we
enter the steady-state: during each time-period in steady-state, each processor can simultaneously perform
some computations, and send/receive some other tasks. This is why Equation (8) is sufficient, we do not
have to detail which operation is performed at which time-step.

Finally, we point out that Equation (8) has been written in the most general setting (several masters,
prescribed resources for output files, etc.). We have a simpler formulation if we assume a single master and no
constraint on the localization of output files. In that case, let sent(Pi → Pj) be the number of files sent from
Pi to Pj within a time-unit, and let cons(Pi) be the number of tasks consumed by Pi within a time-unit. We
derive the conservation law, which states that each task received is either consumed or forwarded to another
resource:

∀Pi,
∑

Pj→Pi

sent(Pj → Pi) = cons(Pi) +
∑

Pi→Pj

sent(Pi → Pj)

3.1.4 Bound on the optimal steady-state throughput

The equations listed in the previous section constitute a linear programming problem, whose objective
function is the total throughput, i.e. the number of tasks Tend consumed within one time-unit:

ρ =

p
∑

i=1

cons(Pi, Tend) (9)
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Impact and limits of steady-state scheduling 15

Indeed, each time a task Tend has been consumed, the dependence constraints imply that a whole instance
of the application graph has been executed. Here is a summary of the linear program:

Maximize ρ =
∑p

i=1 cons(Pi, Tend),
under the consstraints






(10a) ∀Pi, ∀Tk ∈ VA, 0 6 α(Pi, Tk) 6 1

(10b) ∀Pi → Pj , ∀ek,l ∈ EA, 0 6 s(Pi → Pj , ek,l) 6 1

(10c) ∀Pi → Pj , ∀ek,l ∈ EA, s(Pi → Pj , ek,l) = sent(Pi → Pj , ek,l)× (datak,l × ci,j)

(10d) ∀Pi, ∀Tk ∈ VA, α(Pi, Tk) = cons(Pi, Tk)× wi,k

(10e) ∀Pi,
∑

Pj→Pi

∑

e
k,l

∈EA

s(Pj → Pi, ek,l) 6 1

(10f) ∀Pi,
∑

Pi→Pj

∑

e
k,l

∈EA

s(Pi → Pj , ek,l) 6 1

(10g) ∀Pi,
∑

Tk∈VA

α(Pi, Tk) 6 1

(10h) ∀Pi, ∀ek,l ∈ EA : Tk → Tl,
∑

Pj→Pi

sent(Pj → Pi, ek,l) + cons(Pi, Tk) =

∑

Pi→Pj

sent(Pi → Pj , ek,l) + cons(Pi, Tl)

(10)

As already pointed out, the beauty of steady-state scheduling is that the optimal throughput ρ given
by the linear program can be achieved. We show how to build a periodic schedule of throughput ρ in
Section 3.2, and we establish its asymptotic optimality among all possible schedules (not only periodic ones)
in Section 3.3.

3.2 Reconstruction of an effective schedule

Consider the platform depicted on Figure 2(b) and a set of independent tasks (whose characteristics are
depicted on Figure 2(a)). We suppose that all input files ebegin,1 initially reside on P1, and that all output
files e1,end have to be gathered on P1. These conditions are ensured by imposing that neither Tbegin nor Tend

can be processed on another place than P1.
Solving the linear program, we get the values summarized on Figure 3. In Figure 3(b), solid edges

represent the transfers of ebegin,1 and dashed ones the transfers of e1,end . The weights of the edges represent
the fraction of time spent for the associated file transfer. We have to show how to reconstruct a schedule
from this description. More precisely, given the throughput ρ = 0.525 (21 tasks every 40 seconds), we have
to build a K-pattern of length Tp such that ρ = K/Tp. The construction of such a pattern proceeds in two
phases. First we decompose the solution of the linear program into a weighted sum of allocations (αi,Ai)
(see Figure 4). Then we show how to simultaneously schedule these allocations without resource conflict.
Theorem 2 proves that this last step is possible in a more general context. Nevertheless, we present in this
section the actual reconstruction of the pattern on a simple example, for some readers may have (legitimately)
skipped the proof of Theorem 2.

The main motivation to consider steady-state scheduling is that several distinct allocations are interleaved
to squeeze the most out of the platform. In the simple case where GA only contains a main task, an input
task Tbegin and an output task Tend , the decomposition into allocations is computed by peeling off the
communication graph: see Algorithm 1.

Algorithm 1 depth-searches GA and greedily select processors capable of executing the tasks. Conserva-
tion laws ensure that the desired allocation will always be found: when a task is consumed, it produces an
output file which either is used locally, either is forwarded to another processor. Once we have a valid alloca-
tion, we determine its weight by taking the minimum of the quantities cons(Pi, Tk) and sent(Pi → Pj , ek,l)
involved in the allocation. We subtract this weight to these quantities, and we get updated variables still
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2

2

0
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4

Tbegin

Tend

T1

(a) Application graph

1

1

1

1
10

2

2 1

10
P3

P2 P4

P1

(b) Platform graph: input files e
begin,1

originally are on P1

and output files e
1,end

have to be gathered on P1

Figure 2: A simple example for reconstructing the schedule

α(Pi, T1) cons(Pi, T1)
P1 100% 0.025
P2 100% 0.125
P3 100% 0.125
P4 100% 0.250

Total 21 tasks every 40 seconds

(a) Computation times

0.25

0.5

0.5

0.25

0.75

0.25 0.5

P1 P3

P4P2

(b) Communication times (s(Pi →
Pj , e

k,l
))

Figure 3: Solution of the linear program : the platform graph is annotated with non-zero values of s(Pi →
Pj , ek,l)
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A4

0,125 0,125

A5

0,025 0,125 0,125

A3A2A1

P1 → P3

P3 → P1

P1 → P2

P2 → P1

P1 → P3 → P4

P4 → P2 → P1

P1 → P3 → P4

P4 → P3 → P1

P1

P1

P1

P1

P3

P1

P1

P2

P1

P1

P4

P1

P1

P4

P1

Tbegin

T1

Tend

Tbegin

T1

Tend

Tbegin

T1

Tend

Tbegin

T1

Tend

Tbegin

T1

Tend

Figure 4: Decomposition of the solution of the linear program into 5 allocations A1,. . . ,A5. Each allocation
contributes to a certain amount to the steady-state regime, and the sum of these contributions (0.025 +
0.125 + 0.125 + 0.125 + 0.125) is equal to the total throughput total (0.525 = 21

40 ).

FIND AN ALLOCATION()
1: Choose Pi such that cons(Pi, Tbegin) = 0
2: π(Tbegin)← Pi.
3: src ← i
4: γ1 ← ∅
5: while cons(Psrc , T1) = 0 do

6: Choose Pj such that sent(Psrc → Pj , ebegin,1) > 0
7: γ1 ← γ1 ∪ (Psrc → Pj)
8: src ← j
9: σ(ebegin,1)← γ1

10: π(T1)← Psrc

11: γ2 ← ∅
12: while cons(Psrc , Tend ) = 0 do

13: Choose Pj such that sent(Psrc → Pj , e1,end) > 0
14: γ2 ← γ2 ∪ (Psrc → Pj)
15: src ← j
16: σ(e1,end )← γ2

17: π(Tend )← Psrc

18: α← min
(
cons(Pbegin , Tπ(Tbegin)), cons(P1, Tπ(T1)

), cons(Pend , Tπ(Tend )),

{sent(Pi → Pj , ebegin,1)|Pi → Pj ∈ σ(ebegin,1)},

{sent(Pi → Pj , e1,end)|Pi → Pj ∈ σ(e1,end)}
)

19: return(α, π, σ)

Algorithm 1: Algorithm for extracting an allocation
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A5 : 0.25

A4 : 0.25

A2 : 0.25

A3 : 0.25

A3 : 0.25

A5 : 0.25

A4 : 0.25

0.25
A5

A5
0.25

0.25 A2

0.25
A4

0.25

A4

P1

P2 P3

P3

(a) Solution of the linear program

;

0.25
A5

0.25

A2

0.25

A5

0.25
A4 A4

0.25
A2

0.25

A5 : 0.25

A5 : 0.25

A4 : 0.25

A4 : 0.25

A3 : 0.25

A3 : 0.25

(b) Bipartite graph

Figure 5: Communication graph and associated bipartite graph.

satisfying to all constraints (10): we start again searching for another allocation, until no more task can be
consumed.

Once we have the allocations, we can directly use Theorem 2 to reconstruct the periodic steady-state
schedule. However we illustrate the reconstruction on this example. The rest of this section can be skipped
by the reader who has followed the proof of Theorem 2.

From the weighted allocations we build the communication graph shown in Figure 5(a). Each node is
a processor. Solid edges represent transfers of type ebegin,1, while dashed edges represent transfers of type
e1,end . Each edge is labeled with an allocation number and a weight which represents the time fraction spent
communicating the corresponding file. For instance, the solid edge (A3, 0.25) from P1 to P2 means that every
time-unit, one fourth of the time (weight 0.25) is spent forwarding from P1 to P2 files of type ebegin,1 and
used for A3. There may be several edges between processor pairs.

To reconstruct a schedule from this description, we transform the communication graph into a weighted
bipartite graph (see Figure 5(b)). We split each node into two nodes, one for the sends (in grey) and one for
the receives (in white).

Because of the one-port model, there are at most two communications involving the same processor at
a given time-step: one for sending, and one for receiving. The one-port constraints are enforced locally by
Equations (5) and (6), but they have to be satisfied at the platform level. This is the role of the bipartite
graph: we have to extract communications that can take place simultaneously, without violating the one-port
constraints. Any set of communications which corresponds to a matching in the bipartite graph will do the
job: by definition of a matching, any sending processor will be involved at most once, and the same for any
receiving processor. Therefore, the bipartite graph must be decomposed into a weighted sum of matchings
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such that the sum of the weights is not greater than 1 (in order to orchestrate all communications within a
time-unit). Back to the example, we can have the following decomposition:
















0.25
A5

0.25

A2

0.25

A5

0.25
A4 A4

0.25
A2

0.25

A5 : 0.25

A5 : 0.25

A4 : 0.25

A4 : 0.25

A3 : 0.25

A3 : 0.25
















=
1

4
×
















A4

A3

A3
















︸ ︷︷ ︸

χ1

+
1

4
×















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














︸ ︷︷ ︸

χ2

+

1

4
×
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





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



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︸ ︷︷ ︸
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+
1

4
×






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
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





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














︸ ︷︷ ︸

χ4

(11)

Here, χ denotes the characteristic function of the matching (χ(e) = 1 iff edge e belongs to the matching).
Such a decomposition always exist and can be obtained. Decomposing a bipartite graph into a weighted sum
of matchings amounts to derive a weighted edge-coloring of the graph. The algorithm, although complicated,
is well-known, and its complexity is O(m2), where m is the number of edges in the bipartite graph [34,
chapitre 20]. The number of matchings is bounded by m. From the edge-coloring decomposition, it is easy
to reconstruct the schedule (see Figure 6) because we now have a pattern that satisfies to all resource and
one-port constraints.

To summarize, the design of the final schedule is conducted as follows:

1. Solve the linear program (10).

2. Decompose the solution into a sum of allocations and build the communication graph induced by the
s(Pi → Pj , ek,l).

3. Transform the communication graph into a weighted bipartite graph B.

4. Decompose graph B into a weighted sum of matchings B =
∑

αcχc such that
∑

αc 6 1.

5. Letting α(Pi, T1) = ai

bi
and αc = pc

qc
, we define the period Tp as the least common multiple of the

bi × wi,k and of the qc × datak,l × ci,j if the transfer of a file of type ek,l from Pi to Pj belongs to
matching χc. As a consequence, an integer number of each task type is consumed during each period Tp

(owing to the α(Pi, T1)) and an integer number of files is transferred during each of the time-intervals
corresponding to the matchings. Back to the example, Tp is the least common multiple of 10, 2, 2, 1
(for P1, P2, P3, P4) and of 4× 2 = 8 for the matchings (here, transfer times and weights are the same
for all matchings), leading to the value Tp = 40.

6. By construction, each matching χi is a set of compatible communications of files ebegin,1 or e1,end

from a Pi to a Pj and corresponding to a given allocation. Hence we have built a K-pattern (here,
K = 1 + 5 + 5 + 5 + 5 = 21) of length Tp where K/Tp is equal to the optimal throughput. Using
the one-to-one correspondence between patterns and periodic schedules of Section 2.6, we derive the
desired periodic schedule of optimal throughput.

RR n
�

5198



20 O. Beaumont, A. Legrand, L.Marchal, Y. Robert

P1 → P2

P2 → P1

P1 → P3

P3 → P1
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P4 → P3
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0 40 80 120 160

Figure 6: Schedule pattern achieving the optimal steady-state throughput

We point out that the description of the schedule has a size polynomial in the size of the problem input.
Indeed, the number of variables in the linear program is O(n2p2) (because of s(Pi → Pj , ek,l)), so the

bipartite graph has a size polynomial in n et p. The number of allocations is also bounded by n2p2 and the
communication graph has at most O(n4p4) edges. During the edge-coloring decomposition, the number of
matchings is bounded by n4p4 and the description of the weighted sum is polynomial. The description of the
schedule is thus polynomial, and the period length can be encoded in polynomial size too, as it is obtained
as the least common multiple of the bi × wi,k and of qc × datak,l × ci,j .

However, if the period length can be encoded in polynomial size, the period itself may not be polynomial.
In other words, log Tp is polynomial in n and p but maybe Tp is not. Because we describe the operation of
the processors by time-intervals corresponding to each allocation, we do have a polynomial-size description.
It is important to realize that if we had described the operation of each resource at each time-step, we might
have obtained a description of exponential size.

Apart from some periods in the very beginning (initialization) and and in the end (clean-up), the cyclic
schedule achieves a perfect use of the resources. We show in Section 3.3 that the cyclic schedule is asymp-
totically optimal: in T time-steps, any schedule cannot execute more than a constant number of extra tasks
than the cyclic schedule, and this constant is independent of T .

3.3 Asymptotic optimality

Let opt(GP , K) denote the optimal number of tasks that can be computed on the platform GP within K
time-units. Note that optimal refers to any valid schedule, not only periodic ones. We let ρ be the optimal
throughput, computed using the linear program 10.

Lemma 3. opt(GP , K) 6 ρ×K

Proof. Consider an optimal schedule. For each processor Pi, and each task type Tk, let ti,k(K) be the total
number of tasks of type Tk that have been executed by Pi within the K time-units. Similarly, for each
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processor pair (Pi, Pj) in the platform graph, and for each edge ek,l in the application graph, let ti,j,k,l(K)
be the total number of files of type ek,l tasks that have been forwarded by Pi to Pj within the K time-units.
The following inequalities hold true:

� ∀i,
∑

k ti,k(K).wi,k 6 K (time for Pi to process its tasks)

� ∀i,
∑

Pi→Pj

∑

k,l ti,j,k,l(K).datak,l.ci,j 6 K (time for Pi to forward outgoing tasks in the one-port

model)

� ∀i,
∑

Pj→Pi

∑

k,l tj,i,k,l(K).datak,l.ci,j 6 K (time for Pi to receive incoming tasks in the one-port

model)

� ∀ek,l,
∑

Pj→Pi
tj,i,k,l(K) + ti,k(K) =

∑

Pi→Pj
ti,j,k,l(K) + ti,l(K) (conservation equation holding for

each edge type ek,l)

Let cons(Pi, Tk) =
ti,k(K)

K , sent(Pi → Pj , ek,l) =
ti,j,k,l(K)

K . We also introduce α(Pi, Tk) = cons(Pi, Tk).wi,k

and s(Pi → Pj , ek,l) = sent(Pi → Pj , ek,l).datak,l.ci,j . All the equations of the linear program 10 hold, hence
∑p

i=1 cons(Pi, Tend) 6 ρ, the optimal value.
Going back to the original variables, we derive:

opt(GP , K) =
∑

i

ti,end (K) 6 ρ×K

Basically, Lemma 3 says that no scheduling can execute more tasks than the steady state scheduling.
There remains to bound the loss due to the initialization and clean-up phases in the periodic schedule that
has been reconstructed in the previous section. Consider the following (brute-force) approach (assume K is
large enough):

� Solve the linear program 10: compute the maximal throughput ρ, compute all the values α(Pi, Tk),
cons(Pi, Tk), s(Pi → Pj , ek,l) and sent(Pi → Pj , ek,l). Determine the period Tp. For each processor Pi,
determine per i,k,l, the total number of files of type ek,l that it receives per period. Note that all these
quantities are independent of K: they only depend upon the characteristics wi,k, ci,j , and datak,l of
the platform and application graphs.

� Initialization: the master sends per i,k,l files of type ek,l to each processor Pi. To do so, the master
generates (computes in place) as many tasks of each type as needed, and sends the files sequentially to
the other processors. This requires I units of time, where I is a constant independent of K.

� Similarly, let J be the time needed by the following clean-up operation: each processor returns to the
master all the files that it holds at the end of the last period, and the master completes the computation
sequentially, generating the last copies of Tend . Again, J is a constant independent of K.

� Let r = bK−I−J
Tp

c.

� Steady-state scheduling: during r periods of time Tp, operate the platform in steady-state, according
to the solution of the linear program.

� Clean-up during the J last time-units: processors forward all their files to the master, which is respon-
sible for terminating the computation. No processor (even the master) is active during the very last
units (K − I − J may not be evenly divisible by Tp).

� The number of tasks processed by this algorithm within K time-units is equal to steady(GP , K) =
(r + 1)× T × ρ.

Clearly, the initialization and clean-up phases would be shortened for an actual implementation, using
parallel routing and distributed computations. But on the theoretical side, we do not need to refine the
previous bound, because it is sufficient to prove the following result:
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T4

T2 T3

T1

(a) Application graph

T2 T3 T2 T3

T1T1

T4 T4

P3 P4 P5 P6

P2P1

P7 P8

(b) Platform graph: each processor is able to pro-
cess only one task type

Figure 7: Counter-example

Theorem 3. The previous scheduling algorithm based upon steady-state operation is asymptotically optimal:

lim
K→+∞

steady(GP , K)

opt(GP , K)
= 1.

Proof. Using Lemma 3, opt(GP , K) 6 ρ.K. From the description of the algorithm, we have steady(GP , K) =
((r + 1)T ).ρ > (K − I − J).ρ, hence the result because I , J , T and ρ are constants independent of K.

4 Steady-state scheduling of a general application graph

In this section we move from independent tasks to general application graphs, which can be arbitrary direct
acyclic graphs (DAGs). As we will see, scheduling arbitrary DAGs turns out to be much more difficult than
scheduling independent tasks.

4.1 Why are DAGs difficult?

Consider the problem of mapping the application graph depicted on Figure 7(a) onto the platform depicted
on Figure 7(b). Processors are labeled with the task types that are able to execute. For instance, T1

can only be executed by P1 or P2. Looking carefully at the figure, we check that no schedule is feasible.
However, assuming that communication and communication times are all equal to one, if we had used the
same equations for the linear program as before, we would have get an expected throughput of 2 application
graphs per time-unit. The difficulty arises from the join node T4 of the application graph. We need to merge
data that corresponds to the same initial instance of the application graph. Therefore we need to keep track
of the schedule of some ancestors to ensure that join parts of the DAG will be done correctly.

4.2 Adding constraints

To avoid the problem exposed in the previous section, we keep track of the schedule by adding some infor-
mations to each variable.
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(b) Annotating the application graph: e
1,3 is labeled by Tbegin

and T1 because of T3; e
1,2 is labeled by Tbegin and T1 because

of T3; e
2,3 is labeled by Tbegin , T1 and T2 because of T3 and T5;

Tend is not labeled because the only access path to it goes through
T5;etc.

Figure 8: Computing constraints.

4.2.1 Definitions and algorithm

The variables sent(Pi → Pj , ek,l), s(Pi → Pj , ek,l), α(Pi, Tk) and cons(Pi, Tk) will be annotated with a list

of constraints L and will be written sent(Pi → Pj , e
L
k,l), s(Pi → Pj , e

L
k,l), α(Pi, T

L
k ) and cons(Pi, T

L
k ). These

constraint lists are the schedule of some ancestors, e.g. {Tbegin → P1, T1 → P2, T3 → P2}. We now explain
how to build these constraint lists.

Definition 14. Given a dependency ek,l we define the set of constraining tasks of ek,l as the ancestors Ta

of Tl for which there exists a Td which is a descendant of Ta and which is not an ancestor of Tl.

The constraining tasks of the ek,l are the tasks whose schedule is crucial to be memorized to ensure that
join parts of the DAG will be done correctly. They can be constructed with Algorithm 2, which is illustrated
on Figure 8.

We now define the constraint lists for the tasks Tk and the ek,l. We distinguish between two types of
constraints for a task Tk, depending whether these constraints have to be verified to process Tk (i.e. for all
el,k) or whether all files ek,l have to respect these constraints.
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ACTIVATE(Tu)
1: Active[Tu ] ← 1
2: for all Tw s.a. Tu → Tw do

3: if Active[Tw ] 6= 1 then

4: ToActivate[Tw ]
5: inc(counter)
6: dec(counter)
7: ToActivate[Tu ]← 0

REMEMBER(Tu,Tv)
8: if counter>1 then

9: for all Tw s.a. Tv → Tw do

10: List [ev ,w ]← List [ev ,w ] ∪ Tu

COMPUTELISTE()
11: for all ek,l do

12: List [ek ,l ] ← ∅
13: for all Tu do

14: Counter ← 1
15: ACTIVATE(Tu)
16: REMEMBER(Tu,Tu)
17: while |ToActivate | > 0 and counter > 1 do

TO ACTIVATE:
18: for all Tv s.a. ToActivate[Tv ]=1 do

19: nb ← 0
20: for all Tw s.a. Tw → Tv do

21: if (there is a path from Tu to Tw) then

22: if Active[Tw ] then

23: next TO ACTIVATE

24: inc nb
25: ACTIVATE(Tv)
26: counter ← counter - nb + 1
27: REMEMBER(Tu,Tv)

Algorithm 2: Computing the constraining tasks.
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Definition 15. A constraint list for an edge ek,l is a mapping from {Tk1
, . . . , Tkq

} to {P1, . . . , Pp}, where
{Tk1

, . . . , Tkq
} is set of constraining tasks of ek,l. It is represented as a list of the form {Tk1

→ Pi1 , . . . , Tkq
→

Piq
}

Definition 16. Cnsts(ek,l) = { constraint list for ek,l }
CnstsIn(Tk) = { mapping from

⋃

e
l,k

(constraining tasks of el,k) to {P1, . . . , Pp} }

CnstsOut(Tk) =

{

Cnsts(ek,l) if there exists an ek,l in EA

∅ otherwise
(by construction, for a given k, all the ek,l have

the same list of constraints).

The following definition enables to link constraint lists in Cnsts(ek,l), CnstsIn(Tk), and CnstsOut(Tk).

Definition 17. Two constraint lists L1 and L2 are compatible iff

∀(Tk → Pi) ∈ L1, ∀Pj 6= Pi, (Tk → Pj) 6∈ L2

The following two definitions simply help to build the equations of the linear program.

Definition 18. A file ek,l respecting constraints L ∈ Cnsts(ek,l) can be transferred from Pi to Pj iff ci,j 6=∞.

Definition 19. A task Tk can be processed on processor Pi under constraints L ∈ CnstsOut(Tk) iff wi,k 6=∞
and if processing Tk on Pi does not violate one of the constraints of L (i.e. if there’s not a Pj 6= Pi such as
(Tk → Pj) ∈ L).

4.2.2 Equations

� For each edge ek,l : Tk → Tl in the task graph, for each processor pair (Pi, Pj) and each valid constraint

list L ∈ Cnsts(ek,l), we denote by s(Pi → Pj , e
L
k,l) the (average) fraction of time spent each time-unit

by Pi to send to Pj data involved by the edge ek,l under constraints L. As usual s(Pi → Pj , e
L
k,l) is a

nonnegative rational number. Let the (fractional) number of such files sent per time-unit be denoted
as sent(Pi → Pj , e

L
k,l). We have the same kind of relation as before:

s(Pi → Pj , e
L
k,l) = sent(Pi → Pj , e

L
k,l)× (datak,l × ci,j) (12)

which states that the fraction of time spent transferring such files is equal to the number of files times
the product of their size by the elemental transfer time of the communication link.

� For each task type Tk ∈ V , for each processor Pi and for each valid constraint list L ∈ CnstsOut(Tk),
we denote by α(Pi, T

L
k ) the (average) fraction of time spent each time-unit by Pi to process tasks

of type Tk fulfilling constraints L, and by cons(Pi, T
L
k ) the (fractional) number of tasks of type Tk

fulfilling constraints L processed per time unit by processor Pi. We have the relation

α(Pi, T
L
k ) = cons(Pi, T

L
k )× wi,k . (13)

Before being processed on Pi, a task Tk has to be ready i.e. the files necessary to its processing have to
be gathered on Pi. The constraint list of the input files (belonging to CnstsIn(Tk)) of a task and the
constraint list of the output files (belonging to CnstsOut(Tk)) are generally different. It may shrink
(e.g. T5 on Figure 8(b)) or grow (e.g. T1 on Figure 8(b)). That is why we distinguish the tasks that are
ready to be processed under some constraints (prod (Pi, Tk)) from the one that have just been processed
and have produced some output files (cons(Pi, Tk)). Therefore, we have the following equation linking
prod(Pi, Tk) and cons(Pi, Tk):

cons(Pi, T
L
k ) =

∑

L2 ∈ CnstsIn(Tk)
Tk can be processed on Pi under constraints L2

L and L2 are compatible

prod (Pi, T
L2

k ) (14)
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Activities during one time-unit All fractions of time spent by a processor to do something (either com-
puting or communicating) must belong to the interval [0, 1], as they correspond to the average activity
during one time unit:

∀Pi, ∀Tk ∈ V, ∀L ∈ CnstsOut(Tk) 0 6 α(Pi, T
L
k ) 6 1 (15)

∀Pi, Pj , ∀ek,l ∈ E, ∀L ∈ Cnsts(ek,l) 0 6 s(Pi → Pj , e
L
k,l) 6 1 (16)

One-port model for outgoing communications Because send operations to the neighbors of Pi are
assumed to be sequential, we have the equation:

∀Pi,
∑

Pj∈n(Pi)
ek,l∈E

L∈Cnsts(ek,l)

s(Pi → Pj , e
L
k,l) 6 1 (17)

where n(Pi) denotes the neighbors of Pi.

One-port model for incoming communications Because receive operations from the neighbors of Pi

are assumed to be sequential, we have the equation:

∀Pi,
∑

Pj∈n(Pi)
ek,l∈E

L∈Cnsts(ek,l)

s(Pj → Pi, e
L
k,l) 6 1 (18)

Note that s(Pj → Pi, ek,l) is indeed equal to the fraction of time spent by Pi to receive from Pj files of
type ek,l.

Full overlap Because of the full overlap hypothesis, there is no further constraint on α(Pi, T
L
k ) except that

∀Pi,
∑

Tk∈V
L∈CnstsOut(Tk)

α(Pi, T
L
k ) 6 1 (19)

4.2.3 Conservation laws and linear program

The last constraints deal with conservation laws. Consider a given processor Pi, and a given edge eL
k,l in the

application graph annotated with the constraint list L. During each time unit, Pi receives from its neighbors
a given number of files of type eL

k,l: Pi receives exactly
∑

Pj∈n(Pi)
sent(Pj → Pi, e

L
k,l) such files. Processor Pi

itself executes some tasks Tk, namely cons(Pi, T
L
k ) tasks T L

k , thereby generating as many new files of type
eL

k,l.

What does happen to these files? Some are sent to the neighbors of Pi, and some will be used to produce
some ready T L2

l (with L2 compatible with L) that are going to be consumed by Pi. We derive the equation:

∀Pi, ∀ek,l ∈ E : Tk → Tl, ∀L ∈ Cnsts(ek,l)
∑

Pj∈n(Pi)

sent(Pj → Pi, e
L
k,l) + cons(Pi, T

L
k ) =

∑

Pj∈n(Pi)

sent(Pi → Pj , e
L
k,l) +

∑

L2∈CnstsIn(Tl)
L and L2 compatible

prod(Pi, T
L2

l ) (20)
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Altogether, we derive the following linear program, which resembles that of Section 3.1.4:

Maximize ρ =
∑p

i=1 cons(Pi, T
{}
end),

under the consstraints






(21a) s(Pi → Pj , e
L
k,l) = sent(Pi → Pj , e

L
k,l)× (datak,l × ci,j)

(21b) α(Pi, T
L
k ) = cons(Pi, T

L
k )× wi,k

(21c) cons(Pi, T
L
k ) =

∑

L2 ∈ CnstsIn(Tk)
Tk may be processed by Pi and satisfies to L2

L et L2 are compatible

prod(Pi, T
L2

k )

(21d) ∀Pi,
∑

Pi→Pj

ek,l∈EA

L∈Cnsts(ek,l)

s(Pi → Pj , e
L
k,l) 6 1

(21e) ∀Pi,
∑

Pj→Pi

ek,l∈EA

L∈Cnsts(ek,l)

s(Pj → Pi, e
L
k,l) 6 1

(21f) ∀Pi,
∑

Tk∈VA

L∈CnstsOut(Tk)

α(Pi, T
L
k ) 6 1

(21g) ∀Pi, ∀ek,l ∈ EA : Tk → Tl, ∀L ∈ Cnsts(ek,l)
∑

Pj→Pi

sent(Pj → Pi, e
L
k,l) + cons(Pi, T

L
k ) =

∑

Pi→Pj

sent(Pi → Pj , e
L
k,l) +

∑

L2∈CnstsIn(Tl)
L and L2 compatible

prod (Pi, T
L2

l )

(21)

4.3 Reconstruction on an effective schedule

Section 4.3.1 focuses on a simple example to explain why the reconstruction of the schedule is more difficult
than for independent tasks. Section 4.3.2 presents a method to decompose the solution of the linear program
into a weighted sum of allocations, and Section 4.3.3 shows how to mix those allocations to get an effective
schedule.

4.3.1 Why are DAGs more difficult (continued)

In the same way as computing the optimal throughput of a DAG on a general platform turns out to be much
more difficult than for independent tasks, reconstructing a schedule is a little bit more tricky, even with the
constraints introduced in Section 4.2.

Consider the example of Figure 9. Each processor in the platform of Figure 9(b)) can only execute one
task type; this task type and its execution time are indicated close to the processors. Each dependence file
has unit cost, so that the weight of the edges in the platform graph represent the time needed to communicate
the file. Using the linear program (21), we compute ρ = 1, i.e. one application graph per time-unit. Using
the same technique as in Section 2, we transform the communication graph into a bipartite graph and we
get the following decomposition:













.5

.5

.5

.5

.5

.5













= .5×













.5

.5

.5

.5

.5

.5













+ .5×

























(22)
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T4

T2 T3

T1

(a) Application graph.
All weights are identical

2 2

11

1

1

1 1

1

1
2

1
2

T1

T2 T3

T4T4

P1

P2 P3

P5P4

(b) Platform graph

.5

.5

.5

.5

.5

.5

(c) Bipartite graph trans-
formation

Figure 9: Difficulty of schedule reconstruction

Nevertheless, join parts have to be treated carefully. Figure 10 depicts two allocations. The first one
is constructed by using a breadth-first descent of the application graph and is incorrect because files corre-
sponding to e2,4 and e3,4 for the first instance of the application graph are sent to different processors (resp.
P4 and P5). This incompatibility could be avoided by adding some constraints when designing the linear
program (by remembering fork and join parts). Fortunately, correct allocations can be built traversing the
application graph backwards (see Figure 10).

4.3.2 Algorithm for decomposing the solution into allocations

The platform that we use to illustrate our algorithm in this section is depicted in Figure 2(b) and the
application graph is depicted on Figure 11.

The rationale of the approach is that mixing different allocations is likely to achieve an even better
throughput that using a single one (which is furthermore difficult to find). This section explains how to
decompose the solution of the linear program into a weighted sum of allocations. This is achieved by
annotating the application graph with the non-zero values of cons(Pi, T

L
k ), prod(Pi, T

L
k ) and sent(Pi →

Pj , e
L
k,l) (see Figure 12). The process is much easier when introducing sent(Pi → Pi, e

L
k,l), the amount of eL

k,l

that are produced in place, that are not transferred to another processor and that stay in place for another
computation. Hence, we have:

∀Pi, ∀ek,l ∈ E : Tk → Tl, ∀L ∈ Cnsts(ek,l) :

sent(Pi → Pi, e
L
k,l) =

∑

L2 ∈ CnstsIn(Tl)
Tl can be processed on Pi under constraints L2

L and L2 are compatible

prod(Pi, T
L2

l )−

∑

L1 ∈ CnstsOut(Tk)
L and L1 are compatible

sent(Pj → Pi, e
L1

k,l) (23)

As explained in Section 4.3.1, we need to traverse the application graph backwards. Algorithm 3 builds
a valid allocation from the solution of the linear program. The weight of this allocation, i.e. its throughput,
is then equal to the minimum values over the cons(Pi, T

L
k ), prod(Pi, T

L
k ) and sent(Pi → Pj , e

L
k,l) involved

in it. The decomposition into a weighted sum of allocations then simply consists in finding an allocation,
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P3 → P4

P3 → P5

P2 → P4

P2 → P5

P1 → P3

P1 → P2

0 10

P2

P3

P4

P5

P1
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Figure 10: Effective schedules deduced from the decomposition of the bipartite graph

evaluating its weight and subtracting it to the solution of the linear program, until cons(Pi, Tend) = 0 for
all Pi. The decomposition of the solution depicted Figure 12 is made of 10 different allocations. Figure 13
depicts the main two allocations (those with the largest weights).

4.3.3 Edge-coloring to ensure allocation compatibility

Once we have the allocations, we reconstruct the schedule as before, using Theorem 2. The approach is quite
similar to that of Section 3.2.

Going back to the example of Section 4.3.1, with the platform graph depicted in Figure 9(b), the optimal
throughput is obtained by mixing the two allocations depicted on Figure 14. The bipartite communication
graph is shown in Figure 15. We obtain the decomposition:










.25

.5

.5

.5 .5

.25.25

.25










=
1

4
×



















+
1

4
×



















+
1

4
×



















+
1

4
×



















(24)

Therefore, we are able to compute a schedule achieving the optimal throughput, just like we did in
Section 3.2.
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{}

{}

{T1}
{T1}

{T1, T2}{T1, T2}

{T1, T2}{T1, T2}

0

0

1

11

1

1

2

2

2 2

2 2

2

2

T4

T5

T3

Tend

T2

T1

Tbegin

Figure 11: Not so simple an application graph.

FIND A SCHEDULE()
1: to activate← {Tend}
2: CnstsCons(Tend) ← ∅
3: P(Tend) ← a Pi s.a. prod (Pi, T

∅
end) > 0

4: while to activate 6= ∅ do

5: l ← POP(to activate)
6: i ← P(Tl)
7: L ← CnstsCons(Tl)
8: Let L1 s.a. prod (Pi, T

L1

l ) > 0 and L1 compatible with L
9: CnstsProd(Tl) ← L1

10: if Tl 6= Tbegin then

11: for all Tk s.a. Tk → Tl do

12: Let L2 and j s.a. sent(Pj → Pi, e
L2

k,l) and L2 compatible with L1

13: Cnsts(ek,l) ← L2

14: CnstsCons(Tk)← L2

15: transfer(ek,l) ← {Pj → Pi}
16: src← j
17: if Pi 6= Pj and prod(Pj , T

L2

k ) = 0 then

18: dst← j
19: repeat

20: let Psrc 6= Pj s.a. sent(Psrc → Pdst, e
L2

k,l) >0
21: to activate← to activate ∪ {Psrc → Pdst}
22: until prod (Psrc , T

L2

k ) >0
23: P(Tk)← Psrc

Algorithm 3: Algorithm for building an allocation
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T4 :
P1

{1→ 0, 2→ 1} : 0.0392531
{1→ 1, 2→ 1} : 0.0102075
{1→ 2, 2→ 3} : 0.0158091
P2

{1→ 2, 2→ 2} : 0.00456432
P3

{1→ 0, 2→ 1} : 0.00112033
{1→ 1, 2→ 3} : 0.196058
{1→ 2, 2→ 2} : 0.0990456
{1→ 2, 2→ 3} : 0.0539419

———————

P1

{1→ 0, 2→ 1} : 0.0392531
{1→ 1, 2→ 1} : 0.0102075
{1→ 2, 2→ 3} : 0.0158091
P2

{1→ 2, 2→ 2} : 0.00456432
P3

{1→ 0, 2→ 1} : 0.00112033
{1→ 1, 2→ 3} : 0.196058
{1→ 2, 2→ 2} : 0.0990456
{1→ 2, 2→ 3} : 0.0539419

{1→ 0, 2→ 1} : 0.0392531
{1→ 1, 2→ 1} : 0.0102075

{1→ 2, 2→ 3} : 0.0158091

{1→ 0, 2→ 1} : 0.0392531
{1→ 1, 2→ 1} : 0.0102075

{1→ 2, 2→ 3} : 0.0158091

{1→ 2, 2→ 3} : 0.0539419

T3 :
P1

P2

{1→ 2, 2→ 2} : 0.10361

P3

{1→ 1, 2→ 3} : 0.196058
{1→ 2, 2→ 3} : 0.0539419

———————

P1

P2

{1→ 2, 2→ 2} : 0.10361

P3

{1→ 1, 2→ 3} : 0.196058

P1 → P1 :
{1→ 0, 2→ 1} : 0.0392531
{1→ 1, 2→ 1} : 0.0102075
P1 → P3 :
{1→ 0, 2→ 1} : 0.00112033
P2 → P2 :
{1→ 2, 2→ 2} : 0.10361
P3 → P2 :
{1→ 2, 2→ 3} : 0.0158091
P3 → P3 :
{1→ 1, 2→ 3} : 0.196058
{1→ 2, 2→ 3} : 0.0539419

P1 → P1 :
{1→ 0, 2→ 1} : 0.0392531
{1→ 1, 2→ 1} : 0.0102075
P1 → P3 :
{1→ 0, 2→ 1} : 0.00112033
P2 → P2 :
{1→ 2, 2→ 2} : 0.00456432
P2 → P3 :
{1→ 2, 2→ 2} : 0.0990456
P3 → P1 :
{1→ 2, 2→ 3} : 0.0158091
P3 → P3 :
{1→ 1, 2→ 3} : 0.196058
{1→ 2, 2→ 3} : 0.0539419

P1 → P0 :
{1→ 0, 2→ 1} : 0.0392531
{1→ 2, 2→ 3} : 0.0158091
P1 → P1 :
{1→ 1, 2→ 1} : 0.0102075
P2 → P0 :
{1→ 2, 2→ 2} : 0.00456432
P3 → P1 :
{1→ 0, 2→ 1} : 0.00112033
{1→ 1, 2→ 3} : 0.117095
P3 → P2 :
{1→ 2, 2→ 2} : 0.0990456
P3 → P3 :
{1→ 1, 2→ 3} : 0.0789627
{1→ 2, 2→ 3} : 0.0539419

P1 → P0 :
{1→ 0, 2→ 1} : 0.0392531
P1 → P1 :
{1→ 1, 2→ 1} : 0.0102075
P2 → P0 :
{1→ 2, 2→ 2} : 0.00456432
{1→ 2, 2→ 3} : 0.0158091
P2 → P2 :
{1→ 2, 2→ 2} : 0.0990456
P3 → P1 :
{1→ 0, 2→ 1} : 0.00112033
{1→ 1, 2→ 3} : 0.117095
P3 → P3 :
{1→ 1, 2→ 3} : 0.0789627
{1→ 2, 2→ 3} : 0.0539419

T5 :
P0

{1→ 0, 2→ 1} : 0.0392531
{1→ 2, 2→ 2} : 0.00456432
{1→ 2, 2→ 3} : 0.0158091
P1

{1→ 0, 2→ 1} : 0.00112033
{1→ 1, 2→ 1} : 0.0102075
{1→ 1, 2→ 3} : 0.117095
P2

{1→ 2, 2→ 2} : 0.0990456
P3

{1→ 1, 2→ 3} : 0.0789627
{1→ 2, 2→ 3} : 0.0539419

———————
P0

{} : 0.0596266
P1

{} : 0.128423
P2

{} : 0.0990456
P3

{} : 0.132905

{} : 0.0596266
P0 → P0 :

P1 → P0 :
{} : 0.128423
P2 → P0 :
{} : 0.23195
P3 → P2 :
{} : 0.132905

T2 :
P1

{1→ 0} : 0.0403734
{1→ 1} : 0.0102075
P2

{1→ 2} : 0.10361
P3

{1→ 1} : 0.196058
{1→ 2} : 0.069751

———————

P1

{1→ 0, 2→ 1} : 0.0403734
{1→ 1, 2→ 1} : 0.0102075
P2

{1→ 2, 2→ 2} : 0.10361
P3

{1→ 1, 2→ 3} : 0.196058
{1→ 2, 2→ 3} : 0.069751

{1→ 0} : 0.0403734

{1→ 1} : 0.0102075

{1→ 1} : 0.196058

{1→ 2} : 0.069751

P0 → P1 :

P1 → P1 :

P1 → P3 :

P2 → P2 :
{1→ 2} : 0.10361
P2 → P3 :

T1 :
P0

{} : 0.0403734
P1

{} : 0.206266
P2

{} : 0.173361
———————
P0

{1→ 0} : 0.0403734
P1

{1→ 1} : 0.206266
P2

{1→ 2} : 0.173361

P0 → P0 :
{} : 0.0403734
P0 → P1 :
{} : 0.206266
P0 → P2 :
{} : 0.173361T6 :

P0

{} : 0.42
————–
P0

{} : 0.42

P0 → P0 :
{1→ 0} : 0.0392531
P0 → P1 :
{1→ 0} : 0.00112033
P1 → P1 :
{1→ 1} : 0.127303
P1 → P3 :
{1→ 1} : 0.0789627
P2 → P0 :
{1→ 2} : 0.0203734
P2 → P2 :
{1→ 2} : 0.0990456
P2 → P3 :
{1→ 2} : 0.0539419

T6 :
P0

{} : 0.42
————–

P0

{} : 0.42

{1→ 0, 2→ 1} : 0.00112033

{1→ 0, 2→ 1} : 0.00112033
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T0 : P0

prod : {}
cons : {}

T1 : P1

prod : {}
cons : {1→ 1}

Cnsts : {}
P0 → P1

T2 : P3

prod : {1→ 1}
cons : {1→ 1, 2→ 3}

Cnsts : {1→ 1}
P1 → P3

T5 : P1

prod : {1→ 1, 2→ 3}
cons : {}

Cnsts : {1→ 1}
P1 → P1

T3 : P3

prod : {1→ 1, 2→ 3}
cons : {1→ 1, 2→ 3}

Cnsts : {1→ 1, 2→ 3}
P3 → P3

T4 : P3

prod : {1→ 1, 2→ 3}
cons : {1→ 1, 2→ 3}

Cnsts : {1→ 1, 2→ 3}
P3 → P3

Cnsts : {1→ 1, 2→ 3}
P3 → P1

Cnsts : {1→ 1, 2→ 3}
P3 → P1

T6 : P0

prod : {}
cons : {}

Cnsts : {}
P1 → P0

(a) Weight : 0.117095 (27.88%)

T0 : P0

prod : {}
cons : {}

T1 : P2

prod : {}
cons : {1→ 2}

Cnsts : {}
P0 → P2

T2 : P2

prod : {1→ 2}
cons : {1→ 2, 2→ 2}

Cnsts : {1→ 2}
P2 → P2

T5 : P2

prod : {1→ 2, 2→ 2}
cons : {}

Cnsts : {1→ 2}
P2 → P2

T3 : P2

prod : {1→ 2, 2→ 2}
cons : {1→ 2, 2→ 2}

Cnsts : {1→ 2, 2→ 2}
P2 → P2

T4 : P3

prod : {1→ 2, 2→ 2}
cons : {1→ 2, 2→ 2}

Cnsts : {1→ 2, 2→ 2}
P2 → P3

Cnsts : {1→ 2, 2→ 2}
P2 → P2

Cnsts : {1→ 2, 2→ 2}
P3 → P2

T6 : P0

prod : {}
cons : {}

Cnsts : {}
P2 → P0

(b) Weight : 0.0990454 (23.58%)

Figure 13: Two main allocations obtained when decomposing the solution depicted Figure 12

P2 → P4 P3 → P4

T4 : P4

T1 : P1

P1 → P3P1 → P2

T2 : P2 T3 : P3

(a) Weight : 0.5 (50.0%)

P2 → P5 P3 → P5

T4 : P5

T1 : P1

P1 → P3P1 → P2

T2 : P2 T3 : P3

(b) Weight : 0.5 (50.0%)

Figure 14: Two allocations obtained when decomposing the optimal solution for the application graph of
Figure 9(a) and the platform graph of Figure 9(b). For the sake of clarity, constraint lists are not depicted
because they are useless on this particular example.
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.25

.5

.5

.5 .5

.25.25

.25

Figure 15: Bipartite graph associated to the platform graph depicted Figure 9(b) and to the allocations
depicted on Figure 14. Each edge goes from a processor Pi to another processor Pj and is associated to an
ek,l and a particular allocation. The weight of the edges is the fraction of time needed to transfer this file
within this schedule from Pi to Pj .

Figure 16: A 2D-mesh application graph. All
the gray tasks need to be memorized to ensure a
correct reconstruction of the double-circled one.

Figure 17: A fork application graph. Only the
gray task needs to be memorized to ensure a cor-
rect reconstruction of the other tasks.

4.4 Cost of the approach

If we denote by n the number of tasks in the application graph and by p the number of nodes in the platform
graph, the number of variables involved in the linear program of Section 4.2.2 may be proportional to
p2n2pn. Indeed, when dealing with sent(Pi → Pj , e

L
k,l), L being a list of constraints (i.e. an application from

{Tk1
, . . . , Tkq

} to {P1, . . . , Pp}), the number of possible constraint list may be equal to pn. This situation
may happen on graphs with cascades of forking and very late joining. For example in the graph depicted on
Figure 16, all the gray tasks need to be memorized to ensure a correct reconstruction of the double-circled
one. On the contrary, on Figure 17, there is at most one task in the constraint list.

Definition 20. The dependency depth is the maximum number of constraining tasks of the ek,l.

RR n
�

5198



34 O. Beaumont, A. Legrand, L.Marchal, Y. Robert

Theorem 4. Let d ∈ N. For all application graphs (Ga, Va) whose dependency depth is bounded by d, and
for all platform graphs (Gp, Vp), it is possible in polynomial time (i) to compute the optimal steady-state
throughput and (ii) to reconstruct the periodic schedule that achieves this throughput.

Proof. All the algorithms described in Section 4.3 are polynomial and their inputs are of size bounded by
p2n2pd.

The conclusion of this section can be either optimistic or pessimistic. The good news is that the approach
is polynomial for a large collection of application graphs, such as series of fork-joins. The bad news is that
our approach has an exponential cost for some application graphs, those with a large dependency depth (such
as 2D meshes). In fact, unless P=NP, there is no polynomial algorithm in the general case: this important
NP-hardness result is shown in Section 5.

4.5 Hints for an actual implementation

4.5.1 Approximating the values

Let S1, . . . , Sk be the allocations computed in Section 4.3.2 and α1 = p1

Tp
, . . . , αk = pk

Tp
be the throughputs

of these allocations. If we denote by αopt the optimal steady-state throughput, we have

αopt =

q
∑

i=1

αi. (25)

Tp may be very large and therefore impracticable: rounding the weights of the allocations may be necessary.
Let us compute the throughput α(T ) that can be achieved by simply rounding the αi over a time period T .
If we denote by ri(T ) the number of DAGs that can be processed in steady-state using allocation Si during
a period T , we have :

ri(T ) = bαiT c (26)

Note that, by using floor rounding, the equations of Section 4.2.2 still hold true and therefore lead to an
effective schedule. We have the following equations:

αopt > α(T ) =

q
∑

i=1

ri(T )

T
>

q
∑

i=1

αiT − 1

T
> αopt −

q

T
(27)

We have proven the following result:

Proposition 1. We can derive a steady-state operation for periods of arbitrary length, whose throughput
converges to the optimal solution as the period size increases.

4.5.2 Dynamic algorithm on general platforms

The algorithm presented in Section 4.3.3 to ensure the compatibility of the allocations requires a global
clock and a global synchronization mechanism. A nice practical alternative is to use the 1D dynamic load
balancing algorithm presented in [13] to decide on the fly which allocation should be used.

Let S1, . . . , Sk be the allocations computed in Section 4.3.2 and α1, . . . , αk be the throughput of these
allocations. We use the following dynamic programming algorithm:

For each value of b 6 B, let C(b) = (c
(b)
1 , . . . , c

(b)
p ) denote the assignment of the first b =

∑p
i=1 ci chunks

computed by the algorithm. This assignment is such as max ci

αi
is minimized [13]. Therefore, when allocating

the allocations using the assignment A built with this algorithm, we respect the proportion of the weights
of the allocations in the best possible way. Using such an approach on a real platform where load variations
may occur, should lead to very good results while reducing the number of pending tasks on each processor.
Such an approach has already be used for scheduling independent tasks on tree-shaped platforms [15].
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DYNAMIC ASSIGNMENT(α1 ,. . . ,αp ,B)
1: C = (c1, . . . , cp) = (0, . . . , 0)
2: for b=1..B do

3: i← argmin16j6p((cj + 1)/αj)
4: A(b)← i
5: ci ← ci + 1
6: return(A)

Algorithm 4: Dynamic programming algorithm for the optimal assignment of B independent identical chunks
on p heterogeneous processors of relative speeds α1, . . . , αp.

5 Complexity results

In this section, we derive some complexity results for the problem of maximizing the throughput when
mapping an application graph GA = (VA, EA) onto a given platform graph GP = (VP , EP ). First we define
a restricted version of the problem, whose solutions can be verified in polynomial time. We will show the
NP-completeness of the restricted version. Before that, we show that we do not lose anything by sticking to
the restricted version: if the general problem admits a solution of given throughput, so does the restricted
version. Altogether, these results fully demonstrate the difficulty of the general problem.

Recall that datak,l denotes the volume of communications generated by task Tk for task Tl, for any edge
ek,l ∈ EA, that ci,j denotes the time to transfer an elementary communication from Pi to Pj , for any edge
(Pi, Pj) ∈ EP , and that wi,k denotes the time to process task Tk ∈ VA on processor Pi ∈ VP . The target
decision problems can be stated as follows:

Definition 21 (GRAPH-THROUGHPUT(GA, GP , ρ)). : Given a platform graph GP , an application
graph GA and a rational bound for the throughput ρ, does there exist a periodic schedule whose throughput
is at least ρ?

However, we need a version where the solution can be verified in polynomial time:

Definition 22 (COMPACT-WEIGHTED-GRAPH-THROUGHPUT(GA, GP , ρ)). : Given a plat-
form graph GP , an application graph GA and a rational bound for the throughput ρ, does there exist a periodic
schedule consisting of at most k 6 3|VP | allocations A1, . . . ,Ak, where the weight αi is the average number
of graphs processed by the allocation Ai within one time unit, αi = ai

bi
, and ai and bi are integers such that

∀i, log ai + log bi 6 6|VP |(2 + log(|VP |) + log(M)),

where M = max(1, |VA|maxwi,k , |VP ||EA|max ci,j max datak,l)

and such that the throughput is at least ρ:
∑

αi > ρ ?

In the latter definition, we restrict the search to solutions where a bounded number (k 6 3|VP |) of
allocations is used, whose weights can be expressed in a compact way (αi = ai

bi
, where ai and bi are integers

such that log ai + log bi 6 6|VP |(log(|VP |) + log(M)). This restriction is necessary in order to keep the
problem in the class NP, since an optimal solution may have a size exponential in the size of the initial data:
indeed, from any periodic solution with period T , we can trivially build another solution, achieving the same
throughput, with period r · T , for any integer r. However, the following theorem asserts that this restriction
on the size of the solution does not affect the optimal throughput:

Theorem 5. Given a weighted application graph GA and a weighted platform graph GP , if there exists a
periodic schedule to GRAPH-THROUGHPUT that achieves a throughput ρ, then there also exists a solution
of COMPACT-WEIGHTED-GRAPH-THROUGHPUT(GA, GP , ρ).

Proof. In order to prove this result, we first derive a set of constraints that will be satisfied by any periodic
solution to the GRAPH-THROUGHPUT problem. Let us denote by A the set of all possible allocations.
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There may be an exponential number of such allocations (with respect to the size of the application and
platform graphs), but the number of allocations is nevertheless finite, since it consists in associating a given
processor to any task, and a given path in the platform graph (of size at most |VP | since cycles are clearly
useless) to any dependence in the application graph. A solution of the GRAPH-THROUGHPUT problem
is then a set of weighted allocations {(A1, α1), . . . , (Ar, αr)}: here the weight αm is the number of times per
time-unit where allocation Am is used by the schedule. Let us denote by π(k, m) the index of the processor
that processes task Tk in the allocation Am, and by Σ(k, l, m) the set of oriented links used to send data
from π(k, m) to π(l, m) in the allocation Am. Then, any solution of the GRAPH-THROUGHPUT problem
satisfies the following set of constraints:







(1, i) ∀Pi,
∑

Am

αm

∑

k,π(k,m)=i

wi,k 6 1

(2, i) ∀Pi,
∑

Am

αm

∑

Pi→Pj

∑

(Tk,Tl)∈EA,
(Pi,Pj)∈Σ(k,l,m)

ci,j × datak,l 6 1

(3, i) ∀Pi,
∑

Am

αm

∑

Pj→Pi

∑

(Tk,Tl)∈EA,
(Pj ,Pi)∈Σ(k,l,m)

cj,i × datak,l 6 1

(4, m) ∀Am, αm > 0

Indeed, for any solution to the GRAPH-THROUGHPUT problem, the processing capability of each processor
cannot be exceeded (constraint (1, i)); one-port constraints for sending (2, i) and receiving (3, i) messages
must be fulfilled at any node. Conversely, from any solution of previous set of inequalities, one can derive
a valid schedule, where

∑
αm messages are processed every time-unit (this is exactly Theorem 2). Thus,

the solution of the following linear program provides an optimal solution of the GRAPH-THROUGHPUT
problem:

Maximize
∑

m αm,
under the constraints






(1, i) ∀Pi,
∑

Am

αm

∑

k,π(k,m)=i

wi,k 6 1

(2, i) ∀Pi,
∑

Am

αm

∑

Pi→Pj

∑

(Tk,Tl)∈EA,
(Pi,Pj)∈Σ(k,l,m)

ci,j × datak,l 6 1

(3, i) ∀Pi,
∑

Am

αm

∑

Pj→Pi

∑

(Tk,Tl)∈EA,
(Pj ,Pi)∈Σ(k,l,m)

cj,i × datak,l 6 1

(4, m) ∀Am, αm > 0

Let us denote by ρmax the optimal value of the objective function. The previous linear program is of little
practical interest since both the number of constraints and the number of variables are possibly exponential
in the size of the original instance of the GRAPH-THROUGHPUT problem. Nevertheless, using linear
programming theory [33], it is possible to prove that one of the optimal solution to the linear program is one
instance of COMPACT-WEIGHTED-GRAPH-THROUGHPUT(GA, GP , ρ).

Indeed, the linear program has |A|+ 3|VP | constraints, where |A| is the number of all allocations. There
is a vertex V of the polyhedron defined by linear constraints which is optimal, and V is given by the solution
of a |A|×|A| linear system, such that at vertex V , at least |A| inequalities among |A|+3|VP | are tight. Since
only 3|VP | constraints are not of the form (4, m), we know that at least |A| − 3|VP | constraints of the form
(4, m) are tight, i.e. that at most 3|VP | allocations have a non-zero weight. Thus, there exists an optimal
solution where at most 3|VP | allocations are actually used.

In order to achieve the proof of the theorem, we need to bound the size of the weights of these allocations.
Again, consider the optimal solution defined by vertex V , which is given by the solution of a |A| × |A| linear
system, where at most m 6 3|VP | constraints are not of the form αi = 0. Let us consider the m×m linear
system containing non-trivial equations. The coefficients of both the matrix and the right-hand side are
either 0, 1, or

∑

k,π(k,m)=i

wi,k 6 |VA|max wi,k,
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or
∑

Pi→Pj

∑

(Tk,Tl)∈EA,
(Pi,Pj)∈Σ(k,l,m)

ci,j × datak,l 6 |VP ||EA|max ci,j max datak,l.

Let us set αi = ai

bi
. Both ai and bi can be computed using Cramer’s rule, and therefore, both ai and bi are

the determinant of matrices Ai and Bi whose coefficients are bounded by

M = max(1, |VA|maxwi,k, |VP ||EA|max ci,j max datak,l).

Then,
det(Ai) =

∏

j λj where the λj ’s are the eigenvalues of Ai

6 ||Ai||m2 where m 6 3|VP |
6 (mM)m see [17]

6 (3|VP |M)3|VP |

Therefore

log(ai) and log(bi) 6 3|VP |(log 3 + log(|VP |) + log(M)) and thus

log(ai) + log(bi) 6 6|VP |(2 + log(|VP |) + log(M)),

and the sizes of both ai and bi satisfy the constraints of the instance of COMPACT-WEIGHTED-GRAPH-
THROUGHPUT(GA, GP , ρ).

Thus, among the optimal solutions of the GRAPH-THROUGHPUT problem, there exists a solution which
uses at most 3|VP | allocations, whose weights αi = ai

bi
satisfy log ai + log bi 6 6|VP |(2 + log(|VP |) + log(M)).

Therefore, if there exists a solution to the GRAPH-THROUGHPUT problem with throughput ρmax, then
there exists a solution to COMPACT-WEIGHTED-GRAPH-THROUGHPUT(GA, GP , ρmax).

We now show the intrinsic difficulty of the problem:

Theorem 6. COMPACT-WEIGHTED-GRAPH-THROUGHPUT(GA, GP , ρ) is NP-complete.

The proof of this theorem is divided into two lemmas.

Lemma 4. COMPACT-WEIGHTED-GRAPH-THROUGHPUT(GA, GP , ρ) ∈ NP.

Proof. In order to prove that COMPACT-WEIGHTED-GRAPH-THROUGHPUT(GA, GP , ρ) ∈ NP, we
use the set of allocations as a certificate. We know that the solution consists in at most 3|VP | allocations,
whose weights αi = ai

bi
satisfy log ai + log bi 6 6|VP |(2 + log(|VP |) + log(M)), where

M = max(1, |VA|maxwi,k , |VP ||EA|max ci,j max datak,l). Theorem 2 asserts that it is possible to build a valid
schedule of communications and task processing, that achieves the throughput

∑

m αm, using a weighted
decomposition of the bipartite graph. The weights on the edges of the bipartite graph represent the overall
communication time between the Pi and Pj . In order to prove that COMPACT-WEIGHTED-GRAPH-
THROUGHPUT(GA, GP , ρ) ∈ NP, we only need to prove that both the bipartite graph and the processing
times can be encoded in size polynomial to the size S of the original instance, i.e.

S = |VA|+ |EA|+ |VP |+ |EP |+ max log(ci,j) + max log(datak,l) + max log(wi,k).

The overall communication time W (Pi, Pj) between processors Pi and Pj is given by

W (Pi, Pj) =
∑

m

αm

∑

(Tk,Tl)∈EA, (Pi,Pj)∈Σ(k,l,m)

ci,jdatak,l.

Thus,

log(W (Pi, Pj)) 6 log(3|VP |)+6|VP |(log(|VP |)+log(M))+log(EA)+max log(ci,j)+max log(datak,l) = O(S2).

RR n
�

5198



38 O. Beaumont, A. Legrand, L.Marchal, Y. Robert
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Figure 18: Platform graph for the reduction.

Similarly, the overall processing time W (Pi) on processor Pi is given by

W (Pi) =
∑

m

αm

∑

π(k,m)=i

wi,k.

Thus,

log(W (Pi)) 6 log(3|VP |) + 6|VP |(log(|VP |) + log(M)) + log(VA|) + max log wi,k = O(S2).

Therefore, since all the quantities used in Theorem 2 are polynomial in the size of the original instance of
the problem, and we can build in polynomial time a valid schedule achieving throughput ρ.

Lemma 5. COMPACT-WEIGHTED-THROUGHPUT(GA, GP , ρ) is complete.

Proof. In order to prove that COMPACT-WEIGHTED-THROUGHPUT(GA, GP , ρ) is complete, we use a
reduction from MINIMUM-MULTIWAY-CUT, which is NP-complete (and even APX-complete) [1]. MINIMUM-
MULTIWAY-CUT is the following decision problem:

Definition 23 (MINIMUM-MULTIWAY-CUT(GM , S, t, B)). Given a weighted platform graph GM =
(VM , EM ), a set S ⊂ VM of terminals, a weight function t on the edges and a rational bound B, is there a
multiway cut, i.e. a set E ′

M ⊂ EM such that the removal of E ′
M from EM disconnects each terminal from

all the others, and
∑

e∈E′

M

t(e) 6 B ?

In order to prove the completeness of COMPACT-WEIGHTED-THROUGHPUT(GA, GP , ρ), we need
to build from the original instance of MINIMUM-MULTIWAY-CUT(GM , S, t, B) an instance of COMPACT-
WEIGHTED-THROUGHPUT(GA, GP , ρ) which has a solution if and only if the original instance of MINIMUM-
MULTIWAY-CUT(GM , S, t, B) has a solution. Consider the following instance of COMPACT-WEIGHTED-
THROUGHPUT(GA, GP , ρ):

� The application graph is built as follows. It has the same number of vertices and the same number
of edges as GM . Each (non-oriented) edge (Vk , Vl) (of weight t(Vk , Vl)) in GM is transformed in an
(oriented) edge (Tmin(k,l), Tmax(k,l)) (of weight datak,l = t(Vk, Vl)) in GA. The resulting graph is clearly
oriented and acyclic, thus representing a valid application graph.

� The platform graph is built as follows (see Figure 18). It consists of |S|+2 processors P1, . . . , P|S|, Pa, Pb.
The capabilities of the edges of the platform graph depicted in Figure 18 are the following

∀i, cPi,Pa
= 0, cPb,Pi

= 0 and cPa,Pb
= 1,
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Pa

Pb

P1 P4
P2 P3

V1

V3

V2

V4

Figure 19: Reduction from the instance of MINIMUM-MULTIWAY-CUT: the weight of the cut is equal to
the communication volume. On the left is the original (undirected) graph GM which is also the (directed)
application graph GA. On the right the platform graph is represented. A processor Pi has the same color
than the task Ti (corresponding to terminal Vi), which is the only task it can compute.

all the other communication times being +∞.

� The times to process the tasks of GA on the processors of GP are the following. If Vk ∈ S, then we will
refer Tk as a ”terminal task”. Terminal task Tk is associated to terminal processor Pk, so that wk,k = 0
and wi,k = +∞ if i 6= k. All the other tasks are not associated to a particular processor and can be
processed in time 0 whatever the processor Pi executing it. Finally, Pa and Pb are unable to process
any task (wa,k = wb,k = +∞).

� We set ρ = 1
B .

Let us first suppose that there is a solution to the original instance of MINIMUM-MULTIWAY-CUT(GM , S, t, B),
and let Ci denote the set of nodes connected to the terminal Vi ∈ S in the graph GM = (VM , EM \ E′

M ).
Then, consider the following allocation (see Figure 19):

∀Tk ∈ Ci, Tk is processed on Pi,

∀(Tk, Tl) ∈ Ci × Cj , i 6= j, Σ(k, l) = {(Pi, Pa), (Pa, Pb), (Pb, Pj)}.

In this allocation, all processing costs are 0, since all terminal tasks are mapped on their terminal
processor. All the incoming communication ports of the Pi’s and that of Pb are 0. The same holds true for
the outgoing communication port of the Pi’s and of Pb. The outgoing port of Pa and the incoming port of
Pb are busy during

∑

i6=j,
(Tk,Tl)∈Ci×Cj

datak,l × cPa,Pb
=

∑

i6=j,
(Tk,Tl)∈Ci×Cj

tk,l =
∑

(Vk,Vl)∈E′

M

tk,l 6 B.

Thus, by Theorem 2, the platform GP is able to process one application graph GA every B time units using
this allocation.

Suppose now that we have a solution to the instance of COMPACT-WEIGHTED-GRAPH-THROUGHPUT(GA, GP , ρ)
that we have built, i.e. a collection of weighted allocations (A1, α1), . . . , (Am, αm) such that the platform
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GP is able to process
∑

m αm >
1
B application graphs GA every time unit. For every allocation, the fraction

of time spent by any processor (Pi, Pa or Pb) is necessarily 0 since otherwise, the processing time would be
infinite. The fraction of time spent by Pi or Pb sending data, and the fraction of time spent by Pi and Pa

receiving data is 0 by construction.
The time spent by Pa sending tasks is equal to the time spent by Pb receiving tasks and is given by

∑

m

αm

∑

(Tk ,Tl),
(Pa,Pb)∈Σ(k,l,m)

datak,l × cPa,Pb
6 1.

Consider the allocation Am, of weight αm. Then

∑

(Tk,Tl),
(Pa,Pb)∈Σ(k,l,m)

datak,l × cPa,Pb
=

∑

(Tk ,Tl),
(Pa,Pb)∈Σ(k,l,m)

tk,l.

For every terminal processor Pi let Ci be the set of tasks in GA processed on Pi. Clearly, Ti ∈ Ci (otherwise
the overall processing time would be infinite).

Let us now set
E′

M =
{

(Vk, Vl) ∈ EM , (Pa, Pb) ∈ Σ(k, l, m)
}

.

Our aim is to prove that the removal of E ′
M from EM disconnects any terminal from all the others. Suppose

by contradiction that there exists a (non-oriented) path between two terminals V1 and V2 in (VM , EM \E′
M )

and consider the induced (oriented) path T1, Ti1 , . . . , Ti,k, T2. Ti1 is either a predecessor or a successor of T1

in the application graph GA, so that if T1 and Ti1 had not been mapped on the same processor, then either
(T1, Ti,1) or (Ti,1, T1) would have been removed. By a straightforward induction, we can therefore prove that
there is no path between terminals in (VM , EM ⊂ E′

M ), and thus, every allocation induces a multiway cut
in GM .

Let us denote by am the overall weight of this multiway cut

am =
∑

(Tk ,Tl), (Pa,Pb)∈Σ(k,l,m)

tk,l,

and suppose (by contradiction) that
∀m, am > B.

Then,
∑

m

αmam > (
∑

m

αm)B > 1,

what is absurd since ∑

m

αmam =
∑

m

αm

∑

(Tk ,Tl),
(Pa,Pb)∈Σ(k,l,m)

datak,l × cPa,Pb
6 1.

Thus, there exists m such that am 6 B: therefore, one of the allocation induces a multiway cut in GM

whose weight is less than B, thus providing a solution to MINIMUM-MULTIWAY-CUT(GM , S, t, B). This
achieves the proof of the NP-completeness of COMPACT-WEIGHTED-THROUGHPUT(GA, GP , ρ).

6 Related problems

We classify several related papers along the following three main lines:

Scheduling task graphs on heterogeneous platforms Several heuristics have been introduced to sched-
ule (acyclic) task graphs on different-speed processors, see [31, 32, 43, 38, 12] among others. Unfortu-
nately, all these heuristics assume no restriction on the communication resources, which renders them
somewhat unrealistic to model real-life applications. Recent papers [22, 24, 40, 39] suggest to take
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communication contention into account. Among these extensions, scheduling heuristics under the one-
port model [25, 26] are considered in [5]: just as in this paper, each processor can communicate with
at most another processor at a given time-step.

Collective communications on heterogeneous platforms Several papers deal with the complexity of
collective communications on heterogeneous platforms: broadcast and multicast operations are ad-
dressed in [11, 28], gather operations are studied in [20]. Broadcasting and multicasting on hetero-
geneous platforms have been studied under different models, in the context of heterogeneous target
platforms.

Banikazemi et al. [2] consider a simple model in which the heterogeneity among processors is char-
acterized by the speed of the sending processors. In this model, the interconnection network is fully
connected (a complete graph). Some theoretical results (NP-completeness and approximation algo-
rithms) have been proved for the problem of broadcasting a message under this model: see [19, 30, 29].
A more complex model is introduced in [3], where the time spent for the transfer through the network,
and the time needed to receive the message are also taken into account.

Asymptotically optimal algorithms have been derived for series of broadcasts [8] and scatters [27] on an
heterogeneous platform, under the communication model presented in Section 2. On the other hand,
it has been proved in [7] that under the same communication model, optimizing the throughput of a
series of multicasts in NP-Hard.

Master-slave on the computational grid Master-slave scheduling on the grid can be based on a network-
flow approach [36, 35] or on an adaptive strategy [21]. Note that the network-flow approach of [36, 35] is
possible only when using a full multiple-port model, where the number of simultaneous communications
for a given node is not bounded. This approach has also been studied in [23]. Enabling frameworks to
facilitate the implementation of master-slave tasking are described in [18, 44].

In [42], Taura and Chien prove that finding the best allocation, as defined in Section 2.5, but when
restricting to a single allocation, i.e. when mapping all instances of a given task type onto the same
processor, is NP Complete in the strong sense. In this paper, it is proven that the problem of finding
an optimal linear combination of allocations can be solved in polynomial time for a large class of
application graphs, but remains NP-Complete in the strong sense for general application graphs. We
point out that linear combinations of allocations lead to better results, both from a practical and
theoretical point of view. From a practical point of view, consider the case where the number of tasks
in the application graph is much smaller than the number of processors in the task graph, which may
hold true on large grid platforms. When using a single allocation and mapping each task on a single
processor, several resources will be kept idle, thus leading to a poor throughput. From a theoretical
point of view, as noted by Taura and Chien, the problem of finding the best allocation is NP-Complete
even for simple application graphs. If we consider an application graph represented by a linear chain
of tasks without any data files (datak,l = 0 for every k, l), and m identical processors, then finding
the best single allocation is equivalent to solving a bin packing problem with m bins. However, the
dependency depth of this application graph is 1, and therefore, the algorithm proposed in Section 4
provides the best linear combination of allocations in polynomial time.

7 Conclusion

In this paper, we have dealt with the implementation of mixed task and data parallelism onto heterogeneous
platforms. We have shown how to determine the best steady-state schedule in polynomial time for a large
class of application graphs and for a arbitrary platform graphs, using a linear programming approach.

We have also derived several complexity results. We have shown that the problem of optimizing the
steady-state throughput is NP-Complete in the general case. We have been able to formulate a compact
version of the problem that belongs to the NP complexity class but which does not restrict the optimality
of the solution.

This work can be extended in the following two directions:
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� On the theoretical side, we could try to solve the problem of maximizing the number of tasks that
can be executed within K time-steps, where K is a given time-bound. This scheduling problem is
more complicated than the search for the best steady-state, but a smaller time period limits memory
requirements and may be necessary in order to derive more dynamic schedules, where the allocations
may change according to changes in platform capabilities.

� On the practical side, we need to run actual experiments rather than simulations. Indeed, it would be
interesting to capture actual architecture and application parameters, and to compare heuristics on a
real-life problem suite, such as those in [10, 41].
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