
Optimizing Network Resource Sharing in Grids

Loris Marchal, Yves Robert, Pascale Vicat-Blanc Primet, Jingdi Zeng

To cite this version:

Loris Marchal, Yves Robert, Pascale Vicat-Blanc Primet, Jingdi Zeng. Optimizing Network
Resource Sharing in Grids. [Research Report] RR-5523, INRIA. 2005. <inria-00071241>

HAL Id: inria-00071241

https://hal.inria.fr/inria-00071241

Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52330677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00071241

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
55

23
--

F
R

+
E

N
G

ap por t

de r ech er ch e

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Optimizing Network Resource Sharing in Grids

Loris Marchal — Yves Robert — Pascale Vicat-Blanc Primet — Jingdi Zeng

N° 5523

March 2005

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Optimizing Network Resource Sharing in Grids

Loris Marchal, Yves Robert, Pascale Vicat-Blanc Primet, Jingdi Zeng

Thème NUM — Systèmes numériques
Projets Graal et Reso

Rapport de recherche n° 5523 — March 2005 — 16 pages

Abstract: While grid computing reaches further to geographically separated clusters, data warehouses, and
disks, it poses demanding requirements on end-to-end performance guarantee. Its pre-defined destinations
and service criteria ease the performance control; however, expensive resources and equipments used by
grid applications determine that optimal resource sharing, especially at network access points, is critical.
From the resource reservation perspective, this article looks at communication resources shared by grid
sites. Two resource request scenarios have been identified, aiming at optimizing the request accept rate
and resource utilization. The optimization problems, proven NP-complete, are then solved by heuristic
algorithms. Simulation results, aside from showing satisfying results, illustrate the pros and cons of each
algorithm.

Key-words: grid computing, communication resource, resource sharing, optimization.

This text is also available as a research report of the Laboratoire de l’Informatique du Parallélisme
http://www.ens-lyon.fr/LIP.

Optimisation du partage des ressources réseaux dans les grilles

Résumé : Le calcul distribué sur la grille requiert l’utilisation de clusters et de moyens de stockage dis-
tribués géographiquement, ce qui rend toute garantie de performance difficile à obtenir entre chacun des
ces éléments. L’existence de chemins et de critères de services prédéfinis facilite quelque peu le contrôle de
performance; cependant, le coût d’utilisation des équipements et des ressources utilisés par les applications
distribuées sur une telle grille fait que l’optimisation du partage de ressources est essentielle, particulière-
ment aux points d’accès du réseau. Nous nous intéressons ici au partage des ressources de communication
par les différents sites de la grille de calcul, pour permettre la réservation de ressources. Nous isolons deux
scénarios pour les requêtes, et cherchons à maximiser le taux d’acceptation des différentes requêtes ainsi
que le taux d’utilisation des ressources de communication. Nous montrons que les différents problèmes
d’optimisation sont NP-complets, et proposons des heuristiques pour les résoudre. Nous comparons les
performances de ces différentes heuristiques par simulation.

Mots-clés : Calcul sur la grille, ressources de communication, partage de ressources, optimisation.

Optimizing Network Resource Sharing in Grids 3

1 Introduction

Grid computing is a promising technology that brings together geographically distributed resources. Grids
aggregate a large collection of resources(e.g., computing, communication, storage, information, etc.) to
build a very high-performance computing environment for data-intensive or computing-intensive applica-
tions [9].

Grid applications, such as distance visualization, bulk data transfer, and high-end collaborative envi-
ronment, have diverse and demanding performance requirements [15]; for instance, the coordinate man-
agement of network, storage, and computing resources, dynamically control over QoS and application
behaviors, and advance resource reservation. Analyses [17] have shown that grids demand broad service
quality, such as guaranteed delivery of huge data files [4], TCP throughput predictability, and data delivery
stability.

The underlying communication infrastructure of grids, moreover, is a complex interconnection of LANs
and WANs that introduces potential bottlenecks and varying performance characteristics [8]. For instance,
the interface between LAN and WAN, considering grid sites may generate large flows thought their gigabit
interfaces, introduces resource sharing bottleneck. Herein, provisioning end-to-end services with known
and knowable characteristics of grids, which spans multiple administrative and technological domains, is
critical.

An approach to tackle this problem is network resource reservation [10]. While computational/storage
resource sharing/scheduling has been intensively investigated for grids [14, 13, 5, 6] during the past years,
surfacing, is the idea of incorporating network/communication resource management into grid environ-
ments.

Based on the Grid 5000 project [1], an experimental grid platform gathering 5000 processors over eight
sites geographically distributed in France, this article centers on network resource sharing. The rest of
the article is organized as follows. Section 2 gives the system model and defines optimization problems
for network resource sharing. Section 3 proves that the optimization problem is NP-complete. Heuristics
and simulation results are given in section 4 and section 5, respectively. Section6 presents related work.
Finally, the article concludes in section 7.

2 System Model and problem definition

Derived from physical configuration of the Grid5000 network, the system model is a collection of LANs
(that is, grid sites) interconnected over a well-provisioned WAN. They are connected through IP routers.
The grid network middleware carries out the network resource reservation task and communicates with
grid applications. The network core is assumed to have ample communication resources [16]. Here, the
aggregated capacity of a LAN is larger than the capacity of its access point (i.e., the router), and the capacity
of the network core is larger than the aggregated capacity of all access points.

Given a set of resource requests, one can separate grid sites into ingress and egress points: where the
traffic requires to enter the network from, is the ingress point, and where the traffic requires to leave the
network from, is the egress point. These points at the network edge, as depicted in Fig. 1, are where
resource sharing bottlenecks present.

2.1 Resource requests

Resource requests, corresponding to different application scenarios, can be long-lived or short-lived. The
difference is that short-lived requests have time windows specified, as detailed below.

Given the notation as follows:

• a set of requestsR = {r1, r2, . . . , rK}, with bw(r) as the bandwidth demanded by request r ∈ R.

• a set of ingress points I = {i1, i2, . . . , iM}, with Bin (i) as the capacity (i.e., bandwidth) of ingress
point i ∈ I.

• a set of egress points E = {e1, e2, . . . , eN}, with Bout (e) as the capacity (i.e., bandwidth) of egress
point e ∈ E .

RR n° 5523

4 L. Marchal, Y. Robert, P. Vicat-Blanc Primet, J. Zeng

potential

bottlenecks

potential

bottlenecks

Figure 1: The system model that shows ingress and egress points of a network as potential bottlenecks.

For each request r ∈ R, resource sharing constraints are stated as:

∀i ∈ I,
∑

r∈R,ingress(r)=i

bw(r) 6 Bin (i)

∀e ∈ E ,
∑

r∈R,egress(r)=e

bw(r) 6 Bout (e) (1)

where ingress(r) ∈ I and egress(r) ∈ E are the ingress and egress point of request r, respectively.
For short-lived requests, more parameters are introduced as:

• each request r ∈ R has a starting time ts(r) and a finishing time tf (r). The time window of request
r is then [ts(r), tf (r)].

• Each request r ∈ R has its volume vol(r) specified either in Bytes or other meaningful units.

A

B

C

A
 B
 C
Ingress

Egress

1

2

1

1

7
 2

6

3

3

3/10

12/10

11/10

12/10
 12/10
 9/10

A

B

C

A
 B
 C
Ingress

Egress

1

2

1

1

7
 2

6

3

7

3

10/10

12/10

11/10

12/10
 12/10
 9/10

A

B

C

A
 B
 C
Ingress

Egress

5

5

2

6

3

7

3

7/10

7/10

19/10

12/10
 8/10
 13/10

rs_{1,1}

rs_{1,3}

2

re_{1,1}

Figure 2: Short-lived requests interleaving with transmission windows.

An example of short-lived requests is depicted as in Fig. 2. It is formed on three dimensions, that
is, ingress point, egress point, and time axis. The request starting and finishing times in the time axis are
where resource assignment gets adjusted.

INRIA

Optimizing Network Resource Sharing in Grids 5

If request r is accepted at time σ(r) = t, both points of ingress(r) and egress(r) devote a fraction of
their capacity, that is, bw (r), to request r from time t to time τ(t) = t + vol(r)

bw(r) . Obviously, the scheduled
window of [σ(r), τ(r)] must be included in the time window of [ts(r), tf (r)] for all requests r ∈ R, that
is,

∀r ∈ R, ts(r) 6 σ(r) < τ(r) 6 tf (r)

Applying to the short-lived requests with scheduled time window [σ(r), τ(r)], the resource constraints (1)
are now restated as:

∀t, ∀i ∈ I,
∑

r∈R, ingress(r)=i,
σ(r)6t<τ(r)

bw(r) 6 Bin (i)

∀t, ∀e ∈ E ,
∑

r∈R, egress(r)=e,
σ(r)6t<τ(r)

bw(r) 6 Bout (e) (2)

2.2 Optimization objectives

To formulate the optimization problem, xk is defined as a boolean variable; it is equal to 1 if and only if
request rk is accepted. Provided with different types of requests and constraints specified in subsection 2.1,
two optimization objectives are given as below:

MAX-REQUESTS Under the constraints in (1) or (2), one may maximize the ratio of the number of
accepted requests to that of total requests. The objective function, referred to as MAX-REQUESTS, is:

MAXIMIZE

K
∑

k=1

xk

We summarize this into the following linear program:

MAXIMIZE
∑K

k=1 xk,
UNDER THE CONSTRAINTS


















(3a) ∀i ∈ I,
∑

rk∈R,ingress(rk)=i

xk .bw(rk) 6 Bin (i)

(3b) ∀e ∈ E ,
∑

rk∈R,egress(rk)=e

xk.bw(rk) 6 Bout (e)

(3)

RESOURCE-UTIL Under the same constraints, one may maximize the resource utilization ratio, that is,
the ratio of granted resources to total resources. The objective function, referred to as RESOURCE-UTIL,
is:

MAXIMIZE

∑K
k=1 xk.bw(rk)

1
2

(

∑M
i=1 B scaled

in (i) +
∑N

e=1 B scaled
out (e)

) ,

where the numerator
∑K

k=1 xk.bw (rk) is the total bandwidth that has been assigned to requests. Since one
bandwidth request is counted twice, that is, at both ingress and egress points, a factor of 1/2 is used to
"stretch" the utilization value to 1.

Furthermore, defined as

B scaled
in (i) = min

(

Bin (i),
∑

r∈R,ingress(r)=i

bw(r)
)

and

RR n° 5523

6 L. Marchal, Y. Robert, P. Vicat-Blanc Primet, J. Zeng

B scaled
out (e) = min

(

Bout (e),
∑

r∈R,egress(r)=e

bw (r)
)

,

B scaled
in (i) and B scaled

out (e) are adopted to rule out the possibility where one access point has no requests at
all; thus, the capacity of this point shall be excluded when calculating resource utilization.

3 Problem Complexity

Since the linear program (3) involves integer (boolean) variables there is little hope that an optimal solu-
tion could be computed in polynomial time. Indeed, both optimization problems MAX-REQUESTS and
RESOURCE-UTIL turn out to be NP-complete, as shown in the rest of the section.

The decision problem associated to the MAX-REQUESTS problem is the following:

Definition 1 (MAX-REQUESTS-DEC). Given a problem-platform pair (R, I, E) and a bound Z on the
number of request to satisfy, is there a solution to the linear program 3 such that

∑K
k=1 xk > Z?

Theorem 1. MAX-REQUESTS-DEC is NP-complete.

Proof. Clearly, MAX-REQUESTS-DEC belongs to NP; we prove its completeness by reduction from 2-
PARTITION, a well-known NP-complete problem [11]. Consider an instance B1 of 2-PARTITION: given
n integers {a1, a2, . . . , an}, is there a subset I of indices such that

∑

i∈I ai =
∑

i/∈I ai? Let S =
∑n

i=1 ai

and assume, without loss of generality, that 1 6 ai 6 S/2 for 1 6 i 6 n. We build the following instance
B2 of MAX-REQUESTS-DEC:

• There are K = 2n requests inR, and bw(rk) = bw(rk+n) = ak for 1 6 k 6 n.

• There are M = 2 ingress points and N = n egress points. For ingress points we let Bin (i1) =
Bin (i2) = S/2. For egress points we let Bout (ek) = ak, 1 6 k 6 n.

• We let ingress(rk) = i1, ingress(rk+n) = i2, and egress(rk) = egress(rk+n) = ek for 1 6 k 6 n.

• Finally, we let Z = n. In other words, we aim at satisfying half of the requests.

The size of B2 is polynomial (and even linear) in the size B1. We have to show that B1 has a solution if
and only if B2 has a solution.

Assume first that B1 has a solution. Let I be the subset of {1, 2, . . . , n} such that
∑

i∈I ai =
∑

i/∈I ai =
S/2. We claim that we can satisfy the |I | requests rk, k ∈ I together with the n−|I | requests rk+n, k /∈ I ,
thereby achieving the desired bound Z = n. Indeed, we schedule the first |I | request from ingress point i1,
and the remaining n−|I | ones from i2, without exceeding their capacity Bin (i1) = Bin (i2) = S/2. Egress
point ek is used either for request rk if k ∈ I , or for request rk+n if k /∈ I ; in either case, Bout (ek) = ak

is equal to the requested bandwidth for the request.
Conversely, assume now that B2 has a solution. Let I be the set if indices k such that rk is satisfied

and 1 6 k 6 n. Similarly, let J be the set of indices such that rk+n is satisfied and 1 6 k 6 n. Because
the capacity of egress point ek is Bout (ek) = ak, I and J must be disjoint: if they shared an index, the
capacity of the corresponding egress point would need to be twice larger than it is. Because the bound
Z = n is achieved, we have |I | + |J | > n. We deduce that I and J form a partition of {1, 2, . . . , n}.
We have

∑

k∈I ak 6 S/2 because the capacity of ingress point i1 is not exceeded, and
∑

k∈J ak 6 S/2
because the capacity of ingress point i2 is not exceeded. But I ∪ J = {1, 2, . . . , n} and

∑n
k=1 = S, hence

∑

k∈I ak =
∑

k/∈I ak = S/2. We have found a solution to B1.

Proposition 1. The decision problem associated to RESOURCE-UTIL is NP-complete.

Proof. For the sake of brevity, we do not formally state the decision problem associated to RESOURCE-
UTIL, but the definition should be obvious. To prove the proposition, we use the previous reduction: it can
easily be checked that we achieve a full utilization of each resource (both ingress and egress points) if and
only if there is a solution to the 2-PARTITION original instance.

INRIA

Optimizing Network Resource Sharing in Grids 7

There are two sources of heterogeneity in the MAX-REQUESTS problem: the capacities Bin (i) and
Bout (e) of the ingress/egress points may be different, as well as the bandwidths bw(r) demanded by
the requests. To fully assess the complexity of the problem, it is interesting to ask whether the MAX-
REQUESTS-DEC problem remains NP-complete in the case of an uniform network (all ingress/egress ca-
pacities are equal)? if yes, does it remain NP-complete for an uniform network and uniform requests (all
request bandwidths are equal)? The answers to these questions are given in the following proposition:

Proposition 2. For an uniform network (Bin (i) = B for all i ∈ I and Bout (e) = B for all e ∈ E), MAX-
REQUESTS-DEC remains NP-complete. But for an uniform network and uniform requests (bw(r) = b for
all r ∈ R), the optimal solution of MAX-REQUESTS can be computed in a polynomial time.

Proof. For the first part of the proposition, we start by observing that the restriction of MAX-REQUESTS-
DEC still belongs to NP. For the completeness, we use a reduction from 2-PARTITION-EQUAL, a well-
known NP-complete variation of 2-PARTITION [11]. Consider an instance B1 of 2-PARTITION-EQUAL:
given n integers {a1, a2, . . . , an}, where n is even, is there a subset I of n/2 indices such that

∑

i∈I ai =
∑

i/∈I ai? So in this variation of 2-PARTITION, the two subsets with equal sum must have had the same
cardinal.

Let S =
∑n

i=1 ai and assume (without loss of generality) that 1 6 ai 6 S/2 for 1 6 i 6 n. We
construct an instance B2 which has some similarities with the one used in the proof of Theorem 1:

1. First we scale the integers ai as
a′

i ← ai + S

and we compute S ′ =
∑

n

i=1 a′
i = (n+1)S. The rationale behind this scaling is that

∑

i∈I a′
i = S′/2

can only occur if the set I has cardinal n/2.

2. We keep the two ingress points i1 and i2 with the same capacity B = S ′/2. We augment the capacity
of the n egress points e1, . . . , en so that Bout (ek) = 2S + 1 = B for 1 6 k 6 n. We keep the same
set of 2n requests (with the new value a′

k for the bandwidth of rk and rn+k , 1 6 k 6 n).

3. We add n new ingress points i3, . . . , in+2, all of capacity B = S ′/2, and n new requests r2n+k,
1 6 k 6 n. The intuitive idea is that there will be a new request from each new ingress point to
each egress point, which will saturate its bandwidth if accepted together with another old request.
Formally,

ingress(r2n+k) = ik+2, egress(r2n+k) = ek, bw(r2n+k) = 2S + 1− a′
k

Finally we let Z = 2n, i.e., we ask whether it is possible to accept 2n requests. We now have a uniform
network, and we can reproduce the main ideas of the proof of Theorem 1. The main trick is that egress ek

cannot accept both requests rk and rn+k , because 2a′
k > 2(1 + S) > B. Hence only one of them can be

accepted, and this will be possible only if there is a solution to 2-PARTITION-EQUAL.
For the second part of the proposition, consider an instance of MAX-REQUESTS with an uniform

network (Bin (i) = B for all i ∈ I and Bout (e) = B for all e ∈ E) and uniform requests (bw(r) = b for
all r ∈ R). Without loss of generality, we can assume that b evenly divides B and B, and thus, after proper
scaling, that b = 1. We claim that the solution of the linear program (3) can be computed in polynomial
time. Indeed, the constraints (1) and (1) now write AX 6 C, where:

• A is a matrix of size (N + M)×K. There are N rows for the ingress points, followed by M rows
for the egress points. There is a column for each request rk ∈ R. In fact, A is a sub-matrix of the
incidence matrix of the complete bipartite graph connecting the set of ingress points to the set of
egress points.

• X is a vector of size K, its k-th component is xk

• C is a vector of size N +M , whose first N components are equal to B and whose last M components
are equal to B.

RR n° 5523

8 L. Marchal, Y. Robert, P. Vicat-Blanc Primet, J. Zeng

Because the incidence matrix of a bipartite graph is totally unimodular (Theorem 5.24 in [12], the integer
linear program (3) can be solved in polynomial time (Theorem 5.19 in [12]). This completes the proof.

Since the problems have been proven to be NP-complete, heuristics are pursued to solve the problem
defined in Section 2. Different approaches are taken, as explained in Section 4 and Section 5, respectively.
The simulation results are also given, as a means of studying and comparing the performance of different
heuristics.

4 Polynomial heuristics and simulations for long-lived requests

Three polynomial heuristics are proposed for both optimization objectives MAX-REQUESTS and RESOURCE-
UTIL.

4.1 Growing the set of accepted requests

Based on classical greedy algorithm where requests are accepted until there are no more available resources,
MAXREQ-SIMPLE sorts requests by bandwidth in a non-decreasing order (ties are broken arbitrarily). A
request is accepted if and only if its requested bandwidth does not exceed the available capacity of both
ingress and egress points. See Algorithm 1, where A is the set of accepted requests.

MAXREQ-SIMPLE (R, I, E)
SortedRequests ← requests rk ∈ R sorted by non-decreasing value of bw (rk) A← ∅
for each request r ∈ SortedRequests do

if bw (r) 6 min(Bin (ingress(r)),Bout (egress(r))) then
A ← A ∪ {r}
Bin (ingress(r))← Bin (ingress(r)) − bw(r)
Bout (egress(r))← Bout(egress(r)) − bw(r)

return A

Algorithm 1: The simple greedy algorithm MAXREQ-SIMPLE

MAXREQ-REFINED refines the previous procedure, by accepting the request that leaves the maxi-
mum amount of resources to others. Take request rk as an example. Let i = ingress(rk), and let
alloc_ingress(i) be bandwidth of point i which has been taken by accepted requests (initially alloc_ingress(i) =

0). By calculating the utilization ratio of ingress point i, that is, alloc_ingress(i)+bw(k)
Bin (i) , and that of the cor-

responding egress point, the request that minimizes this ratio is accepted. See Algorithm 2, whereA is the
set of accepted requests.

4.2 Peeling off the set of original requests

Starting from the whole set of requests (i.e., the set of accepted requests A = R), MAXUSEPEELING

"peels off" certain requests until a solution meeting all resource constraints is found. Given the set of

requests, an occupancy ratio defined as ratio(i) =
P

r∈A,ingress(r)=i bw(r)

Bin (i) is calculated for all access points.
If all ratios are smaller than 1, all requests are accepted. Otherwise, among requests whose ingress and
egress points both have their occupancy ratio bigger than 1, the one that helps decrease the ratio the most is
peeled off; requests, either of whose ingress or egress points has a ratio bigger than 1, are scanned through
in a similar manner. This heuristic is detailed in Algorithm 3.

4.3 Simulation settings

It is assumed that there are 50 ingress and egress points, respectively. The capacity of each point is ran-
domly chosen as either 1Gb/s or 10Gb/s. Requests may occur between any pair of different points, and its
bandwidth request is randomly chosen from a set of values: {10MB/s, 20MB/s, . . . , 90MB/s, 100MB/s,

INRIA

Optimizing Network Resource Sharing in Grids 9

MAXREQ-REFINED (R, I, E)
A← ∅
continue ← true

for each ingress point i ∈ I do
alloc_ingress(i)← 0

for each egress point e ∈ E do
alloc_egress(e)← 0

while (R 6= ∅) and continue do
for each request r ∈ R do

cost(r)← max(alloc_ingress(ingress(r))+bw(k)
Bin (ingress(r)) , alloc_egress(egress(r))+bw(k)

Bout(egress(r)))

select rmin such that cost(rmin) 6 cost(r) for all r ∈ E
if (cost(rmin) > 1) then

continue ← false

else
R ← R \ {r}
A ← A ∪ {r}
alloc_ingress(ingress(r))← alloc_ingress(ingress(r)) + bw(r)
alloc_egress(egress(r)) ← alloc_egress(egress(r)) + bw(r)

return A

Algorithm 2: The refined greedy algorithm MAXREQ-REFINED

MAXUSEPEELING (R, I, E)
A←R
SaturatedIngresses← {i ∈ I such that ratio(i) > 1}
SaturatedEgresses← {e ∈ E such that ratio(e) > 1}
while SaturatedIngresses 6= ∅ or SaturatedEgresses 6= ∅ do

{first, look for a request between two saturated points}
E ← {r ∈ A with ingress(r) ∈ SaturatedIngresses and egress(r) ∈ SaturatedEgresses}
if E is not empty then

find the request r0 in E with the maximum value
of max{ratio(ingress(r0)), ratio(egress(r0))}

else
{choose the most saturated (ingress or egress) point}
find p ∈ I ∗ ∪ E∗ such that ratio(p) = max{maxi∈I ratio(i), maxe∈E ratio(e)}
find the request r0 such that:
• ingress(r0) = p or egress(r0) = p
• and bw (r0) is maximum

{now suppress this request and update the system}
suppress the request r0 from A
if ingress(r0) ∈ SaturatedIngresses and ratio(ingress(r0)) 6 1 then

suppress ingress(r0) from SaturatedIngresses

if egress(r0) ∈ SaturatedEgresses and ratio(egress(r0)) 6 1 then
suppress egress(r0) from SaturatedEgresses

Algorithm 3: The MAXUSEPEELING heuristic. We recall the that ratio is the ratio between the demanded

bandwidth on a given point over its capacity: ratio(i) =
P

r∈A, ingress(r)=i bw(r)

Bin (i) for an ingress point i, and

ratio(e) =
P

r∈A, egress(r)=e
bw(r)

Bout (e)
for an egress point e.

200MB/s, . . . , 900MB/s, 1000MB/s}. The number of requests is determined by the system load, which is
defined as the ratio of the sum of demanded bandwidth and the sum of available bandwidth in the system:

RR n° 5523

10 L. Marchal, Y. Robert, P. Vicat-Blanc Primet, J. Zeng

load =

∑

r∈R

bw(r)

1
2

(

∑

i∈I

Bin (i) +
∑

e∈E

Bout (e)

)

In the simulation, we consider both over-loaded scenarios, with load close to 200%, and cases where
the load is very low (down to 20%).

4.4 Simulation results and discussion

The simulation results for long-lived requests are illustrated in Figure 3.
Obviously, MAXREQ-SIMPLE and MAXREQ-REFINED, aiming at accepting as many requests as pos-

sible, outperforms MAXUSEPEELING with respect to the accept rate. And MAXUSEPEELING achieves
better utilization ratio because it targets at optimizing the resource utilization. The original purposes of
these heuristics have been met.

One may argue that none of the strategies reaches 100% acceptance rate or utilization ratio. The reason
is that randomly generated requests in the article are not uniformly distributed among access points. It
is not rare that certain point are heavily loaded, and certain points are not. The plotted accept rate and
utilization ratio, which are more than 50%, are actually rather satisfying.

5 Polynomial heuristics and simulations for short-lived requests

As illustrated in subsection 2.1, if request r with time window [ts(r), tf (r)] is accepted at time σ(r) = t, a

fraction of system capacity, that is, bw(r), is scheduled to request r from time t to time τ(t) = t + vol(r)
bw(r) .

Assume that time constraints are rigid, that is, σ(r) = ts(r) and τ(r) = tf (r). Requests are then accepted
or rejected as they are.

Note that, sharing the same complexity characteristics with long-lived ones, resource sharing optimiza-
tion for short-lived requests is also NP-complete.

5.1 FIFO

Scheduling requests in a “first come first serve” manner, the FIFO heuristic accepts requests in the order of
their starting times. If several requests happen to have the same starting time, the request demanding the
smallest bandwidth is scheduled first.

5.2 Time window decomposition

With rigid time windows, pre-defined starting and finishing times are used as reference points for resource
scheduling. As depicted in Figure 4, these time points naturally form time intervals within which no
request starts or stops; thus heuristics for long-lived requests in Section 4 can be applied. Given intervals
[t0, t1], [t1, t2], . . . , [ti−1, iN], therefore, for each ti, there exists a request r such that ts(r) = ti or tf (r) =
ti. The greedy strategies proposed in Section 4 are then applied to each time-interval, with two situations
explained in the following paragraphs.

For a request that spreads over multiple time intervals, first, if it gets rejected in its first time interval, it
will be discarded permanently; second, if it gets accepted in its first time interval, it shall be granted certain
priority when competing with other requests in its future time intervals.

Taking the duration of a request and the scheduling decisions in previous time intervals into consid-
eration, a priority factor is used to represents the importance of scheduling request r on a given time-
interval. Assume requests in time-intervals [t0, t1], [t1, t2],. . . ,[ti−1, ti] have been scheduled, At the interval
of [ti, ti+1], the priority factor is defined as the sum of the time already allocated to the request (ti− ts(r))
and the duration of the current interval (ti − ti−1) over the total request duration, that is,

INRIA

	1 Introduction
	2 System Model and problem definition
	2.1 Resource requests
	2.2 Optimization objectives

	3 Problem Complexity
	4 Polynomial heuristics and simulations for long-lived requests
	4.1 Growing the set of accepted requests
	4.2 Peeling off the set of original requests
	4.3 Simulation settings
	4.4 Simulation results and discussion

	5 Polynomial heuristics and simulations for short-lived requests
	5.1 FIFO
	5.2 Time window decomposition
	5.3 Simulation settings
	5.4 Simulation results and discussion

	6 Related Work
	7 Conclusions

