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cost functions.

Key-words: Real-Time Systems, Low-Power, Scheduling, Dynamic Voltage Scal-
ing.

* ENS Lyon - LIP, 46 Allée d’Italie, 69007 Lyon, France. Email: Bruno.Gaujal@ens-lyon.fr

t LORIA, Ensem, 2 avenue de la Forét de la Haye, 54516 Vandoeuvre, France. Email: Nico-
las.Navet@Iloria.fr

# ENS Lyon - LIP, 46 Allée d’Italie, 69007 Lyon, France. Email: Cormac.Walsh@ens-lyon.fr

§ Some necessary assumptions were added.

Unité de recherche INRIA Rhone-Alpes

655, avenue de I’Europe, 38330 Montbonnot-St-Martin (France)
Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52



Un algorithme linéaire pour ’ordonnancement temps
réel avec une utilisation d’énergie optimale

Résumé : Nous proposons un algorithme pour ordonnancer un ensemble de taches
non-récurrentes (ot “jobs”) soumises & des contraintes temps réel FIFO de telle
fagon & minimiser la consommation en énergie sur un processeur dont la tension
d’alimentation peut-étre modifier en-ligne (“dynamic voltage scaling”). Cet algo-
rithme est linéaire en le nombre de taches ce qui constitue une amélioration par
rapport a l’algorithme classique de Yao et al. [14] dans ce cas. Cette amélioration a
été possible en considérant ce probléme d’ordonnancement sous le jour d’un probléme
de plus court chemin. Nous présentons un algorithme pour le cas ou le processeur
posséde un nombre fini de vitesses. Nous I’étendons ensuite pour minimiser le nombre
de changement de vitesses ce qui est important lorsque le cotit d’'un changement de
vitesses ne peut étre négligée. Tous les algorithmes sont linéaires en le nombre de
taches si les instants d’arrivée et d’échéances sont triés ou en O(N log N) sinon. Ces
complexités sont prouvées optimales. Nous étendons ensuite les résultats au cas des
taches fluides et aux fonctions de cotlit non-convexes.

Mots-clés : Systémes Temps Réel, Economie d’Energie, Ordonnancement, Adap-
tation Dynamique du Voltage.



A linear algorithm for real-time scheduling with optimal energy use 3

1 Introduction

Context of the study. To provide more functionality and better performance,
embedded systems have increasing need for computation power. This requires the
use of high frequency electronic components that consume much electrical power.
Currently, battery technology is not progressing sufficiently fast to keep up with
demand. All battery operated systems, such as PDAs, laptops and mobile phones,
would benefit from a better energy efficiency. Reducing energy consumption will not
only lead to a longer operating time but also to a decrease of the weight and the
space devoted to the battery.

Existing Work. Amongst hardware and software techniques aimed at reducing
energy consumption, supply voltage reduction, and hence reduction of CPU speed,
is particularly effective. This is because the power dissipated in CMOS circuits is
proportional to the square of the supply voltage. In the last few years, variable
voltage processors have become available and much research has been conducted
in the field of dynamic voltage scaling. When real-time constraints are matter of
concern, the extent to which the system can reduce the CPU frequency depends
on the task’s characteristics (execution time, arrival date, deadline ...) and on the
underlying scheduling policy.

Power conscious versions of the two classical real-time scheduling policies, namely
EDF (Earliest Deadline First) and FPP (Fixed Priority Pre-emptive), have been pro-
posed. For FPP, Shin and Shoi [12] presented a simple run-time strategy that reduces
energy consumption. In [10], Quan and Hu proposed a more complex algorithm that
was more efficient in their experiments. More recently, Yun and Kim in [15] proves
that computing the voltage schedule of a set of tasks under FPP is NP-Hard and they
present an approximation scheme that runs in polynomial time and whose precision
w.r.t. the optimal solution can be chosen arbitrarily small.

When the scheduling is made on top of EDF, Yao et al. in [14] proposed an
off-line algorithm for finding the optimal voltage schedule of a set of independent
tasks. They also presented some on-line heuristics and gave lower bounds on their
efficiency. Other on-line heuristics based on EDF have been proposed, for instance
in [5] for the problem of scheduling both periodic and aperiodic requests.

Other directions of research concern the discrepancy between worst-case execu-
tion times (WCET) and actual execution times. One class of algorithms, known
as “stochastic scheduling” [8, 3, 4] consists of finding a feasible speed schedule that
minimizes the expected energy consumption. A second class of techniques [9, 11] is
known as “compiler-assisted scheduling”. A task is divided into sections for which
the WCET is known and the processor speed is re-computed at the end of execution
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4 B. Gaujal, N. Navet, C. Walsh

of each section according to the difference between the WCET and the time that
was actually needed to execute the code. Among alternative approaches, termed
“dynamic reclaiming algorithms”, one can cite [1] and [16].

Numerous other studies have been conducted on dynamic voltage scheduling; the
reader may refer to [4] for a recent survey.

Goal of the paper. The study published in [14] remains one of the most
important in the field because it provides, for independent tasks with deadlines, the
schedule that minimizes energy usage while ensuring that deadlines are not missed.
The algorithm works by identifying the time interval, termed the critical interval,
over which the highest processing speed is required. The lowest admissible frequency
is computed for this interval, the tasks belonging to this interval (i.e. arrival date
and deadline inside the interval) are then removed and a sub-problem is constructed
with the remaining tasks. Our contribution is complimentary to [14] in the sense
that we first adress the particular case of tasks having FIFO constraints and then
propose several extensions that work in all cases (non-FIFO). More precisely, the
problem of finding the minimal voltage schedule is here reduced to a shortest path
problem when the tasks constraints are FIFO. This enables us to provide linear-time
algorithms for minimizing the energy consumption of a set of non-recurrent tasks in
the following situations:

1. when the processor speed range is continuous (the processor can take an arbi-
trary frequency over the frequency range),

2. when the number of speeds is discrete,

3. when the number of speeds is discrete and there is the additional objective of
minimizing the number of speed changes. To the best of our knowledge, in our
context, this problem has not been addressed before.

Furthermore, extensions 2 and 3 are still valid without the FIFO assumption. An-
other contribution of the paper is a proof that the optimal solution with a discrete
number of speeds is to use the two neighboring frequencies that bound the ideal
frequency. This result has been shown in [6] for a single task considered alone but,
to the best of our knowledge, this was not known for a global optimization over a
set of tasks. We also consider the case of fluid tasks and non-convex cost functions.

Organization of the document. Section 2 describes the system model and
studies the problem in the case where the processor has a continuous frequency range.
In Section 3, the problem where the processor possesses a finite number of speeds
is investigated in two steps: first without minimizing the number of speed changes
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A linear algorithm for real-time scheduling with optimal energy use 5

and then with this additional objective. In Section 4 the algorithm leading to the
lowest energy schedule is detailed and its linear complexity is proven. Section 5 is
dedicated to fluid tasks and Section 6 to non-convex cost functions.

2 Statement of the problem

We consider a system made of a single processing unit dedicated to execute some
work with real-time constraints. The work arrival function A(t) is the amount of
work that has arrived up to time ¢. One denotes by D(t) the amount of work that
the server must have executed by time %, the values of this function are induced
by the deadlines of the tasks. Functions A and D are non-decreasing by definition
and for all ¢, one has A(t) > D(t). With no loss of generality, one can assume that
A(0) = 0 and D(0) = 0. Since A and D are non-decreasing, they are piece-wise
continuous.

The tasks of the system are characterized by the set {(an, sp,dn)}n=1...n Wwhere
the quantities ay,, sp,,d,, respectively denote the arrival time, the size (i.e. execution
time at maximum speed) and the deadline of task n. In the rest of this section, we
assume that tasks have FIFO real-time constraints namely, a; < a; = d; < d;, Vi, j.
Note that such non-recurrent tasks are sometimes termed “jobs” or even “aperiodic
tasks” in the literature. Nevertheless, we point out that the results presented in this
paper can also be applied to periodic tasks by computing the schedule for the least
common multiple of all tasks periods.

The functions A(t) and D(t) are staircase functions (i.e. piece-wise constant,
with a finite number of pieces) :

N
A) = siv Ljg<n;
=1

D(t) = Zsi g, <41
i=1

Note that the function A is left-continuous and the function D is right-continuous.

The CPU processing speed u can vary in time over a continuous range from 0 to
1 (after a possible re-scaling). The case where the range of speeds is made of a finite
number of speeds {v; --- v} will be investigated in section 3.

The objective of the study is to choose at each time ¢ the speed u(t) in such a way
as to execute all tasks within their deadline constraints while minimizing the total

RR n° 4886



6 B. Gaujal, N. Navet, C. Walsh

energy consumption between time 0 and time T where T is the time horizon of the
problem. The energy consumption of the processor at time ¢, e(t) is a function of its
speed, u(t). In the following we assume that e(t) = g(u(t)) where g is an arbitrary
increasing convex function! over R, . One can express the problem in mathematical
terms:

Problem 1. Find an integrable function u : [0,T] — R such that

/0 " (u(s))ds is minimized, (1)
under the constraints
wt) > 0 VEe[0,T], @)
/0 “we)ds < A@) Vie[0.T], 3)
/Otu(s)ds > D) Vie[o,T]. @)

A function wu satisfying the constraints is called an admissible solution. An ad-
missible w minimizing fOT g(u(s))ds is called an optimal solution.

Theorem 1. There exists a schedule such that all timing constraints are met for the
set of tasks if and only of the speed of the processor u(t) verifies constraints (2), (3)
and (4).

Proof. Tasks are sorted according to their arrival dates and ties are broken according
to the deadlines. We first prove that if u(t) verifies (2), (3) and (4) then it is possible

to find a scheduling meeting the FIFO real-time constraints. Let U(t) def fg u(s)ds.
We prove that the FIFO policy leads to a feasible schedule. The proof works by
induction on the number of tasks. The property is obvious for N = 1. We consider
the nth task. We call S, =3, , Si.

We define t, 1 = U~1(S,_1) where U~(y) = sup{z|U(z) < y}. By induction
tasks 1,2,...,n — 1 have been successfully scheduled up to time ¢,_1. One has
apn, < tp_q since A(ap) = Sp—1, U(th—1 = Sp—1 and, by constraint (3), A(t) > U ().

We define t,,_1 = U*(Sp,—1) where U*(y) = inf{z |U(z) > y}. One has U(t,) =
Sy (by definition) and D(d,) = S, (by the FIFO assumption). This implies that
t, < d, using constraint (4).

'with the CMOS technology, typically, e(t) = aCu(t)' /=" where 1 < y < 3,a > 0,C > 0,
see [4] for more details.

INRIA



A linear algorithm for real-time scheduling with optimal energy use 7

We schedule task n between times ¢, _1 and ¢, (it is possible because t,_1 > ay).
In this time interval, the processor can execute s, units of work and meets the
real-time constraints since t, < d,,.

For the second part of the proof, we assume that tasks are scheduled using the
EDF policy. Between time ¢,_1 and t,, the task with the earliest deadline is task
n. The scheduling is feasible if and only if ¢, < d,. Since D() is the smallest
non-decreasing function such that D(d,) = S, (FIFO property) then U() is larger
than D(). Since EDF is optimal for feasibility (see [7] quoted in [13]) this means
that constraint (4) must be satisfied. Constraint (2) just means that the speed is
necessarily non-negative. As for constraint (3), if U(t) is larger than A(t) would
mean that the processor has executed more work than has arrived at time ¢ which
is impossible whatever the scheduling policy. O

Note that the problem statement only uses the integral U(t) def f(f u(s)ds of u.
Therefore, the function u is only defined almost everywhere (a.e.). In the following,
we will identify all functions which are equal a.e. .

The system (A, D) is said feasible if when setting u(¢) = 1 (i.e. using the processor
at maximal speed) and when scheduling under EDF no time constraint is violated.
Actually, in order to take into account the fact that the speed of the processor cannot
exceed 1, one comes with a more constrained problem:

Problem 2. Find an integrable function u: [0,T] — Ry such that
T
/ g(u(s))ds is minimized,
0

under the constraints (2), (3), (4) and
u(t) < 1 Vtelo,T]. (5)

In the rest of the paper, we focus on the problem to determine the optimal speed
using the equivalence proved in theorem 1. We assume that, at any time, the tasks
are scheduled under EDF as in the proof of theoreml.

2.1 Main result

In this section, we show several characterizations of the speed functions v that are
solutions to Problem 1.

Lemma 1. If the function g is strictly convez, then the optimal solution of problem
1 is unique (up to a set of measure 0).

RR n° 4886



8 B. Gaujal, N. Navet, C. Walsh

Proof. Let us consider the set of all integrable functions satisfying the constraints
(2), (3) and (4). This set is obviously convex. Assume that two functions u; and ug,
different over a set S of positive measure, both minimize the energy: fOT g(u1(s))ds =

fOT g(uz2(s))ds. Then for all 0 < a < 1 and all t € S, g(aui(t) + (1 — @)ua(t)) <
ag(ui(t)) + (1 — a)g(uz(t)) by strict convexity of g. Therefore,

T T
/ glau; + (1 — @)ug)ds < / ag(uy)ds
0 0
T T
+/0 (1 —a)g(ug)ds = /0 g(u1)ds.

This clearly contradicts the optimality of . U

Theorem 2. If u* is the optimal solution of problem 1 where g is strictly convex
and non-decreasing, then u* is also an optimal solution of problem 1 for any other
non-decreasing convez function.

Proof. We first consider the case when g is strictly convex. Consider the problem of
minimizing .
1
| stuenar
to

under U(tg) = Uy and U(¢1) = U; in the absence of any other constraints. This is an
easy problem in the Calculus of Variations. The solution given by Euler’s formula is
d/dt ¢'(u) = 0, which implies that u is constant. Thus, if (tg, U*(t9)) and (t1, U*(t1))
are two points on the optimal path U*, then U* has constant slope between these two
points if this is feasible. We conclude that U* only changes slope at the arrival times
{an}1<n<n or deadline times {dy}1<p<n. Moreover, when the slope of U* decreases
we must have U*(t) = D(t) and t = d,, for some n € {1,..., N}. Otherwise, in the
neighborhood of ¢, U* should be a straight line if it were feasible. Likewise, when the
slope of U* increases we must have U*(t) = A(t) and ¢ = a,, for somen € {1,...,N}.

We will show that these properties, together with U*(0) = 0 and U*(T") = Uy,
completely determine U*. Suppose that there are two functions U; and Us meeting
the constraints with the properties above such that U;(0) = U(0) = 0. Let 7 be the
first time that U; and Uj differ. Then the right derivative of U; (say) at 7 is strictly
greater than that of Us. Therefore Uy is strictly greater than U, at the next event 71,
be it arrival or deadline. We can have neither U;(r1) = A(71) nor Uy(m) = D(11).
Therefore the slope of U; cannot decrease at 7 and that of U cannot increase.

INRIA



A linear algorithm for real-time scheduling with optimal energy use 9

Proceeding by induction, we get that Uy(t) > Us(t) for all ¢ > 7. Thus U;(T") and
Us(T) must differ. O

In the following, the optimal solution u* of Problem 1 provided by this theorem
will be called "the solution of Problem 1". As it will be seen in Section 3, when g is
not strictly convex there may be more than one optimal solution.

Note that g(z) = v/1 + 2 is strictly convex and increasing, and that fOT V14 u?(s)ds

is the length of the curve of the function U(t) o gu(s)ds fromt=0tot="T.

Hence, the optimal solution can be interpreted in many ways. One way to see this
is the following. Consider a road limited by two concrete walls (the functions A
and D resp.). Find the shortest path from the beginning to the end. This gives

U fg u*(s)ds.

Corollary 1. The optimal solution u* of problem 1 satisfies the following inequality? :
supg< i< u*(t) < supg<i< u(t), for all functions u satisfying constraints (2), (3) and

(4).

Proof. Consider the function g, (z) = z". The function g, is increasing and convex
over [0,7]. By applying Theorem 2, the optimal solution u* of Problem 1 using
g = gn does not depend on n. Now consider the limit when n goes to infinity: over
the interval [0, T, for all functions u,

T 1/n
lim (/ gn(u(s))ds> = sup u(t).
n—=00 \Jo 0<t<T
This shows that supg<;<q u*(t) < supg<;<r u(t). O

Corollary 2. If the system (A, D) is feasible, then the optimal solution u* of problem
1 verifies u*(t) < 1, and therefore Problems 1 and 2 are equivalent.

Proof. Let us consider the case where the system (A, D) is feasible. This means that
their exists a solution u to the set of constraints of Problem 2. This solution is also
a solution to the set of constraints of Problem 1. Using Corollary 1, the optimal
solution of Problem 1 satisfies supy<;<7 u*(t) < supg<;<r u(t) < 1. Therefore u* is
also an optimal solution to Problem 2. - O

An example illustrating Problem (1) is given in Figure 1.

2here, the sup operator stands for the central supremum, since all functions are only defined
almost everywhere.
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10 B. Gaujal, N. Navet, C. Walsh

=

Figure 1: The function U* is the shortest path from point 0 to T

T

Remark 1. Conversely, if the system is not feasible then the optimal solution of
Problem 1 will not satisfies u* < 1. This provides a feasibility test for a set of
non-recurrent independent tasks with FIFO real-time constraints under EDF.

Actually more precise results can be stated. Since u* is piece-wise constant,
one may only focus on the discontinuity points of u*. We denote those points by
Py,--- ,P,. They either belong to the graph of A or to the graph of D. The first
point is P; = (0,0) and belongs to both A and D. This sequence of points can be
split into sub-sequences of consecutive points belonging to A or to D.

Corollary 3. Consider a sub-sequence Py,--- , Ps of discontinuity points of u* such
that P, € A, P; € A and all the other points in between belong to D. Then between
points P, and Ps, U* is the upper concave envelope of the points P,,--- , P;.

Dually, consider a sub-sequence F;,--- , Pj of discontinuity points of u* such that
P, € D,P; € D while all the other points in between belong to A. Then between
points P; and P;, U* is the lower convex envelope of the points F;,--- , P;.

Proof. (Sketch) This is a direct consequence of the fact that U* is the shortest path
going through the points Py, , FPp. O

The function «* can be computed according to the method described in [14] which
is based on the computation of critical intervals. A straightforward implementation
of their algorithm requires O(IN?) time where N is the number of tasks. The authors
claim, without more details, that using “a suitable data structure such as the segment
tree”, the running time can be reduced to O(N log?(N)). We actually do not know
how to obtain such a low complexity implementation with their algorithm. An
interesting consequence of the construction of u* as given in [14] is that there exists

INRIA



A linear algorithm for real-time scheduling with optimal energy use 11

a schedule with minimal energy consumption such that each task is executed at a
constant speed. This is not obvious with our approach. However, as seen in the
following sections, our approach has other important advantages. In particular, we
will see in section 4 that there exists a linear time algorithm to compute u*.

3 Finite number of speeds

We now consider the case where the clock frequency of the processor can only take
a finite number of values v; < -+ < vy. As explained in [4], in practice this is
necessarily the case with today’s technology.

Problem 3. Find an integrable function z : [0,T] — Ry such that

T
/ g(z(s))ds is minimized,
0
under Constraints (3) and (4) and the additional constraint

z(t) € {vi, - ,ve} (6)

Let u*(t) be the solution of Problem 1. We assume that vy < u*(t) < v, for all
0 <t <T, so that the range of speeds which are available cover the speeds needed
by the processor. This assumption will be satisfied in the typical situation where
v1 = 0 (the processor can idle) and vy = 1 (the processor can use its maximal speed),
and where the set of tasks is feasible.

We now describe how to construct an optimal solution z* to Problem 3.

Partition [0, T into contiguous intervals such that the boundary between intervals
are the discontinuity points of U*, there will be M < 2N intervals. On one such
interval, say Iy = [bg,bxt1), u* is constant as seen in the proof of Theorem 2, equal
to, say, uy, that falls in between two possible speeds for the processor, v; and v; 1. Let
ay, be defined by uj = ayv; + (1 — ag)vit1 Now, let us construct a function over Ij:
z*(t) = v; over [bg, cx) and 2*(t) = vi41 over [ck, bg+1) where ¢ = (1—ay )b+ gbr41.
It is clear that the function z*(¢) is an admissible solution for Problem 3 since it
satisfies all the constraints. Furthermore, as shown in the following theorem, it is an
optimal solution.

Theorem 3. Under the foregoing assumptions, the function z*(t) is an optimal
solution to Problem 3.

RR n° 4886



12 B. Gaujal, N. Navet, C. Walsh

Proof. Using the assumption on the range of the v;’s, for any u such that v; <
u < vy, there exist i(u) such that v;,) < u < wi)41. We then introduce the
coefficient v, such that u = ayvj(y) + (1 — @)vi(u)4+1 and consider the real function

ef
(1) & aug(viw)) + (1 — )9 (Vi) 41)-

(%1 V2 U3 V4

Figure 2: The functions g and its linear interpolation g.

First, note that g is the linear interpolation of g over the points v1,---vy. Since
g is convex and non-decreasing, g is also convex and non-decreasing.
The second part of the proof consists in showing that

T T
| ot enas = [ s (7
Indeed, using the definition of z*,

/OTg(z*(S))dS = kzz)/Ik o(2*(s))ds = i} (/Ck s + /C:k+1 g(vi+1)d5)

M
((ex = br)g(vi) + (b1 — c)g(vir1)) = D (bry1 — bi) (kg (i) + (1 — ax)g(vis1))
k=0

M-

£
Il
<)

M-

T
(brsr — be)gi(u]) = /0 §(u"(s))ds.

=~
Il

0

Now, let z be any admissible solution of Problem 3. Therefore, z(t) € {’Ul ©,Ug}.
Since the function g coincides with g over {v; --- ,v;}, then one has fo z(s))ds =

INRIA



A linear algorithm for real-time scheduling with optimal energy use 13

fo ))ds. Now using the fact that g is 1ncreasmg and convex, fo (2(s))ds >
fo ))ds. Finally, Equality (7) shows that fo ))ds > fo (s))ds. This
means that the energy use of any admissible solution z is larger than the energy use
of z*. O

Finally, note that the construction of z* can be done in linear time, once the
function w* is given. The construction of z* is illustrated in Figure 3.

U3

V2

(%1

'y

U ./

/// Z*
) D

5 t

Figure 3: The function Z* is the integral of an optimal solution z* when using 3
speeds, v, v9 and vs.

Remark 2. The computation time of Z* given U™ is linear in the number of tasks.

It would be interesting to study the difference in energy consumption between
the continuous case where the speed can range over the whole interval [0, 1] and the
case where it can take only finitely many values. By uniform convergence arguments,
it should be obvious that they coincide in the limit when the maximal gap between
two consecutive admissible speeds goes to zero.

3.1 Minimal number of speed changes

Because the modified cost function g is not strictly convex, there will be many
different optimal solutions to Problem 3. Amongst them will be z*. However, it may
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14 B. Gaujal, N. Navet, C. Walsh

be possible to find an optimal solution with fewer speed changes than z*. We now
present an algorithm for doing this.

The main idea of the construction is to switch between speeds only when ab-
solutely necessary. Suppose we are at a point (7, M (7)) in an interval I in which
z* uses only two speeds vy and vp4q. If the current processor speed is vy, then
the latest time we can switch to speed wvp4; while still meeting the constraints is
sup{t : M(7) + (t — 7)vp, > D(t)}, where

D(t) := max[D(d;) — (di — t)vp41].
d;>t
Similarly, if the current processor speed is vj41, then the latest time we can switch to
speed vy, and still be guaranteed not to run of out work is sup{t : M (7)+(t—7)vp41 <
A(t)}, where }
A(t) := min[A(a;) — (a; — t)vp].
a; >t

The “latest switching” algorithm in the interval I consists of alternating between
the speeds v, and vp41 in the above manner. We use this algorithm to construct an
optimal function with a minimum number of speed changes:

1. Partition [0,7] into intervals Iy,--- , I such that in each I;, the function z*
only uses the same two speeds, say vp,vp+1. We also require that the partition
is the coarsest possible in the sense that the pair of speeds used by z* in
neighboring intervals are different.

2. In each interval I; = [a;, b;], calculate the following two functions m; and m;
using the “latest switching” algorithm above. The first starts at (a;, 2*(a;))
with initial speed vy, and finishes at (b;, 2*(b;)). The second has the same start
and finish points but has initial speed vp1. Record the terminal speed of both
functions and their number of speed changes.

3. Initialize @ and m to be empty. Go through the intervals in reverse order, ap-
plying the following recursive procedure. At each stage, append to 7; either m
or m so as to minimize the total number of speed changes, including the possi-
ble speed change at the interface. All the necessary information was calculated
during the previous step. The resulting function is the new m. Similarly, we
append either the old m or m to m; to form the new m.

4. We end up with two functions m and m. Choose the one with fewer speed
changes and call it m*.
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A linear algorithm for real-time scheduling with optimal energy use 15

Remark 3. [t is straightforward that the computation time of m* given z* is linear
in the number of tasks.

Theorem 4. The function m* constructed by this algorithm is an optimal solution
to Problem 3 and any other optimal solution has at least as many speed changes.

Proof. First note that M* and Z* agree at the end points and use the same two
speeds in each interval, I;. Therefore, they use each speed for the same amount of
time and hence use the same amount of energy. This shows that m* is an optimal
solution to problem 3.

Now let m be any feasible function that uses the speeds {vy : 1 < h <1} is the
same proportions as does z*. Let the maximum speed of u* lie between v, and vp11
and consider the set of intervals {I : k € K} in the partition where u* lies between
vy and vpy1. Let I; = [a4, b;] be one of these intervals. In the neighboring intervals
I;_1 and Ijy1, we have z* < wvy. Therefore, Z*(a;) = A(a;) and Z*(b;) = D(b;).
Thus

mdt > Z*(b;) — Z"(a;). (8)

a;

Let 7/ and 7; be, respectively, the amount of time m and z* spend at speed vp11
in the interval I;. Since the total time spend at speed vp41 is the same for both m
and z*, if 7/ > 7; for some ¢ € K then to compensate there must be some j € K
such that 7{ < 7;. However, since fabz mdt < Tjvpi1 + (bj — aj — 7;)vp, this would
contradict (8). We conclude that 7} = 7; for all ¢ € K and, moreover, that in each
of the intervals {Ij : kK € K} the function m uses the same two speeds as z* for the
same amount of time. By now removing these intervals and applying an inductive
argument, we may extend the same conclusion to all the intervals in the partition.
This provides a justification for considering each interval separately.

If m is not equal to the function m* constructed above, then at some point m
switches between speeds earlier than necessary. If delaying both this switch and the
following switch in the opposite direction, then we obtain another optimal solution
to Problem (3) which has the same or fewer speed changes as m. By doing this
each time m switches too early, and choosing the delays appropriately, m may be
transformed into m*. Therefore m* has the minimum possible number of speed
changes. O

Figure 4 shows both integrals Z* and M* in the example displayed in 3. In this
case, m* has 4 speed changes while z* has 10 speed changes. The function m* was
built by using the latest switching algorithm. In interval I3, the two speeds are vo
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Il I2 I3

Figure 4: An optimal solution with a minimal number of speed changes.

and vg and m* uses vy first. In Iy, the two speeds are v; and vs. The best solution
uses v first. Finally in I1, the two speeds are v and v3 and the best is to start with
V3.

Remark 4. The construction of z* and m* are still valid in the non-FIFO case as
soon the optimal solution in the continuous frequency is provided (for example using
the algorithm proposed by Yao et al in [14]). Indeed the construction of z* and m*
can be performed unchanged on each “critical interval”.

4 A linear algorithm to compute u*

While Theorem 2 characterizes the function w*, it is not constructive. This section
shows how to construct u*. The function A (resp. D) is given under the form of an or-
dered list L4 := [(a1, A(a1)), -+ (an,A(an))] (resp. Lp := [(d1,D(d1)),--- ,(dn,D(dn))]
with a1 < -++ < ay (resp. di < --- < dp).

We propose an algorithm that constructs the function U*(¢) (as well as u*(t))
under the form of an ordered list (z1,41), -, (Tk,yx) With 7 < --- < zg. The
function U* being the linear interpolation between those points. This algorithm is
similar to the linear time algorithm computing the convex hull of n ordered points
in the plane (see for example [2]).

The main idea of the algorithm is to construct two piece-wise affine functions
V, W, inductively, by introducing the points of A and D one by one. Both functions
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A linear algorithm for real-time scheduling with optimal energy use 17

start with the same initial value at the initial point : V(z¢) = W (zp). The function
U* and V or W share a common prefix, determined by the algorithm.

step 0 Merge the lists L4 and Lp into a single list L ordered by the first coordinate.

step 1 Set zo := (0,0), V := [(0,0)], W := [(0,0)].

S

hat-angle cup-angle

Figure 5: A hat-angle and a cup-angle

step 2 Sweep the list L. Here is the invariant of the algorithm after n steps (made of
i points in A and j points in D). V = [(Vi},VE), - (V;}, V}2)] is the lower convex hull
of the function A from point zg to (d;, A(d;)) and W = [(Wg,W3), -+ , (WL, W2)]
is the upper concave hull of the function D from point zq to (d;, D(d;)).

e If the next point in L belongs to A (i.e. it is (djy1, A(di+1))),
1. add it in the last position (k4 1) in the list V :=V - (dj;+1, D(di+1))-
2. Update the list V by removing the points starting from (V}!, V}?) and going
backwards as long they form a hat angle.
3. If all the points are removed (the first point (V', Vi?) cannot be removed),
update everything as follows:
- £:= 0, while V is below W at point Wy, do £:=£¢+1 od.
Ut =07 [(WOIWOQ) T (Wela WeZ)];
W= [(Wéla WZQ)a Tty (Wr%w WTQn)]a
Vo= [(Wela Wez)a (Vk1+1a Vk2+1)] ;
~zg = (W}, W2).

e If the next point belongs to D (i.e. (dj11,D(dj+1))), do the same as above by
switching the role of V' and W, replacing the hat-angle test with a cup-angle
test and testing if W is above V instead of V below W.

step 3 Once the last point in L has been swept, update for the last time the list
U* by concatenating U* and W: U* :=U* - W.
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18 B. Gaujal, N. Navet, C. Walsh

Notice that the algorithm constructs U* rather than w*. However, since U* is
piece-wise affine, it is rather easy to retrieve u* from U™.
A run of the algorithm is detailed in Figures 6,7,8. Figure 6 gives the current

A

__i_
S

T T .
zoW1 ViVa Wa W3

Figure 6: The current position.

Xo W1 Vﬂfz .’176 W{ VY

Figure 8: A case where z( is updated.

position where V' and W have been constructed up to the current point. As displayed
in Figure 7, the next point W, belongs to D, so that we update W. The angle at
point W3 is a cup-angle and therefore it is removed from the list. The point Ws
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does not form a cup-angle in the new W function so that the removing stops and
the new function W is constructed. In Figure 8, we add yet another point, V3. We
update V. Point V5 forms a hat-angle and is removed. Point V) forms a hat-angle
and is removed. Finally, all the old points in V' were removed, and we have to check
whether V' remains above W. This is not the case. Point W; is above V. Point
Wy is also above V. Finally, Point W3 is below V. This means that we update the
starting points of both ¥V and W to the new starting point zj, = W5. The new V
is made of two points z{, and V4, while the new W is also made of two points zj,
and W3. As for the function U™, it has been constructed from 0 to the new starting
point, z; (thicker line in the figure).

Theorem 5. The algorithm detailed above constructs the function u* in time O(N),
using a memory size O(N).

Proof. The fact that the function constructed by the algorithm is actually u*, the
optimal solution of Problem 1 is a direct consequence of the proof of Theorem 2 and
Corollary 3.

The proof that the algorithm runs in linear time with linear memory size is
similar to the computation of the convex hull of a set of ordered points ([2]). A
simple way to see this is to notice that the total time needed to construct V., W and
u* is proportional to the number of changes occurring over the lists V, W and u*.
Since each point in these lists is eliminated at most once, the number of changes is
proportional to N. O

Note that if the original data is under the form of the set of tasks rather than
staircase functions A and D, then one needs, as the first step, to create the lists L 4
and Lp which may take O(N log(NN)) time if the tasks are not already sorted. In any
case, our algorithm is an improvement over the previously known algorithm given
in [14] which requires at least O(N log? N) time.

4.1 Optimal complexity

In the previous section, we have shown that the construction of the function «* (under
the form of an ordered list of its points of discontinuity, called L* in the following)
requires O(N) elementary operations (comparisons, additions and multiplications)
when the data lists L4 and Lp are already sorted.

This complexity is optimal in the sense that all algorithms must at least examine
all the points in the data lists to construct w*.
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When the data lists L4 and Lp are not already sorted, then our algorithms
needs a pre-processing phase to sort them before actually construct u*. The total
complexity jumps to O(N log N).

Next, we show that the computation of the list L* is more complex than sorting
LU Lp. Consider the following problem:

Input: the set of the arrivals (unsorted): {a;,i = 1--- N} and deadlines (unsorted)
{d;;i=1---N}.
Output: the sorted list L*.

If the size of the jumps of the cumulative functions A and D are chosen appro-
priately, then the list L* will contain all the discontinuity points of A and D, so that
it is actually equivalent to a sorted list of the set {a;,i =1---N}U{d;,i =1---N}.

Here is a way to choose the jumps of both A and D. The choice is made iteratively.
Assume that the first 4 — 1 discontinuity points have been constructed already. We
now look at the i-th point (p;), which may be either a discontinuity of A or of D.
There are two cases:
if the previous point belongs to D (say (dy, D(dy)), then choose the height of the
current point (regardless of the fact that it belongs to A or D), in the interval
[D(dg), D(dk) + (pi — di)u”(di)]-

If the previous point belongs to A (say (aj,A(a;)), then choose the height of the
current point (regardless of the fact that it belongs to A or D), above (p; —a;)u*(a;)].

With these choices of the functions A and D, we make sure that all the discon-
tiniuity points of A and D are also discontinuity points of uw*, so that they will all
be listed in L*.

The arithmetic complexity of the computation of U* is O(N log(N)) operations
(counting additions, multiplications and comparisons as the only elementary oper-
ations). This also allows us to sort the initial list L4 U Lp in the same amount of
time. Up to our knowledge, no algorithm sorting a list of numbers with arithmetic
complexity (number of additions, multiplications and comparisons, regardless of the
size of the numbers) lower than O(N log(N)) has been found so far. This provides
strong evidence that our algorithm has the lowest possible arithmetic complexity.

5 Extension 1: fluid tasks

In this section, we generalize the problem for arbitrary functions A and D, without
assuming that they are staircase functions with a finite number of discontinuities.
This may model infinitesimal tasks modeled by a fluid arrival process (with a fluid
deadline as well). Such a task model may be useful for modeling very large task sets
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(after renormalization). It may be also be used to specify a minimum performance
level on systems where tasks do not have an explicit deadline.

In this section, we consider two functions A and D satisfying the following prop-
erties:

(F1) A is a non-decreasing left-continuous function, with right and left derivatives
in RU {—o0, 400} and A(0) = 0.

(F2) D is a non-decreasing right-continuous function, with right and left derivatives
in RU{—o00,+o0}, D(0) =0, and D > A.

Problems 1 and 2 remain unchanged: find an integrable w that minimize the
energy spent between time 0 and time 7', while satisfying the constraints (3) and (4)
(and (5) resp.).

The solution is also the same: the optimal speed allocation for the processor is
given by the shortest path between A and D from point (0,0) to point (7', D(T")),
since the proof of Theorem 2 also works for arbitrary functions A and D. However,
this time, the optimal solution U* is not necessarily piecewise affine as shown in the
example of Figure 9.

U*

t

0 T

Figure 9: the optimal solution with arbitrary function A and D.

The computational issues becomes here a real concern here because the functions
A and D can be arbitrarily difficult to code in a computer program. However, if
both A and D are piecewise polynomials (of degree k), then the computation of U*
only involves solving polynomial equations of degree k. This can be done with an
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arbitrary precision using symbolic computation tools based on Schur polynomials
and Grobner basis. Here, the complexity of the algorithm is at least exponential in

k.

5.1 Finite number of speeds

As for Problem 3, this requires some changes since taking some precautions becomes
necessary. We need to add technical assumptions on the functions A and D, to avoid
cases where there are no admissible solutions. One way to make sure that the set of
admissible solutions is not empty is by adding the following assumptions on A and
D.

(F3) 36>0, Y0<a<b<T, [’A(s)—D(s)ds> (b~ a).

(Fy) there exists a finite number of points = between 0 and T such that A(z)
D(z), and V z s.t. A(z) = D(z),3 v,w € {v1,--- vy} s.t. %(x) > v, %(w)
v, and c‘é—‘i(w) <w, 4L (1) > w.

IA

If assumption (Fy) is not satisfied, it should be obvious that Problem 3 does not
have any admissible solution since at time 0 any choice of the initial speed would
break one constraint (either 3 or 4). As for assumption (F3), it adds the fact that
whenever A is strictly above D, there is still enough space between A and D, for
some admissible solution using a finite number of speeds.

To find the optimal solution to problem 3, one must construct a finite sequence
of functions, (y,,) using the following procedure.

Let 1 = 0,z9,--- ,zp, = T be the points where A and D meet. Partition each
interval [z;, zi+1] of length T; def Zi4+1—; into n sub-intervals of the same size (T;/n).

Here is a way to construct the function y,.

At step k, we construct the function y,(t) over the kth interval, namely Ij def

(z; + kT /n, z; + kT;/n + T;/n]. There exists h such that

.’E¢+(k+1)Ti /n

vpTi/m < / u*(s)ds < vp1T5/n.
.’Ei+kTi/n

There exists ay, € (0,1] such that

uy, def n/T/
x

J,‘q;-l—(/c-l—l)Ti/n

u*(s)ds = (ak'Uh +(1- ak)“hﬂ)
i+kT;/n
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From that point on, we have two possibilities to define the function ¥, over the
interval Iy = (kT;/n,kT;/n + T;/n|. At least one of them will be admissible when n
becomes large enough.

First alternative: yn(t) = vy over the interval Iy = (z; + kT;/n, z; + oiT;/n +
(1 — ag)(KT;/n + T;/n)] and y,(t) = vpi1 over the interval (z; + oxT;/n + (1 —
o) (KT /n + T /n), z; + kT; /n + T; /n).

Second alternative: yy,,(t) = vpy1 over the interval (z; + kT;/n, z; + o (KT /n +
T;/n) + (1 — ag)T;/n] and y,(t) = vy, over the interval (z; + oy (KT;/n+T;/n) + (1 —
ag)Ti/n, zi + KT;/n + T; /n].

Note that because of assumption Fy, this is locally admissible at the extreme
points of the intervals.

Theorem 6. The function y* = y, s an optimal solution of Problem 38 for the
smallest n such that y, is admissible.

Proof. First note that the integral of y, converges to U* piecewise when n goes to
infinity. Using assumption Fj, this implies that the function y,, is admissible if n is
finite but large enough. Second, using the assumption on the range of the u;’s, for
any v < u < vy, there exist i(u) such that v;,) < u < ;)41 We then define the
coefficient v, such that u = ayv;(y) + (1 — aw)vi)41- We use the real function g(u)
as in Section 3.

The next part of the proof consists in showing that

T T
/0 o(y*())ds = /0 §(u*)ds. (9)

Using the definition of y*,

T N
/0 IS /Ikgwn(s))ds

N
> / (s

Since the function § is affine on all the intervals Iy, then Y5, I, 9(up)ds = fOT g(u*)ds.
Here is now the last part of the proof, which resembles the case with discrete

tasks. Let u be any admissible solution of problem 3. Therefore, u(t) € {v1--- ,v¢}.

Since the function f coincides with g over {v; --- ,vg}, then one has fOT g(u(s))ds =

fOT g(u(s))ds. Now using the fact that f is increasing and convex, fOTg(u(s))ds >
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fOT g(u*(s))ds. Finally, using Equality (9) shows that fOT g(u(s))ds > fOT g(yn(s))ds.
This means that the cost of any admissible solution is larger than the cost of y,. O

6 Extension 2: non-convex cost functions

In this section, we keep the fluid functions A and D under the assumptions Fy, Fy, F3
and Fy. In this section, we also consider the case where the function g, which gives
the instantaneous energy consumption is not convex and increasing. This is typically
the case when the static power dissipated by the processor is not neglectable. In this
case, the typical behavior of g is displayed in Figure 10.

power

frequency

B C

Figure 10: Example of a non-convex energy consumption function.

We assume that the function g is semi-continuous but not convex and increasing.
For technical reasons, we will further assume that g has a finite number of inflexion
points.

In this case, the optimal solution v* of problem 1 depends on g. Here is a way
to construct v*.

The first step is to construct the convex hull h of g. Since g(0) = 0 and g(x) >
0,Vz > 0, then h is an increasing convex function. Let C be the set of points where

g and h coincide: C e {z € Ry s.t.h(z) = g(z)} and let B be the complementary
set: B {z € Ry s.t.h(z) # g(z)}. Using the assumption on the inflexion points

of g, the set B is made of a finite number of intervals. Note that the function

h is affine over B. For each x € B, we define two points in C surrounding x:

m(x) e inf{s € Cs.t.s > z} and m(x) def sup{s € Cs.t.s < z}.
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The second step is to solve problem 1 using h instead of g, as the instantaneous
cost. Since h is convex and increasing, we get as before the shortest path U* between
A and D.

The third step is to construct a set of functions, v,,n € N as follows.

If u*(t) € C, then v, (t) = u*(¢).
If u*(t) € B, then there exist an interval I, containing ¢ and maximal for inclusion
over which u* € [m(u*(t)),m(u*(t))]. We partition the interval I into n sub-intervals,

each of size |I|/n. In each such interval, say [t1,?2), the average value of u* over this

interval is & 1 [0 (t)dt and the coefficient a def_p—m(n)

ta—t1 Jts m(p)—m(p) "
Now, vy, (t) = m(u) over [t1,t1 + (1 — )(t2 — t1)) and v, () = m(p) over [t1 + (1 —
Oé)(tg — tl),tg).
The final step is the choice of v*(t) = vn(t) Vit € [0,T], for some n large enough

so that v*(t) is admissible.

Theorem 7. The function v* is the optimal solution to Problem 1.

Proof. (sketch) The proof is similar to the proof given in Section 5.1. The first thing
to notice is that since the intervals used to define the functions v, get smaller and
smaller, their integrals converge point-wise towards U*(¢) when n grows. Therefore
since A > D, there exists a finite n such that v,, satisfies the constraints 3 and 4 and
is admissible.

The second key point in the proof is to notice that since h is affine over B then

fttf h(vg)dt = h(p)(te — t1). By integrating over all the time range, this gives

T T
/ h(v*)dt = / h(u*)dt. (10)
o 1)
To finish the proof, take u any admissible solution for problem 1.
T T
| swwyie > [ ntuat (1)
(] OT
> [ hw @) (12)
1)

T

- / h(o* (£))dt, (13)
OT

- / g(v" (1))dt, (14)
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where Inequality (11) comes from the fact that g > h; Inequality (12) comes from
the fact that u* is the optimal solution with the convex cost h; Equality (13) is the
same as (10); and Equality (14) comes from the fact that v*(¢) € C for all ¢ and the
fact that g = h over C. O

6.1 Finite set of speeds

The case where the processor can only take a finite number of speeds {v1,--- , v} is
much easier to handle.
First, construct the convex hull A of the finite set of points {(v1, g(v1)),-- - , (ve,g(ve))}.

Second, remove all the speeds which do not belong to the convex hull from the set
of admissible speeds.

Last, solve Problem 3 as in section 3 with the reduced set of speeds. This gives the
optimal solution.

7 Conclusion

In this study, we presented a new approach to determine the optimal frequency
schedule of a set of independent tasks subject to FIFO real-time constraints. The
immediate advantage of this proposal is that it can be implemented in linear time
(if the functions A and D are given - in O(N log(N)) otherwise) for continuous
processor speed range as well as for a discrete number of speeds. In the latter case,
we provide an algorithm that ensures the minimum number of speed changes and
thus minimizes the speed changing overhead. The results have been extended to
fluid tasks and non-convex cost functions.

It has been shown that in the context of this study the problem of minimizing
the energy consumption is equivalent to a shortest path problem. This observation
might possibly lead to some new advances in the field of dynamic voltage scaling.

We are currently investigating the on-line case with probabilistic assumptions
on the workload arrival. Two distinct objectives are considered: minimizing the
expected energy consumption and minimizing the worst-case energy consumption.
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