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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

We present a simple theoretical framework to describe the thermal noise of a microscopic mechanical
beam in a viscous fluid: we use the Sader approach to describe the effect of the surrounding fluid (added
mass and viscous drag), and the fluctuation dissipation theorem for each flexural modes of the system to
derive a general expression for the power spectrum density of fluctuations. This prediction is compared
with an experimental measurement on a commercial atomic force microscopy cantilever in a frequency range
covering the two first resonances. A very good agreement is found on the whole spectrum, with no adjustable
parameters but the thickness of the cantilever.

1 Introduction

Cantilevers of micrometer size are nowadays present in many applications, ranging from chemical and biological
sensors [1] to scanning probe microscopy [2]. In many cases, these tiny mechanical systems operate in a fluid
environment (air or water for instance) which has a great influence on their dynamical behavior: the viscosity
of the medium will broaden the structural resonances while the added mass due to the fluid moving along
with the cantilever will shift their frequencies. A few theoretical models have been proposed to account for
these effects [3–12], and validated experimentally [9–15]. Among the prediction of these approaches, the power
spectrum of thermal noise induced fluctuations is of particular interest for its applications in atomic force
microscopy (AFM) or micro-electromechanical systems (MEMS). We will focus here on the approach by Sader
et al. [3, 5, 8], and derive a generic formula for the thermal noise using the fluctuation dissipation theorem for
each mode, extending the work of Paul and Cross [4] in a simpler framework than Dorignac et al. [7]. This
careful analysis is indeed incorrect in the original work of Sader et al., as noted by Paul and Cross [4], Dorignac
et al. [7] and Sader et al. themselves (see ref. 44 of [5]). We will then compare the prediction of the model
to a noise measurement on a commercial AFM cantilever in air: an excellent agreement is obtained for the
full frequency behavior of the two first resonances, as well as at low frequencies and in the intermediate region
between the two pics.

2 Theory

We will first recall the general theory to describe the motion of a cantilever immersed in a viscous fluid and
subject to an arbitrary external forcing, using the same notations and approach as J. Sader [3], and then derive
the expression for the thermal noise of the mechanical system. The cantilever is sketched on Fig.1. Its length
L is supposed to be much larger than its width b, which itself is much larger than its thickness h. We will
limit ourself in this study to the flexural modes of the cantilever: the deformations are supposed to be only
perpendicular to its length (along axis z of Fig.1) and uniform across its width. Theses deformation can thus
be described by the deflection w(x, t), x being the spacial coordinate along the beam normalized by L, and t
the time. The equation of describing the dynamics of w is [16]:

EI

L4

∂4w(x, t)

∂x4
+ µ

∂2w(x, t)

∂t2
= F (x, t) (1)
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Figure 1: Geometrical model for the cantilever: rectangular beam with length L, width b and thickness h.
Deformation are supposed to be only along axis z and to depend only of time t and spacial coordinate x, they
are described by the deflection w(x, t).

where E is the Young modulus, I = bh3/12 the second moment of inertia of the cantilever, µ the mass per unit
length and F the external force per unit length. The boundary conditions for eq. 1 correspond to the classical
clamped (x = 0) and free end (x = 1) conditions:

w(x=0, t) = 0
∂w(x, t)

∂x

∣

∣

∣

∣

x=0

= 0 (2)

∂2w(x, t)

∂x2

∣

∣

∣

∣

x=1

= 0
∂3w(x, t)

∂x3

∣

∣

∣

∣

x=1

= 0 (3)

In the Fourier space, we can rewrite eq. 1 as

k

3

d4w(x|ω)

dx4
− mcω

2w(x|ω) = F (x|ω)L (4)

with ω the pulsation in the Fourier space, mc = µL the mass and k = 3EI/L3 the spring constant of the
cantilever. Solving this equation in absence of external forces leads to the well known normal modes of oscillation
of a clamped beam in vacuum with spatial profiles

φn(x) = (cosCnx − coshCnx) +
cosCn + coshCn

sin Cn + sinhCn

(sin Cnx − sinhCnx) (5)

where Cn is the nth solution of equation

1 + cosCn coshCn = 0 (6)

which leads to C1 = 1.875, C2 = 4.694, . . . , Cn = (n− 1/2)π. The normals modes φn(x) for n = 1, . . . ,∞ form
an orthonormal basis of the functions of x in [0, 1] [16]:

∫ 1

0

φn(x)φm(x)dx = δn,m (7)

The pulsations of these resonant modes are given by the dispersion equations

mcω
2
vac,n =

C4
n

3
k (8)

When the cantilever is moving inside a fluid, the force acting on the cantilever can be decomposed into 2
components: the force corresponding to the hydrodynamic load Fhydro(x|ω) due to the motion of the beam in
the fluid, and the actual external driving Fdrive(x|ω). Following Sader’s approach [3], the hydrodynamic load
can be approximated by

Fhydro(x|ω) =
π

4
ρω2b2Γ(ω)w(x|ω) (9)
2



where Γ(ω) is the hydrodynamic function corresponding to the rectangular cantilever beam and ρ the density
of the fluid. The real part Γr of Γ corresponds to the added mass due the fluid moving along with the cantilever
during its motion (normalized to mf = πρLb2/4, the mass of a cylinder of fluid of diameter b and length L),
and the imaginary part Γi to the viscous drag. To solve the equation of motion of the cantilever in the fluid,
let us decompose the deflection w(x|ω) and external driving Fdrive(x|ω) on the orthonormal basis of the normal
modes φn:

w(x|ω) =

∞
∑

n=1

βn(ω)φn(x) (10)

Fdrive(x|ω) =
1

L

∞
∑

n=1

ηn(ω)φn(x) (11)

We note here that this decomposition is also valid in the real time space, with amplitude βn(t) and external
driving ηn(t) of each mode simply being the inverse Fourier transform of βn(ω) and ηn(ω). These 2 variables
are coupled by the hamiltonian H of the system. Indeed, let us compute the infinitesimal work δW of Fdrive

when the deflection changes by δw:

δW =

∫ 1

0

LdxFdrive(x, t)δw(x, t) (12)

=
∞
∑

n=1

ηn(t)δβn(t) (13)

For a reversible transformation, we can write dH = δW , hence

∂H

∂βn

= ηn (14)

This last equation shows that the amplitude βn and external driving ηn of each mode are coupled variables
by the hamiltonian of the system. We can thus apply the Fluctuation Dissipation Theorem [17]: the power
spectrum density Sβn

of fluctuation of amplitude for mode n is given by

Sβn
(ω) =

2kBT

πω
Im(

βn(ω)

ηn(ω)
) (15)

where kB is the Boltzmann constant, T the temperature of the thermostat and Im(.) is the imaginary part of
its argument.

We will now explicit the right part of eq. 15. Using the orthonormalization of the base φn, we can easily
show that eq. 4 leads to the following equation for each mode:

(

k

3
C4

n − (mc + mfΓ(ω)) ω2

)

βn(ω) = ηn(ω) (16)

The amplitude βn of each mode is thus governed by the equation of motion of an oscillator with stiffness kC4
n/3,

mass mc +mfΓr(ω) and damping coefficient mfωΓi(ω), forced by external driving ηn. If Γ(ω) is a slow varying
function of the frequency, close to its resonance each mode behaves like an harmonic oscillator. Using the above
expression, eq. 15 can be rewritten as

Sβn
(ω) =

2kBT

πω
Im(

1
k
3
C4

n − (mc + mfΓ(ω))ω2
) (17)

=
2kBT

π

1

mc

τΓi(ω)ω

(ω2
vac,n − (1 + τΓr(ω))ω2)2 + τ2Γ2

i (ω)ω4
(18)

with τ = mf/mc. In general, dissipation couples the modes calculated from the non-dissipative equations, but
within the approximation of position independent dissipative forces (eq 9), the noises are uncorrelated. We can
thus write a generic expression of the power spectrum density of the deflection using eq. 10:

Sw(x, ω) =

∞
∑

n=1

Sβn
(ω)|φn(x)|2 (19)

This last equation is in agreement with the one derived by Dorignac et al. [7] in a more complex framework.
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3 Experiment

To test the validity of the above formalism, we measure the thermal noise of a commercial AFM cantilever
(Budget Sensor BS-Cont) with the following nominal geometry: L = 450µm, b = 50µm, h = 2µm. The
cantilever is made of Silicium and is coating-less, thus for theoretical expressions we used the tabulated values
of Si for the young Modulus (E = 169GPa for Si110, the usual crystalline orientation along the length of AFM
cantilever) and density (ρc = 2340kg·m−3). The length and width were checked with an optical microscope,
and the thickness is inferred from the resonance frequency of the cantilever (from eq. 8), which eventually leads
to L = 450µm, b = 48µm, h = 2.07µm.

The measurement is performed with a home made interferometric deflection sensor [18], inspired by the
original design of Schonenberger [19] with a quadrature phase detection technique [20]: the interferences between
the reference laser beam reflecting on the base of the cantilever and the sensing laser beam on the free end of
the cantilever directly gives a calibrated measurement of the deflection w(x = 1, t), with very high accuracy.
We illustrate in Fig.2 the performance of our detection with the power spectrum density (PSD) of a rigid mirror
(in black): the background noise of our system is as low as 1.3 × 10−27 m2/Hz, just 50% higher than the shot
noise limit of our detection system. Typical noise of a measurement in a commercial AFM would be at least
two orders of magnitude higher.
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Figure 2: Power spectrum density (PSD) of deflection. The PSD of thermal noise driven deflection at the free
end of the cantilever (–) is measured with an home made interferometric setup in a 1 kHz to 100kHz range.
We clearly see the two first flexural modes of the mechanical beam, well above the background noise of the
apparatus (–) acquired on a rigid mirror. The difference between the measurement and the background noise
spectrums (–) gives a full view of the behavior of the thermal fluctuations of the cantilever in this frequency
window. For comparison, the typical noise floor of a well tuned and calibrated commercial AFM is plotted (- -):
only the resonances could be studied, the remaining part of the spectrum would be useless.

We plot in Fig.2 the PSD of thermal noise driven deflection at the free end of the cantilever (in green). We
clearly see in this spectrum the two first modes of oscillation of the mechanical beam, around f1 = 14kHz and
f2 = 87kHz, but we also have a lot of information out of these resonances as the measurement is always above
the background noise of the system. If we subtract this background noise spectrum from the measurement
(blue curve), we have an estimation of the thermal noise of the system on the whole 1 kHz to 100kHz frequency
interval, which we can compare to the theoretical expectation of the model presented in the previous section.
The same measurement in a commercial AFM would yield much less information, as it would be limited to the
resonances, and we would not have any information between them or at low frequency .

In Fig.3, we compare the measured PSD of fluctuations (in blue) with the prediction of 3 different models
(in red) for the thermal noise of the cantilever, all based on Sader’s approach [3]. The hydrodynamic function
Γ(ω) used for these predictions was taken from eq. 20, 21a and 21b of ref. [3], as it correspond to the first
two resonances and the extension to higher order modes of ref. [8] is not necessary. The first model (Fig.3(a))
corresponds to eq. 29a of the original article of Sader [3], where the frequency dependence of the thermal
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noise forcing as been omitted. Both resonances are really well described with this model, but the off-resonance
behavior is not: the low frequency noise measured is not flat as expected by the model, which also slightly
underestimates the noise the intermediate region.

The second model (Fig.3(b)) corresponds to eq. 17a of ref. [8], a corrected expression of the thermal noise
proposed by Green and Sader (see ref. 44 of [5]) to account for frequency dependance of the dissipation following
the approach of Paul and Cross [4]. Let us first note that this expression is dimensionally incorrect, as it is
homogeneous to m2 and not to m2/Hz, so we had to rescale the formula by 2.28 × 10−4 Hz−1 to match the first
resonance. However, this model perfectly describes the frequency dependance of the first mode, catching the
slow variation of the noise in the low frequencies. The behavior of the second mode could also be well described,
but it would need a higher rescaling factor.

We came to the conclusion that the scaling factor is mode dependent, and conducted the analysis of the
previous part to derive the correct expression. Indeed, it can easily be shown that the frequency behavior of
each mode (eq. 17) is exactly the same as in ref. [8], but the scaling factors are different. We plot in (Fig.3(c))
the prediction of eq. 17 and eq. 19, and see that we match the whole power spectrum density of fluctuation of
deflection: both resonances, low frequency and intermediate region are very well described by the model. We
stress here that the only parameter we have adjusted in the model is the thickness of the cantilever h, to match
the actual frequencies of resonance. The Sader approach to describe the effect of the embedding fluid on the
behavior of the cantilever turns out to be very good on the whole frequency range probed here.

4 Conclusion

In this paper, we have presented a simple theoretical framework to describe the thermal noise of a mechanical
beam in a viscous fluid. Under the assumption of an infinitely thin and long cantilever, we used the Sader
approach to describe the effect of the surrounding fluid (added mass and viscous drag). Using the fluctuation
dissipation theorem for each flexural modes of the system, we derived a general expression for the power spectrum
density of fluctuations as the sum of the contribution of the different modes. This prediction has been compared
with an experimental measurement on a commercial AFM cantilever in a frequency range covering the 2 first
resonances. A very good agreement has been found on the whole spectrum, with no adjustable parameters but
the thickness of the cantilever. This analysis can be very useful in the AFM area, where the thermal motion of
the cantilever is of great practical importance (as a lower bound to measurable forces or as a mechanical driving
on its own): it is not limited to a fit of resonances only, but gives an a priori knowledge of the cantilever noise
on the whole frequency spectrum.
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Figure 3: Power spectrum density (PSD) of thermal noise driven deflection at the free end of the cantilever:
measurement (—) vs 3 different models (−+−). (a) prediction after [3], (b) prediction after [8], (c) prediction
from eq. 17 and eq. 19 of the present work. Insets present zooms around the resonances.
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