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Simultaneous rheological and velocity profile measurements are performed in a smooth Couette
geometry on Laponite suspensions seeded with glass microspheres and undergoing the shear-induced
solid-to-fluid (or yielding) transition. Under these slippery boundary conditions, a rich temporal
behaviour is uncovered, in which shear localization is observed at short times, that rapidly gives
way to a highly heterogeneous flow characterized by intermittent switching from plug-like flow to
linear velocity profiles. Such a temporal behaviour is linked to the fragmentation of the initially
solid sample into blocks separated by fluidized regions. These solid pieces get progressively eroded
over time scales ranging from a few minutes to several hours depending on the applied shear rate
γ̇. The steady-state is characterized by a homogeneous flow with almost negligible wall slip. The
characteristic time scale for erosion is shown to diverge below some critical shear rate γ̇⋆ and to
scale as (γ̇ − γ̇⋆)−n with n ≃ 2 above γ̇⋆. A tentative model for erosion is discussed together with
open questions raised by the present results.

PACS numbers: 83.60.La, 83.50.Rp, 83.60.Pq, 83.50.Lh

INTRODUCTION

Interest into the solid-to-fluid transition displayed by
“soft glassy materials” (SGM) has risen tremendously
in the past two decades not only because of its indus-
trial importance but also due to its inherent theoretical
issues and experimental challenges. On the theoretical
side, the fact that this transition, also referred to as
the “jamming-unjamming” transition, can be triggered
either by increasing the temperature, by lowering the
system concentration, or by applying a strong enough
external load has led to propose a universal “jamming
phase diagram” [1, 2]. Although this picture remains ap-
pealing, it is clear that a complete understanding and
modelling of glassy-like phenomena involved in materi-
als with microstructures as diverse as submicron hard
spheres, micronsized grains, short-range attractive par-
ticles, or highly charged platelets, are still out of reach
[3]. Most recent experiments performed to investigate
the structure and the dynamics of SGM at rest have re-
lied on single or multiple light scattering techniques and
have focused on ageing properties [4] or on the presence
of dynamical heterogeneities [5, 6, 7]. Together, ageing
and dynamical heterogeneities call for a spatiotemporal
modelling of SGM that is still lacking.

Even more difficult is the task of elucidating the flow

mechanisms in these out-of-equilibrium systems when
submitted to some external shear. Rheology has long ap-
peared as the only tool to probe the mechanical response
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of SGM and the shear-induced solid-to-fluid transition,
also called the “yielding transition.” In particular, the
problem of defining and measuring correctly the yield

stress σy, i.e. the critical shear stress below which the
material behaves as a solid and above which it flows like
a liquid, has focused a lot of attention [8]. The diffi-
culties raised by the yield stress most often result from
thixotropic features due to the competition between age-
ing and shear-induced “rejuvenation” of the sample [9].
Thus estimating precisely σy involves applying or mea-
suring very small shear rates over waiting times that can
reach several hours.

Yield stress fluids and shear localization

Some authors have proposed to distinguish between a
“static” yield stress σs

y , defined for the material at rest,
that would be the analogue of a static friction coefficient,
and a smaller “dynamic” yield stress σd

y , measured on the
flowing material by decreasing the imposed stress, simi-
lar to a dynamic friction coefficient [10]. Such a discrep-
ancy linked to hysteresis effects also raises the question
of whether the yielding transition in SGM is continuous,
i.e. the shear rate γ̇ continuously increases from zero
when the shear stress σ is increased above σy , or rather
discontinuous, i.e. γ̇ jumps to some finite critical value
γ̇c as soon as σ > σy.

Continuous models for the flow curve σ vs γ̇ include the
Bingham and the Herschel-Bulkley models, which have
been recognized to hold for many SGM [11, 12]. On the
other hand, a discontinuous yielding transition questions
the basic assumption of homogeneous flow that underlies
any standard rheological measurement [10, 13]. Indeed,
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if a shear rate γ̇ < γ̇c is applied, the flow is expected to
display shear localization, i.e. the coexistence of a solid-
like region where the local shear rate γ̇loc vanishes and a
fluid-like region where γ̇loc = γ̇c.

The recent development of original experimental tools,
such as active or passive microrheology [14, 15], light
scattering under shear, and time-resolved local velocime-
try, that can go beyond standard rheology, has allowed
one to address some of the above mentioned issues with
renewed interest. In particular, using direct visualiza-
tion, nuclear magnetic resonance (NMR), particle imag-
ing, or ultrasonic velocimetry, shear localization was ob-
served on a large variety of SGM, ranging from emulsions
[16, 17, 18] or colloidal suspensions [19, 20, 21, 22, 23]
to wet granular materials [24, 25]. Still, in most of these
experiments performed in Couette geometry, it remained
unclear whether shear localization could be attributed
to a truly non-zero γ̇c or to the stress inhomogeneity
inherent to the concentric cylinder geometry. It is not
until very recently that shear localization has been also
evidenced in the cone-and-plate geometry where stress
heterogeneity is minimized, thus establishing firmly the
relevance of discontinuous models [26].

Structure and rheology of Laponite suspensions

Within the last decade, among the huge variety of
SGM, Laponite, a synthetic clay of the hectorite type
made of heavily charged disc-shaped particles of diame-
ter 25–30 nm, thickness 1 nm, and density 2.5 g.cm−3,
has emerged as a good, albeit complicated, candidate
to explore the above issues. When dispersed into wa-
ter at a few weight percents, typically 0.6–4 wt. %,
and depending on the ionic strength, Laponite sus-
pensions evolve from a low-viscosity liquid to various
solid-like “arrested” states. The sol–gel transition in
Laponite has been investigated mostly using light scatter-
ing [27, 28, 29, 30, 31]. The ageing properties of Laponite
have triggered lots of effort and debate about the exact
nature of these nonergodic states, in particular, about
whether the material is actually a “gel” or a (Wigner)
“glass” [30, 32, 33, 34, 35, 36, 37, 38]. Moreover, due
to their out-of-equilibrium nature, Laponite suspensions
were used to test possible violations of the fluctuation-
dissipation theorem (FDT) [39, 40]. Several recent mi-
crorheology experiments tend to prove that the effective
temperature cannot be distinguished from the bath tem-
perature, so that the FDT remains valid [41, 42], but
such results are still under debate [43].

The nonlinear rheology of Laponite suspensions has
also been intensively studied with emphasis on thixotropy
and ageing or rejuvenation under shear [27, 44, 45, 46,
47, 48, 49, 50, 51]. A few experiments have hinted to
the presence of shear localization in the vicinity of the
yield stress in Laponite samples [19, 52, 53], which pro-

vided support for discontinuous models of the yielding
transition [10, 26]. However, to the best of our knowl-
edge, the local velocity field of Laponite suspensions was
measured only in a wide-gap (2 cm) Couette cell with
a temporal resolution of about 25 s per velocity profile
using NMR velocimetry [52] and in a plate-plate geome-
try of gap 7 mm through dynamic light scattering (DLS)
[53]. The two corresponding papers only showed a couple
of velocity profiles, the former raising the issue of strong
geometry-induced stress heterogeneity and the latter re-
porting both wall slip and slow temporal oscillations of
the velocity with the important limitation that DLS only
provides point-like velocity measurements and necessi-
tates to mechanically shift the cell in order to scan the
whole gap. Therefore a systematic time-resolved study of
velocity profiles in sheared Laponite suspensions would
certainly provide new insights into the flow mechanisms
involved in yielding.

Summary of our previous and present work

In a previous work [54], we have explored for the
first time the influence of boundary conditions on yield-
ing in Laponite samples by simultaneous rheology and
time-resolved ultrasonic velocimetry. For the purpose of
measuring local velocity using ultrasound, a significant
0.3 wt. % amount of hollow glass spheres of mean di-
ameter 6 µm was added to our 3 wt. % Laponite sus-
pensions. By comparing two experiments performed un-
der similar imposed shear rates in smooth and rough
(sand-blasted) Couette geometries on timescales of order
5000 s, we unveiled a dramatic effect of surface rough-
ness on the flow mechanism during yielding. Indeed,
while the scenario observed with rough walls was con-
sistent with a discontinuous transition characterized by
shear localization in agreement with previous observa-
tions on Laponite suspensions [19, 52, 53] and on other
SGM [16, 20, 22, 23, 26], slippery boundary conditions
in the smooth cell led to a thoroughly different picture.
When wall slip was allowed, the sample was reported to
break up into macroscopic solid pieces that are slowly
eroded by the surrounding fluidized material up to the
point where the whole sample has become fluid.

The aim of the present paper is to provide a full data
set, more discussion, and a toy model of this original
yielding scenario triggered by slippery boundary condi-
tions in Laponite suspensions seeded with microspheres.
Our paper is organized as follows. Section describes the
materials and methods used to study the yielding transi-
tion in Laponite. Results obtained in a smooth Couette
cell on a 3 wt. % Laponite sample seeded with 1 wt. %
microspheres are presented in Section for a large range
of applied shear rates. Finally, Section provides a dis-
cussion of the results, in particular about the possible
influence of the microsphere concentration, and an at-
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tempt to model the experimental observations.

EXPERIMENTAL

Sample preparation

Laponite powder (Rockwood, grade RD) is used as re-
ceived and dispersed at 3 wt. % in ultrapure water with
no added salt. The pH of the solution is approximately
10. According to the most recent litterature [37, 38], such
a suspension (3 wt. % Laponite without salt) is supposed
to fall into the Wigner glass region of the phase diagram.

In the present study, the Laponite suspensions are im-
mediately seeded with hollow glass spheres of mean di-
ameter 6 µm (Sphericel, Potters) at a weight fraction 0.3
or 1 wt. %. As explained below in Section , these micro-
spheres act as contrast agents for ultrasonic velocimetry.
Most of current protocols used for Laponite preparation
recommend to filter the samples with a 0.4–0.8 µm mesh
size after vigorous stirring for 15–30 min. Such filtra-
tion is believed to break up Laponite clusters that may
form due to incomplete dissolution and may lead to erro-
neous interpretations of the sample structure as “gel-like”
from light scattering data [55]. Here, however, due to the
presence of the microspheres, subsequent filtration of the
samples is not possible.

Within 30 min of magnetic stirring, the dispersion be-
comes homogeneous and very viscous but remains fluid.
Due to the presence of the microspheres, the solution is
slightly turbid, which will allow for direct visual inspec-
tion of the sheared samples. The sample is then left to
rest at room temperature. After about two hours, the
sample viscosity has increased by several orders of mag-
nitude and the dispersion has clearly built up a yield
stress and solid-like properties since it is able to sustain
its own weight. We let ageing proceed for at least two
days, i.e. for waiting times tw & 2 105 s. For such large
tw, we expect the ageing dynamics to have slowed down
so much that the influence of ageing can be neglected
on the timescales of typically one hour involved in the
present experiments. In any case, as discussed below,
the samples are pre-sheared before any experiments in
order to erase most of the sample history through shear
rejuvenation.

Rheological protocol

Linear and nonlinear rheological properties are mea-
sured using a stress-controlled rheometer (Bohlin C-VOR
150, Malvern Instruments) in Mooney-Couette (concen-
tric cylinder) geometry. Our cell is made out of Plexiglas
without further treatment. The bob (inner cylinder) of
radius R1 = 24 mm is rotating and will be called the “ro-
tor” in the following. It is terminated by a cone with an

angle of 2.3◦. The stator, i.e. the fixed cup (outer cylin-
der), has a radius R2 = 25 mm. The gap width of this
Mooney-Couette geometry is thus e = R2 −R1 = 1 mm.
The curvature of our cell leads to a stress decrease of
about 8 % from the rotor to the stator. The height of the
rotor is H = 30 mm. The standard deviation of height
profiles of the cylindrical walls measured using atomic
force microscopy is typically 15 nm, which will be re-
ferred to as “smooth.” The whole cell is immersed in a
water tank of volume of about 1 L connected to a water
bath whose temperature is kept constant and equal to
25±0.1◦C (see Fig. 1).

Before any measurement, the sample is pre-sheared for
1 min at +1500 s−1 and for 1 min at -1500 s−1. Such a
protocol erases most of the sample history through shear
rejuvenation and ensures that the strain of the sample
accumulated during loading into the cell has no influence
[44]. We then proceed with a standard oscillatory test at
1 Hz in the linear regime for 2 min. This test allows us
to make sure that the values of the viscoelastic moduli
G′ ≃ 500 Pa and G′′ ≃ 25 Pa no longer change signifi-
cantly at the beginning of the actual experiment. We also
checked that this procedure leads to reproducible results
over a few hours. Finally, at time t = 0, the experiment
proceeds either with the standard (linear or nonlinear)
rheological tests shown in Section or with combined rhe-
ological and velocimetry measurements (see Section ).
In the following, σ and γ̇ denote the shear stress and the
shear rate indicated by the rheometer. The rotor velocity
v0 and γ̇ are linked by:

v0 =
R1(R1 + R2)

R2
1 + R2

2

γ̇e , (1)

where the geometrical factor R1(R1 + R2)/(R2
1 + R2

2) ac-
counts for the cell curvature [56]. In the presence of wall
slip or heterogeneous flows, γ̇, the so-called “engineering”
or “global” shear rate may strongly differ from the local
shear rate which will be noted γ̇loc or γ̇(r), where r is the
radial distance from the rotor.

Ultrasonic velocimetry and optical imaging

Our setup for combined rheology and local velocime-
try is sketched in Fig. 1. The sample velocity field is
measured using ultrasonic speckle velocimetry (USV) at
about 15 mm from the cell bottom. USV is a technique
that allows one to access velocity profiles in Couette ge-
ometry with a spatial resolution of 40 µm and a tempo-
ral resolution of 0.02–2 s depending on the shear rate.
It relies on the analysis of successive ultrasonic speckle
signals that result from the interferences of the backscat-
tered echoes of successive incident pulses of central fre-
quency 36 MHz generated by a high-frequency piezo-
polymer transducer (Panametrics PI50-2) connected to
a broadband pulser-receiver (Panametrics 5900PR with
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200 MHz bandwidth). The speckle signals are sent to a
high-speed digitizer (Acqiris DP235 with 500 MHz sam-
pling frequency) and stored on a PC for post-processing
using a cross-correlation algorithm that yields the local
displacement from one pulse to another as a function of
the radial position r across the gap. One velocity profile
is then obtained by averaging over typically 1000 suc-
cessive cross-correlations. Full details about the USV
technique may be found in Ref. [57].

The scattered signal is provided either by the material
microstructure itself or by seeding the fluid with “con-
trast agents” with the constraint to remain in the sin-
gle scattering regime. In the case of Laponite samples,
which are transparent to ultrasound, we used the micro-
spheres described above to produce ultrasonic echoes in
a controlled way. The sound speed in our samples was
independently measured to be c = 1495 ± 5 m.s−1 at
25◦C.

The microspheres also lead to a slight turbidity which
allows for a direct visualization of the sheared samples.
A simple CCD camera (Cohu 4192) is set in front of the
water tank and the Couette cell is lit from behind. Im-
ages of the samples are recorded at a frame rate of 5 fps
and later synchronized with the velocity profile measure-
ments as explained in our previous work [54]. In this
paper, we shall only show images typical of the various
stages of the experiment.

RESULTS

Conventional rheometry

Standard rheological measurements performed on a
3 wt. % Laponite suspension seeded with 1 wt. % mi-
crospheres are shown in Fig. 2. The viscoelastic moduli
displayed in Fig. 2(a) and measured in the linear regime
for a shear stress amplitude of 5 Pa (which corresponds
to a strain of at most 0.13 % over the accessible range of
frequencies) are typical of an arrested (gel or glass) state.
The elastic modulus G′ is always much larger than the
loss modulus G′′ and only decays from 500 Pa to 400 Pa
over frequencies f = 0.07–8 Hz. G′′ also slowly decreases
from about 30 Pa to 15 Pa over this range of frequen-
cies and shows no sign of downturn at low frequencies, a
feature that is usually attributed to the presence of very
slow relaxation modes in SGM [12, 14].

Figure 2(b) shows the evolution of the viscoelastic
moduli in the nonlinear regime for shear stress ampli-
tudes above 15 Pa at a fixed frequency of 1 Hz. These
data clearly point to a yield stress of 47 Pa, when de-
fined as the shear stress amplitude σy for which G′(σy) =
G′′(σy). This yield stress corresponds to a strain of 25 %.
Above σy , G′ drops dramatically and rapidly becomes
negligible when compared to G′′. In other words, the
sample becomes fluid above σy.

All these measurements are fully consistent with previ-
ous data on Laponite suspensions [32, 44, 58]. Note that
the addition of microspheres influences the ionic strength
of the suspension. The conductivity of a 1 % wt. suspen-
sion of our glass microspheres in water was measured to
be about 100 µS.cm−1, which is roughly equivalent to a
salt (NaCl) concentration of 0.8 10−3 mol.L−1. Increas-
ing the microsphere concentration induces a noticeable
stiffening of our samples: G′ increases by about 20 %
when the microsphere concentration is increased from
0.3 wt. % to 1 wt. % probably due to the change in ionic
strength [32].

As explained in the introduction, another way to probe
the yielding transition using rheology is to perform non-
linear measurements where a constant shear stress or
shear rate is imposed. Since the flow curve is almost
flat for small shear rates, it is usually more suitable to
work under imposed shear rate. Figure 2(c) shows the
flow curve obtained through a shear rate sweep from 0.3
to 2500 s−1 within 200 s followed by the correspond-
ing downward sweep at the same rate. The most ob-
vious feature of this flow curve is the large hysteresis
between upward and downward sweeps. This is typical
of thixotropic materials whose microstructure is slowly
modified by shear resulting in a time-dependent appar-
ent viscosity η = σ/γ̇. The very same kind of hysteresis
cycle was observed recently for similar shear rates in a
drilling mud [22].

Following previous works [17, 22], we anticipate that
the yield stress corresponds to the value of the shear
stress on the plateau observed during the downward
sweep. This yields σy ≃ 51 Pa in satisfactory agree-
ment with the previous estimate of 47 Pa, so that one
has σy = 49 ± 2 Pa. Finally, the shape of the flow curve
at low shear rates (γ̇ . 0.5 s−1) points to significant
wall slip which is highly probable in our smooth geom-
etry [17]. However, as we shall see below through time-
resolved measurement of the local velocity, interpreting
such a non-stationary flow curve is difficult due to com-
plex temporal behaviours that take place over time scales
of about one hour.

Combined velocimetry and rheology

In this section, we present the combined rheological
and velocity profile measurements performed under im-
posed shear rate on a 3 wt. % Laponite sample seeded
with 1 wt. % microspheres in a smooth Couette cell. As
recalled in the introduction, our previous experiments
[54] with a lower microsphere concentration of 0.3 wt. %
showed that slippery boundary conditions may lead to a
rather complex scenario of slow fragmentation and ero-
sion of the initially solid material. In paragraph , we
shall explore the influence of the imposed shear rate on
this scenario for a given microsphere concentration of
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1 wt. % through experiments performed over typically
5000 s. The influence of the microsphere concentration
will be addressed in paragraph .

In paragraph below, we focus on the velocity profiles
recorded within the first few minutes after the inception
of shear. We show that the flow may first seem com-
patible with a simple shear localization picture of critical
shear rate γ̇c ≃ 125 s−1. However, as explained later in
paragraph , shear localization does not correspond to the
stationary state reached by the system and the experi-
ments have to be conducted over time scales of the order
of one hour to probe the actual long-time flow behaviour.

Early stage after shear start-up

Figure 3 displays the velocity profiles v(r) averaged
over t = 30–40 s after various shear rates γ̇ ranging from
1 to 500 s−1 are applied at time t = 0. The time win-
dow for averaging the velocity profiles was chosen so that
fast initial transients due to flow inception have died out.
Such transients last typically a few seconds, after which
the dynamics becomes much slower and the velocity pro-
files do not significantly change over 10 s. In the fol-
lowing, we shall analyze these velocity profiles as if they
corresponded to steady measurements, keeping in mind
that, over time scales longer than a few minutes, a much
more complex behaviour will emerge.

For γ̇ . 10 s−1, total wall slip is observed and the
material undergoes solid-body rotation. In this case, the
shear rate effectively experienced by the material van-
ishes, a feature that was already mentioned in Ref. [53].
Above γ̇ = 10 s−1, the velocity profiles are characterized
by a flowing zone close to the rotor that coexists with
an “arrested” solid-like region where the local shear rate
is zero. The size of the fluid-like region increases with
the imposed shear rate. For γ̇ & 125 s−1, velocity pro-
files are homogeneous and the whole sample is fluid on
the time window investigated here, i.e. after a few 10 s.
These measurements are reminiscent of shear localization
as reported in various other SGM [16, 22, 23, 26].

Note that apparent wall slip remains significant at both
walls as long as some “arrested” region is present. In-
deed, for γ̇ . 125 s−1, the velocity of the sample in the
close vicinity of the cell boundaries never reaches that of
the walls, i.e. v(r = 0) < v0 at the rotor (where v0 is
given by Eq. (1)) and v(r = e) > 0 at the stator. Wall
slip becomes negligible only when a homogeneous flow is
recovered for γ̇ & 125 s−1. In the following, in order to
compare our data with predictions and experiments ob-
tained in the absence of wall slip, we shall focus on the
effective global shear rate γ̇eff defined by [56]:

γ̇eff =
R2

1 + R2
2

R1(R1 + R2)

v(0) − v(e)

e
, (2)

rather than on the applied shear rate γ̇.

By using quadratic fits of the velocity profiles within
the fluid-like band, one may easily extract the width rc

of the flowing zone as well as the local shear rate γ̇loc

averaged over this sheared region. Such an analysis is
presented as a function of the effective global shear rate
γ̇eff in Fig. 4(a) and (b). The error bars in Fig. 4(b) corre-
spond to the standard deviation of the fitted local shear
rate. It can be seen that the proportion of the sheared
region increases roughly linearly with γ̇eff, consistently
with the prediction of the simplest theoretical scenario
for shear localization [10, 16] and with recent experimen-
tal findings on a colloidal gel [26]. Here, Fig. 4(a) clearly
points to a critical shear rate γ̇c ≃ 125 s−1.

Yet, Fig. 4(b) contradicts such a simple shear local-
ization scenario. Indeed, it is clearly seen that the local
shear rate γ̇loc is not constant and equal to γ̇c. It rather
increases sharply from γ̇loc ≃ 60 s−1 to 125 s−1 as γ̇ is
increased. This is confirmed by looking at the “local”
flow curves displayed in Fig. 4(c) and showing the local
shear stress σ(r) plotted against the local shear rate γ̇(r).
σ(r) is computed from the global shear stress σ measured
by the rheometer simultaneously to the velocity profiles
using [56]:

σ(r) =
2R2

1R
2
2

(R2
1 + R2

2)r
2

σ , (3)

where the proportionality factor accounts for the Cou-
ette geometry. The local shear rate γ̇(r) = −r ∂

∂r

(
v
r

)

is simply estimated from the derivative of the quadratic
fits of the velocity profiles of Fig. 3. The resulting local
flow curves σ(r) vs γ̇(r) are compared to the downward
sweep of Fig. 2(c) in Fig. 4(c). For the highest shear
rates, the local data collapse rather well on the global
flow curve. This indicates that for γ̇ & 200 s−1, the ma-
terial becomes fully fluid-like almost instantly and that
no time-dependent phenomena further occur. For smaller
shear rates, the local flow curves reveal two interesting
features: (i) the existence of a “forbidden” range of local
shear rates since γ̇(r) . 60 s−1 is never observed and
(ii) the relevance of time-dependent, history-dependent,
or metastable phenomena since the local shear stress for
t = 30–40 s is significantly smaller than the shear stress
recorded during the downward sweep of Fig. 2(c). Fi-
nally, for shear-localized velocity profiles, γ̇(r) covers the
range 60–125 s−1.

In the next paragraph, we shall see that shear local-
ization as revealed in Fig. 3 is only transient so that the
non-standard scenario shown in Fig. 4(b) and (c) is not
so surprising. In any case, it is important to stress the
fact that, if the velocity measurements had been stopped
after a few minutes, shear localization could have been
wrongly interpreted as the steady-state for yielding in
this SGM.
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Long-time flow behaviour

As shown in Fig. 5, the long-time behaviour of our
sheared samples is not shear localization. A complex
spatio-temporal scenario rather develops on time scales
ranging from a few minutes to several hours depending
on the applied shear rate. As in Ref. [54], we propose to
distinguish three different regimes in the temporal evo-
lution of the flow.

In a first step called regime I (see Fig. 5(a) and (b)),
velocity profiles are seen to evolve from shear localization
towards plug-like flow with strong wall slip within about
5 min for γ̇ = 110 s−1. Indeed, the arrested region close
to the stator “detaches” from the fixed wall and expands
across the gap, which leads to a velocity profile that is
flat (and referred to as “plug-like” in the following) over
most of the cell except for two small sheared regions of
width ≃ 0.15 mm at both walls. At the same time, di-
rect observations of the sample indicate that the sample
rotates as a solid body and presents large heterogeneities
of typical size 1 cm with fracture-like streaks. At the
end of regime I, the velocity profiles are symmetrical and
the solid material in the center rotates at roughly v0/2,
where v0 is the rotor velocity.

In regime II (see Fig. 5(c) and (d)), the velocity pro-
files oscillate within a few seconds between the plug-like
profile described above and a homogeneous Newtonian-
like velocity profile with much smaller wall slip (that we
shall call a “linear” velocity profile below). This is clearly
evidenced on the spatiotemporal diagram of v(r, t) in
Fig. 6(B2) and on the velocity signals v(r0, t) shown in
Fig. 7(b) for two different positions r0 in the gap. More-
over, movies of the sheared samples show that the solid
material breaks up into smaller pieces surrounded by flu-
idized zones in both the azimuthal and vertical directions
[59]. Simultaneous observations and velocity measure-
ments also reveal that linear profiles are recorded when-
ever a homogeneous fluidized region passes in front of the
USV transducer whereas plug-like profiles correspond to
solid pieces floating in the sample [54].

Therefore, the temporal oscillations of the velocity
profiles are simply a consequence of the breaking-up of
the sample into a very heterogeneous pattern of smaller
blocks that rotate as solid bodies within the fluidized
material. Since the time required for recording a single
velocity profile is much smaller than the rotation period
of the solid blocks, the proportion Φ(t) of plug-like flow
profiles recorded during a given time window centered
around time t can be directly interpreted as the propor-
tion of solid pieces within the sample. Yet, this obviously
assumes that the time evolution is the same all along the
vertical direction, which is not truly the case. In partic-
ular, it is often observed that the top and bottom of the
Couette cell get fluidized more rapidly than the center of
the cell where our velocity measurements are performed.

This can most probably be attributed to end effects and,
in the absence of any two-dimensional information on the
velocity field, we shall neglect the dependence of the flow
along the vertical direction. In practice, we discriminate
between “plug-like” and “linear” profiles by monitoring
the local shear rate in the middle of the gap: a velocity
profile is called plug-like when γ̇(r = 0.5) < γ̇/2. Φ(t)
is then defined as the fraction of plug-like profiles over a
time window centered at t and of duration ranging from
10 to 50 s depending on the applied shear rate.

In most cases, Φ(t) decreases slowly throughout regime
II, which we interpret as an erosion of the solid pieces by
the fluidized material through viscous stresses. This is
directly confirmed by optical imaging that shows a simul-
taneous decrease of the average size of the solid blocks
[59], although we were not able to extract more quantita-
tive information about the evolution of solid content due
to the low contrast of the images. In the case of Fig. 5,
the erosion process takes about 400 s. Figure 6(B) gath-
ers the full data set for γ̇ = 110 s−1 by showing the shear
stress response σ(t) recorded by the rheometer, a spa-
tiotemporal diagram of the velocity profiles v(r, t), and
Φ(t). In particular, Fig. 6(B2) reveals that the temporal
variations of the local velocity get slower and slower as
Φ(t) decreases and progressively give way to a homoge-
neous stationary flow, which corroborates our picture of
solid blocks that get smaller and smaller due to erosion.
Note that such erosion mostly occurs in the azimuthal
and vertical directions since velocity profiles indicate that
the radial size of the solid pieces remains comparable to
the gap width all along regime II.

Regime II ends when the sample is fully fluidized and
only linear velocity profiles are recorded (Φ = 0). For
longer times, the sample remains fluid and no shear lo-
calization is observed in the steady state called regime
III (see Fig. 5(e) and (f)). Slip velocities are always very
small in regime III.

In summary, regime I corresponds to a transition from
shear localization to plug-like flow at v0/2. In regime
II, the solid region that occupies a large part of the gap
breaks up into solid blocks that get slowly eroded. In
regime III, the sample has finally reached its steady-state
characterized by almost linear velocity profiles with neg-
ligible wall slip.

Influence of the applied shear rate

An important issue concerns the robustness of the frag-
mentation and erosion scenario described above. Here,
we explore the influence of the applied shear rate. Fig-
ure 6 shows the results obtained for γ̇ = 100, 110, and
120 s−1. In all cases, regimes I, II, and III can always
be found and are indicated using dashed lines. The most
striking effect of a rather small increase of γ̇ is the very
strong speeding up of the whole process. While it takes
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about an hour to fully fluidize the sample for γ̇ = 100 s−1,
an almost homogeneous flow is recovered within about
2 min for γ̇ = 120 s−1. We shall discuss this feature in
more details in Section .

Moreover, the stress response σ(t) may be analyzed in
view of the local measurements. Indeed, regime I seems
to be associated with rather slow stress variations with
large amplitudes of about 2 Pa. This is most clearly seen
in Fig. 6(B1) and (C1), although no systematic behaviour
of σ(t) can be extracted. On the other hand, in regime
II, σ(t) always fluctuates much more rapidly and with
a much smaller amplitude around an average value that
slowly decreases. We presume that these noisy features
in σ(t) are the signature of the local fragmentation and
erosion process. However, due to the highly heteroge-
neous nature of the flow in regime II, most of the local
features average out in the global stress response, which
therefore presents only small fluctuations around a mean
value close to the yield stress σy = 49 ± 2 Pa. This is
shown in more detail in Fig. 7 where no clear correlation
between the stress response and the local velocity can
be detected. Finally, when the steady state is reached
in regime III, the shear stress presents a constant value
with negligible fluctuations.

Influence of the microsphere concentration

The fact that our samples contain glass microspheres
in a rather large amount raises legitimate questions about
the influence of such seeding particles on our results. To
investigate the influence of the microsphere concentra-
tion, experiments were repeated with a smaller amount
of hollow glass spheres of 0.3 wt. %. Figures 8, 9, and 10
show that the flow behaviour unveiled above is also ob-
served for 0.3 wt. % microspheres, as reported in Ref. [54]
where only one applied shear rate (γ̇ = 17 s−1) was in-
vestigated. In particular, Figs. 5 and 8 are strikingly
similar. The only differences lie (i) in the lower contrast
of the images when only 0.3 wt. % microspheres are used
and (ii) slightly larger slip velocities in the case of the
lower microsphere concentration.

The comparison between Figs. 6 and 9 also proves
the robustness of the fragmentation and erosion scenario.
Stress responses display broadly the same features (ex-
cept for the highest applied shear rate in Fig. 9 for which
an increasing σ(t) was recorded). Both the qualitative
evolutions of v(r, t) and of Φ(t) do not seem to depend
on the microsphere concentration.

However, the values of the shear rate at which this
complex yielding behaviour is observed are noticeably
different. Indeed, for 1 wt. % microspheres, the frag-
mentation and erosion process is observed for γ̇ ≃ 85–
250 s−1 whereas this range is γ̇ ≃ 15–65 s−1 for 0.3 wt. %
microspheres. This remarkable effect of the microsphere
concentration is further discussed in the next Section.

Moreover, as revealed by Fig. 10 for a Laponite suspen-
sion seeded with 0.3 wt. % microspheres and sheared at
γ̇ = 29 s−1, oscillations may be detected in the stress
response with the same period as the velocity oscilla-
tions. Although the relative stress fluctuations remain
small, such a correlation hints at a less heterogeneous
flow pattern and possibly more collective fragmentation
and erosion processes.

DISCUSSION AND MODEL

Comparison with other works

The data presented in this paper show that the frag-
mentation and erosion scenario first reported in Ref. [54]
is found over a large range of shear rates and is robust
against a change of microsphere concentration. To our
knowledge, only two other works on SGM close to yield-
ing may have reported behaviours similar to the one pre-
sented here. First, intermittent jammed states were ob-
served together with the occurence of strong wall slip in
a glassy colloidal star polymer using NMR velocimetry
[21]. Second, more recently, oscillating velocities were
reported in 3 wt. % Laponite samples under low shear
rates [53]. In the latter case, the two extreme velocity
profiles were reconstructed through pointwise DLS mea-
surements. Figure 4 in Ref. [53] is broadly consistent
with our observations, e.g., with our Figs. 5(c) and 8(c).
Although the oscillating velocity profiles were interpreted
in terms of a stick-slip instability by the authors, we be-
lieve that this behaviour may actually be due to fragmen-
tation and fluidization as described here. Unfortunately,
in Ref. [53], the evolution of the sample on very long
time scales was not investigated and optical imaging was
not possible since the sample did not contain any seeding
particles and was thus perfectly transparent [60].

Characteristic time scale for erosion

To further discuss these results, we extracted a char-
acteristic time τ for the erosion process defined as the
time it takes for Φ(t) to relax from 0.9 to 0.1 during
regime II (see also the solid lines in Figs. 6 and 9). In
Fig. 11(a), this characteristic time is plotted as a function
of the applied shear rate for the two microsphere concen-
trations investigated here. It clearly appears that τ varies
by more than three orders of magnitude within a rather
small range of shear rates of order 20 s−1. The time scale
for erosion seems to diverge for shear rates smaller than
γ̇⋆ ≃ 85 s−1 for 1 wt. % microspheres and γ̇⋆ ≃ 15 s−1 for
0.3 wt. % microspheres. In fact, for γ̇ . γ̇⋆, only plug-like
flow profiles were observed over the longest experimen-
tal waiting times of about 105 s, so that fragmentation
actually never occured. For the largest shear rates, the
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material becomes fluid within seconds and, due to our
limited time resolution of about 1 s per velocity profile,
relaxation times shorter than a few seconds cannot be
accessed.

The large scatter of these data may be attributed to
poor reproducibility of the yielding behaviour. Indeed,
experiments performed on two different samples from the
same batch at the same shear rate may yield estimates for
τ that differ by almost a decade. Uncertainty also arises
from the difficulty in precisely locating the beginning and
the end of regime II. As seen for instance in Figs. 6(A)
and 9(B), Φ(t) may start to decrease and go back to Φ =
1 within a few minutes so that fragmentation seems to
begins but soon stalls before starting again. Figure 6(C)
also shows that very small solid pieces may persist for
very long times even though Φ(t) drops to values of order
0.2 in less than 10 s. Such behaviours, which could also
be ascribed to spatiotemporal heterogeneities of the flow
in the vertical direction, lead to large error bars on τ .

Still, the very steep decrease of τ for γ̇ & γ̇⋆ prompts us
to model the experimental data by the phenomenological
law:

τ = A(γ̇ − γ̇⋆)−n , (4)

where n is some characteristic positive exponent. Due
to the large spread of the data, fits to equation (4) with
three free parameters do not yield reliable results. How-
ever, forcing the value γ̇⋆ = 85 s−1 and excluding the
most deviant data points leads to a satisfactory fit with
n = 2.1 and A = 2.2 105 for 1 wt. % microspheres (see
solid line in Fig. 11(a)). Note that when γ̇⋆ is varied
from 75 to 95 s−1, the exponent n varies from 2.5 to 1.5.
Therefore, in order to account for the large experimen-
tal scatter, we shall conclude that γ̇⋆ = 85 ± 10 s−1 and
n = 2.1 ± 0.5 provide a good modelling of the 1 wt. %
microsphere data.

In Fig. 11(b), τ is plotted in logarithmic scales against
γ̇ − γ̇⋆ using γ̇⋆ = 85 s−1 for 1 wt. % microspheres and
γ̇⋆ = 14 s−1 for 0.3 wt. % microspheres respectively. The
rather good collapse of both data sets allows us to con-
clude that n and A do not significantly depend on the
microsphere concentration while the two values for γ̇⋆

are clearly different.

A simple model for erosion

In order to model the erosion process, we suppose that
the sample at the beginning of regime II is characterized
by some distribution of solid fragments of initial size R0.
To account for the progressive fragmentation of the sam-
ple at the end of regime I, each fragment is assumed to
start being eroded at an initial time t0 characterized by
a given probability distribution.

Erosion results from viscous friction at the surface of
the solid pieces. Since the solid pieces have a yield stress

σy, the viscous stress available for erosion is ηf γ̇ − σy,
where ηf is the viscosity of the surrounding fluid, here,
the fluidized Laponite suspension. Rewriting this stress
as ηf (γ̇ − γ̇⋆), with γ̇⋆ = σy/ηf , shows that the charac-
teristic time scale for erosion is 1/(γ̇ − γ̇⋆).

We then introduce the size rb of the “elementary brick”
that detaches from solid fragments due to erosion. Since
erosion occurs at the surface, we expect the number of
bricks Nv = R(t)3/r3

b in a fragment of size R(t) at time
t to be linked to the number of bricks at the surface
Ns = R(t)2/r2

b by:

dNv

dt
∝ −(γ̇ − γ̇⋆)Ns . (5)

This simple dimensional argument leads to:

dR

dt
= −(γ̇ − γ̇⋆)rb , (6)

up to some dimensionless multiplicative constant of order
unity which we may incorporate into rb. Note that the
same equation for R(t) would be found if one rather con-
siders a two-dimensional problem where the solid blocks
are discs of constant thickness, which may be more rele-
vant for the present experiments.

Finally, we compute Φ(t) from the distribution of frag-
ment sizes {Rj(t)}j=1...N at time t as:

Φ(t) =

∑N
j=1 Rj(t)
∑N

j=1 Rj0

, (7)

where N is the total number of fragments and Rj0 is the
initial size of fragment number j whose erosion starts at
time tj0. From Eq. (6), one has:

Rj(t) =






Rj0 if t ≤ tj0
0 for t ≥ tj0 + τj

Rj0 − rb(γ̇ − γ̇⋆)(t − tj0) otherwise.
(8)

where τj =
Rj0

rb

1
γ̇−γ̇⋆ is the total erosion time for frag-

ment number j.
The definition of Φ(t) in Eq. (7) was chosen in order

to be consistent with the experimental measurements of
Φ(t) presented in Section . Indeed, these measurements,
based on the proportion of plug-like velocity profiles mea-
sured within a given time window, correspond to one-
dimensional measurements and should be related to the
linear size Rj(t) of the solid pieces. Furthermore, al-
though the exact shape of Φ(t) depends on the details of
the distributions chosen for R0 and t0, it is clear from
Eq. (8) that the characteristic time scale for Φ(t) should
be of the order of:

τ ≃ R0

rb

1

γ̇ − γ̇⋆
, (9)

where R0 is the average initial fragment size.
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Comparing with Eq. (4), our simple model predicts
a n = 1 scaling instead of the experimental exponent
n = 2.1±0.5. This is most probably due to the crude as-
sumptions (i) that the distributions for R0 and t0 (in par-
ticular R0) do not depend on the applied shear rate, (ii)
that erosion is governed by the detachment of elementary
bricks whose size is independent of both time and shear
rate, and (iii) that there is a direct link between the yield
stress of the bulk material at rest and the critical shear
rate γ̇⋆. Still, the model predicts a rather good order of
magnitude for τ . Indeed, if rb is estimated from the elas-
tic modulus G0 as rb = (kBT/G0)

1/3 with G0 = 500 Pa,
one finds rb ≃ 40 nm, which roughly corresponds to the
diameter of the Laponite discs. Taking R0 ∼ 1 cm for
the initial size of the fragments as observed in the exper-
iments and γ̇ − γ̇⋆ = 10 s−1, Eq.(9) leads to τ ∼ 104 s in
statisfactory agreement with the measurements reported
in Fig. 11.

In order to illustrate our simple model, we chose to
focus on the case where Rj0 is fixed to a given value
R0 for all solid fragments and tj0 is characterized by a
Gaussian distribution of mean t0 and standard deviation
δt0/

√
2. In this case, for N ≫ 1, Eqs. (7) and (8) become

respectively:

Φ(t) =

∫ ∞

−∞

R(t, t0)

R0

p(t0) dt0 , (10)

where p(t0) = exp(−(t0 − t0)
2/δt20)/(

√
πδt0) is the prob-

ability density function of the initial time t0, and

R(t, t0)

R0

=





0 if t0 ≤ t − τ
1 − t−t0

τ if t − τ < t0 < t
1 if t0 ≥ t ,

(11)

where we have noted τ = R0

rb

1
γ̇−γ̇⋆ the erosion time for

a single fragment. Inserting Eq. (11) into Eq. (10) and
using the dimensionless time t̃ = (t− t0)/δt0 leads to the
following analytical expression:

Φ(t̃) =
1 − erf(t̃ − α)

2
+

∫ et

et−α

(
1 − t̃ − y

α

)
e−y2

√
π

dy ,

(12)
where we have defined the ratio of the erosion time to the
standard deviation of t0 as α = τ/δt0 and “erf” stands

for the error function: erf(x) = 2√
π

∫ x

0
e−y2

dy.

Figure 12 shows the predicted Φ(t̃) for various values
of α. In the limit α ≪ 1, where the distribution of initial
times is very wide compared to the erosion time, Eq. (12)
reduces to Φ(t̃) = (1 − erf(t̃))/2 as shown by the red
dashed line. On the other hand, the opposite limit α ≫ 1
corresponds to very slow erosion so that the initial times
can all be considered as equal to t0 and the dynamics of
Φ(t) is simply that of a single fragment, i.e. a linearly
decreasing function (see black dashed line).

Finally, a comparison between the predictions of
Eq. (12) and experimental Φ(t) data taken from Figs. 6

and 9 is shown in Fig. 13. In the model, the average
time t1 is directly estimated from the experimental data
by looking for the time at which regime II begins. For a
given microsphere concentration, good agreement could
be found for two different applied shear rates by using
the same standard deviation δt0 and varying only the
erosion time τ . The transition from linear to curved
shapes for Φ(t) as the erosion time scale is decreased,
i.e. as the shear rate is increased, constitutes the most
prominent feature of our simple approach. In spite of
large experimental scatter, this feature is noticeable at
least in Figs. 13(a) and (d). However, as already noted,
the model is not compatible with the strong divergence
of τ as 1/(γ̇ − γ̇⋆)2. Within the erosion model proposed
above, the experimental scaling thus points to an addi-
tional dependence of the initial fragment size R0 on γ̇ as
1/(γ̇ − γ̇⋆).

Open questions

The main open issue raised by our results concerns the
mechanism for fragmentation and its relation to bound-
ary conditions. As reported in Ref. [54], fragmentation is
only observed with “smooth” surfaces and must be some-
how linked to boundary conditions. We proposed to ex-
plain the observed fragmentation by temporary sticking
events localized at specific sites where the yield stress
may be overcome, giving rise to a fluidized region sepa-
rating solid pieces [54]. Note that such events are highly
probable because the wall roughness (about 15 nm for our
“smooth” cell) is comparable to the size of the Laponite
platelets.

However, the fact that the characteristic shear rate γ̇⋆

strongly depends on the amount of seeding microspheres
calls for a more subtle interpretation. One may even
wonder whether the fragmentation and erosion scenario
would still be observed if the microsphere concentration
was further reduced or if the Laponite suspension did not
contain any microsphere at all. The observation of oscil-
latory behaviours in pure Laponite [53, 60] tends to sup-
port the possibility of our scenario even in the absence of
any seeding particle. In our experiments, we lowered the
microsphere concentration down to 0.1 wt. %, which still
allowed us to measure velocity profiles with reasonable
accuracy. Fragmentation and erosion could be observed
in our “smooth” cell only when wall slip was promoted
in an even better way by lubricating the cell walls using
vacuum grease (data not shown). We also tried to seed
our Laponite suspensions with polystyrene (rather than
glass) microspheres. This led to the same observation
that the fragmentation and erosion scenario needed very
slippery boundary conditions to develop.

Therefore, we may speculate that surface roughness
is not the only relevant control parameter but that
microspheres–Laponite and/or microspheres–surface in-
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teractions may also play a significant role and influence
the values of γ̇⋆ and τ . However, a systematic study of
these effects, as well as those of sample age and Laponite
concentration, still remains to be performed.

Finally, other important open questions concern (i) the
link between the critical shear rate γ̇⋆ for erosion and
the characteristic shear rate γ̇c involved in shear local-
ization at early times or in the absence of wall slip and
(ii) the possible effects of confinement on the observed
shear-induced fragmentation.

CONCLUSION

In this work, we have investigated in details the origi-
nal yielding scenario of Laponite suspensions seeded with
glass microspheres first reported in Ref. [54] and trig-
gered by slippery boundary conditions. Such a scenario
involves shear localization at short times followed by a
slow evolution towards plug-like flow (regime I). Then,
over much longer time scales, fragmentation and erosion
are observed provided the applied shear rate is larger
than some critical value γ̇⋆. Fragmentation leads to ap-
parent oscillations in the velocity profiles (regime II). Ex-
cept for small noisy and/or oscillatory features in the
stress response, the very large local fluctuations of the
flow field have no significant impact on the global rheo-
logical response. Depending on the shear rate, a homoge-
neous flow (regime III) is recovered within a few minutes
up to several hours. This scenario was reported for a
wide range of shear rates and for two different micro-
sphere concentrations. The characteristic time scale for
erosion roughly follows a 1/(γ̇ − γ̇⋆)2 power law, where
γ̇⋆ depends on the microsphere concentration. A sim-
ple model was introduced to qualitatively reproduce the
erosion process. Yet, a better understanding and charac-
terization of the fragmentation and erosion phenomena
in such a soft glassy material are still needed both from
the experimental and from the theoretical sides. These
results also prompt us to look for similar yielding be-
haviours in other materials under slippery conditions and
on long time scales.
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FIG. 1: Sketch of the experimental setup for combined rhe-
ological and velocity profile measurements. The Couette cell
is shown in gray.
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FIG. 2: Rheology of a 3 wt. % Laponite suspension seeded
with 1 wt. % microspheres. Viscoelastic moduli G′ (�) and
G′′ (•) as a function of (a) oscillation frequency for a fixed
shear stress amplitude of 0.5 Pa and (b) shear stress amplitude
for a fixed frequency of 1 Hz. (c) Flow curve σ vs γ̇ obtained
by sweeping up (⊲) the shear rate for 200 s and down (⊳) for
200 s. All measurements are performed on fresh samples from
the same batch using the protocol described in Section .
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FIG. 3: Velocity profiles recorded during the early stage of
our experiments on a 3 wt. % Laponite suspension seeded
with 1 wt. % microspheres for imposed shear rates γ̇ = (a)
1 (green), 5 (blue), 11 (red), 20 (black), (b) 30 (green), 40
(blue), 50 (red), 60 (black), (c) 70 (green), 80 (blue), 100
(red), 125 (black), (d) 150 (green), 200 (blue), 300 (red), and
500 s−1 (black). r is the radial distance from the rotor. The
velocity profiles were averaged over t = 30–40 s. The solid
lines show quadratic fits of the data performed over the flow-
ing region.

10
0

10
1

10
2

10
3

40

45

50

55

60

σ 
[P

a]

shear rate [s−1]

(c)

0 50 100 150 200
0

50

100

150

200

γ lo
c [s

−
1 ]

.

γ
eff

 [s−1]
.

(b)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

r c [m
m

]

γ
eff

 [s−1]
.

(a)
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γ̇eff. (c) Local rheological flow curves σ(r) vs γ̇(r) (colors)
together with the global rheological data recorded during the
downward sweep shown in Fig. 2 (⊳). The colors correspond
to the various velocity profiles of Fig. 3 (see text). The dotted
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FIG. 5: Long-time behaviour of a 3 wt. % Laponite suspen-
sion seeded with 1 wt. % microspheres for γ̇ = 110 s−1. Ve-
locity profiles taken at times (a) t = 1 (�), 185 (◦), 222 (◭),
and 302 s (⊲) in regime I, (b) t = 478 (△) and 493 s (H) in
regime II, and (c) t = 1005 s (�) in regime III. The velocity
profiles v(r) have been rescaled by the rotor velocity v0. The
right column shows pictures of the sample typical of the three
regimes. The height of each picture is 30 mm.
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The solid lines in (3) are exponential relaxations shown to
guide the eye across regime II.
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FIG. 8: Long-time behaviour of a 3 wt. % Laponite suspension
seeded with 0.3 wt. % microspheres for γ̇ = 39 s−1. Velocity
profiles taken at times (a) t = 14 (�), 178 (◦), 955 (◭), and
1399 s (⊲) in regime I, (b) t = 1933 (△) and 1974 s (H) in
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right column shows pictures of the sample typical of the three
regimes. The height of each picture is 30 mm.
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