
Checkpointing strategies for parallel jobs

Marin Bougeret, Henri Casanova, Mikael Rabie, Yves Robert, Frédéric Vivien

To cite this version:

Marin Bougeret, Henri Casanova, Mikael Rabie, Yves Robert, Frédéric Vivien. Checkpoint-
ing strategies for parallel jobs. [Research Report] RR-7520, INRIA. 2011, pp.45. <inria-
00560582v3>

HAL Id: inria-00560582

https://hal.inria.fr/inria-00560582v3

Submitted on 22 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00560582v3

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
75

20
--

FR
+E

N
G

Distributed and High Performance Computing

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Checkpointing strategies for parallel jobs

Marin Bougeret — Henri Casanova — Mikael Rabie — Yves Robert — Frédéric Vivien

N° 7520

April 2011

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Checkpointing strategies for parallel jobs

Marin Bougeret∗ , Henri Casanova† , Mikael Rabie∗ , Yves
Robert∗‡ , Frédéric Vivien§

Theme : Distributed and High Performance Computing
Équipe-Projet GRAAL

Rapport de recherche n° 7520 — April 2011 — 53 pages

Abstract: This work provides an analysis of checkpointing strategies for
minimizing expected job execution times in an environment that is subject to
processor failures. In the case of both sequential and parallel jobs, we give the
optimal solution for exponentially distributed failure inter-arrival times, which,
to the best of our knowledge, is the first rigorous proof that periodic check-
pointing is optimal. For non-exponentially distributed failures, we develop a
dynamic programming algorithm to maximize the amount of work completed
before the next failure, which provides a good heuristic for minimizing the ex-
pected execution time. Our work considers various models of job parallelism
and of parallel checkpointing overhead. We first perform extensive simulation
experiments assuming that failures follow Exponential or Weibull distributions,
the latter being more representative of real-world systems. The obtained results
not only corroborate our theoretical findings, but also show that our dynamic
programming algorithm significantly outperforms previously proposed solutions
in the case of Weibull failures. We then discuss results from simulation experi-
ments that use failure logs from production clusters. These results confirm that
our dynamic programming algorithm significantly outperforms existing solutions
for real-world clusters.

Key-words: Fault-tolerance, checkpointing, sequential job, parallel job, Weibull

∗ LIP, Ecole Normale Supérieure de Lyon
† Univ. of Hawai‘i at Mānoa, Honolulu, USA
‡ Yves Robert is with the Institut Universitaire de France. This work was supported in part

by the ANR StochaGrid and RESCUE projects, and by the INRIA-Illinois Joint Laboratory
for Petascale Computing.
§ INRIA, Lyon, France

Stratégies de checkpoint pour applications
parallèles

Résumé : Nous présentons dans ce travail une analyse rigoureuse des straté-
gies de checkpoint, pour les applications séquentielles et parallèles. L’objectif est
de minimiser l’espérance du temps de complétion d’une application s’exécutant
sur des processeurs pouvant être de victimes de pannes. Dans le cas séquen-
tiel, une résolution exacte est proposée lorsque les intervalles inter-pannes sont
distribués selon une loi exponentielle. Il semble que ce résultat soit la première
preuve rigoureuse de l’optimalité des stratégies périodiques de checkpoint dans
ce cadre. Dans le cas général (c’est-à-dire pour des lois quelconques), nous four-
nissons une programmation dynamique permettant des calculs optimaux, à un
quantum de temps fixé près. Dans le cas des applications parallèles, nous éten-
dons le résultat exact (pour le cas exponentiel), et ce pour différents modèles
d’applications et de coûts de checkpoints. Pour le cas général, nous proposons
une deuxième programmation dynamique (plus rapide) dont l’objectif est de
maximiser l’espérance du travail fait avant la prochaine panne, qui s’avère
fournir de bonnes approximations pour le problème initial. Nous validons nos ré-
sultats grâce à de nombreuses simulations, réalisées pour des lois inter-pannes de
distribution exponentielles et de Weibull (cette dernière distribution étant selon
de nombreuses études plus appropriée pour modéliser des durées inter-pannes).
Ces simulations confirment nos résultats théoriques. De plus, ils apparâıt que
notre algorithme de programmation dynamique fournit de bien meilleures per-
formances que les solutions existantes pour le cas des lois de Weibull.

Mots-clés : Tolérance aux pannes, checkpoint, tâche séquentielle, tâche par-
allèle, Weibull

Checkpointing strategies for parallel jobs 3

1 Introduction

Resilience is a key challenge for post-petascale high-performance computing
(HPC) systems [9, 21] since failures are increasingly likely to occur during the ex-
ecution of parallel jobs that enroll increasingly large numbers of processors. For
instance, the 45,208-processor Jaguar platform is reported to experience on the
order of 1 failure per day [18, 2]. Faults that cannot be automatically detected
and corrected in hardware lead to failures. In this case, rollback recovery is
used to resume job execution from a previously saved fault-free execution state,
or checkpoint. Rollback recovery implies frequent (usually periodic) checkpoint-
ing events at which the job state is saved to resilient storage. More frequent
checkpoints lead to higher overhead during fault-free execution, but less frequent
checkpoints lead to a larger loss when a failure occurs. The design of efficient
checkpointing strategies, which specify when checkpoints should be taken, is thus
key to high performance.

We study the problem of finding a checkpointing strategy that minimizes
the expectation of a job’s execution time, or expected makespan. In this con-
text, our novel contributions are as follows. For sequential jobs, we provide the
optimal solution for exponential failures and an accurate dynamic programming
algorithm for general failures. The optimal solution for exponential failures,
i.e., periodic checkpointing, is widely known in the “folklore” but, to the best of
our knowledge, we provide the first rigorous proof. Our dynamic programming
algorithm provides the first accurate solution of the expected makespan mini-
mization problem with Weibull failures, which are representative of the behavior
of real-world platforms [10, 22, 17]. For parallel jobs, we consider a variety of
execution scenarios with different models of job parallelism (embarrassingly par-
allel jobs, jobs that follow Amdahl’s law, and typical numerical kernels such as
matrix product or LU decomposition), and with different models of the over-
head of checkpointing a parallel job (which may or may not depend on the total
number of processors in use). In the case of Exponential failures we provide the
optimal solution. In the case of general failures, since minimizing the expected
makespan is computationally difficult, we instead provide a dynamic program-
ming algorithm to maximize the amount of work successfully completed before
the next failure. This approach turns out to provide a good heuristic solution
to the expected makespan minimization problem. In particular, it significantly
outperforms previously proposed solutions in the case of Weibull failures.

Sections 2 and 3 give theoretical results for sequential and parallel jobs, re-
spectively. Section 4 presents our simulation methodology. Sections 5 and 6
discuss simulation results when using synthetic failure distributions and when
using real-world failure data, respectively. Section 7 reviews related work. Fi-
nally, Section 8 concludes the paper with a summary of findings and a discussion
of future directions.

2 Sequential jobs

2.1 Problem statement

We consider an application, or job, that executes on one processor. We use the
term processor to indicate any individually scheduled compute resource (a core,

RR n° 7520

Checkpointing strategies for parallel jobs 4

a multi-core processor, a cluster node) so that our work is agnostic to the granu-
larity of the platform. The job must completeW units of (divisible) work, which
can be split arbitrarily into separate chunks. The job state is checkpointed after
the execution of every chunk. Defining the sequence of chunk sizes is therefore
equivalent to defining the checkpointing dates. We use C to denote the time
needed to perform a checkpoint. The processor is subject to failures, each caus-
ing a downtime period, of duration D, followed by a recovery period, of duration
R. The downtime accounts for software rejuvenation (i.e., rebooting [13, 7]) or
for the replacement of the failed processor by a spare. Regardless, we assume
that after a downtime the processor is fault-free and begins a new lifetime at the
beginning of the recovery period. This period corresponds to the time needed to
restore the last checkpoint. Finally, we assume that failures can happen during
recovery or checkpointing, but not during a downtime (otherwise, the downtime
period could be considered part of the recovery period).

We study two optimization problems:
• Makespan: Minimize the job’s expected makespan;
• NextFailure: Maximize the expected amount of work completed before

the next failure.
Solving Makespan is our main goal. NextFailure amounts to optimizing
the makespan on a “failure-by-failure” basis, selecting the next chunk size as if
the next failure were to imply termination of the execution. Intuitively, solving
NextFailure should lead to a good approximation of the solution to Make-
span, at least for large job sizes W. Therefore, we use the solution of Next-
Failure in cases for which we are unable to solve Makespan directly. We give
formal definitions for both problems in the next section.

2.2 Formal problem definitions

We consider the processor from time t0 onward. We do not assume that the
failure stochastic process is memoryless. Failures occur at times (tn)n≥1, with
tn = t0+

∑n
m=1Xm, where the random variables (Xm)m≥1 are iid (independent

and identically distributed). Given a current time t > t0, we define n(t) =
min{n|tn ≥ t}, so that Xn(t) corresponds to the inter-failure interval in which
t falls. We use Psuc(x|τ) to denote the probability that the processor does not
fail for the next x units of time, knowing that the last failure occurred τ units of
time ago. In other words, if X = Xn(t) denotes the current inter-arrival failure
interval,

Psuc(x|τ) = P(X ≥ τ + x | X ≥ τ) .

For both problems stated in the previous section, a solution is fully defined
by a function f(ω|τ) that returns the size of the next chunk to execute given the
amount of work ω that has not yet been executed successfully (f(ω|τ) ≤ ω ≤ W)
and the amount of time τ elapsed since the last failure. f is invoked at each
decision point, i.e., after each checkpoint or recovery. Our goal is to determine a
function f that optimally solves the considered problem. Assuming a unit-speed
processor without loss of generality, the time needed to execute a chunk of size
ω is ω + C if no failure occurs.

Definition of Makespan– For a given amount of work ω, a time elapsed since
the last failure τ , and a function f , let ω1 = f(ω|τ) denote the size of the first
chunk, and let T (ω|τ) be the random variable that quantifies the time needed

RR n° 7520

Checkpointing strategies for parallel jobs 5

for successfully executing ω units of work. We can write the following recursion:

T (0|τ) = 0
T (ω|τ) =

ω1 + C + T (ω − ω1|τ + ω1 + C)
if the processor does not fail during
the next ω1 + C units of time,

Twasted(ω1 + C|τ) + T (ω|R)
otherwise.

(1)

The two cases above are explained as follows:
• If the processor does not fail during the execution and checkpointing of

the first chunk (i.e., for ω1 + C time units), there remains to execute a
work of size ω − ω1 and the time since the last failure is τ + ω1 + C;

• If the processor fails before successfully completing the first chunk and its
checkpoint, then some additional delays are incurred, as captured by the
variable Twasted(ω1 +C|τ). The time wasted corresponds to the execution
up to the failure, a downtime, and a recovery during which a failure may
happen. We compute Twasted in the next section. Regardless, once a
successful recovery has been completed, there still remain ω units of work
to execute, and the time since the last failure is simply R.

We define Makespan formally as: find f that minimizes E(T (W|τ0)), where
E(X) denotes the expectation of the random variable X, and τ0 the time elapsed
since the last failure before t0.

Definition of NextFailure– For a given amount of work ω, a time elapsed
since the last failure τ , and a function f , let ω1 = f(ω|τ) denote the size of the
first chunk, and let W (ω|τ) be the random variable that quantifies the amount
of work successfully executed before the next failure. We can write the following
recursion:

W (0|τ) = 0
W (ω|τ) =

ω1 +W (ω − ω1|τ + ω1 + C)
if the processor does not fail during
the next ω1 + C units of time,

0 otherwise.

(2)

This recursion is simpler than the one for Makespan because a failure during
the computation of the first chunk means that no work (i.e., no fraction of ω)
will have been successfully executed before the next failure. We define Next-
Failure formally as: find f that maximizes E(W (W|τ0)).

2.3 Solving Makespan

A challenge for solving Makespan is the computation of Twasted(ω1 +C|τ). We
rely on the following decomposition:

Twasted(ω1 + C|τ)=Tlost(ω1 + C|τ) + Trec , where

• Tlost(x|τ) is the amount of time spent computing before a failure, knowing
that the next failure occurs within the next x units of time, and that the
last failure has occurred τ units of time ago.

RR n° 7520

Checkpointing strategies for parallel jobs 6

• Trec is the amount of time needed by the system to recover from the failure
(accounting for the fact that other failures may occur during recovery).

Proposition 1. The Makespan problem is equivalent to finding a function f
minimizing the following quantity:

E(T (W|τ)) =
Psuc(ω1 + C|τ)

(
ω1+C +E(T (W−ω1|τ+ω1+ C))

)
+(1− Psuc(ω1 + C|τ))

(
E(Tlost(ω1 + C|τ))

+ E(Trec) + E(T (W|R))
) (3)

where ω1 = f(W|τ) and where E(Trec) is given by

E(Trec) = D +R+
1− Psuc(R|0)
Psuc(R|0)

(D + E(Tlost(R|0))).

Proof. Recall that Psuc(x|τ) denotes the probability of successfully computing
during x time units, knowing that the last failure occurred τ units of time ago.
Based on the recursion for T given in Equation 1, simply weighting the two
cases by their probabilities of occurrence leads to Equation 3.

We can write the following recursion for Trec:

Trec =

 D +R with probability Psuc(R|0),
D + Tlost(R|0) + Trec

with probability 1− Psuc(R, 0).

and compute E(Trec) in terms of E(Tlost(R|0)) by weighting the two cases by
their probabilities of occurrence.

2.3.1 Results for the Exponential distribution

In this section we assume that the failure inter-arrival times follow an Exponen-
tial distribution with parameter λ, i.e., each Xn = X has probability density
fX(t) = λe−λtdt and cumulative distribution FX(t) = 1−e−λt for all t ≥ 0. The
advantage of the Exponential distribution, exploited time and again in the lit-
erature, is its “memoryless” property: the time at which the next failure occurs
does not depend on the time elapsed since the last failure occurred. Therefore,
in this section, we simply write T (ω), Tlost(ω), and Psuc(ω) instead of T (ω|τ),
Tlost(ω|τ), and Psuc(ω|τ).

Lemma 1. With the Exponential distribution:

E(Tlost(ω)) =
1
λ
− ω

eλω − 1
and

E(Trec) = D +R+
1− e−λR

e−λR
(D+E(Tlost(R))).

Proof.
E(Tlost(ω)) =

R∞
0
xP(X = x|X < ω)dx

= 1
P(X<ω)

R ω
0
xfX(x)dx

= 1
1−e−λω ([−xe−λx]ω0 +

R ω
0
e−λx)

The formula for E(Trec) is obtained directly from Proposition 1 by replacing
Psuc(R|0) = Psuc(R) by e−λR.

RR n° 7520

Checkpointing strategies for parallel jobs 7

The memoryless property makes it possible to solve the Makespan problem
analytically:

Theorem 1. LetW be the amount of work to execute on a processor with failure
inter-arrival times that follow an Exponential distribution with parameter λ. Let
K0 = λW

1+L(−e−λC−1)
where L, the Lambert function, is defined as L(z)eL(z) = z.

Then the optimal strategy to minimize the expected makespan is to split W into
K∗ = max(1, bK0c) or K∗ = dK0e same-size chunks, whichever leads to the
smaller value. The optimal expectation of the makespan is:

E(T ∗(W)) = K∗
(
eλR

(
1
λ

+D

))(
eλ(W

K∗+C)−1
)
.

Proof. We first observe that all possible executions for a given deterministic
strategy f use the same sequence of chunk sizes. The only difference between two
different executions is the number of times each chunk is tentatively executed
before its successful completion. This is because the size of the first chunk,
ω1 = f(w|τ) = f(ω), does not depend upon τ (due to the memoryless property).
Either its first execution is successful or it fails. If it fails, then the optimal
solution consists in retrying a chunk of same size ω1 since there remains ω
units of work to be executed and ω1 does not depend on τ . Once a chunk of
size ω1 has been successfully completed, the next attempted chunk is of size
ω2 = f(W − ω1|τ) = f(W − ω1), which does not depend on τ , and for which
the same reasoning holds.

Given the above, all executions can be described as sequences of the form
ω

(`1)
1 ω

(`2)
2 . . . ω

(`k)
k . . . , where ω(`) means that a chunk of size ω was tentatively

executed ` times, the first ` − 1 tentatives being unsuccessful and the last one
being successful. Because each chunk size is successfully executed at least once,
the time to execute it is always bounded below by C, the time to take a check-
point. Say that the optimal strategy uses K successive chunk sizes, with K
to be determined. Any execution following this optimal strategy will have a
makespan at least as large as KC. Hence E(T ∗(W)), the expectation of the
makespan with the optimal strategy, is also greater than or equal to KC.

We first prove that, as might be expected, K is finite. Let us consider a
simple, non-optimal, strategy, defined by f(ω) = ω. In other words, this strategy
executes the whole work W as a single chunk, repeating its execution until it
succeeds. Let E(T id(W)) denote the expected makespan when this strategy is
used. Using Lemma 1, we have:
E(T id(W)) =
Psuc(W + C)(W + C)
+(1− Psuc(W + C))

(
E(Tlost(W + C))+E(Trec)+E(T id(W))

)
.

Given that Psuc(W + C) = e−λW+C , we obtain:

E(T id(W)) =W + C +
(

E(Tlost(W + C)) + E(Trec)
)1− e−λW+C

e−λW+C

This last expression shows that E(T id(W)) is finite, implying that E(T ∗(W)),
the expected makespan for the optimal strategy, is also finite. Since it is bounded
below by KC, we conclude that K is finite, meaning that the optimal solution
uses a bounded number of chunk sizes. In the optimal solution, the i-th chunk
size, 1 ≤ i ≤ K, is ωi = f∗(W −

∑i−1
j=1 ωj). From Proposition 1, we derive that:

RR n° 7520

Checkpointing strategies for parallel jobs 8

E(T ∗(W)) =
Psuc(ω1 + C) (ω1 + C + E(T ∗(W − ω1))
+(1− Psuc(ω1 + C)) (E(Tlost(ω1 + C)) + E(Trec) + E(T ∗(W)) .

To shorten notations, let us define ρ∗ = E(T ∗(W)). Then:

ρ∗ = ω1 +C + E(T ∗(W−ω1)) +
1− Psuc(ω1 + C)
Psuc(ω1 + C)

(E(Tlost(ω1 +C)) + E(Trec)).

We have 1−Psuc(ω1+C)
Psuc(ω1+C) = eλ(ω1+C) − 1 and, using Lemma 1, developing the

expression for ρ∗ leads to

ρ∗ =

KX
i=1

(ωi + C) +

KX
i=1

„„
1

λ
− ωi + C

eλ(ωi+C)−1
+E(Trec)

«
(eλ(ωi+C)−1)

«
Terms cancel out and the above simplifies into:

ρ∗ =
(

1
λ

+ E(Trec)
) K∑
i=1

(eλ(ωi+C) − 1).

Since eλ(ωi+C) is a convex function of ωi, ρ∗ is minimized when all the chunks
ωi have the same size WK , in which case ρ∗ = K(1

λ + E(Trec))(eλ(WK +C)−1). We
look for the value of K that minimizes ψ(K) = K(eλ(WK +C) − 1). We call K0

this value and, differentiating, we must solve ψ′(K0) = 0 where

ψ′(K0) = eλ(WK0
+C)

(
1− λW

K0

)
− 1. (4)

This equation can be rewritten as yey = −e−λC−1, where y = λW
K0
−1. The only

solution is y = L(−e−λC−1), where L is the Lambert function. Differentiating
again, we easily see that ψ′′ is always non-negative. The optimal value is thus
obtained by one of the two integers surrounding the zero of ψ′, which proves
the theorem.

Remark 1. Although periodic checkpoints have been widely used in the litera-
ture, Theorem 1 is, to the best of our knowledge, the first proof that the optimal
deterministic strategy uses a finite number of chunks and is periodic. In addi-
tion, as a consequence of Proposition 4.4.3 in [20], this strategy can be shown
to be optimal among all deterministic and non-deterministic strategies.

2.3.2 Results for arbitrary distributions

Solving the Makespan problem for arbitrary distributions is difficult because,
unlike in the memoryless case, there is no reason for the optimal solution to use
a single chunk size [23]. In fact, the optimal solution is very likely to use chunk
sizes that depend on additional information that becomes available during the
execution (i.e., failure occurrences to date). Using Proposition 1, we can write

E(T ∗(W|τ)) =

min
0<ω1≤W

0B@ Psuc(ω1 + C|τ)
“
ω1+C+E(T ∗(W−ω1|τ+ω1+C))

”
+(1− Psuc(ω1 + C|τ))×

(E(Tlost(ω1 + C|τ))+E(Trec)+E(T ∗(W|R))
RR n° 7520

Checkpointing strategies for parallel jobs 9

Algorithm 1: DPMakespan (x,b,y,τ)
if x = 0 then

return 0
if solution[x][b][y] = unknown then

best←∞
τ ← bτ + yu
for i = 1 to x do

exp succ ← first(DPMakespan(x− i, b, y + i+ C
u
|τ))

exp fail ← first(DPMakespan(x, 0, R
u
|τ))

cur ← Psuc(iu+ C|τ)(iu+ C + exp succ)

+(1− Psuc(iu+ C|τ))
“

E(Tlost(iu+ C|τ))

+ E(Trec) + exp fail
”

if cur < best then
best← cur; chunksize ← i

solution[x][b][y]← (best , chunksize)
return solution[x][b][y]

which can be solved via dynamic programming. We introduce a time quantum
u, meaning that all chunk sizes ωi are integer multiples of u. This restricts
the search for an optimal execution to a finite set of possible executions. The
trade-off is that a smaller value of u leads to a more accurate solution, but also
to a higher number of states in the algorithm, hence to a higher compute time.

Proposition 2. Using a time quantum u, and for any failure inter-arrival time
distribution, DPMakespan (Algorithm 1) computes an optimal solution to Ma-

kespan in time O(Wu
3
(1 + C

u)a), where a is an upper bound on the time needed
to compute E(Tlost(ω|t)), for any ω and t.

Proof. Our goal is to compute f(ω|τ), for any ω and τ values that can occur
during the execution of W work units. A first attempt would be to design an
algorithm A such that A(x, y) computes an optimal solution assuming that the
remaining work to process is ω = xu and the time since the last failure is τ = yu,
with x ∈ [|0, Wu |] and y ∈ [|0, δ|]. To bound δ, we observe that the maximum
possible elapsed time without failure occurs when (successfully) executing Wu
chunks of size u, leading to δ =

W
u (u+C)+τ

u . To avoid using an arbitrarily large
value τ , we instead introduce a boolean b which is equal to 1 only if a failure has
never occurred since the initial state (ω|τ). We now define an optimal solution
as DPMakespan(x, b, y, τ), where the remaining work is ω = xu and the last
failure occurred at time τ = bτ + yu, with x ∈ [|0, Wu |] and y ∈ [|0, Wu (1 + C

u)|].
Note that DPMakespan returns a couple formed by the optimal expectation,
and the corresponding optimal chunk size. All elements of array solution are
initialized to unknown and Trec can be computed using Proposition 1. Thus,
the size of the chunk f(ω|τ) is obtained by computing DPMakespan(ωu , 1, 0, τ).
The complexity result is immediate.

Algorithm 1 provides an approximation of the optimal solution to the Ma-
kespan problem. We evaluate this approximation experimentally in Section 5,
including a direct comparison with the optimal solution in the case of Exponen-
tial failures (in which case the optimal can be computed via Theorem 1).

RR n° 7520

Checkpointing strategies for parallel jobs 10

2.4 Solving NextFailure

Weighting the two cases in Equation 2 by their probabilities of occurrence,
we obtain the expected amount of work successfully computed before the next
failure:

E(W (ω|τ))=Psuc(ω1 + C|τ)(ω1 + E(W (ω − ω1|τ + ω1 + C))).

Here, unlike for Makespan, the objective function to be maximized can easily
be written as a closed form, even for arbitrary distributions. Developing the
expression above leads to the following result:

Proposition 3. The NextFailure problem is equivalent to maximizing the
following quantity:

E(W (W|τ0)) =
K∑
i=1

ωi ×
i∏

j=1

Psuc(ωj + C|tj) ,

where tj = τ0 +
∑j−1
`=1(ω` + C) is the total time elapsed (without failure) before

the start of the execution of chunk ωj, and K is the (unknown) target number
of chunks.

Unfortunately, there does not seem to be an exact solution to this prob-
lem. However, just as for the Makespan problem, the recursive definition of
E(W (W|τ)) lends itself naturally to a dynamic programming algorithm. The
dynamic programming scheme is simpler because the size of the i-th chunk is
only needed when no failure has occurred during the execution of the first i− 1
chunks, regardless of the value of the τ parameter. More formally:

Proposition 4. Using a time quantum u, and for any failure inter-arrival time
distribution, DPNextFailure (Algorithm 2) computes an optimal solution to
NextFailure in time O(Wu

3
).

Proof. The goal is to compute f(ω|τ), for any ω and τ that may occur during
the execution of the job. We define DPNextFailure(x, n, τ) as an optimal
solution for time quantum u, where ω = xu is the remaining work, n is the
number of chunks already computed successfully, and τ is the amount of time
elapsed since the last failure. Like DPMakespan, DPNextFailure returns
a couple. Note that x and n are in [|0, Wu |]. Given x and n, the last failure
necessarily occurred τ + (W − xu) + nC units of time ago. Finally, we suppose
that all elements of array solution are initialized to unknown. The size of the
first chunk f(ω|τ) is obtained by computing DPNextFailure(ωu , 0, τ), and the
complexity result is immediate.

3 Parallel jobs

3.1 Problem statement

We now turn to parallel jobs that can execute on any number of processors,
p. We consider the following relevant scenarios for checkpointing/recovery over-
heads and for parallel execution times.

RR n° 7520

Checkpointing strategies for parallel jobs 11

Algorithm 2: DPNextFailure (x,n,τ)
if x = 0 then

return 0
if solution[x][n] = unknown then

best←∞
τ ← τ + (W − xu) + nC
for i = 1 to x do

work = first(DPNextFailure(x− i, n+ 1|τ))
cur ← Psuc(iu+ C|τ)× (iu+ work)
if cur < best then

best← cur; chunksize ← i
solution[x][n]← (best, chunksize)

return solution[x][n]

Checkpointing/recovery overheads – Checkpoints are synchronized over
all processors. We use C(p) and R(p) to denote the time for saving a checkpoint
and for recovering from a checkpoint on p processors, respectively (we assume
that the downtime D does not depend on p). Assuming that the application’s
memory footprint is V bytes, with each processor holding V/p bytes, we consider
two scenarios:
• Proportional overhead: C(p) = R(p) = αV/p for some constant α. This

is representative of cases in which the bandwidth of the outgoing commu-
nication link of each processor is the I/O bottleneck.

• Constant overhead: C(p) = R(p) = αV , which is representative of cases
in which the incoming bandwidth of the resilient storage system is the I/O
bottleneck.

Parallel work – Let W(p) be the time required for a failure-free execution on
p processors. We use three models:
• Embarrassingly parallel jobs: W(p) =W/p.
• Amdahl parallel jobs: W(p) =W/p+ γW. As in Amdahl’s law [1], γ < 1

is the fraction of the work that is inherently sequential.
• Numerical kernels: W(p) = W/p + γW2/3/

√
p. This is representative of

a matrix product or a LU/QR factorization of size N on a 2D-processor
grid, where W = O(N3). In the algorithm in [3], p = q2 and each pro-
cessor receives 2q blocks of size N2/q2. Here γ is the communication-to-
computation ratio of the platform.

We assume that the parallel job is tightly coupled, meaning that all p pro-
cessors operate synchronously throughout the job execution. These processors
execute the same amount of work W(p) in parallel, chunk by chunk. The total
time (on one processor) to execute a chunk of size ω, and then checkpointing
it, is ω + C(p). For the Makespan and NextFailure problems, we aim at
computing a function f such that f(ω|τ1, . . . , τp) is the size of the next chunk
that should be executed on every processor given a remaining amount of work
ω ≤ W(p) and given a system state (τ1, . . . , τp), where τi denotes the time
elapsed since the last failure of the i-th processor. We assume that failure ar-
rivals at all processors are iid .

An important remark on rejuvenation Two options are possible for re-
covering after a failure. Assume that a processor, say P1, fails at time t. A first

RR n° 7520

Checkpointing strategies for parallel jobs 12

option found in the literature [5, 24] is to rejuvenate all processors together with
P1, from time t to t + D (e.g., via rebooting in case of software failure). Then
all processors are available at time t + D at which point they start executing
the recovery simultaneously. In the second option, only P1 is rejuvenated and
the other processors are kept idle from time t to t + D. With this option any
processor other than P1 may fail between t and t+D and thus may be itself in
the process of being rejuvenated at time t+D.

Let us consider a platform with p processors that experience iid failures ac-
cording to a Weibull distribution with scale parameter λ and shape parameter k,

i.e., with cumulative distribution F (t) = 1− e−
tk

λk , and mean is µ = λΓ(1 + 1
k).

Define a platform failure as the occurrence of a failure at any of the proces-
sors. When rejuvenating all processors after each failure, platform failures are
distributed according to a Weibull distribution with scale parameter λ

p1/k
and

shape parameter k. The MTBF for the platform is thus D+ µ
p1/k

(note that the
processor-level MTBF is D + µ). When rejuvenating only the processor that
failed, the platform MTBF is simply D+µ

p . If k = 1, which corresponds to an
Exponential distribution, rejuvenating all processors leads to a higher platform
MTBF and is beneficial. However, if k < 1, rejuvenating all processors leads
to a lower platform MTBF than rejuvenating only the processor that failed be-
cause D � µ

p in practical settings. This is shown on an example in Figure 1,
which plots the platform MTBF vs. the number of processors. This behavior
is easily explained: for a Weibull distribution with shape parameter k < 1, the
probability P(X > t + x|X > t) strictly increases with t. In other words, a
processor is less likely to fail the longer it remains in a fault-free state. It turns
out that failure inter-arrival times for real-life systems have been modeled well
by Weibull distributions whose shape parameter are strictly lower than 1 (either
0.7 or 0.78 in [10], 0.50944 in [17], between 0.33 and 0.49 in [22]). The overall
conclusion is then that rejuvenating all processors after a failure, albeit com-
monly used in the literature, is likely not appropriate for large-scale platforms.
Furthermore, even for Exponential distributions, rejuvenating all processors is
not meaningful for hardware failures. Therefore, in the rest of this paper we
assume that after a failure only the failed processor is rejuvenated1.

3.2 Solving Makespan

In the case of the Exponential distribution, due to the memoryless property,
the p processors used for a job can be conceptually aggregated into a virtual
“macro-processor” with the following characteristics:
• Failure inter-arrival times follow an Exponential distribution of parameter
λ′ = pλ;

• The checkpoint and recovery overheads are C(p) and R(p), respectively.
A direct application of Theorem 1 yields the optimal solution of the Makespan
problem for parallel jobs:

Proposition 5. Let W(p) be the amount of work to execute on p processors
whose failure inter-arrival times follow iid Exponential distributions with param-
eter λ. Let K0 = pλW(p)

1+L(−e−pλC(p)−1)
. Then the optimal strategy to minimize the

1For the sake of completeness, we considered both rejuvenation options for Exponential
failures in the simulations (see Appendix B). We observe similar results for both options.

RR n° 7520

Checkpointing strategies for parallel jobs 13

26 21222 2202142824 218210 216

number of processors

10

15

20

25

30
lo

g
2
(M

T
B

F
fo

r
th

e
w

h
ol

e
p
la

tf
or

m
) Weibull law with rejuvenation

Weibull law without rejuvenation

Figure 1: Impact of the two rejunevation options on the platform MTBF for a
Weibull distribution with shape parameter 0.70, a processor-level MTBF of 125
years, and a downtime of 60 seconds.

expected makespan time is to split W(p) into K∗ = max(1, bK0c) or K∗ = dK0e
same-size chunks, whichever minimizes ψ(K∗) = K∗(epλ(

W(p)
K∗ +C(p)) − 1).

Interestingly, although we know the optimal solution with p processors, we
are not able to compute the optimal expected makespan analytically. Indeed,
E(Trec), for which we had a closed form in the case of sequential jobs, becomes
quite intricate in the case of parallel jobs. This is because during the downtime
of a given processor another processor may fail. During the downtime of that
processor, yet another processor may fail, and so on. We would need to com-
pute the expected duration of these “cascading” failures until all processors are
simultaneously available.

For arbitrary distributions, i.e., distributions without the memoryless prop-
erty, we cannot (tractably) extend the dynamic programming algorithm DPMa-
kespan. This is because one would have to memorize the evolution of the time
elapsed since the last failure for all possible failure scenarios for each proces-
sor, leading to a number of states exponential in p. Fortunately, the dynamic
programming approach for solving NextFailure can be extended to the case
of a parallel job, as seen in Section 3.3. This was our motivation for studying
NextFailure in the first place, and in the case of non-exponential failures, we
use the solution to NextFailure as a heuristic solution for Makespan.

3.3 Solving NextFailure

For solving NextFailure using dynamic programming, there is no need to
keep for each processor the time elapsed since its last failure as parameter of
the recursive calls. This is because the τ variables of all processors evolve
identically: recursive calls only correspond to cases in which no failure has
occurred. Formally, the goal is to find a function f(ω|τ) = ω1 maximizing
E(W (ω|τ1, . . . , τp)), where E(W (0|τ1, . . . , τp)) = 0 and

RR n° 7520

Checkpointing strategies for parallel jobs 14

E(W (ω|τ1, . . . , τp)) =
ω1+E(W (ω−ω1|τ1+ ω1 + C(p), . . . , τp+ω1 + C(p))

if no processor fails during the next ω1+C(p)
units of time

0 otherwise.
Using a straightforward adaptation of DPNextFailure, which computes

the probability of success

Psuc(x|τ1, . . . , τp) =
p∏
i=1

P(X ≥ x+ τi|X ≥ τi),

we obtain:

Proposition 6. Using a time quantum u, for any failure inter-arrival time
distribution, DPNextFailure computes an optimal solution to NextFailure

with p processors in time O(pWu
3
).

Even if a linear dependency in p, due to the computation of Psuc, seems a
small price to pay, the above computational complexity is not tractable. Typical
platforms in the scope of this paper (Jaguar [4], Exascale platforms) consist
of tens of thousands of processors. The DPNextFailure algorithm is thus
unusable, especially since it must be invoked after each failure. In what follows
we propose a method to reduce its computational complexity.

Rather than working with the set of all p τi values, we approximate this set.
With distributions such as the Weibull distribution, the smallest τi’s have the
highest impact on the overall probability of success. Therefore, we keep in the set
the exact nexact smallest τi values. Then we approximate the p−nexact remaining
τi values using only napprox “reference” values τ≈1 , ..., τ≈napprox

. To each processor
Pi whose τi value is not one of the nexact smallest τi values, we associate one
of the reference values. We can then simply keep track of how many processors
are associated to each reference value, thereby vastly reducing computational
complexity. We pick the reference values as follows. τ≈1 is the smallest of the
remaining p − nexact exact τi values, while τ≈napprox

is the largest. (Note that
if processor Pi has never failed to date then τi = τ≈napprox

.) The remaining
napprox − 2 reference values are chosen based on the distribution of the (iid)
failure inter-arrival times. Assuming that X is a random variable distributed
according to this distribution, then, for i ∈ [2, napprox − 1], we compute τ≈i as

τ≈i = quantile
(
X,

napprox − i
napprox − 1 P(X ≥ τ≈1)

+
i− 1

napprox − 1 P(X ≥ τ≈napprox
)
)
.

We have implemented DPNextFailure with nexact = 10 and napprox = 100.
For the simulation scenario detailed in Section 5.2.2, we have studied the preci-
sion of this approximation by evaluating the relative error incurred when com-
puting the probability using the approximated state rather than the exact one,
for chunks of size 2−i times the MTBF of the platform, with i ∈ {0..6} and
failure inter-arrival times following a Weibull distribution. It turns out that
the larger the chunk size, the less accurate the approximation. Over the whole
execution of a job in the settings of Section 5.2.2 (i.e., for 45,208 processors),

RR n° 7520

Checkpointing strategies for parallel jobs 15

the worst relative error is lower than 0.2% for a chunk of duration equal to the
MTBF of the platform. In practice, the chunks used by DPNextFailure are
far smaller, and the approximation of their probabilities of success is thus far
more accurate.

The running time of DPNextFailure is proportional to the work size W.
If W is significantly larger than the platform MTBF, which is very likely in
practice, then with high probability a failure occurs before the last chunks of
the solution produced by DPNextFailure are even considered for execution.
In other words, a significant portion of the solution produced by DPNext-
Failure is unused, and can thus be discarded without a significant impact on
the quality of the end result. In order to further boost the execution time of
DPNextFailure, rather than invoking it on the size of the remaining work ω,
we invoke it for a work size equal to min(ω, 2×MTBF/p), where MTBF is the
processor-level mean time between failure (MTBF/p is thus the platform mean
time between failure). We use only the first half of the chunks in the solution
produced by DPNextFailure so as to avoid any side effects due the truncated
ω.

With all these optimizations, DPNextFailure runs in a few seconds even
on the largest platforms. In all the application execution times reported in
Sections 5 and 6 the execution time of DPNextFailure is taken into account.

4 Simulation framework

In this section we detail our simulation methodology. We use both synthetic
and log-based failure distributions. The source code and all simulation results
are publicly available at: http://graal.ens-lyon.fr/~fvivien/checkpoint.

4.1 Heuristics

Our simulator implements the following eight checkpointing policies (recall that
MTBF/p is the mean time between failures of the whole platform):

• Young is the periodic checkpointing policy of period
√

2× C(p)× MTBF
p

given in [26].
• DalyLow is the first order approximation given in [8]. This is a periodic

policy of period:√
2× C(p)× (MTBF

p +D +R(p)).
• DalyHigh is the periodic policy (high order approximation) given in [8].
• Bouguerra is the periodic policy given in [5].
• Liu is the non-periodic policy given in [17].
• OptExp is the periodic policy whose period is given in Proposition 5.
• DPNextFailure is the dynamic programming algorithm that maximizes

the expectation of the amount of work completed before the next failure
occurs.

• DPMakespan is the dynamic programming algorithm that minimizes the
expectation of the makespan. For parallel jobs, DPMakespan makes
the false assumption that all processors are rejuvenated after each failure
(without this assumption this heuristic cannot be used).

RR n° 7520

http://graal.ens-lyon.fr/~fvivien/checkpoint

Checkpointing strategies for parallel jobs 16

ptotal D C,R MTBF W
1-proc 1 60 s 600 s 1 h, 1 d, 1 w 20 d
Peta 45, 208 60 s 600 s 125 y, 500 y 1, 000 y
Exa 220 60 s 600 s 1250 y 10, 000 y

Table 1: Parameters used in the simulations (C, R and D chosen according
to [11, 6]). The first line corresponds to one-processor platforms, the second to
Petascale platforms, and the third to Exascale platforms.

Our simulator also implements LowerBound, an omniscient algorithm that
knows when the next failure will happen and checkpoints just in time, i.e., C(p)
time units before the failure. The makespan of LowerBound is thus an abso-
lute lower bound on the makespan achievable by any policy. Note that Lower-
Bound is unattainable in practice. Along the same line, the simulator imple-
ments PeriodLB, which implements a numerical search for the optimal period
by evaluating each target period on 1,000 randomly generated scenarios (which
would have a prohibitive computational cost in practice). The period computed
by OptExp is multiplied and divided by 1 + 0.05× i with i ∈ {1, ..., 180}, and
by 1.1j with j ∈ {1, ..., 60}. PeriodLB corresponds to the periodic policy that
uses the best period found by the search.

We point out that DalyLow, DalyHigh, and OptExp compute the check-
pointing period based solely on the MTBF, which comes from the implicit as-
sumption that failures are exponentially distributed. For the sake of complete-
ness we nevertheless include them in all our simulations, simply using the MTBF
value even when failures follow a Weibull distribution.
Performance evaluation. We compare heuristics using average makespan
degradation, defined as follows. Given an experimental scenario (i.e., parameter
values for failure distribution and platform configuration), we generate a set
X = {tr1, . . . , tr600} of 600 traces. For each trace tri and each of the heuristics
heur j , we compute the achieved makespan, res(i,j). The makespan degradation
for heuristic heur j on trace tri is defined as v(i,j) = res(i,j)/minj 6=0{res(i,j)}
(where heur0 is LowerBound). Finally, we compute the average degrada-
tion for heuristic heur j as

∑600
i=1 v(i,j)/600. Standard deviations are small and

thus not plotted on figures (see Table 2, Table 3 and Table 4 where standard
deviations are reported).

4.2 Platforms

We target two types of platforms: Petascale and Exascale. For Petascale we
choose as reference the Jaguar supercomputer [4], which contains ptotal = 45, 208
processors. We consider jobs that use between 1,024 and 45,208 processors. We
then corroborate the Petascale results by running simulations of Exascale plat-
forms with ptotal = 220 processors. For both platform types, we determine the
job size W so that a job using the whole platform would use it for a signifi-
cant amount of time in the absence of failures, namely ≈ 8 days for Petascale
platforms and ≈ 3.5 days for Exascale platforms. The parameters are listed in
Table 1.

RR n° 7520

Checkpointing strategies for parallel jobs 17

4.3 Generation of failure scenarios

Synthetic failure distributions
To choose failure distribution parameters that are representative of realistic

systems, we use failure statistics from the Jaguar platform. Jaguar is said to
experience on the order of 1 failure per day [18, 2]. Assuming a 1-day platform
MTBF gives us a processor MTBF equal to ptotal

365 ≈ 125 years, where ptotal =
45, 208 is the number of processors of the Jaguar platform. To verify that our
results are consistent over a range of processor MTBF values, we also consider a
processor MTBF of 500 years. We then compute the parameters of Exponential
and Weibull distributions so that they lead to this MTBF value (recall that
MTBF = µ + D ≈ µ, where µ is the mean of the underlying distribution).
Namely, for the Exponential distribution we set λ = 1

MTBF and for the Weibull
distribution, which requires two parameters k and λ, we set λ = MTBF/Γ(1 +
1/k). We first fix k = 0.7 based on the results of [22], and then vary it between
0.1 and 1.0.
Log-based failure distributions

We also consider failure distributions based on failure logs from production
clusters. We used logs from Los Alamos National Laboratory [22], i.e., the
logs for the largest clusters among the preprocessed logs in the Failure trace
archive [14]. In these logs, each failure is tagged by the node —and not just
the processor— on which the failure occurred. Among the 26 possible clusters,
we opted for the logs of the only two clusters with more than 1,000 nodes.
The motivation is that we need a sample history sufficiently large to simulate
platforms with more than ten thousand nodes. The two chosen logs are for
clusters 18 and 19 in the archive (referred to as 7 and 8 in [22]). For each log, we
record the setS of availability intervals. The discrete failure distribution for the
simulation is generated as follows: the conditional probability P(X ≥ t | X ≥ τ)
that a node stays up for a duration t, knowing that it had been up for a duration
τ , is set equal to the ratio of the number of availability durations in S greater
than or equal to t, over the number of availability durations in Sx greater than
or equal to τ .
Scenario generation

Given a p-processor job, a failure trace is a set of failure dates for each
processor over a fixed time horizon h. In the one-processor case, h is set to
1 year. In all the other cases, h is set to 11 years and the job start time,
t0, is assumed to be one-year to avoid side-effects related to the synchronous
initialization of all nodes/processors. Given the distribution of inter-arrival
times at a processor, for each processor we generate a trace via independent
sampling until the target time horizon is reached. Finally, for simulations where
the only varying parameter is the number of processors a ≤ p ≤ b, we first
generate traces for b processors. For experiments with p processors we then
simply select the first p traces. This ensures that simulation results are coherent
when varying p.

The two clusters used for computing our log-based failure distribution con-
sist of 4-processor nodes. Hence, to simulate a 45,208-processor platform we
generate 11,302 failure traces, one for each four-processor node.

RR n° 7520

Checkpointing strategies for parallel jobs 18

5 Simulations with synthetic failures

5.1 Single processor jobs

For a single processor, we cannot use a 125-year MTBF, as a job would have to
run for centuries in order to need a few checkpoints. Hence we study scenarios
with smaller values of the MTBF, from one hour to one week. This study, while
unrealistic, allows us to compare the performance of DPNextFailure with
that of DPMakespan.

5.1.1 Exponential failures

Table 2 shows the average makespan degradation for the eight heuristics and the
two lower bounds, in the case of exponentially distributed failure inter-arrival
times. Unsurprisingly, LowerBound is significantly better than all heuristics,
especially for a small MTBF. At first glance it may seem surprising that Peri-
odLB achieves results close but not equal to 1. This is because although the
expected optimal solution is periodic, checkpointing with the optimal period is
not always the best strategy for a given random scenario.

A first interesting observation is that the performance by the well-known
Young, DalyLow and DalyHigh heuristics is indeed close to optimal. While
this result seems widely accepted, we are not aware of previously published sim-
ulation studies that have demonstrated it. Looking more closely at the results
(see Appendix A) we find that, in the neighborhood of the optimal period, the
performance of periodic policies is almost independent of the period. This ex-
plains while the Young, DalyLow and DalyHigh heuristics have near optimal
performance even if their periods differ.

In Section 2.4, we claimed that DPNextFailure should provide a rea-
sonable solution to the Makespan problem. We observe that, at least in the
one-processor case, DPNextFailure does lead to solutions that are close to
those computed by DPMakespan and to the optimal.

MTBF
Heuristics 1 hour 1 day 1 week

avg std avg std avg std
LowerBound 0.62852 0.00761 0.90679 0.01243 0.97874 0.01430
PeriodLB 1.00739 0.00627 1.01600 0.00873 1.02285 0.00923
Young 1.01755 0.01051 1.01600 0.00928 1.02325 0.00937
DalyLow 1.02809 0.01198 1.01622 0.00943 1.02330 0.00937
DalyHigh 1.00732 0.00624 1.01596 0.00881 1.02339 0.00951
Liu 1.01755 0.0097 1.05519 0.03699 1.20965 0.16736
Bouguerra 1.02673 0.01175 1.02349 0.01314 1.02690 0.01290
OptExp 1.00739 0.00627 1.01604 0.00873 1.02285 0.00923
DPNextFailure 1.00787 0.00599 1.01705 0.00875 1.02830 0.01360
DPMakespan 1.00781 0.00639 1.01618 0.01015 1.03500 0.01976

Table 2: Degradation from best for a single processor with Exponential failures.

RR n° 7520

Checkpointing strategies for parallel jobs 19

5.1.2 Weibull failures

Table 3 shows results when failure inter-arrival times follow a Weibull distri-
bution (note that the Liu heuristic was specifically designed to handle Weibull
distributions). Unlike in the exponential case, the optimal checkpoint policy may
be non-periodic [23]. Results in the table show that all the heuristics lead to re-
sults that are close to the optimal, except Liu when the MTBF is not small. The
implication is that, in the one-processor case, one can safely use Young, Daly-
Low, and DalyHigh, which only require the failure MTBF, even for Weibull
failures. In Section 5.2.2 we see that this result does not hold for multi-processor
platforms. Note that, just like in the Exponential case, DPNextFailure leads
to solutions that are close to those computed by DPMakespan.

MTBF
Heuristics 1 hour 1 day 1 week

avg std avg std avg std
LowerBound 0.66351 0.00990 0.90994 0.01711 0.97598 0.01654
PeriodLB 1.00971 0.00669 1.01602 0.00949 1.02275 0.00955
Young 1.00954 0.00689 1.01645 0.00920 1.02300 0.00969
DalyLow 1.01159 0.00811 1.01654 0.00944 1.02304 0.00968
DalyHigh 1.01726 0.00852 1.01606 0.00936 1.02304 0.00961
Liu 1.01024 0.00787 1.06873 0.05758 1.19364 0.17197
Bouguerra 1.02867 0.01274 1.01894 0.01041 1.02338 0.01064
OptExp 1.01731 0.00849 1.01659 0.00935 1.02284 0.00955
DPNextFailure 1.01353 0.00819 1.01686 0.00921 1.02727 0.01321
DPMakespan 1.00728 0.00727 1.01570 0.01012 1.03528 0.02136

Table 3: Degradation from best for a single processor with Weibull failures.

5.2 Parallel jobs

Section 3.1 defines 3×2 combinations of parallelism and checkpointing overhead
models. For our experiments we have instantiated these models as follows:
W(p) is equal to either Wp , Wp +γW with γ ∈ {10−4, 10−6}, or Wp +γW

2/3
√
p with

γ ∈ {0.1, 1, 10}; and C(p) = R(p) = 600 seconds or C(p) = R(p) = 600×ptotal/p
seconds. Due to lack of space, in this paper we only report results for the
embarrassingly parallel applications (W(p) = W/p) with constant checkpoint
overhead (C(p) = R(p) = 600 seconds). Results for all other cases lead to the
same conclusions regarding the relative performance of the various checkpointing
strategies. We refer the reader to Appendix B, which contains the comprehensive
set of results for all combinations of parallelism and checkpointing overhead
models.

5.2.1 Exponential failures

Petascale platforms – Figure 2 shows results for Petascale platforms. The
main observation is that, regardless of the number of processors p, the Young,
DalyLow, and DalyHigh heuristics compute an almost optimal solution (i.e.,

RR n° 7520

Checkpointing strategies for parallel jobs 20

with degradation below 1.023) indistinguishable from that of OptExp and Pe-
riodLB. By contrast, the degradation of Bouguerra is only slightly higher,
and that of Liu2 is ≈ 1.09. We see that DPNextFailure behaves satisfacto-
rily: its degradation is less than 4.2� worse than that for OptExp for p ≥ 213,
and less than 1.85% worse overall. We also observe that DPNextFailure
always performs better than DPMakespan. This is likely due to the false as-
sumption in DPMakespan that all processors are rejuvenated after each failure.
The same conclusions are reached when the MTBF per processor is 500 years
instead of 125 years (see Appendix B).
Exascale platforms – Results for Exascale platforms, shown in Figure 3,
corroborates the results obtained for Petascale platforms.

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

Figure 2: Evaluation of
the different heuristics
on a Petascale platform
with Exponential fail-
ures.

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

Figure 3: Evaluation of
the different heuristics
on an Exascale platform
with Exponential fail-
ures.

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

Figure 4: Evaluation of
the different heuristics
on a Petascale platform
with Weibull failures.

0.5

1

1.5

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Weibull shape parameter (k)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

Bouguerra
Liu

DPNextFailure

PeriodLB

OptExp

DalyHigh
DalyLow
Young

LowerBound

Figure 5: Varying the
shape parameter k of
the Weibull distribution
for a Jaguar-like plat-
form with 45, 208 pro-
cessors.

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

Figure 6: Evaluation of
the different heuristics
on an Exascale platform
with Weibull failures.

1

1.01

1.02

1.03

1.04

1.05

213212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DPNextFailure

PeriodLB

OptExp
DalyHigh
DalyLow
Young

Figure 7: Evaluation of
the different heuristics
on a Petascale platform
with failures based on
the failure log of LANL
cluster 19.

5.2.2 Weibull failures

Petascale platforms – A key contribution of this paper is the comparison
between DPNextFailure and all previously proposed heuristics for the Ma-
kespan problem on platforms whose failure inter-arrival times follow a Weibull

2On most figures the curve for Liu is incomplete. Liu computes the dates at which the
application should be checkpointed. In several cases the interval between two consecutive
dates is smaller than the checkpoint duration, C, which is nonsensical. In such cases we do
not report any result for Liu and speculate that there may be an error in [17].

RR n° 7520

Checkpointing strategies for parallel jobs 21

distribution. Existing heuristics provide good solutions for sequential jobs (see
Section 5.1). Figure 4 shows that this is no longer the case beyond p = 1, 024
processors as demonstrated by growing gaps between heuristics and PeriodLB
as p increases. For large platforms, only DPNextFailure is able to bridge
this gap. For example with 45, 208 processors, Young, DalyLow, and Da-
lyHigh are at least 4.3% worse than DPNextFailure, the latter being only
0.59% worse than PeriodLB. These poor results of previously proposed heuris-
tics are partly due to the fact that the optimal solution is not periodic. For
instance, throughout a complete execution with 45, 208 processors, DPNext-
Failure changes the size of inter-checkpoint intervals from 2, 984 seconds up to
6, 108 seconds. Liu, which is specifically designed to handle Weibull failures, has
far worse performance than other heuristics, and fails to compute meaningful
checkpoint dates for large platforms. Bouguerra is also supposed to handle
Weibull failures but has poor performance because it relies on the assumption
that all processors are rejuvenated after each failure. We conclude that our
dynamic programming approach provides significant improvements over all pre-
viously proposed approaches for solving the Makespan problem in the case of
large platforms. The same conclusions are reached when the MTBF per proces-
sor is 500 years instead of 125 years (see Appendix B.3).

Heuristics Average degradation Standard deviation
LowerBound 0.83366 0.01578
PeriodLB 1.02169 0.01345
Young 1.08226 0.03560
DalyLow 1.08211 0.03612
DalyHigh 1.07588 0.03333
Bouguerra 1.25020 0.02543
OptExp 1.07645 0.03348
DPNextFailure 1.02910 0.01647

Table 4: Average degradation from best and standard deviation for a 45208
processor platform with Weibull failures, embarrassingly parrallel job and fixed
checkpoint/recovery costs

Number of spare processors necessary – In our simulations, for a job
running around 10.5 days on a 45,208 processor platform, when using DP-
NextFailure, on average, 38.0 failures occur during a job execution, with a
maximum of 66 failures. This provides some guidance regarding the number of
spare processors necessary so as not to experience any job interruption, in this
case circa 1�.
Impact of the shape parameter k – We report results from experiments
in which we vary the shape parameter k of the Weibull distribution in a view
to assessing the sensitivity of each heuristic to this parameter. Figure 5 shows
average makespan degradation vs. k. We see that, with small values of k,
the degradation is small for DPNextFailure (below 1.033 for k ≥ 0.15, and
1.130 for k = 0.10), while it is dramatically larger for all other heuristics. DP-
NextFailure achieves the best performance over all heuristics for the range
of k values seen in practice as reported in the literature (between 0.33 and
0.78 [10, 17, 22]). Liu fails to compute a solution for k ≤ 0.70. Bouguerra

RR n° 7520

Checkpointing strategies for parallel jobs 22

leads to very poor solutions because it assumes processor rejuvenation, which
is only acceptable for k close to 1 (i.e., for nearly Exponential failures) but
becomes increasingly harmful as k becomes smaller.
Exascale platforms – Figure 6 presents results for Exascale platforms. The
advantage of DPNextFailure over the other heuristics is even more pro-
nounced than for Petascale platforms. The average degradation from best of
DPNextFailure for platforms consisting of between 216 and 220 processors is
less than 1.028, the reference being defined by the inaccessible performance of
PeriodLB.

6 Simulations with log-based failures

To fully assess the performance of DPNextFailure, we also perform simula-
tions using the failure logs of two production clusters, following the methodology
explained in Section 4.3. We compare DPNextFailure to the Young, Daly-
Low, DalyHigh, and OptExp heuristics, adapting them by pretending that
the underlying failure distribution is Exponential with the same MTBF at the
empirical MTBF computed from the log. The same adaptation cannot be done
for Liu, Bouguerra, and DPMakespan, which are thus not considered in this
section.

Simulation results corresponding to one of the production cluster (LANL
cluster 19, see Section 4.3) are shown in Figure 7. For the sake of readability,
we do not display LowerBound as it leads to low values ranging from 0.80 to
0.56 as p increases (which underlines the intrinsic difficulty of the problem). As
before, DalyHigh and OptExp achieve similar performance. But their perfor-
mance, alongside that of DalyLow, is significantly worse than that of Young,
especially for large p. The performance of all these heuristics is closer to the per-
formance of PeriodLB than in the case of Weibull failures. The main difference
with results for synthetic failures is that the performance of DPNextFailure
is even better than that of PeriodLB. This is because, for these real-world
failure distributions, periodic heuristics are inherently suboptimal. By contrast,
DPNextFailure keeps adapting the size of the chunks that it attempts to
execute. On a 45,208 processor platform, the processing time (or size) of the
attempted chunks range from as (surprisingly) low as 60s up to 2280s. These
values may seem extremely low, but the platform MTBF in this case is only
1,297s (while R+C=1,200s). This is thus a very difficult problem instance, but
DPNextFailure solves it satisfactorily. More concretely, DPNextFailure
saves more than 18,000 processor hours when using 45,208 processors, and more
than 262,000 processor hours using 32,768 processors, compared to PeriodLB.

Simulation results based on the failure log of the other cluster (cluster 18)
are similar, and even more in favor of DPNextFailure (see Appendix E).

7 Related work

In [8], Daly studies periodic checkpointing of applications executed on platforms
where failures inter-arrival times are exponentially distributed. That study ac-
counts for checkpointing and recovery overheads (but not for downtimes), and
allows failures to happen during recoveries. Two estimates of the optimal period

RR n° 7520

Checkpointing strategies for parallel jobs 23

are proposed. The lower order estimate is a generalization of Young’s approx-
imation [26], which takes recovery overheads into account. The higher order
estimate is ill-formed as it relies on an equation that sums up non-independent
probabilities (Equation (13) in [8]). That work was later extended in [12], which
studies the impact of sub-optimal periods on application performance.

In [5], Bouguerra et al. study the design of an optimal checkpointing policy
when failures can occur during checkpointing and recovery, with checkpointing
and recovery overheads depending upon the application progress. They show
that the optimal checkpointing policy is periodic when checkpointing and re-
covery overheads are constant, and when failure inter-arrival times follow either
an Exponential or a Weibull distribution. They also give formulas to compute
the optimal period in both cases. Their results, however, rely on the unstated
assumption that all processors are rejuvenated after each failure and after each
checkpoint. The work in [24] suffers from the same issue.

In [25], the authors claim to use an “optimal checkpoint restart model [for]
Weibull’s and Exponential distributions” that they have designed in another pa-
per (referenced as [1] in [25]). However, this latter paper is not available, and
we were unable to compare our work to their solution. However, as explained
in [25] the “optimal” solution in [1] is found using the assumption that check-
point is periodic (even for Weibull failures). In addition, the authors of [25]
partially address the question of the optimal number of processors for paral-
lel jobs, presenting experiments for four MPI applications, using a non-optimal
policy, and for up to 35 processors. Our approach is radically different since we
target large-scale platforms with up to tens of thousands of processors and rely
on generic application models for deriving optimal solutions.

In this work, we solve the NextFailure problem to obtain heuristic solu-
tions to the Makespan problem in the case of parallel jobs. The NextFailure
problem has been studied by many authors in the literature, often for single-
processor jobs. Maximizing the expected work successfully completed before the
first failure is equivalent to minimizing the expected wasted time before the first
failure, which is itself a classical problem. Some authors propose analytical reso-
lution using a “checkpointing frequency function”, for both infinite (see [16, 17])
and finite time horizons (see [19]). However, these works use approximations,
for example assuming that the expected failure occurrence is exactly halfway
between two checkpointing events, which does not hold for general failure dis-
tributions. Approaches that do not rely on a checkpointing frequency function
are used in [23, 15], but only for infinite time horizons.

8 Conclusion

We have studied the problem of scheduling checkpoints for minimizing the
makespan of sequential and parallel jobs on large-scale and failure-prone plat-
forms, which we have called Makespan. An auxiliary problem, NextFailure,
was introduced as an approximation of Makespan. Both problems are defined
rigorously in general settings. For exponential distributions, we have provided a
complete analytical solution of Makespan together with an assessment of the
quality of the NextFailure approximation. We have also designed dynamic
programming solutions for both problems, that can be applied for any failure
distribution.

RR n° 7520

Checkpointing strategies for parallel jobs 24

We have obtained a number of key results via simulation experiments. For
Exponential failures, our approach allows us to determine the optimal check-
pointing policy. For Weibull failures, we have demonstrated the importance
of using the “single processor rejuvenation” model. With this model, we have
shown that our dynamic programming algorithm leads to significantly more
efficient executions than all previously proposed algorithms with an average de-
crease in the application makespan of at least 4.38% for our largest simulated
Petascale platforms, and of at least 30.7% for our largest simulated Exascale
platforms. We have also considered failures from empirical failure distributions
extracted from failure logs of two production clusters. In this settings, once
again our dynamic programming algorithm leads to significantly more efficient
executions than all previously proposed algorithms. Given that our results also
hold across our various application and checkpoint scenarios, we claim that our
dynamic programming approach provides a key step for the effective use of
next-generation large-scale platforms. Furthermore, our dynamic programming
approach can be easily extended to settings in which the checkpoint and restart
costs are not constants but depends on the progress of the application execution.

There are several promising avenues for future work. Interesting questions
relate to computing the optimal number of processors for executing a parallel
job. On a fault-free machine, and for all the scenarios considered in the paper
(embarrassingly parallel, Amdahl law, numerical kernels), the execution time of
the job decreases with the number of enrolled resources, and hence is minimal
when the whole platform is used. In the presence of failures, this is no longer
true, and the expected makespan may be smaller when using fewer processors
than ptotal. This leads to the idea of replicating the execution of a given job on
say, both halves of the platform, i.e., with ptotal/2 processors each. This could
be done independently, or better, by synchronizing the execution after each
checkpoint. The question of which is the optimal strategy is open. Another
research direction is provided by recognizing that the (expected) makespan is
not the only worthwhile or relevant objective. Because of the enormous energy
cost incurred by large-scale platforms, along with environmental concerns, a
crucial direction for future work is the design of checkpointing strategies that
can trade off a longer execution time for a reduced energy consumption.

It is reasonable to expect that parallel jobs will be deployed successfully on
exascale platforms only by using multiple techniques together (checkpointing,
migration, replication, self-tolerant algorithms). While checkpointing is only
part of the solution, it is an important part. This paper has evidenced the
intrinsic difficulty of designing efficient checkpointing strategies, but it has also
given promising results that greatly improve state-of-the art approaches.

References

[1] G. Amdahl. The validity of the single processor approach to achieving large
scale computing capabilities. In AFIPS Conference Proceedings, volume 30,
pages 483–485. AFIPS Press, 1967.

[2] L. Bautista Gomez, A. Nukada, N. Maruyama, F. Cappello, and S. Mat-
suoka. Transparent low-overhead checkpoint for GPU-accelerated clusters.
https://wiki.ncsa.illinois.edu/download/attachments/17630761/

RR n° 7520

https://wiki.ncsa.illinois.edu/download/attachments/17630761/INRIA-UIUC-WS4-lbautista.pdf?version=1&modificationDate=1290470402000
https://wiki.ncsa.illinois.edu/download/attachments/17630761/INRIA-UIUC-WS4-lbautista.pdf?version=1&modificationDate=1290470402000

Checkpointing strategies for parallel jobs 25

INRIA-UIUC-WS4-lbautista.pdf?version=1&modificationDate=
1290470402000.

[3] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley. ScaLAPACK Users’ Guide. SIAM, 1997.

[4] A.S. Bland, R.A. Kendall, D.B. Kothe, J.H. Rogers, and G.M. Shipman.
Jaguar: The World’s Most Powerful Computer. In GUC’2009, 2009.

[5] Mohamed-Slim Bouguerra, Thierry Gautier, Denis Trystram, and Jean-
Marc Vincent. A flexible checkpoint/restart model in distributed systems.
In PPAM, volume 6067 of LNCS, pages 206–215, 2010.

[6] Franck Cappello, Henri Casanova, and Yves Robert. Checkpointing vs. mi-
gration for post-petascale supercomputers. In ICPP’2010. IEEE Computer
Society Press, 2010.

[7] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi,
K. Vaidyanathan, and W. P. Zeggert. Proactive management of software
aging. IBM J. Res. Dev., 45(2):311–332, 2001.

[8] J. T. Daly. A higher order estimate of the optimum checkpoint interval for
restart dumps. Future Generation Computer Systems, 22(3):303–312, 2004.

[9] Jack Dongarra, Pete Beckman, Patrick Aerts, Frank Cappello, Thomas
Lippert, Satoshi Matsuoka, Paul Messina, Terry Moore, Rick Stevens, Anne
Trefethen, and Mateo Valero. The international exascale software project:
a call to cooperative action by the global high-performance community. Int.
J. High Perform. Comput. Appl., 23(4):309–322, 2009.

[10] T. Heath, R. P. Martin, and T. D. Nguyen. Improving cluster availability
using workstation validation. SIGMETRICS Perf. Eval. Rev., 30(1):217–
227, 2002.

[11] J.C.Y. Ho, C.L. Wang, and F.C.M. Lau. Scalable group-based check-
point/restart for large-scale message-passing systems. In Parallel and Dis-
tributed Processing, 2008. IPDPS 2008. IEEE International Symposium on,
pages 1–12. IEEE, 2008.

[12] W.M. Jones, J.T. Daly, and N. DeBardeleben. Impact of sub-optimal
checkpoint intervals on application efficiency in computational clusters. In
HPDC’10, pages 276–279. ACM, 2010.

[13] Nick Kolettis and N. Dudley Fulton. Software rejuvenation: Analysis, mod-
ule and applications. In FTCS ’95, page 381, Washington, DC, USA, 1995.
IEEE CS.

[14] Derrick Kondo, Bahman Javadi, Alexandru Iosup, and Dick Epema. The
failure trace archive: Enabling comparative analysis of failures in diverse
distributed systems. Cluster Computing and the Grid, IEEE International
Symposium on, 0:398–407, 2010.

RR n° 7520

https://wiki.ncsa.illinois.edu/download/attachments/17630761/INRIA-UIUC-WS4-lbautista.pdf?version=1&modificationDate=1290470402000
https://wiki.ncsa.illinois.edu/download/attachments/17630761/INRIA-UIUC-WS4-lbautista.pdf?version=1&modificationDate=1290470402000
https://wiki.ncsa.illinois.edu/download/attachments/17630761/INRIA-UIUC-WS4-lbautista.pdf?version=1&modificationDate=1290470402000

Checkpointing strategies for parallel jobs 26

[15] P. L’Ecuyer and J. Malenfant. Computing optimal checkpointing strate-
gies for rollback and recovery systems. IEEE Transactions on computers,
37(4):491–496, 2002.

[16] Y. Ling, J. Mi, and X. Lin. A variational calculus approach to optimal
checkpoint placement. IEEE Transactions on computers, pages 699–708,
2001.

[17] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and
SL Scott. An optimal checkpoint/restart model for a large scale high per-
formance computing system. In IPDPS 2008, pages 1–9. IEEE, 2008.

[18] E. Meneses. Clustering Parallel Applications to Enhance Message
Logging Protocols. https://wiki.ncsa.illinois.edu/download/
attachments/17630761/INRIA-UIUC-WS4-emenese.pdf?version=
1&modificationDate=1290466786000.

[19] T. Ozaki, T. Dohi, H. Okamura, and N. Kaio. Distribution-free checkpoint
placement algorithms based on min-max principle. IEEE TDSC, pages
130–140, 2006.

[20] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley, 2005.

[21] Vivek Sarkar and others. Exascale software study: Software challenges in
extreme scale systems, 2009. White paper available at: http://users.
ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%
20report%20101909.pdf.

[22] B. Schroeder and G. A. Gibson. A large-scale study of failures in high-
performance computing systems. In Proc. of DSN, pages 249–258, 2006.

[23] A.N. Tantawi and M. Ruschitzka. Performance analysis of checkpointing
strategies. ACM TOCS, 2(2):123–144, 1984.

[24] S. Toueg and O. Babaoglu. On the optimum checkpoint selection problem.
SIAM J. Computing, 13(3):630–649, 1984.

[25] K. Venkatesh. Analysis of Dependencies of Checkpoint Cost and Check-
point Interval of Fault Tolerant MPI Applications. Analysis, 2(08):2690–
2697, 2010.

[26] John W. Young. A first order approximation to the optimum checkpoint
interval. Communications of the ACM, 17(9):530–531, 1974.

RR n° 7520

https://wiki.ncsa.illinois.edu/download/attachments/17630761/INRIA-UIUC-WS4-emenese.pdf?version=1&modificationDate=1290466786000
https://wiki.ncsa.illinois.edu/download/attachments/17630761/INRIA-UIUC-WS4-emenese.pdf?version=1&modificationDate=1290466786000
https://wiki.ncsa.illinois.edu/download/attachments/17630761/INRIA-UIUC-WS4-emenese.pdf?version=1&modificationDate=1290466786000
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf

Checkpointing strategies for parallel jobs 27

A Appendix : Results for one processor

A.1 Exponential law

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

1

1.5

2

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) MTBF = 1 hour

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

1

1.5

2

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) MTBF = 1 day

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

1

1.5

2

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

c) MTBF = 1 week

Figure 8: Evaluation of the different heuristics on one processor with Exponen-
tial failures

A.2 Weibull law

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

1

1.5

2

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) MTBF = 1 hour

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

1

1.5

2

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) MTBF = 1 day

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

1

1.5

2

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

c) MTBF = 1 week

Figure 9: Evaluation of the different heuristics on one processor with Weibull
failures (k = 0.7)

B Appendix : Results for Petascale platforms

Notice that in some cases (typically when MTBF = 500 years, see Figure 11
b)), PeriodVariation leads to results that does not depend on the period
multiplicative factor j. This can be explained by observing that for large j,
1.1j×OptExp becomes greater thanW(p), and thus PeriodVariation simply
tries to execute the whole work in one chunk, and this strategy no longer depends
on j.

RR n° 7520

Checkpointing strategies for parallel jobs 28

B.1 Exponential law, rejuvenating all processors

B.1.1 Fixed checkpoint and recovery cost

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 10: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years) using using embarrassingly parallel
job, and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 11: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years) using using embarrassingly parallel
job, and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 12: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years) using Amdahl law with γ = 10−4,
and constant overhead model

RR n° 7520

Checkpointing strategies for parallel jobs 29

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 13: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years) using Amdahl law with γ = 10−4,
and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 14: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Amdahl law with γ = 10−6,
and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 15: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Amdahl law with γ = 10−6,
and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 16: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Numerical Kernel law with
γ = 0.1, and constant overhead model

RR n° 7520

Checkpointing strategies for parallel jobs 30

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 17: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Numerical Kernel law with
γ = 0.1, and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 18: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Numerical Kernel law with
γ = 1, and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 19: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Numerical Kernel law with
γ = 1, and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 20: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Numerical Kernel law with
γ = 10, and constant overhead model

RR n° 7520

Checkpointing strategies for parallel jobs 31

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 21: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Numerical Kernel law with
γ = 10, and constant overhead model

B.1.2 Variable checkpoint and recovery cost

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 22: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using embarrassingly parallel job,
and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 23: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using embarrassingly parallel job,
and variable overhead model (C(p) = 600 45208

p)

RR n° 7520

Checkpointing strategies for parallel jobs 32

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 24: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Amdahl law with γ = 10−4,
and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 25: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Amdahl law with γ = 10−4,
and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 26: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Amdahl law with γ = 10−6,
and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 27: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Amdahl law with γ = 10−6,
and variable overhead model (C(p) = 600 45208

p)

RR n° 7520

Checkpointing strategies for parallel jobs 33

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 28: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Numerical Kernel law with
γ = 0.1, and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 29: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Numerical Kernel law with
γ = 0.1, and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 30: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Numerical Kernel law with
γ = 1, and variable overhead model (C(p) = 60045208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 31: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Numerical Kernel law with
γ = 1, and variable overhead model (C(p) = 60045208

p)

RR n° 7520

Checkpointing strategies for parallel jobs 34

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 32: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Numerical Kernel law with
γ = 10, and variable overhead model (C(p) = 60045208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 33: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Numerical Kernel law with
γ = 10, and variable overhead model (C(p) = 60045208

p)

B.2 Exponential law, rejuvenating only the faulty proces-
sor(s)

B.2.1 Fixed checkpoint and recovery cost

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 34: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years) using embarrassingly parallel job,
and constant overhead model

RR n° 7520

Checkpointing strategies for parallel jobs 35

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 35: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years) using embarrassingly parallel job,
and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 36: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years) using Amdahl law with γ = 10−4,
and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 37: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years) using Amdahl law with γ = 10−4,
and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 38: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Amdahl law with γ = 10−6,
and constant overhead model

RR n° 7520

Checkpointing strategies for parallel jobs 36

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 39: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Amdahl law with γ = 10−6,
and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 40: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Numerical Kernel law with
γ = 0.1, and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 41: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Numerical Kernel law with
γ = 0.1, and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 42: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Numerical Kernel law with
γ = 1, and constant overhead model

RR n° 7520

Checkpointing strategies for parallel jobs 37

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 43: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Numerical Kernel law with
γ = 1, and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 44: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Numerical Kernel law with
γ = 10, and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 45: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Numerical Kernel law with
γ = 10, and constant overhead model

RR n° 7520

Checkpointing strategies for parallel jobs 38

B.2.2 Variable checkpoint and recovery cost

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)
av

er
ag

e
m

ak
es

p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 46: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using embarrassingly parallel job,
and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 47: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using embarrassingly parallel job,
and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 48: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Amdahl law with γ = 10−4,
and variable overhead model (C(p) = 600 45208

p)

RR n° 7520

Checkpointing strategies for parallel jobs 39

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 49: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Amdahl law with γ = 10−4,
and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 50: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Amdahl law with γ = 10−6,
and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 51: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Amdahl law with γ = 10−6,
and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 52: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Numerical Kernel law with
γ = 0.1, and variable overhead model (C(p) = 600 45208

p)

RR n° 7520

Checkpointing strategies for parallel jobs 40

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 53: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Numerical Kernel law with
γ = 0.1, and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 54: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Numerical Kernel law with
γ = 1, and variable overhead model (C(p) = 60045208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 55: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Numerical Kernel law with
γ = 1, and variable overhead model (C(p) = 60045208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 56: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 125 years), using Numerical Kernel law with
γ = 10, and variable overhead model (C(p) = 60045208

p)

RR n° 7520

Checkpointing strategies for parallel jobs 41

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure
DPMakespan

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 57: Evaluation of the different heuristics on a Petascale platform with
Exponential failures (MTBF = 500 years), using Numerical Kernel law with
γ = 10, and variable overhead model (C(p) = 60045208

p)

B.3 Weibull law

B.3.1 Fixed checkpoint and recovery cost

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 58: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 125 years), using embarrassingly parallel job, and
constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 59: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 500 years), using embarrassingly parallel job, and
constant overhead model

RR n° 7520

Checkpointing strategies for parallel jobs 42

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 60: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 125 years), using Amdahl law with γ = 10−4, and
constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 61: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 500 years), using Amdahl law with γ = 10−4, and
constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 62: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 125 years), using Amdahl law with γ = 10−6, and
constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 63: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 500 years), using Amdahl law with γ = 10−6, and
constant overhead model

RR n° 7520

Checkpointing strategies for parallel jobs 43

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 64: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 125 years), using Numerical Kernel law with γ = 0.1,
and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 65: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 500 years), using Numerical Kernel law with γ = 0.1,
and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 66: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 125 years), using Numerical Kernel law with γ = 1,
and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 67: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 500 years), using Numerical Kernel law with γ = 1,
and constant overhead model

RR n° 7520

Checkpointing strategies for parallel jobs 44

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 68: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 125 years), using Numerical Kernel law with γ = 10,
and constant overhead model

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 69: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 500 years), using Numerical Kernel law with γ = 10,
and constant overhead model

B.3.2 Variable checkpoint and recovery cost

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 70: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 125 years), using embarrassingly parallel job, and
variable overhead model (C(p) = 600 45208

p)

RR n° 7520

Checkpointing strategies for parallel jobs 45

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 71: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 500 years), using embarrassingly parallel job, and
variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 72: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 500 years), using embarrassingly parallel job, and
variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 73: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 125 years), using Amdahl law with γ = 10−4, and
variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 74: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 500 years), using Amdahl law with γ = 10−4, and
variable overhead model (C(p) = 600 45208

p)

RR n° 7520

Checkpointing strategies for parallel jobs 46

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 75: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 125 years), using Amdahl law with γ = 10−6, and
variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 76: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 500 years), using Amdahl law with γ = 10−6, and
variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 77: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 125 years), using Numerical Kernel law with γ = 0.1,
and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 78: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 500 years), using Numerical Kernel law with γ = 0.1,
and variable overhead model (C(p) = 600 45208

p)

RR n° 7520

Checkpointing strategies for parallel jobs 47

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 79: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 125 years), using Numerical Kernel law with γ = 1,
and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 80: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 500 years), using Numerical Kernel law with γ = 1,
and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 81: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 125 years), using Numerical Kernel law with γ = 10,
and variable overhead model (C(p) = 600 45208

p)

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 1024 processors

1

1.5

2

2.5

3

3.5

4

-8 -6 -4 -2 0 2 4 6 8

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 45208 processors

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 82: Evaluation of the different heuristics on a Petascale platform with
Weibull failures (MTBF = 500 years), using Numerical Kernel law with γ = 10,
and variable overhead model (C(p) = 600 45208

p)

RR n° 7520

Checkpointing strategies for parallel jobs 48

C Appendix : Results for Exascale platforms

C.1 Exponential law, rejuvenating all processors

C.1.1 Fixed checkpoint and recovery cost

5

10

15

20

25

30

35

40

-8 -6 -4 -2 0 2 4 6

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 262144 processors

0

20

40

60

80

100

-8 -6 -4 -2 0 2 4

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 1048576 processors

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 83: Evaluation of the different heuristics on a Exascale platform with
Exponential failures (MTBF = 1250 years), using embarrassingly parallel job,
and constant overhead model

5

10

15

20

25

30

35

-8 -6 -4 -2 0 2 4 6

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 262144 processors

0

10

20

30

40

50

60

-8 -6 -4 -2 0 2 4

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 1048576 processors

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 84: Evaluation of the different heuristics on a Exascale platform with
Exponential failures (MTBF = 1250 years), using Amdahl law with γ = 10−6,
and constant overhead model

5

10

15

20

25

30

35

-8 -6 -4 -2 0 2 4 6

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 262144 processors

0

20

40

60

80

100

-8 -6 -4 -2 0 2 4

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 1048576 processors

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 85: Evaluation of the different heuristics on a Exascale platform with
Exponential failures (MTBF = 1250 years), using Numerical Kernel law with
γ = 0.1, and constant overhead model

RR n° 7520

Checkpointing strategies for parallel jobs 49

5

10

15

20

25

30

35

-8 -6 -4 -2 0 2 4 6

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 262144 processors

0

10

20

30

40

50

60

70

80

90

-8 -6 -4 -2 0 2 4

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 1048576 processors

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 86: Evaluation of the different heuristics on a Exascale platform with
Exponential failures (MTBF = 1250 years), using Numerical Kernel law with
γ = 1, and constant overhead model

5

10

15

20

25

-8 -6 -4 -2 0 2 4 6

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 262144 processors

5

10

15

20

25

30

35

40

-8 -6 -4 -2 0 2 4

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 1048576 processors

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 87: Evaluation of the different heuristics on a Exascale platform with
Exponential failures (MTBF = 1250 years), using Numerical Kernel law with
γ = 10, and constant overhead model

C.2 Exponential law, rejuvenating only the faulty proces-
sor(s)

C.2.1 Fixed checkpoint and recovery cost

5

10

15

20

-8 -6 -4 -2 0 2 4 6

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 262144 processors

0

20

40

60

80

100

-8 -6 -4 -2 0 2 4

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 1048576 processors

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 88: Evaluation of the different heuristics on a Exascale platform with
Exponential failures (MTBF = 1250 years), using embarrassingly parallel job,
and constant overhead model

RR n° 7520

Checkpointing strategies for parallel jobs 50

5

10

15

20

25

-8 -6 -4 -2 0 2 4 6

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 262144 processors

0

10

20

30

40

50

-8 -6 -4 -2 0 2 4

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 1048576 processors

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 89: Evaluation of the different heuristics on a Exascale platform with
Exponential failures (MTBF = 1250 years), using Amdahl law with γ = 10−6,
and constant overhead model

5

10

15

20

-8 -6 -4 -2 0 2 4 6

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 262144 processors

0

20

40

60

80

100

-8 -6 -4 -2 0 2 4

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 1048576 processors

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 90: Evaluation of the different heuristics on a Exascale platform with
Exponential failures (MTBF = 1250 years), using Numerical Kernel law with
γ = 0.1, and constant overhead model

5

10

15

20

-8 -6 -4 -2 0 2 4 6

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 262144 processors

0

10

20

30

40

50

60

70

80

90

-8 -6 -4 -2 0 2 4

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 1048576 processors

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 91: Evaluation of the different heuristics on a Exascale platform with
Exponential failures (MTBF = 1250 years), using Numerical Kernel law with
γ = 1, and constant overhead model

5

10

15

20

25

-8 -6 -4 -2 0 2 4 6

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 262144 processors

0

10

20

30

40

50

60

-8 -6 -4 -2 0 2 4

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 1048576 processors

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

c)

Figure 92: Evaluation of the different heuristics on a Exascale platform with
Exponential failures (MTBF = 1250 years), using Numerical Kernel law with
γ = 10, and constant overhead model

RR n° 7520

Checkpointing strategies for parallel jobs 51

C.3 Weibull law

C.3.1 Fixed checkpoint and recovery cost

0

20

40

60

80

100

-8 -6 -4 -2 0 2 4

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 262144 processors

0

50

100

150

200

250

300

-8 -6 -4 -2 0 2

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 1048576 processors

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 93: Evaluation of the different heuristics on a Exascale platform with
Weibull failures (MTBF = 1250 years), using embarrassingly parallel job, and
constant overhead model

0

20

40

60

80

100

-8 -6 -4 -2 0 2 4

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 262144 processors

0

20

40

60

80

100

120

140

160

-8 -6 -4 -2 0 2

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 1048576 processors

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 94: Evaluation of the different heuristics on a Exascale platform with
Weibull failures (MTBF = 1250 years), using Amdahl law with γ = 10−6, and
constant overhead model

0

20

40

60

80

100

-8 -6 -4 -2 0 2 4

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 262144 processors

0

50

100

150

200

250

300

-8 -6 -4 -2 0 2

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 1048576 processors

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 95: Evaluation of the different heuristics on a Exascale platform with
Weibull failures (MTBF = 1250 years), using Numerical Kernel law with γ =
0.1, and constant overhead model

RR n° 7520

Checkpointing strategies for parallel jobs 52

0

20

40

60

80

100

-8 -6 -4 -2 0 2 4

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 262144 processors

0

50

100

150

200

250

-8 -6 -4 -2 0 2

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 1048576 processors

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 96: Evaluation of the different heuristics on a Exascale platform with
Weibull failures (MTBF = 1250 years), using Numerical Kernel law with γ = 1,
and constant overhead model

0

10

20

30

40

50

60

-8 -6 -4 -2 0 2 4

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

a) 262144 processors

0

20

40

60

80

100

120

140

-8 -6 -4 -2 0 2

log2(period multiplicative factor)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodVariation

Liu
Bouguerra
OptExp
DPNextFailure

b) 1048576 processors

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp
DPNextFailure

c)

Figure 97: Evaluation of the different heuristics on a Exascale platform with
Weibull failures (MTBF = 1250 years), using Numerical Kernel law with γ = 10,
and constant overhead model

D Appendix: results for fixed heuristic accord-
ing to application model variation

50

100

150

200

250

300

350

400

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

in
d
ay

s W
p

+ 0.1× W 2/3
√

p

W
p

+ 10−6W

W
p

+ 10−4W

W
p

W
p

+ W 2/3
√

pW
p

+ 10× W 2/3
√

p

a)

0

50

100

150

200

250

300

350

400

450

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

in
d
ay

s W
p

+ 0.1× W 2/3
√

p

W
p

+ 10−6W

W
p

+ 10−4W

W
p

W
p

+ W 2/3
√

pW
p

+ 10× W 2/3
√

p

b)

Figure 98: Evolution of the makespan for OptExp as a function of the plat-
form size for the different application profiles and a constant (a)) or platform-
dependent (b)) checkpoint cost (exponential law, MTBF = 125 years).

RR n° 7520

Checkpointing strategies for parallel jobs 53

50

100

150

200

250

300

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

in
d
ay

s W
p

+ 0.1× W 2/3
√

p

W
p

+ 10−6W

W
p

+ 10−4W

W
p

W
p

+ W 2/3
√

p

a)

Figure 99: Evolution of the makespan for DPNextFailure as a function of
the platform size for the different application profiles and a constant checkpoint
cost (Weibull law, MTBF = 1250 years).

E Appendix : Results for log-based failures

1

1.01

1.02

1.03

1.04

1.05

213212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DPNextFailure

PeriodLB

OptExp
DalyHigh
DalyLow
Young

a)

1

1.01

1.02

1.03

1.04

1.05

213212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DPNextFailure

PeriodLB

OptExp
DalyHigh
DalyLow
Young

b)

Figure 100: Evaluation of the different heuristics on a Petascale platform with
failures based on the failure log of LANL cluster 18 (a)) and 19 (b)).

RR n° 7520

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	1 Introduction
	2 Sequential jobs
	2.1 Problem statement
	2.2 Formal problem definitions
	2.3 Solving Makespan
	2.3.1 Results for the Exponential distribution
	2.3.2 Results for arbitrary distributions

	2.4 Solving NextFailure

	3 Parallel jobs
	3.1 Problem statement
	3.2 Solving Makespan
	3.3 Solving NextFailure

	4 Simulation framework
	4.1 Heuristics
	4.2 Platforms
	4.3 Generation of failure scenarios

	5 Simulations with synthetic failures
	5.1 Single processor jobs
	5.1.1 Exponential failures
	5.1.2 Weibull failures

	5.2 Parallel jobs
	5.2.1 Exponential failures
	5.2.2 Weibull failures

	6 Simulations with log-based failures
	7 Related work
	8 Conclusion
	A Appendix : Results for one processor
	A.1 Exponential law
	A.2 Weibull law

	B Appendix : Results for Petascale platforms
	B.1 Exponential law, rejuvenating all processors
	B.1.1 Fixed checkpoint and recovery cost
	B.1.2 Variable checkpoint and recovery cost

	B.2 Exponential law, rejuvenating only the faulty processor(s)
	B.2.1 Fixed checkpoint and recovery cost
	B.2.2 Variable checkpoint and recovery cost

	B.3 Weibull law
	B.3.1 Fixed checkpoint and recovery cost
	B.3.2 Variable checkpoint and recovery cost

	C Appendix : Results for Exascale platforms
	C.1 Exponential law, rejuvenating all processors
	C.1.1 Fixed checkpoint and recovery cost

	C.2 Exponential law, rejuvenating only the faulty processor(s)
	C.2.1 Fixed checkpoint and recovery cost

	C.3 Weibull law
	C.3.1 Fixed checkpoint and recovery cost

	D Appendix: results for fixed heuristic according to application model variation
	E Appendix : Results for log-based failures

