

Les isotopes de l'hafnium dans les TTG et leurs zircons : témoins de la croissance des premiers continents

Martin Guitreau

► To cite this version:

Martin Guitreau. Les isotopes de l'hafnium dans les TTG et leurs zircons : témoins de la croissance des premiers continents. Sciences de la Terre. Ecole normale supérieure de lyon - ENS LYON, 2012. Français. <NNT : 2012ENSL0715>. <tel-00713096>

HAL Id: tel-00713096 https://tel.archives-ouvertes.fr/tel-00713096

Submitted on 29 Jun 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ECOLE NORMALE SUPERIEURE DE LYON

THESE

Présentée pour obtenir le grade de

DOCTEUR DE L'ECOLE NORMALE SUPERIEURE DE LYON

(Discipline : Sciences de la Terre)

Par

Martin GUITREAU

LES ISOTOPES DE L'HAFNIUM DANS LES TTG ET LEURS ZIRCONS : TEMOINS DE LA CROISSANCE DES PREMIERS CONTINENTS

Soutenue publiquement le 8 juin 2012 devant le jury composé de :

Janne BLICHERT-TOFT

Hervé MARTIN

Randall PARRISH

Klaus MEZGER

Minik ROSING

Nicolas COLTICE

Directrice de thèse

Directeur de thèse

Rapporteur

Rapporteur

Examinateur

Examinateur

Remerciements

Je tiens à remercier les personnes suivantes, sans qui ma thèse n'aurait pas pu se faire dans de si bonnes conditions :

Tout d'abord je tiens à remercier chaleureusement toute ma famille pour son soutien éternel mais surtout ma femme adorée Emilie qui m'a poussée et soutenue depuis le début et qui malgré les évènements se dévoue pour que je puisse faire ce métier dont je rêve depuis longtemps. Elle a d'ailleurs préparé un super pot de soutenance que l'on n'est pas prêt d'oublier ! Je tiens aussi à remercier mon fils Arthur qui par sa seule présence suffit à me donner la force de soulever des montagnes. Pratique pour un géologue ! Je remercie aussi ma chienne Bala qui pendant nos promenades me permet de réfléchir.

Encadrement de la thèse :

Un énorme merci à Janne BLICHERT-TOFT, Hervé MARTIN et Francis ALBAREDE pour leur gentillesse, leur compétence et leur disponibilité. Grâce à eux, j'ai pu effectuer une thèse dans des conditions fantastiques et je garderai un souvenir heureux de cette aventure. Je voudrais aussi remercier les encadrants de l'ombre : Steve MOJZSIS et Jeffrey VERVOORT qui m'ont initié à la recherche aux Etats-Unis, et m'ont permis respectivement de faire du travail de terrain et des analyses ponctuelles par ablation laser, ce qui fut extrêmement enrichissant du point de vue géologique mais aussi linguistique.

Fournisseurs d'échantillons:

Un grand merci à Geoscience Australia, Chris CARSON, Olga TURKINA, Valery VETRIN, Martin VAN KRANENDONK, Dave CHAMPION, Minik ROSING, Tomas NAERAA, Jean-François MOYEN (avec qui j'ai par la suite pu discuter longuement), Mingguo ZHAI, Peng PENG, Svetlana LUBACH-ZHUCHENKO.

Acteurs de l'ombre grâce à qui cette thèse a pu se faire sans problème (maintien technique et aide technique à Lyon ou Clermont-Ferrand, mais aussi dans les différents laboratoires où j'ai pu me rendre):

Je tiens à remercier Philippe TELOUK (Lyon), Chantal DOUCHET (Lyon), Emmanuelle ALBALAT (Lyon), Florent ARNAUD-GODET (Lyon), Mireille BESAIRIE (Clermont-Ferrand), Gilles MONTAGNAC (Lyon), Hervé CARDON (Lyon), Bertrand VAN-DE-MOORTELE (Lyon), Marc CHAUSSIDON (Nancy), Denis MANGIN (Nancy), Wouter BLEEKER (Acasta, Canada), Jean-Marc HENOT (Clermont-Ferrand), Thomas J. WILLIAMS (Moscow, Idaho, USA), Charles M.KNAACK (Pullman, Washington, USA), Rich GASCHNIG (Pullman, Washington, USA)

Pour l'ambience, les discussions et leur sympathie :

Merci aux thésards du LGLTPE passés et présents (notamment Cécile FEUILLIE, Klervia JAOUEN, Romain BOUCHET-BERT-MANOZ, Ange LE BOUDEC, Marie-Laure PONS, Romain BASSET, Martina ULVROVA, Marine LASBLEIS, Baptiste JOURNAUX, Baptiste SUCHERAS, ...), les personnels permanents du LGLTPE avec qui j'ai interagit (notamment Hervé BERTRAND, Bernard BOURDON, Ghylaine QUITTE, Manu MARTELAT, Muriel ANDREANI, Véronique GARDIEN, Vincent BALTER, Pierre THOMAS, Stéphane LABROSSE, ...), Christophe ROBIN, Laurent POUILLOUX, Maud BOYET, Hanika RIZO, Nick ARNDT, Catherine CHAUVEL, Jean-Louis PAQUETTE, Marie REID, James SAMPLE, Julie BRYCE, Ellis HOFFMANN, Michelle HOPKINS, Nicole CATES, Oleg ABRAMOV, Dustin TRAIL, ... et j'en oublie surement.

MERCI A TOUS

(l'aventure continue)

Structure de la thèse

Introd	luctio	n Gér	iérale	1
Chapi	tre I :	Les	continents et leur croissance	5
1.	Les coi	ntinen	ts	7
	1.1	Les co	ntinents et la tectonique des plaques	7
	1.2	Archit	ecture de la croûte continentale	10
	1.3	Ages e	t caractéristiques des segments de croûte continentale	12
	1.3	.1	Hadéen (4,567-4,0 Ga)	
	1.3	.2	Archéen (4,0-2,5 Ga)	
	1.3	.3	Protérozoïque (2,5-0,5 Ga)	
	1.3	.4	Phanérozoïque (0,5-0 Ga)	
	1.4	Comp	osition de la croûte continentale	24
	1.4	.1	Minéralogie	
	1.4	.2	Composition chimique	
	1.5	Pétrog	enèse	
	1.6	Evolut	ion temporelle	
2.	La croi	issanc	e des continents	40
	2.1	Présen	tation et historique des modèles	41
	2.1	.1	Qualitatifs	
	2.1	.2	Quantitatifs	
	2.2	Modél	isation numérique	46
	2.2	.1	Le système isotopique Lu-Hf	
	2.2	.2	Modèles de boîte	
3.	Conclu	sions		59

Chapitre II : Matériel et méthodes	
1. Echantillons	
2. Préparation des échantillons pour analyse	
2.1 Roches totales	
2.2 Zircons	
2.2.1 Tri minéral	

	2.	.2.2	Montage de plots pour le laser	
	2.	.2.3	Imagerie MEB	
	2.	.2.4	Préparation pour la chimie en solution	
3.	Proto	coles d	e chimie	77
	3.1	TTG.		77
	3.2	Zirco	ns	89
4.	Analy	yses élé	mentaires et isotopiques	94
	4.1	La sp	ectrométrie de masse	94
	4.	.1.1	Principe et fonctionnement	
	4.	.1.2	Les types de sources utilisées	
	4.2	TTG.		97
	4.	.2.1	Mesures isotopiques de l'hafnium	
	4	.2.2	Mesures isotopiques du lutétium	
	4.3	Zirco	ns en solution	106
	4.	.3.1	Mesures des rapports Lu/Hf	
	4	.3.2	Mesures des isotopes du plomb	
	4.	.3.3	Mesures isotopiques de l'hafnium	
	4.4	Zirco	ns par laser	113
	4.	.4.1	Mesures isotopiques U-Pb	
	4.	.4.2	Mesures isotopiques de l'hafnium	
	4.5	Valeu	rs annoncées et calculs d'erreurs	116
	•			
Chap	pitre I	$\Pi : Re$	ésultats des analyses isotopiques	119
1.	TTG			121
2.	Zirco	ns		123
	2.1	Analy	ses en solution	123
	2.2	Analy	ses par ablation-laser	125
	2.3	Comp	paraison solution et laser	127
3.	Com	paraiso	n TTG/zircons	130
4.	Com	paraiso	n avec la littérature	135
	4.1	Base of	le données	135
	4.2	Comp	paraison générale de cette étude	140
5.	Conc	lusions	des résultats	141
Char	nitro T	V • In	ternrétations des analyses isotoniques et discussions	143
Unap	Abata	••••••	ter pretations des analyses isotopiques et discussions	۲۳ ۱ <i>۸۶</i>
	AUSIN	исі		

Sommaire

1.	Intro	duction	147	
2.	Samples			
3.	Analytical techniques14			
	3.1	TTG whole-rock Lu-Hf isotope analysis by solution MC-ICP-MS	150	
	3.2	Zircon Lu-Hf and Pb-Pb isotope analyses by, respectively, solution MC-ICP and ICP-MS	-MS 150	
	3.3	Zircon Lu-Hf and U-Pb isotope analyses by, respectively, laser-ablation MC MS and ICP-MS	-ICP- 153	
	3.4	The zircon Hf isotope database	154	
4.	Resu	lts	156	
	4.1	TTG whole-rock and single zircon Lu-Hf isotope data	156	
	4.2	Impact on the results from the choice of reference frame for the Lu-Hf isoto system	ре 159	
	4.3	Comparison between laser-ablation and single grain dissolution techniques	159	
5.	Discu	ıssion	161	
	5.1	Preservation of the crustal growth record	161	
	5.2	Juvenile versus reworked orogenic segments	162	
	5.3	Nature of the crustal growth	164	
6.	Conc	lusions	168	
7.	Ackn	owledgements	169	
Conc	lusio	ns et Perspectives	. 171	

Références17	7′	,	7	
--------------	----	---	---	--

Annexes

Annexe A : Détail des échantillons analysés dans cette thèse
Annexe B : Tableaux des résultats des analyses isotopiques des TTG et des zircons avec leurs standards.
Annexe C : Programme Mathlab utilisé pour le calcul des rapports ¹⁷⁵ Lu/ ¹⁷⁶ Lu
Annexe D : Images MEB en BSE et carte des plots utilisés pour les analyses ponctuelles avec localisation des spots
Annexe E : Arndt et al. 2010

Introduction Générale

Introduction Générale

Introduction Générale

Introduction Générale

La Terre est la troisième planète la plus proche du soleil et fait partie des planètes telluriques, c'est-à-dire qu'elle est majoritairement constituée de roches contrairement aux planètes joviennes (comme Saturne et Jupiter) qui sont massivement gazeuses et plus grosses. Un détail remarquable de la Terre lorsqu'on l'observe de l'espace, par rapport aux autres planètes telluriques (et les satellites rocheux), est la quasi-absence de cratères d'impacts. Ceci témoigne de la relative jeunesse de la surface terrestre et indique donc un renouvellement et/ou un remaniement quasi-constant de celle-ci. La Terre est, par conséquent, une planète active et dynamique. Elle est aussi très différente de ses homologues puisqu'elle rassemble les conditions favorables à la stabilisation d'eau liquide à sa surface ce qui n'est pas sans relation avec l'apparition de la vie. Les résultats de nombreuses décennies de recherche ont permis de découvrir et de comprendre la relative jeunesse de la surface terrestre. Elle est liée à la tectonique des plaques. Ce mécanisme de surface est engendré par les mouvements de convection du manteau. Les géologues savent bien que des roches se sont formées continuellement depuis des temps reculés de l'histoire de la Terre comme en témoignent les datations absolues de roches magmatiques, et métamorphiques, mais aussi les datations relatives de ces mêmes types de roches, mais plus récentes, et de roches sédimentaires. Des nouvelles roches (sédimentaires, magmatiques et métamorphiques) se forment d'ailleurs en ce moment. Les autres planètes et satellites possèdent aussi des histoires géologiques mais celles-ci sont généralement courtes ou non-continues dans le temps et se sont arrêtées précocement. Par la suite, seuls l'érosion éolienne et les impacts ont contribués à renouveler leur surface, ce qui n'est pas un processus efficace. De plus, la Terre possède des océans qui recouvrent ~70% de sa surface ce qui la protège en empêchant ainsi les météorites de l'impacter.

Les études détaillées de la surface terrestre, couplées à l'étude de la propagation des ondes sismiques au sein du globe, ont permis de comprendre sa structure actuelle. La Terre est généralement découpée en cinq grands ensembles : la croûte (de la surface jusqu'à ~30 km de profondeur en moyenne), le manteau supérieur (de 30 à 660 km), le manteau inférieur (de 660 à 2900 km), le noyau externe de (2900 à 5100 km) et le noyau interne, ou la graine (de 5100 à 6300 km). Le noyau externe est liquide puisque l'on n'observe pas d'ondes de volume de type S qui s'y propagent, or celles-ci décrivent un cisaillement et celui-ci est nul dans un fluide. Le noyau interne est quant à lui solide et correspond vraisemblablement au produit de cristallisation de la partie externe. Le noyau (interne + externe) est majoritairement composé de Fe avec une part importante de Ni et de tous les éléments sidérophiles (W, Pt, Cr, ...). Le manteau, au même titre que la croûte, est constitué de silicates, cependant il contient

majoritairement des silicates de Mg et Fe alors que la croûte est, en plus, riche en K, Na, Ca et Al.

Les grandes questions qui viennent rapidement à l'esprit sont les suivantes : Est-ce que la structure initiale de la Terre était différente de l'actuelle ? A-t-elle changée ? Comment et par quel(s) processus ? Quelle a été l'évolution de la composition de ces différents réservoirs ? Ont-ils un lien génétique ? Quand a démarré la différenciation de la Terre en différents réservoirs ? Quelle est la chronologie de la formation de ces réservoirs ? Par quel(s) matériau(x) a été formé la Terre ? En trouve-t-on des exemples dans le système solaire ? Quel est l'âge de la Terre ?

Ce genre de question a alimenté les débuts scientifiques depuis très longtemps et les avancées de nombreuses études ont permis de répondre à un certain nombre d'entre elles et/ou au moins d'identifier et d'écarter certaines hypothèses. Les études de la composition de la photosphère de notre soleil couplée à des études de météorites et des estimations de la composition moyenne de la Terre, en différents éléments (ou isotopes), a permis d'éclaircir les idées en ce qui concerne les processus de condensation et de différenciation des premiers corps et planétésimaux dans le système solaire. Un flou existe cependant quant aux matériaux exacts qui ont donné naissance à la Terre. Certains chronomètres isotopiques (Hf-W) apportent des arguments sur la chronologie de différenciation de la Terre en un manteau et un noyau. L'étude fine des compositions moyennes du manteau supérieur (à travers l'étude des basaltes de dorsales océaniques) et des continents a mis en évidence un lien génétique entre ces deux réservoirs. La datation systématique d'un nombre très conséquent de minéraux extraits de roches crustales (granitoïdes) a permis de dresser une chronologie de l'extraction des continents, et l'étude de couples isotopiques (Rb-Sr et Sm-Nd principalement) par la même d'estimer son influence relative sur le manteau au cours du temps.

Les continents sont des archives extrêmement puissantes et relativement complètes de l'histoire de la Terre et leur étude nous apportent des informations extrêmement précieuses sur les processus et l'évolution de la Terre à différentes périodes. Par conséquent, se focaliser sur leur analyse et plus particulièrement sur les plus anciens me semble essentiel pour comprendre la nature des matériaux constituant la Terre, des processus de différenciation précoces et le démarrage de la tectonique des plaques. Les informations collectées jusqu'à lors sur les premiers continents sont controversées ou contradictoires, pour plusieurs raisons, et par conséquent ce travail de thèse a pour but de « nettoyer » l'enregistrement et de le compléter afin d'obtenir de nouvelles et robustes informations pour mieux comprendre la formation précoce de notre planète.

Chapitre I : Les continents et leur croissance

Chapitre I : Les continents et leur croissance

Le travail présenté dans cette thèse a pour finalité l'étude de la formation et de l'évolution des continents, en se focalisant sur les plus anciens d'entre eux, c'est-à-dire ceux qui se sont formés à l'Archéen, entre 4,0 et 2,5 Ga. Tout d'abord, il me semble essentiel, dans ce premier chapitre, de définir ce que sont les continents, et d'énoncer clairement leurs caractéristiques pétrologiques et géochimiques, avant de rentrer dans le vif du sujet.

1. Les continents

1.1. Les continents et la tectonique des plaques

Figure I-1 : Planisphère terrestre représentant la distribution des altitudes (en m) par rapport au niveau de la mer (par référence égal à 0). Les lignes rouges indiquent les limites des différentes plaques tectoniques. Carte tirée du SERC (Science Education Ressource Center du Carleton College).

Les continents sont classiquement définis comme de très grandes étendues de terre émergées qui présentent une vaste <u>continuité</u> géographique, et que les <u>océans</u> entourent en quasi-totalité. Cette définition fidèle à celle du dictionnaire n'a pas évoluée depuis l'antiquité et correspond à la vision de tout un chacun. Cependant, il existe une définition géologique,

plus précise, qui intègre des observations mais aussi des interprétations liées à des décennies d'études. Ainsi les continents ne se limitent pas à une surface émergée mais possèdent une partie immergée (talus continental et plateau continental) et surtout un volume ! Alors que le géographe s'intéresse essentiellement à la surface des continents, le géologue, quant à lui, prend en compte la troisième dimension et s'intéresse à tout le volume des masses continentales. En effet, les parties profondes des continents recèlent de précieuses informations quant à leurs mécanismes de genèse et d'évolution. Cependant, ces deux conceptions sont intimement liées et parfois confondues pour une question de représentativité et de comparaison.

Les limites des continents sont régies par la tectonique des plaques qui permet d'en comprendre les répartitions géographiques, leur forme et leur évolution (Windley, 1986). Comme cela est clairement visible dans la Figure I-1, grâce au code couleur, la répartition des altitudes terrestres est bimodale. On distingue une croûte océanique (bleue-violette dans la Fig. I-1) dont l'altitude moyenne est de -3800 m et une croûte continentale (verte à marron dans la même figure) dont l'altitude moyenne est de +837 m. Les plateaux continentaux (en bleu clair dans la Figure I-1) marquent la transition progressive, aussi appelée marge passive, entre croûte continentale et océanique.

Un océan consiste en une couche d'eau profonde en moyenne de 4 km, qui repose sur une croûte océanique. D'une épaisseur moyenne de 7 km, cette croûte est principalement constituée de roches magmatiques basiques. Elle se forme dans les zones de divergence des plaques lithosphériques, c'est-à-dire au niveau des rides médio-océaniques ou dorsales. Là, les laves basaltiques se mettent en place en surface à des températures de l'ordre de 1250°C et sont associées en profondeurs à un manteau lithosphérique très chaud de densité (d) qui est d'environ 3,1. Cette densité croît lentement au fur et à mesure du refroidissement de la lithosphère océanique et de son éloignement progressif de la dorsale sous l'effet de la tectonique des plaques et inéluctablement, finit par devenir plus dense (d>3,3) que le manteau asthénosphérique sur lequel elle repose (d~3,2). Une zone de subduction se forme alors, et la croûte océanique s'enfonce dans le manteau.

La lithosphère a un comportement rigide alors que l'asthénosphère est ductile. L'état rhéologique d'un solide dépend étroitement de sa température et par conséquent, le manteau asthénosphérique peut se transformer en manteau lithosphérique par refroidissement. La différence principale entre la lithosphère et l'asthénosphère correspond donc à une limite rhéologique liée à l'isotherme 1300°C même si ces deux portions mantelliques ont aussi très probablement des compositions chimiques différentes.

Figure I-2 : Schéma illustrant le fonctionnement actuel de la tectonique des plaques avec les sites d'activité majeurs où se forment la croûte océanique et la croûte continentale. L'encart correspond à un zoom sur la dorsale océanique où l'on peut apprécier la structure simple de la croûte océanique. Images tirées d'un manuel scolaire de 1^{er} S (Editions Nathan) et Juteau et Maury (2008) pour l'encart.

Un continent est un morceau de croûte continentale en grande partie émergée. Tout comme la croûte océanique, la croûte continentale « flotte » sur le manteau asthénosphérique. Aujourd'hui, cette croûte est épaisse en moyenne de 30 km, mais elle peut atteindre 70 km sous les chaînes de montagnes. De composition granodioritique à granitique (donc intermédiaire à acide contrairement aux roches basiques de la croûte océanique), la croûte continentale se forme aujourd'hui à relativement basse température (autour de 800 °C) dans les zones de subduction, suite à la fusion des roches du manteau situées au-dessus de la croûte océanique subductée (Hawkesworth et al., 1991). Cette fusion est produite par l'apport de fluides échappés de la plaque plongeante, hydratée à la suite de sa mise en place au fond des océans, ce qui provoque l'abaissement de la température du solidus des péridotites. Même après refroidissement complet, la densité de la croûte continentale est toujours plus faible (d ~ 2,8) que celle du manteau (~3.2). En conséquence, et contrairement à la croûte océanique, elle ne peut pas y retourner et être recyclée en proportion significative. C'est ce mécanisme qui est aujourd'hui à l'œuvre au niveau de la ceinture de feu du Pacifique (de la Nouvelle-Zélande à l'Amérique du Sud en passant par le Japon, le Kamtchatka et l'Amérique du Nord). Lorsqu'un océan (donc une lithosphère océanique) disparaît totalement dans une zone de subduction, alors les deux blocs continentaux qui se trouvaient séparés par cet océan, vont entrer en collision. En raison de sa faible densité, la croûte continentale n'est pas recyclée dans le manteau, et par conséquent, lors de la collision les morceaux de croûte continentale

vont s'empiler et s'accumuler les uns sur les autres provoquant par endroit de la fusion partielle de roches crustales (recyclage interne de la croûte continentale ou recyclage crustal). Il en résulte un épaississement de la croûte continentale et la formation de chaînes de montagnes. Les Alpes et l'Himalaya sont des exemples actuels de chaînes de collision. Cette quasi-indestructibilité a pour conséquence que la croûte continentale a enregistré tous les événements importants qui se sont produis à la surface de la planète, d'où son rôle essentiel de mémoire de l'histoire terrestre.

Pour résumer, la surface de la Terre est animée par les mouvements de plaques lithosphériques générées aux dorsales et détruites aux zones de subduction au profit de la formation de croûte continentale. Les continents sont, en quelque sorte, des masses inertes par rapport à cette dynamique, mais solidaires des plaques et dont le devenir est de rester en surface. Ceci est extrêmement pratique puisque cela nous permet de suivre l'évolution temporelle de la composition de la croûte continentale, mais aussi de sa source mantellique, moyennant une bonne compréhension des processus à l'origine de sa formation. Les continents sont par conséquent de puissantes archives de l'histoire de la Terre qui nous renseignent à la fois sur les processus internes (manteau/noyau) et externes (hydrosphère/atmosphère). De plus, malgré sa masse modeste par rapport à l'ensemble de la Terre (~0,6% de la Terre silicatée), la croûte continentale constitue un réservoir majeur pour certains éléments (par exemple K, Rb, Ba, Pb, Th et U). La grande question à laquelle les géologues essayent de répondre depuis des décennies est si l'on peut appliquer le principe des causes actuelles à des périodes très reculées de l'histoire de notre planète. En d'autres termes cela revient à savoir depuis quand la tectonique des plaques est à l'œuvre et si tous les continents se sont formés dans des zones de subduction, ou bien si d'autres processus doivent être invoqués. Outre la persistance ou non des mécanismes de genèse de la croûte continentale, se pose aussi la question de sa source ; a-t-elle demeurée inchangée tout au long de l'histoire de la Terre ?

1.2. Architecture de la croûte continentale

Contrairement à la croûte océanique dont l'architecture est relativement simple, la croûte continentale est extrêmement hétérogène et n'a pas vraiment de structure type. En effet, la croûte océanique est continuellement générée aux dorsales par des processus pétrogénétiques similaires et à partir d'une source semblable dont la composition a peu changé

depuis plusieurs centaines de millions d'années. Par conséquent l'architecture de la croûte océanique est relativement indépendante de son âge et de sa localisation géographique. De plus, étant donné qu'elle a une durée de vie limitée (les plus vieilles portions encore à la surface sont âgées de 180 Ma), et que leur vie se résume généralement à se former aux dorsales et à plonger dans le manteau par subduction après dérive au fond de l'océan, aucun épisode géologique majeur ne vient perturber leur structuration magmatique initiale. Le principal facteur influent sur sa structure est la vitesse d'ouverture des dorsales, et de génération de magmas induits, qui peut être soit lente (comme dans l'Atlantique) soit rapide (comme dans le Pacifique).

A l'inverse, la croûte continentale a une architecture très complexe qui est purement héritée de son histoire géologique (très variable) puisqu'elle a une importante flottabilité et donc un temps de résidence en surface très long (les plus vieux vestiges continentaux découvert jusqu'à aujourd'hui datant de 4 Ga). De plus, alors que l'on estime l'épaisseur de la croûte océanique entre 5 et 8 km, celle de la croûte continentale varie de 20 à 60 km (Christensen and Mooney, 1995). Les continents dérivent aux grés des déplacements des plaques océaniques et finissent donc par se rencontrer et s'assembler (collision continentale) ce qui provoque une restructuration importante de ceux-ci et une augmentation ponctuelle d'épaisseur qui sera réduite progressivement par érosion, effondrement gravitaires et fluage à sa base. Ces modifications sont structurales (liées à la tectonique) et pétrologiques (liées au métamorphisme mais aussi, lorsque ce dernier est extrême, au magmatisme puisque certaines unités crustales peuvent ainsi fondre partiellement sous des conditions métamorphiques poussées et en présence d'eau). L'érosion participe aussi à ces modifications puisqu'elle tend à remodeler la croûte en détruisant des roches pour en former de nouvelles. Les niveaux superficiels peuvent contenir les diverses roches que l'on rencontre à l'affleurement et les plus profonds sont probablement constitués de roches équilibrées dans le faciès granulites (souvent plus basiques que les niveaux sus-jacents comme indiqué dans le Tableau I-1 même si l'on peut y retrouver des roches métamorphiques dont le protolite correspond à certaines roches que l'on voit en surface) donc dans des conditions de haute pression et haute température. La croûte continentale est hypothétiquement découpée en trois parties (Rudnick and Gao, 2003) ; la croûte supérieure, la croûte intermédiaire et la croûte inférieure qui sont différenciées à la fois par le type de roches rencontrées mais aussi par leur composition, l'un n'allant pas sans l'autre. Le forage SG-3 (ou Kola Superdeep Borehole), profond de presque 13 km, effectué par les soviétiques dans la péninsule de Kola entre les années 1970 et la fin des années 1980 n'a cependant pas montré une structure comme décrit précédemment, mais plutôt une constance dans le type de roche rencontrées, et les interprétations des données géophysiques (surtout sismiques) se sont avérées fausses (Kozlovsky, 1987; Fuchs et al. 1990). Les densités des différentes parties crustales ne sont pas les mêmes puisque la pression et la nature basique des roches de la croûte inférieure (Tableau I-1) font passer la densité d'environ 2,7 dans les parties superficielles à presque 3,1 dans les parties les plus profondes, ce qui est la densité moyenne du plancher océanique (Christensen et Mooney, 1995).

1.3. Ages et caractéristiques des segments de croûte continentale

Figure I-3 : Répartition des provinces d'âges de la croûte continentale à la surface de la Terre (Tiré d'Allègre 2005 avec re-dessin de la répartition des cratons d'après Condie 2007). Les tâches noires à l'extrême Sud de la carte indiquent des portions cratoniques rattachées au continent Antarctique qui n'est pas représenté ici. Les répartitions des segments crustaux sont basées sur des surfaces et non des volumes puisque l'on a reporté les limites d'affleurements.

La figure I-3 présente la distribution des âges des continents regroupés en 5 grands groupes (Archéen en noir, Protérozoïque inférieur au Protérozoïque moyen en vert foncé, Protérozoïque moyen au Protérozoïque supérieur en vert clair, Protérozoïque moyen au Carbonifère terminal en bleu clair et Permien à l'actuel en blanc). Cette carte donne une idée des proportions relatives des segments de continents d'âges différents à l'affleurement actuellement. La croûte continentale apparaît clairement comme une mosaïque de roches d'âges très variés associées aux grés de la tectonique des plaques. Ces âges absolus sont déterminés très facilement (et de nos jours de façon routinière) par l'analyse des isotopes de l'U et du Pb des cristaux de zircon (ZrSiO₄) contenus dans les roches. En effet, ce minéral, extrêmement résistant à l'altération et au métamorphisme, cristallise très tôt dans l'histoire magmatique des granitoïdes et l'âge qu'il indique est donc celui de mise en place dans la croûte du magma à partir duquel il a cristallisé. Dans le détail, les roches continentales pouvant être très vieilles (jusqu'à au moins 4 milliards d'années), elles ont subis de multiples épisodes de perturbation potentiels plus ou moins intenses pouvant nuire à la bonne préservation de ces âges. Une façon simple de s'affranchir de ces problèmes est illustrée par la Figure II-5 (chapitre II) et consiste à observer la structure interne des cristaux de zircon qui révèle leur histoire.

Figure I-4 : Illustration du principe de l'analyse de zircons détritiques notamment pour l'âge. Concrètement, plusieurs massifs granitiques avec des âges bien distinct libèrent leurs cristaux de zircon du fait de l'érosion et ceux-ci sont transportés par les ruisseaux, les rivières, les fleuves et s'accumulent dans des sédiments. Lorsque l'on échantillonne les sables de ces cours d'eau ou même des sédiments consolidés (voir des métasédiments) les cristaux de zircons indiquent statistiquement, après analyse, les âges des massifs du bassin versant. Tirée de Kosler et al. (2002).

Comme explicité plus haut, un inconvénient du zircon est qu'il cristallise (et est extrêmement abondant) dans les roches acides mais est quasi absent des roches basiques ce qui empêche une datation routinière de ces dernières. Par contre, ceci donne une incroyable puissance à l'étude des zircons détritiques. Ces cristaux vont s'accumuler dans des sédiments après avoir été extraits de leurs roches-hôtes par érosion (le zircon faisant parti des rares survivants) et ainsi vont garder en mémoire les informations de cette dernière comme son âge et, moyennant une compréhension des fractionnements chimiques entre roche et minéral (coefficients de partages) sa composition (donc celle du magma à partir duquel le zircon a cristallisé). Or puisque le zircon est de loin dominant dans les roches acides par rapport aux roches basiques, leur étude va directement nous renseigner sur la croûte continentale comme illustré dans la Figure I-4. Concrètement, il existe deux moyens de réaliser l'échantillonnage des continents. Premièrement, des échantillons peuvent être collectés dans différents lieux, ce qui est cependant très long et très onéreux, d'autant plus qu'il n'est pas impossible de « manquer » certaines formations (ou certains terrains), tout simplement parce qu'ils sont difficilement accessibles. L'avantage est que l'on peut directement relier le zircon daté à une roche donc un magma, mais il faut pondérer les résultats par le volume des formations étudiées. Deuxièmement, des cristaux de zircon peuvent être prélevés dans des sédiments détritiques, au quel cas l'échantillonnage est effectué par les réseaux hydrographiques. Cette méthode est beaucoup moins onéreuse, puisque l'on collecte des sédiments en un nombre limité de lieux, et théoriquement plus exhaustive. Elle peut cependant introduire un biais car on suppose que les conditions d'échantillonnage par les cours d'eau sont les mêmes partout, ce qui n'est pas forcément correcte. Cette approche est avantageuse car les bassins versants peuvent être extrêmement étendus comme par exemple pour l'amazone, le Congo, l'Ob et le Mississippi (voir Iizuka et al., 2010), ce qui limite le nombre de lieux à échantillonner.

Figure I-5 : Diagramme Concordia d'analyses U-Pb sur un zircon de Jack Hills daté à 4,4 Ga. Une analyse concordante à 4,4 Ga est visible et le reste des points s'alignent sur une discordia (perte de Pb récente) indiquant un âge concordant à ~4,35 Ga comme bien visible dans l'encart. Tirée de Wilde et al. (2001).

Cependant, cette méthode détritique soulève de nombreuses interrogations auxquelles il est difficile de répondre comme la provenance exacte des cristaux de zircon, ceux-ci pouvant venir de très loin et dériver des divers types de granitoïdes (voir section 1.4), n'apportant pas tous forcément de réponses sur la formation ou l'évolution de la croûte. A partir de leur composition chimique, les cristaux de zircon cristallisés dans des roches basiques peuvent être différenciés de ceux formés dans des granitoïdes mais il est quasi-impossible de différencier ceux provenant de divers types de granitoïdes entre-eux (Grimes et al., 2007). Cette méthode est donc intéressante en ce qui concerne la détermination d'âges et de caractéristiques isotopiques (par exemple pour les isotopes de l'Hf; voir section 2.2.1) des segments de croûte. De plus, certains problèmes se posent sur la préservation effective des informations contenues dans les cristaux de zircon ce dont nous allons reparler plus tard dans ce travail de thèse.

1.3.1. Hadeen (4,567 – 4,0 Ga)

Cette période démarre avec la formation de la Terre probablement quelques millions d'années après la condensation des premiers solides du système solaire (les CAI pour Calcium and Aluminium-Rich Inclusions) s'étant formés il y a 4,567 Ma (Amelin et al., 2002) et se poursuit avec la genèse des toutes premières traces de croûte terrestres (cristaux de zircon détritiques) seulement ~150 Ma après (Wilde et al., 2001) (Fig. I-5). Les vestiges de cette période sont très nombreux parmi les météorites (et leurs constituants) dont les âges sont tous très proches de cette date de formation des CAI (Bevan, 2007). A l'inverse, les témoins terrestres de cette ère sont très rares et seulement trois localités en contiennent en quantité. La plus célèbre et la plus étudiée se situe dans les monts de Jack Hills sur la bordure nord-ouest du craton du Yilgarn en Australie (Fig. I-6). Ces témoins en question sont des cristaux de zircon détritiques (cristallisés dans une roche ignée, qui a été érodée, et accumulés dans des sédiments) découverts et révélés au grand jour par Compston et Pidgeon en 1986. Cependant, Froude et son équipe avaient déjà découvert, en 1983, des zircons âgés de 4,1 à 4,2 Ga dans le Mt Narryer (localité à environ 100 km au sud-ouest de Jack Hills). Ces deux ceintures supracrustales font parties d'un même bloc appelé Narryer. Wyche et collaborateurs ont aussi découvert en 2004 des zircons hadéens mais cette fois-ci plus au sud (à environ 400 km au sud-est) au niveau de la localité de Maynard Hills dans le bloc crustal de Barlee.

La ceinture supracrustale de Jack Hills contenant les zircons > 4 Ga est interprétée comme un cône alluvial de delta (Wilde et Pidgeon, 1990 ; Spaggiari et al., 2007) dont la mise en place remonte à environ 2,65 Ga, cet âge minimal étant donné par la relation structurale de cette ceinture avec une intrusion granitique (Pidgeon et Wilde, 1998). Ces très vieux minéraux se rencontrent au sein de quartzites, elles-mêmes faisant partie d'une ceinture de méta-sédiments très déformée comprenant plusieurs générations de dépôt (Spaggiari et al. 2007). Les plus vieilles roches identifiées dans ce même secteur font partie du complex Manfred (3730 Ma), uniquement présent sous forme d'enclaves, les orthogneiss de Meeberrie (3730 à 3600 Ma), les orthogneiss d'Eurada (3490 à 3440 Ma) et les orthogneiss de Dugel (3380 à 3350 Ma) (Cavosie et al. 2007). Tous les âges cités précédemment ont été acquis par la méthode U-Pb in-situ sur zircons.

Figure I-6 : Répartition des cratons de l'ouest australien (Pilbara et Yilgarn) avec le détail de l'emboitement de différents blocs crustaux et de certaines localités importantes. L'encart en bas à gauche permet de situer plus précisément la carte à l'échelle de l'Australie. Les initiales utilisées pour les blocs crustaux sont B pour Barlee, Ba pour Balingup, Bo pour Boddington, G pour Gindalbie, K pour Kalgoorlie, Ku pour Kurnalpi, L pour Laverton, LG pour Lake Grace, M pour Murchison, N pour Narryer, P pour Pinjin et Y pour Yellowdine. Carte tirée de Cavosie et al. (2007).

La mesure des isotopes de l'oxygène dans ces très vieux zircons, par deux équipes différentes (Wilde et al., 2001 ; Mojzsis et al., 2001), a permis aussi de démontrer que de l'eau liquide (peut-être des océans) était déjà présente à la surface de la Terre il y a 4,3 à 4,4 milliards d'années. En effet, les rapports élevés ôdu ¹⁸O (supérieurs à la valeur de +5.5 correspondant aux roches magmatiques extraites du manteau) rappellent les valeurs rencontrées dans certaines roches actuelles qui ont interagit, à basse température, avec un réservoir superficiel d'eau liquide (hydrothermalisme).

Plusieurs autres preuves directes ou indirectes indiquent la présence d'une croûte hadéenne. Par exemple, Iizuka et al. (2006) ont découvert un cœur de zircon hérité daté à 4,2 Ga dans des gneiss d'Acasta âgés de ~3,9 Ga. Les preuves indirectes sont tirées de l'analyse de couples isotopiques, principalement ¹⁴⁷Sm-¹⁴³Nd, ¹⁴⁶Sm-¹⁴²Nd et ¹⁷⁶Lu-¹⁷⁶Hf. Deux équipes différentes ont annoncées en 2003 la découverte d'anomalies positives du ¹⁴²Nd dans des roches du Groenland, c'est-à-dire des rapports isotopiques ¹⁴²Nd/¹⁴⁴Nd supérieurs à l'estimation de la Terre Globale silicatée (Caro et al., 2003 ; Boyet et al., 2003), elle-même supérieure de 20 ppm à la valeur des chondrites (Boyet et Carlson, 2005). Or ce chronomètre ¹⁴⁶Sm-¹⁴²Nd est dit à courte période puisque la demi-vie du ¹⁴⁶Sm est de 103 Ma et donc était actif uniquement à l'Hadéen, contrairement au ¹⁴⁷Sm-¹⁴³Nd qui est encore actif de nos jours. De plus, en 2008, O'Neil et al. ont annoncé la découverte d'anomalies négatives dans des roches de la ceinture supracrustale du Nuvvuagittuq (Québec). Ces anomalies sont extrêmement rares et sont interprétées comme résultant de processus ayant eu lieu à l'Hadéen. Les anomalies positives sont dues soit à des hétérogénéités initiales, soit à des processus de fractionnement par la cristallisation de l'océan magmatique, soit à des épisodes d'extraction de croûte continentale. Les anomalies négatives serait dues aussi à des fractionnements par l'océan magmatique ou aux hétérogénéités initiales, mais peuvent aussi découler de la contamination de roches éoarchéennes par de la croûte hadéenne ou indiquer l'âge de ces roches (~4,3 Ga) ce qui est cependant fortement contesté. Récemment, Tessalina et al. (2010) ont mesurés les isotopes du ¹⁴³Nd dans des komatiites, des basaltes, des cherts, des baritines et des carbonates du craton des Pilbara (Australie). Ces roches s'alignent selon une isochrone indiquant un âge de ~3,5 Ga et aun _{Nd} initial de -3,3. D'après leur modèle, ces auteurs interprètent cette valeur initiale comme liée à la contamination des komatiites et des basaltes par de la croûte continentale hadéenne ayant été extraite du manteau il y a environ 4,3 Ga. Cependant, ces interprétations sont contestées.

1.3.2. Archéen (4,0 – 2,5 Ga)

Autant les témoins géologiques de l'ère hadéenne sont extrêmement ténus et partiels, les roches d'âges archéens sont abondantes à la surface de tous les continents (fig. I-4). Leur quantité est au premier ordre inversement proportionnelle à leur âge. Le challenge se trouve donc dans la localisation de ces roches, ce qui jusqu'à lors s'est fait en grande majorité de façon accidentelle principalement pendant des échantillonnages pour des levées de cartes. Il n'est pas impossible cependant que des roches d'âge hadéen affleurent quelque part aujourd'hui et que tout simplement elles n'aient pas encore été découvertes. Les portions de croûte archéennes se différencient des portions d'âges plus récents à la fois par les lithologies rencontrées mais aussi par les structures. Généralement, les sections crustales rencontrées au sein des cratons sont au nombre de deux et décrites de la façon suivante : les « granitegreenstone belts » et les « granulite-gneiss belts » qui correspondent respectivement à des parties superficielles, généralement métamorphisées avec un faible degré souvent schiste vert et des parties relativement profondes métamorphisées dans les faciès amphibolite à granulite (Gorman et al., 1978; Windley, 1986). Les ceintures de roches vertes (« greenstone belts » en anglais) sont généralement constituées de roches sédimentaires et volcaniques qui apportent des informations précieuses sur l'environnement de la surface de notre planète à l'Archéen. Les roches volcaniques sont représentées par des coulées de basaltes et de komatiites (Fig.I-7a) mais aussi des laves en cousins (Fig. I-7b). Les komatiites sont des laves ultrabasiques extrêmement fréquentes et uniquement rencontrées à l'Archéen à l'exception de l'île de la Gorgone, en Amérique du Sud, formée au crétacé. Elles doivent leur composition ultrabasique à des taux de fusion partielle mantellique très élevés de l'ordre de 20 à 40%. Leur principale originalité, outre leur composition, est le fait qu'elles présentent une texture dendritique appelée spinifex (Fig. I-7a) liée à la cristallisation rapide de ces laves très fluides. La source des komatiites et leur mode de genèse est cependant discuté car il existe deux écoles : fusion anhydre à haute température ou fusion hydratée à des températures plus faibles. Dans le premier cas, la source serait un panache mantellique extrêmement chaud provoquant une fusion partielle adiabatique poussée résultant en des taux de fusion pouvant aller jusqu'à 40 % et une température d'éruption estimée à environ 1400°C contre ~1200°C pour les basaltes actuels (Arndt, 2008). Les hypothèses de formation hydratée voient plutôt les komatiites associées à des zones de subduction et leur taux de fusion partielle élevé lié à la présence d'eau en quantité importante (Allègre, 1982). Les basaltes de type MORB, dont la source est appauvrie en élément en trace les plus incompatibles, sont très rares parmi les roches archéennes à l'inverse des basaltes tholéiitiques. Quelques exemples de volcanisme intermédiaire à acide sous forme de séquences volcano-clastiques sont aussi visibles (Fig. I-7c) même si le volcanisme basique domine.

Figure I-7 : Planche photographique montrant une komatiite polie (a) tirée d'Arndt et al. (2004), des laves en cousins (b) et des dépôts de projections de laves acides (c) dans le « supergroup » de Yellowknife daté à 2,7 Ga ainsi qu'un BIF (banded Iron Formation) d'Amérique du Nord daté à 2,1 Ga (source wikipedia). Une des caractéristiques des komatiites est la présence de cristaux d'olivine (et parfois de clinopyroxène) avec des textures dendritiques dîtes spinifex bien visible en (a). Notez le contact net entre les laves en coussins de la Figure b et les dépôts fins en bas de l'image. Les BIF sont constitués d'une alternance de bancs d'oxydes de fer (noirs) contenant de la magnétite et de l'hématite et de bancs siliceux bien moins riches en oxydes de fer (rouges). Cependant ces derniers ne sont pas toujours rouges. Crédit photographique des images a et b : Martin GUITREAU.

Les séquences sédimentaires sont composées de « BIF » (Fig. I-7d) (acronyme anglais pour Banded Iron Formation) que l'on retrouve jusqu'au Protérozoïque, de cherts (dépôts siliceux sédimentaires ou hydrothermaux), de séquences détritiques (silts, grès et conglomérats), de rares carbonates et de sédiments bio-formés comme les stromatolithes dont les plus vieux exemples se rencontrent en Australie à Pilbara (~3,5 Ga). Les ceintures de roches vertes reposent sur un socle "granito-gneissique" constitué de TTG (acronyme pour Tonalite-Trondhjémite-Granodiorite) et l'ensemble est classiquement recoupé par des plutons tardifs potassiques de composition sanukitoïdique. Les sections profondes (« granulite-gneiss belts ») sont massivement constituées de roches ortho-dérivées et de quelques paragneiss. Les compositions de ces orthogneiss sont majoritairement de type TTG, parfois tirant vers des pôles relativement basiques, et leurs relations sont beaucoup plus complexes que dans les sections superficielles car les déformations et les degrés métamorphiques peuvent être très importants jusqu'à atteindre la fusion partielle (rendant les choses encore plus complexes).

Les structures des cratons sont sensiblement différentes de celles des chaînes plus récentes. Selon la localité étudiée, une tectonique horizontale, semblable à celle liée à la tectonique des plaques, est identifiable (Bridgwater et al., 1974, Moyen et al., 2006) mais une tectonique verticale (sagduction) est aussi visible comme illustré dans la Figure I-8 présentant le plus belle exemple (Pilbara dans le Nord-Ouest Australien) où un enchaînement de dômes (plutons granitiques) et de bassins (ceintures de roches vertes) est bien visible (Anhaeusser, 1971). Ces dômes sont des plutons granitiques qui montrent du cisaillement pur interprété comme reflétant la remontée relative de ceux-ci par rapports aux bassins (correspondant aux ceintures de roches vertes). Les roches volcaniques ultrabasiques (komatiites) et les BIF très abondants dans les ceintures de roches vertes sont bien plus denses que les granitoïdes sur lesquels ils reposent et l'existence de ce gradient inverse de densité provoque l'enfoncement de la ceinture de roche verte (Gorman et al. 1978; Bouhallier et al., 1995; Chardon et al., 1996; Choukroune et al., 1997). Cependant, tous les cratons ne montrent pas ces structures car elles sont limitées aux « granite-greenstone belts ». Les sections plus profondes ont des structures très semblables à leurs homologues plus récents, caractéristiques des déformations se produisant dans les conditions métamorphiques de pression et température moyennes à élevées (faciès amphibolite à granulite) même si certaines ceintures de roche verte sont descendues dans le faciès granulite par sagduction (Chardon et al., 1998).

Cette subdivision entre ceinture de roches vertes et complexe granito-gneissique n'est pas très heureuse puisqu'elle regroupe les lithologies non pas par leur nature mais par leur degré métamorphique. Par exemple, il arrive de trouver les assemblages caractéristiques des ceintures de roches vertes au sein de parties profondes de la croûte dans le faciès granulite (Chardon et al., 1998), celles-ci étant descendues par sagduction. Une description plus simple de la structuration des cratons archéens pourrait être la suivante. Une couverture volcanosédimentaire (contenant les roches décrites dans les ceintures de roches vertes) repose sur un socle granito-gneissique (contenant principalement des roches à affinités de TTG) le tout étant recoupé par des plutons potassiques tardifs. Les mouvements de sagduction induisent une mobilité relative des ceintures de roches vertes et du socle après leurs mises en place, ce qui est plus tard déformé par des mouvements relatifs à la tectonique des plaques.

Figure I-8:Comparaison entre la carte géologique (a) d'après Van Kranendonk et al. (2007) et une vue satellite de Google Earth (b) du craton des Pilbara dans le nord-ouest Australien. La structure type de sagduction est visible par les dômes marron-blanchâtre entourés de roches visiblement déformées à grandes échelles et de couleur gris-verdâtre (ceintures de roches vertes).

Tous les différents cratons ne possèdent pas des roches de même âge ni une même distribution de ces âges bien que dans la Figure I-4 ils soient tous regroupés ensemble. Leurs histoires peuvent être sensiblement différentes et les roches témoigner de plusieurs environnements géodynamiques. Par exemple, le bouclier Nord-Atlantique au niveau du Groenland montre l'assemblage d'arcs volcaniques alors que le craton des Pilbara correspond plutôt à un environnement de plateau océanique. Je vais par la suite présenter de façon non-exhaustive les différents cratons selon les roches les plus veilles qu'ils contiennent qui

correspondent au démarrage de la croissance de ceux-ci car ce sont très souvent les roches du socle (TTG) les plus anciennes.

Figure I-9 : Cartes des complexes d'Acasta (a) et de Napier (b) avec les localités pertinentes de la Terre d'Enderby comme Mount Sones et Gage Ridge où affleurent les plus vieilles roches d'Antarctique. Tiré de Choi et al. (2006) et Iizuka et al. (2007).

Les roches les plus vieilles découvertes jusqu'à aujourd'hui sont les gneiss d'Acasta dans les territoires du nord-ouest au Canada et sont âgées de 3,96 Ga (Bowring et al., 1989). Ces gneiss sont très majoritairement des orthogneiss de type TTG (Bowring et al., 1990). Le complexe gneissique du Napier en Antarctique était avant la découverte des gneiss d'Acasta le plus vieux vestige terrestre. Les premières datations de ce complexe datent de 1976 par Sobotovitch qui avait annoncé un âge de 4000 Ma affiné à 3927 Ga en 1986 par Lance Black (avec Williams et Compston). La différence majeure entre les deux complexes (Acasta et Napier), outre l'accessibilité, est l'état de conservation des roches, les gneiss d'Acasta étant métamorphisés dans un faciès amphibolite moyen alors que les gneiss du Napier ont subi un métamorphisme d'ultra haute température à la fin de l'Archéen (Harley, 2003). Cependant, ce complexe en Antarctique semble beaucoup plus étendu que celui d'Acasta même si la calotte glaciaire empêche d'en apprécier l'étendue réelle (Figure I-9).

Les roches d'âges éoarchéen se retrouvent principalement au sein du complexe d'Itsaq à l'ouest du Groenland mais aussi en chine (Anshan) et à l'est du Canada dans la province du Nain et la ceinture supracrustale du Nuvvuagittuq. Les gneiss d'âges compris entre 3,6 et 3,4 Ga se retrouvent dans beaucoup de cratons situés principalement en Afrique du Sud (Kaapvaal), en Australie (Pilbara et Yilgarn), en Sibérie, en Amérique du Sud (craton Amazonien et de Sao Francisco), en Inde (Dharwar et Bhandara), en Ukraine et de façon plus anecdotique en Guinée (bouclier de Man) et aux Etats-Unis. Les roches de 3,2 à 2,6 Ga sont plus ou moins présentes dans tous les cratons cités précédemment à travers des épisodes magmatiques majeurs ou mineurs. Cependant de nouveaux cratons (ou peut-être plutôt de nouvelles portions autour de cratons qui ont été séparées plus tard) se sont formés pendant cette période, il s'agit notamment du Bouclier Baltique et Ukrainien (Kola, Carélie et Ukraine), de la province du Supérieur (au Canada), de la majeure partie du craton de l'homme (Afrique de l'Ouest) et de la Terre Adélie (Antarctique).

Les informations tirées de l'étude des roches Archéennes sont moins controversées dans les portions continentales plus jeunes et mieux conservées, que celles d'Acasta et du complexe Napier, tel que dans les cratons Nord-Atlantique, du Kaapvaal et de Pilbara qui ont respectivement environ 3,8 Ga, 3,5 Ga et 3,4 Ga. De plus, l'abondance des roches s'étant formées en surface, ainsi que leur relativement bonne préservation (faciès métamorphique de schiste vert à amphibolite) nous permet de tirer des informations sur les enveloppes externes (émergence de la vie, hydrothermalisme, volcanisme, sédimentation, ...) et sur les conditions et les styles de déformation de la croûte supérieure. La ceinture supracrustale d'Isua (~3,8 Ga) est notamment le site où certains auteurs prétendent avoir trouvé la plus vieille trace de vie à partir de la composition isotopique du carbone de cristaux de graphite (Mojzsis et al., 1996 ; Rosing, 1999) ce qui est cependant extrêmement contesté.

1.3.3. Protérozoïque (2,5 – 0,5 Ga)

Le Protérozoïque est une période de transition tant à la fois en termes de structures et de lithologies (la domination des TTG se termine progressivement au dépend de roches calcoalcalines des zones de subduction actuelles). Les ceintures de roches vertes avec les morphologies en dômes et bassins sont fréquentes dans les portions du Protérozoïque inférieur mais deviennent rares par la suite au dépend de ceintures mobiles correspondant à des épisodes de subduction puis de collision, sur les bordures des cratons, semblables aux orogénèses récentes. Plusieurs blocs crustaux Archéens sont accrétés les uns aux autres comme dans le craton du Yilgarn (Figure I-6) induisant par la même de plus en plus de recyclage crustal. De grands évènements magmatiques de cette période se situent dans le bouclier scandinave (Svécofennien à 1,9 à 1,8 Ga), aux Etats-Unis et au Canada (de 2 à 1 Ga), en Amérique du Sud (Transamazonien), en Afrique (Eburnéen et Birimien), en Australie et en Sibérie (Figure I-3) sur les bordures de cratons préexistants. Cet éon se termine par les orogénèses de Greenville (~1 Ga) et Pan-Africaine (~600 Ma) parmi les plus étudiées. Le Protérozoïque est une période qui a aussi vu la mise en place de nombreuses intrusions basiques litées qui correspondent à la remontée et à la fusion d'un panache mantellique (comme par exemple le complexe du Bushveld en Afrique du Sud à ~2 Ga et celui du Muskox au Canada à ~1 Ga).

1.3.4. Phanérozoïque (0,5-0 Ga)

Les principaux sites de croissance crustale Phanérozoïque se répartissent autour des chaînes Calédonienne (Norvège, Terre Neuve, Mauritanie et Appalaches), Hercynienne (Europe, Russie, Amérique du Nord et Maroc) et plus récemment les Alpes, l'Himalaya et les zones de subduction notamment sur toute la ceinture Péri-Pacifique (Figure I-3). Cette période est aussi riche en trapps (Sibérie et Deccan par exemple) qui sont vraisemblablement les expressions de surface des intrusions basiques litées comme on peut en voir au Protérozoïque (Ernst, 2007). Ces trapps sont produites dans la tête du panache à son arrivée sous la lithosphère et par la suite les magmas engendrés donnent naissance à des appareils volcaniques typiques des points chauds comme l'archipel du Pacifique se terminant par Hawaii. Les zones de subduction actuelles sont massivement focalisées sur les bordures de croûte continentale, où le contraste de densité horizontale est le plus fort (entre croûte océanique et croûte continentale), tout comme cela a du être le cas avant le Phanérozoïque, ce qui continu à faire croître la croûte mais aussi à la faire disparaître en entrainant des sédiments dans le manteau (Fig. I-2).

1.4. Composition de la croûte continentale

Aujourd'hui, la croûte continentale juvénile se forme au niveau des zones de subduction, où des magmas de composition globalement granodioritique sont extraits du manteau. C'est la raison pour laquelle la croûte continentale actuelle a une composition granodioritique. Lors des collisions continentales, se produisent des mécanismes de fusion internes à la croûte (recyclage crustal), soit par fusion directe des granodiorites, soit via un cycle sédimentaire. Ce recyclage donne naissance à des magmas de composition granitique, et

a tendance, au cours du temps à faire évoluer la composition des continents de granodioritique à granitique. Depuis, l'ère primaire, donc dans les portions relativement récentes des continents (<500 Ma), la granodiorite (et le granite) représente la croûte continentale mais à l'Archéen (4,0-2,5 Ga), les choses sont quelque peu différentes, en effet, la lithologie crustale dominante n'est plus granodioritique ou granitique, mais de type TTG (pour Tonalites-Trondhjémites-Granodiorites). Des granites sont visibles à l'Archéen mais ils sont plus rares et tout de même différents des actuels.

Figure I-10: Planche photographique illustrant la minéralogie et la texture des TTG. Les Figures a et c sont des vues au microscope optique en lumière polarisée non-analysées de deux échantillons différents de TTG, et b et d correspondent respectivement aux mêmes vues que a et c mais en lumière polarisée analysée. Les minéraux principaux bien visibles dans l'échantillon des Figures a et b (AG09-008) sont le quartz, le feldspath plagioclase, la biotite et la hornblende verte. Dans les Figures c et d, l'échantillon (AG09-008g) est composé majoritairement de quartz, de plagioclase, de biotite et de grenat. Les Figures e et f sont des photos des gneiss d'Acasta où l'on peut voir des foliations très nettes et l'aspect général grisâtre qui a value le nom de gneiss gris aux TTG (même si ce terme regroupe parfois divers types d'orthogneiss). Notez que le filon de TTG de la Figure e est intrusif dans un métagabbro. De plus, un grand pli isopaque est visible dans la Figure f. Crédit photographique : Martin GUITREAU

Le terme de granitoïde regroupe en fait un grand nombre de roches semblables, au premier ordre, et dans le détail plusieurs types peuvent être identifiés. Les diverses classifications réalisées depuis les années 30 pour différencier les types de granitoïdes se sont focalisées sur leur composition chimique, leur pétrographie, le type d'enclaves qu'ils
contiennent, leurs minéraux basiques, la morphologie de leurs zircons, la nature des oxydes de fer et de titane qu'ils continennent, la chimie de leurs biotites, la géochimie de leurs éléments majeurs, la géochimie de leurs éléments traces, leurs minéralisations associées et finalement les environnements tectoniques de leur mise en place. Ces diverses classifications sont détaillées et comparées par Barbarin (1999) qui en propose une synthèse. Une des classification les plus répandues et utilisée est celle de Shand (1943) à qui l'on doit les termes peralumineux, metalumineux et peralcalin. Cependant les classifications de Lacroix (1933), qui regroupent les roches en calco-alcalines, hyperalumineuses et alcalines, et de Chappell et White (1974 ; 1983), en type I (pour igné), S (pour sédimentaire), M (pour manteau) et A (pour alcalin), sont aussi utilisées.

Alors que les premières tentatives de classification étaient purement descriptives, elles ont très rapidement intégré une dimension génétique, se référant à la nature de la source, au mécanisme et à l'environnement géodynamique de genèse des granitoïdes. Ceci est extrêmement important car selon la source de ces roches la masse de la croûte continentale croît ou reste la même. En effet, si un magma est extrait du manteau pour être ajouté à la croûte continentale cette dernière voit sa masse augmenter au dépend du manteau. Les granites formés ainsi sont appelés juvéniles. Si un magma est généré à partir d'une ou plusieurs lithologies de la croûte continentale (généralement des sédiments), on parle alors de recyclage crustal puisque les roches sont juste transformées mais la masse des continents et du manteau ne changent pas. Les roches issues de ce processus sont toujours des granites alors que les roches juvéniles peuvent être basiques à acides puisqu'il s'agit de roches produites par fusion partielle du manteau (ensuite plus ou moins différenciées). Cependant les granitoïdes d'arcs représentant la croûte continentale, contrairement aux basaltes, se forment dans des contextes géodynamiques particuliers et les épisodes juvéniles interviennent principalement pendant la subduction à proprement parlé alors que le recyclage intervient surtout après ; pendant la collision continentale suivant la fermeture d'un océan à la suite de cette subduction. Les différentes étapes du cycle de Wilson, qui correspondent à une durée d'environ 400 à 500 Ma et décrit le « ballet » des continents, peuvent être associées à des types de magmatisme différents (donc à des sources spécifiques) indiquant que les subductions constituent des mécanismes de croissances de la croûte. Certains granites dits alcalins se forment sans lien direct avec des épisodes orogéniques mais plutôt en contexte d'extension crustale (Bonin, 1986), cependant ils sont relativement anecdotiques.

1.4.1. Minéralogie

Figure I-11: Différences minéralogiques entre granitoïdes d'arcs (points et champ orange) et TTG (points et champ vert). La classification de Streckeisen (1976) (a) basé sur la composition modale entre quartz (Q), plagioclases (P) et feldspaths alcalins (A) des roches grenues montre que les TTG sont différentes des granitoïdes d'arcs, ces derniers contenant plus de feldspaths alcalins. La Figure b (O'Connor, 1965) montre que les types de feldspaths normatifs sont différents entre granitoïdes d'arcs et TTG, ces dernières contenant très principalement des plagioclases sodiques alors que les autres possèdent beaucoup de feldspaths alcalins ceux-ci étant plus potassiques que ceux que l'on trouverait dans les TTG. Le troisième triangle (c) (Barker et Arth, 1976) montre que lorsque l'on considère les cations K, Na et Ca des roches totales, les TTG sont réparties à proximité direct du pôle Na alors que les granitoïdes d'arcs se distribuent le long d'une courbe correspondant au chemin de différenciation des magmas calco-alcalins plus riches en Ca et en K. D'après Moyen et Martin (2012).

Les TTG sont constituées de quartz et de feldspath plagioclase sodique (oligoclase) et contiennent seulement très peu, voir pas du tout, de feldspath alcalin (Fig. I-10a, b, c et d). Les teneurs en minéraux ferromagnésiens sont généralement inférieures à 15%. (Martin, 1994). L'association minéralogique la plus fréquente est oligoclase+quartz+biotite mais les associations oligoclase+quartz+microcline et oligoclase+quartz+biotite+hornblende verte sont aussi rencontrées. Les minéraux accessoires comptent généralement de l'épidote (pistachite, zoisite et clinozoisite) parfois très abondante, de l'allanite, du sphène, de l'apatite, de

l'ilménite, de la magnétite et du zircon dont nous allons beaucoup parler dans ce travail de thèse. Parfois, la pyrite peut être présente dans les minéraux accessoires.

	Croûte océanique	Croûte continentale		TTG	Granitoïdes d'arcs modernes		
Majeurs (% pds)	N-MORB	Supérieure	Intermédiaire	Inférieure	Totale	n=1224	n=250
SiO ₂	50.1	66.6	63.5	53.4	60.6	69.5	68.1
TiO ₂	1.11	0.64	0.69	0.82	0.72	0.38	0.54
Al ₂ O ₃	16.3	15.4	15.0	16.9	15.9	15.6	15.1
FeOT	9.7	5.0	6.0	8.6	6.7	3.2	4.4
MnO	0.17	0.10	0.10	0.1	0.1	0.05	0.09
MgO	8.7	2.48	3.59	7.24	4.66	1.25	1.55
CaO	11.8	3.59	5.25	9.59	6.41	3.16	3.06
Na ₂ O	2.5	3.27	3.39	2.65	3.07	4.71	3.68
K ₂ O	0.05	2.80	2.30	0.61	1.81	1.95	3.4
P ₂ O ₅	0.1	0.15	0.15	0.1	0.13	0.15	0.15
Mg#	61.0	46.7	51.5	60.1	55.3	43.0	41.0
Traces (ppm)							
V	280	97	107	196	138	48	76
Cr	250	92	76	215	135	40	23
Ni	120	47	34	88	59	18	11
Rb	0.4	84	65	11	49	66	110
Sr	94	320	282	348	320	490	316
Y	25	21	20	16	19	12	26
Zr	60	193	149	68	132	155	171
Nb	1.0	12.0	10.0	5.0	8	6.8	12.1
Ba	6.1	624	532	259	456	713	715
La	1.9	31.0	24.0	8.0	20	31.4	31
Ce	6.0	63	53	20	43	58	67
Nd	6.1	27	25	11	20	22	27
Sm	2.2	4.7	4.6	2.8	3.9	3.5	5.3
Eu	0.9	1.0	1.4	1.1	1.1	0.88	1.0
Gd	3.5	4.0	4.0	3.1	3.7	2.4	5.5
Dy	4.5	3.9	3.8	3.1	3.6	1.7	5.2
Er	2.6	2.3	2.3	1.9	2.1	0.76	3.0
Yb	2.7	2.0	2.2	1.5	1.9	0.64	3.2
Lu	0.4	0.3	0.4	0.3	0.3	0.13	0.5
HI T-	2.9	5.5	4.4	1.9	3.7	3.9	-
Th	0.1	0.9	0.0	0.0	0.7	0.78	-
	0.09	10.5	0.5	1.2	5.0	1.7	
Dáfáranca	0.05 Klain (2003)	2.1 Rudnick	2.7 1.5 0.2 1.5 Rudnick et Gao (2003) et Rudnick et Fountain (1905)		Moven et Martin (2012) et Martin (1994)		

Tableau I-1 : Composition moyenne de réservoirs crustaux majeurs et estimations de la composition des
différentes portions continentales. FeO_T correspond à $FeO + Fe_2O_3$ et Mg# correspond au calcul
(Mg/Mg+Fe) avec Mg et Fe sous forme de cations et non d'oxydes.

Les TTG sont aujourd'hui la plupart du temps des orthogneiss présentant une foliation marquée liée à leur histoire tectonique (Figure I-10e et f).

La Figure I-11a situe les TTG (champ vert et points verts) selon la classification de Streckeisen (1976) basée sur l'abondance relative de quartz, de feldspaths alcalins et de plagioclases. Les TTG se positionnent dans le champ de la tonalite avec seulement quelques points dans le champ de la granodiorite (Fig. I-11a). Les gneiss gris suivent une tendance de différenciation typique des roches calco-alcalines pauvres en potassium comme défini par Lameyre et Bowden (1982). Le granite contient beaucoup de feldspaths potassiques par rapport aux TTG qui en sont presque dépourvues. Si l'on considère une composition

normative des feldspaths (définie à partir de la composition chimique des roches), le granite est majoritairement constitué de feldspaths alcalins avec une certaine variabilité entre sodium et potassium alors que les TTG sont beaucoup plus sodiques (Fig. I-11b). De plus, lorsque l'on ne considère que les cations K, Na et Ca de la roche, les granites modernes se répartissent selon une courbe, correspondant à l'évolution des magmas calco-alcalins partant du pôle calcique et évoluant au cours de la différenciation vers un enrichissement en potassium (points orange dans la Figure I-11c). Les TTG sont réparties en nuage de points compact à proximité directe du pôle sodique (champ et points verts dans la Figure I-11c).

Une différence existe belle est bien au niveau minéralogique entre les granitoïdes de la croûte continentale juvénile moderne et les TTG de l'Archéen. La minéralogie d'une roche reflète non seulement ses conditions physiques de cristallisation, c'est-à-dire la température et la pression qui délimitent les champs de stabilité des minéraux qui la compose, mais aussi et surtout la composition du magma à partir duquel elle s'est formée. Par conséquent, il est intéressant de comparer ces roches en termes de composition chimique (Tableau I-1).

1.4.2. Composition chimique

La croûte continentale est constituée de granitoïdes, c'est-à-dire qu'elle contient plus de 65% en poids (%pds) de SiO₂. L'estimation de la composition chimique moyenne des différentes portions de la croûte continentale (supérieure, intermédiaire, inférieure et totale) est présentée dans le tableau I-1 avec celle des TTG, des granitoïdes d'arc modernes et des MORB de type N que l'on peut trouver par exemple dans l'Atlantique représentant en moyenne la croûte océanique. Ces compositions comprennent les principaux éléments majeurs sous forme d'abondances d'oxydes (%pds) et une partie des éléments en traces en ppm (partie par million). La différence majeure entre croûte océanique et continentale réside d'abord dans le type de roches que l'on y trouve ce qui découle de la composition en éléments majeurs de celles-ci et a une influence sur leur densité respectives. Le plancher océanique est constitué très majoritairement de roches basiques (SiO₂ compris entre 45 %pds et 52%pds) qui contiennent plus de MgO, de FeO, de CaO et de TiO₂ notamment que les roches acides constituant les continents. Cependant, la composition des MORB se rapproche de la composition de la croûte inférieure (plus basique que les parties superficielles) en ne considérant que les éléments majeurs. La croûte continentale est extrêmement différente des MORB aussi lorsqu'on se focalise sur les éléments traces. En normalisant ces éléments au manteau primitif et en les classant du plus au moins incompatible (selon les processus de fusion partielle du manteau), les continents montrent un net enrichissement en éléments les plus incompatibles et une décroissance non-linéaire vers les moins incompatibles et même vers les éléments compatibles (à partir de l'Al). Les MORB au contraire sont appauvries en éléments les plus incompatibles et montre un enrichissement progressif non-linéaire vers les moins incompatibles, puis un net appauvrissement vers les plus compatibles similaire à la croûte continentale (Fig. I-12 ; Hofmann, 1988).

Figure I-12: Présentation des concentrations moyennes normalisées au manteau primitif (Jochum et al., 1988) des éléments chimiques dans la croûte continentale et les MORB (tirée de Hofmann 1988). La croûte continentale est nettement enrichie en éléments les plus incompatibles (à gauche du diagramme) alors que les MORB en sont massivement appauvries. Une complémentarité (ou symétrie) entre les deux réservoirs est tout de même notable. La croûte continentale compte deux points par éléments qui correspondent à deux estimations de la composition moyenne de cette croûte par Taylor et McLennan (1985).

Lorsque l'on regarde les TTG et les granitoïdes d'arc, ils apparaissent plus acides que la partie la plus superficielle de la croûte et encore plus que la croûte totale or ces roches sont supposées être représentatives des continents. Ceci s'explique par le fait que ces estimations incluent des roches basiques et des sédiments (fruits de l'érosion de ces granites mais aussi des roches basiques). Cependant, les granites peuvent être vus comme l'ossature des continents et les roches basiques des ajouts plus ou moins importants liés à des processus géologiques potentiellement indépendants de ceux à l'origine des continents qui vont modifier

la composition moyenne de la croûte continentale sans pour autant en changer la mécanique de formation. Les différences principales en ce qui concerne les éléments majeurs entre TTG et granitoïdes modernes se trouve dans les teneurs en K et notamment lorsque l'on regarde les rapports K₂O/Na₂O plus faibles dans les roches archéennes (0,41 contre 0,92 pour les roches d'arc modernes). Cette différence s'exprime d'ailleurs à travers la quasi-absence de feldspaths potassiques des TTG et l'abondance de plagioclases sodiques (oligoclase).

Rb Ba Th U K Nb Ta La Ce Sr Nd Zr Hf SmEu Gd Ti Dy Y Er Yb V Cr Ni

Figure I-13 : Spectres des éléments en traces pour une moyenne des TTG (vert) et des granitoïdes post-Archéens (orange) normalisés au manteau primitif (Sun et McDonough, 1989). Tirée de Moyen et Martin (2012).

De belles différences sont observables grâces aux éléments en traces tout d'abord entre roches acides (TTG et Granitoïdes d'arcs) et roches basiques (MORB) car ceux-ci sont très sensibles aux processus magmatiques. Les teneurs en métaux de transition tels que le Ni et le Cr sont beaucoup plus élevées dans les roches basiques que dans les roches acides et lors des différenciations magmatiques ils sont rapidement extraits du liquide par la cristallisation d'olivine et de clinopyroxène. Les LILE (Large Ion Lithophile Elements) comme le Rb, le Ba et le Sr sont préférentiellement enrichis dans les liquides et les roches basiques en contiennent par conséquent beaucoup moins que les roches différenciées à acides (granites).

Les TTG sont chimiquement différentes des granitoïdes en ce qui concerne certains éléments traces car en premier ordre, les spectres normalisés au manteau primitif de Sun et McDonough (1989) sont relativement similaires (Fig. I-13). Cependant, les teneurs en Terres Rares (REE) sont sensiblement plus faibles dans les TTG (courbe verte), ce qui est surtout vrai pour les HREE qui ont des teneurs un ordre de grandeur plus faible dans les TTG que dans les granitoïdes d'arc modernes (courbe orange) (Fig. I-13 et 14). De plus, ces derniers

contiennent plus d'U, de Th, de K, de Nb et de Ta mais, par contre, moins de Sr, de Cr et de Ni que les TTG. Les différences sont aussi significatives lorsque l'on considère des rapports d'éléments en traces comme La/Yb et Sr/Y, les TTG ayant des rapports plus élevés que les granitoïdes post-Archéens. L'anomalie négative en Sr des granites modernes est souvent interprétée comme reflétant la cristallisation fractionnée de plagioclase qui a un Kd > 1 (coefficient de partage solide/liquide) pour cet élément ainsi que pour l'Eu.

Figure I-14 : Diagramme (La/Yb)_N en fonction des teneurs en (Yb)_N. Le terme N signifie que les valeurs sont normalisées aux chondrites. Les encarts représentent les spectres de Terres Rares (concentrations normalisées elles aussi aux chondrites) en fonction de la masse de ces Terres Rares des plus légères à gauche aux plus lourdes à droite pour les TTG (vert) et les granitoïdes post-Archéens (orange). Le déficit en Eu pour ces derniers est attribué à la cristallisation de plagioclase qui a un Kd (minéral/liquide) >1 pour cet élément (tout comme pour le Sr). Tiré de Martin (1994).

La Figure I-14 illustre la différence entre TTG (verts) et granitoïdes post-Archéens (orange) en ce qui concerne les Terres Rares, dans un diagramme La/Yb en fonction de la concentration en Yb (normalisée aux chondrites), et dans deux encarts représentant les spectres complets des REE. Les TTG possèdent des concentrations en LREE (Terres Rares légères) très similaires aux granitoïdes modernes alors que leurs HREE (Terres Rares lourdes) sont très fractionnées (elles en contiennent significativement moins). Le rapport d'une LREE

sur une HREE (La/Yb) en fonction de la concentration de la HREE (Yb) montre clairement la répartition des deux types de roches dont on peut noter un certain recoupement (Fig. I-14).

Les continents Archéens et post-Archéens ont donc des minéralogies mais aussi des compositions chimiques différentes que l'on peut aisément mettre en avant en utilisant des éléments chimiques clés. Cependant, ils possèdent aussi des similarités. Le mode de genèse des granitoïdes post-archéens est relativement bien contraint mais qu'en est-il des roches archéennes ? Est-ce que ces différences chimiques impliquent nécessairement un mode de formation des continents différents à l'Archéen puisque certaines similitudes entre les deux types de roches sont tout de même visibles ?

1.5. Pétrogenèse

Le granite est en tel déséquilibre chimique avec le manteau qu'il n'est pas possible de former des magmas granitiques directement à partir de celui-ci contrairement aux basaltes qui en dérivent directement (Rudnick, 1995). Par conséquent, les granites sont généralement obtenus en deux étapes ou éventuellement à la fin de la différenciation extrême d'un magma basaltique, celle-ci pouvant avoir été induite par de la cristallisation fractionnée et/ou de la contamination par de la croûte continentale (Sisson et al., 2005 ; Martin et Sigmarsson, 2005 ; 2007). Toujours est-il que ce genre de processus ne produit qu'un volume très limité de granite par rapport au volume de départ (magma basaltique). La dominance de granites par rapport aux gabbros dans les segments crustaux est un argument fort contre une origine de la croûte continentale par de forts taux de différenciation à partir de magma basaltique.

A l'inverse, dans les zones de subduction, les arcs volcaniques produisent directement des laves intermédiaires à acides (andésitiques et dacites en surface et granodiorites en profondeur) et semblent de bien meilleurs candidats pour former les continents. Cette différence de composition résulte de l'interaction entre les fluides libérés par déshydratation de la plaque plongeante et le coin de manteau (métasomatisme) situé juste au dessus de la croûte océanique subductée (Fig.I-2).

Au niveau des rides médio océaniques, la lithosphère océanique a fortement interagi avec l'eau des océans de telle sorte que les minéraux magmatiques primaires anhydres de haute température (olivine, pyroxènes, plagioclase) se sont transformés en minéraux hydratés en équilibre à basse température (talc, serpentine, chlorite, épidote, amphibole, etc...). Lorsque la lithosphère océanique entre en subduction, la température et la pression augmentant, ces phases minérales hydratées vont se déstabiliser et ce faisant, libérer l'eau qu'elles contiennent.

Figure I-15 : Résultats des modélisations numériques de fusion partielle de Martin (1986) sur la composition en Terres Rares du magma produit. Les Figures a et b montrent le cas de la fusion d'une lherzolite ayant la composition du manteau primitif non fractionné. Selon le degré de fusion, les spectres obtenus varient mais aucun n'est capable de reproduire ceux des TTG. Par contre, ils sont compatibles avec ceux visibles dans les granitoïdes modernes. Pm correspond au manteau primitif, Mm manteau metasomatisé, L1 contient 10% de grenat, L2 en contient 5% et L3 5% de spinelle. Les Figures c, d et e correspondent aux calculs de fusion de tholéiites archéennes amphibolitisées (At). Les teneurs modales en grenat varient de 0 (d) à 25% (e). Les spectres les plus en accord avec les observations des TTG sont ceux obtenus pour les amphibolites contenant 25% de grenat (en variant le taux de fusion) même si un continuum entre 0 et 25% expliquerait la totalité de la distribution des TTG dans le graphe La/Yb en fonction des concentrations en Yb (champ vert pâle). Le E dans la Figure c correspond aux calculs à partir de la minéralogie typique d'une éclogite (grenat + omphacite).

Ces fluides hydratés sont de faible densité en comparaison des roches avoisinantes de telle sorte qu'ils vont remonter vers la surface en percolant à travers les péridotites du coin du manteau, sur lequel ils vont avoir deux effets principaux : 1) ils vont transporter en solution un certain nombre d'éléments chimiques (par exemple le K, l'U et le La) qui vont ainsi modifier la composition du coin du manteau; 2) ils vont, en l'hydratant abaisser

considérablement la température du solidus des péridotites le constituant. Ce dernier mécanisme va résulter en la fusion partielle de ces péridotites métasomatisées qui donnera naissance à des magmas calco-alcalins hydratés. Ces magmas s'accumuleront et se différencieront par cristallisation fractionnée dans une chambre magmatique, située en base ou en milieu de croûte continentale. Comme nous venons de le voir dans le chapitre précédent, les TTG archéennes ont des compositions significativement différentes de celles des magmas d'arc modernes. En conséquence, leur genèse doit relever de sources et/ou de mécanismes différents.

Les modèles de Martin (1986) montrent que les spectres des Terres Rares caractéristiques des TTG ne peuvent absolument pas être obtenus par la fusion partielle d'une péridotite mantellique (Fig I-15 a et b), mais uniquement par fusion partielle de roches basiques (tholééiites archéennes) et ce seulement si le résidu de fusion contient du grenat (amphibolite à grenat ou éclogite) (Fig. I-15 c, d et e). La fusion expérimentale de basaltes a montré la possibilité d'engendrer des volumes significatifs de magmas tonalitiques, toutefois les premières expériences, menées à relativement basse pression, hors du domaine de stabilité du grenat, échouaient à reproduire toutes les caractéristiques géochimiques des TTG (Holloway et Burnham, 1972; Helz, 1976; Beard et Lofgren, 1989; Beard et Lofgren, 1991; Rushmer, 1991); seules les expériences menées à plus haute pression ont permis d'en reproduire toutes les caractéristiques (Rapp et al., 1991; Winther et Newton, 1991; Wolf et Wyllie, 1991; Rapp et Watson, 1995). Ces expériences montrent que si les liquides magmatiques obtenus pour 10 à 30% de fusion partielle ont bien des compositions de tonalites, de trondhjémites et de granodiorites, les spectres de Terres Rares caractéristiques des TTG ne peuvent être obtenus que lorsque le grenat et la hornblende sont stables dans le résidu de fusion dans des proportions significatives. Moyen et Stevens (2006) ont compilés et résumés toutes les expériences effectuées précédemment et leurs conclusions importantes sont que les TTG se forment sur une grande gamme de pression (10 à 25 kbar) dans un contexte géodynamique caractérisé par un gradient géothermique faible (de l'ordre de 15°C/km) qui semble le plus vraisemblablement compatible avec les zones de subduction. De plus, Si la fusion expérimentale de basaltes permet de reproduire la plupart des caractéristiques géochimiques des TTG, il existe des éléments tels que le Mg, le Ni et le Cr pour lesquels les teneurs mesurées dans les TTG sont systématiquement supérieures à celles des liquides expérimentaux (Martin, 1999, Martin et Moyen, 2002). De telles différences systématiques ont aussi été observées dans les adakites modernes (Maury et al., 1996). Tous ces auteurs interprètent la richesse des TTG en Mg, Ni, Cr en termes d'interaction entre un magma

provenant de la fusion de basaltes hydratés et des péridotites mantelliques. La géométrie des zones de subduction est fortement compatible avec cette observation puisque la zone de fusion partielle des basaltes est située en dessous de péridotites que les magmas devront traverser pour rejoindre la croûte.

Figure I-16 : Schéma résumant les conditions pétrogénétiques de la croûte continentale dans le temps. La Figure (a) présente les gradients géothermiques, dans un diagramme pression-température, des plaques plongeantes à l'Archéen et à l'actuel. Dans (a), les courbes vertes correspondent à la déshydratation de l'antophyllite (A), la chlorite (C), le talc (Ta), la zoïsite (Z) et la trémolite (Tr). Les courbes correspondant à G et H sont respectivement les limites de stabilité du grenat et de la hornblende. Le champ jaune indique le domaine de génération probable des TTG. Les vues en coupe (b), (c) et (d) représentent les évolutions de la génération de la croûte continentale de l'Archéen (à gauche) à l'actuel (à droite). CO est utilisé pour croûte océanique et CC pour croûte continentale. La courbe jaune discontinue dans les Figures b, c et d représente le solidus du manteau hydraté (Tiré de Martin et Moyen, 2012).

S'il y a unanimité sur les mécanismes de genèse et la source des TTG, l'environnement géodynamique où se produit cette fusion est sujet à plus de discussion. Deux grandes familles de modèles ont été proposés : 1) Une tectonique des plaques fonctionnait à l'Archéen et ce

sont les basaltes subductés qui fondaient; 2) Il n'y avait pas de tectonique des plaques à l'Archéen, et la fusion des basaltes avait lieu à la base d'une croûte basaltique épaisse.

En effet, la composition des TTG peut être expliquée par la fusion partielle de matériel basique hydraté et métamorphisé dans le faciès amphibolite/éclogite et dans le champ de stabilité du grenat (Fig.I-15). Le contexte le plus favorable à l'apparition de ces conditions est une zone de subduction où du matériel basique (la croûte océanique) hydraté, après un long temps de résidence au fond des océans, plonge et se retrouve dans les conditions du faciès éclogite/amphibolite suffisamment avancé pour contenir beaucoup de grenat et tamponner la composition des magmas en REE.

A l'Archéen, la production de chaleur interne terrestre était de 2 à 4 fois supérieure à ce qu'elle est aujourd'hui (Brown, 1985). En conséquence, il est généralement admis que le manteau était plus chaud à l'Archéen (Nisbet et al., 1993 ; Abott et al. 1994) et par conséquent le contraste thermique avec les plaques plongeantes était plus important. Les roches de la croûte océaniques gorgées d'eau devaient se réchauffer plus vite et ainsi atteindre leur solidus hydraté avant de s'être complètement déshydratées. Les conditions métamorphiques (pression-température) de la plaque plongeante à l'Archéen et à l'actuel sont schématiquement illustrées dans la Figure I-16a.

La différence de densité entre le manteau sous-jacent et la plaque plongeante est supposée être plus faible à l'Archéen qu'à l'actuel pour deux raisons. La première est que l'épaisseur de la croûte océanique, moins dense que le manteau, était plus important (Sleep and Windley, 1982). La deuxième est que le manteau lithosphérique devait être moins épais car selon Bickle (1978) la tectonique des plaques était plus rapide en réponse au flux thermique plus important à l'Archéen induisant une durée de vie faible de la lithosphère océanique (20 Ma contre environ 80 aujourd'hui). Cette faible durée de vie a pour résultat de limiter le taux de refroidissement de manteau sous-océanique et par la même l'épaisseur de la lithosphère (l'isotherme 1300°C étant moins profond). Par conséquent, l'angle de la subduction devait être plus faible à l'Archéen ce qui est illustré dans les Figures I-16b.

Les modèles alternatifs à la subduction chaude consistent à considérer que les roches subductées ne sont pas issues de la croûte océanique ou que la fusion partielle des basaltes ne se produit pas dans une zone de subduction réfutant l'existence d'une tectonique des plaques à des temps reculés de l'histoire de la Terre. Une première variante consiste à suggérer que les continents se forment par accrétion de plateaux océaniques (nombreux à l'Archéen) voir même de leur subduction (Boher et al., 1992 ; Abouchami et al., 1990 ; Stein et al., 1996 ; Puchtel et al., 1998). Ces très volumineux épanchements volcaniques constituent une source

potentielle importante puisqu'ils ont une flottabilité et une épaisseur plus importante que le plancher océanique mais sont par conséquent durs à subducter. Dans l'hypothèse de leur subduction, la discussion majeure résiderait donc dans la nature du protolithe des TTG et non pas le contexte géodynamique de leur formation puisqu'il ne s'agirait plus de la fusion partielle du plancher océanique mais de plateau océanique. Un autre modèle repose largement sur l'absence d'une croissance crustale Archéenne en contexte de subduction et donc ne nécessitant pas de tectonique des plaques mais faisant plutôt appelle à des processus internes et profonds comme des panaches mantelliques. Bédard (2006) et Smithies et al. (2009) ont proposé un modèle relativement similaire basé sur une différenciation intra-crustale pour expliquer l'origine des TTG. La croûte inférieure se serait différenciée par fusion partielle induite par l'arrivée de magma issus d'un panache mantellique sous la croûte provoquant la formation de magma de type TTG et expliquant par la même le caractère basique de la croûte inférieure. Cependant, d'autres modèles voient l'origine de la composition basique à intermédiaire de la croûte continentale inférieure dans le sous plaquage par des magmas basiques plutôt que par leur nature réstitique (Vielzeuf et Holloway, 1988 ; Bohlen et Mezger, 1989; Condie, 1999). La plus importante faille de ces théories de formation par différenciation intra-crustale est l'incertitude sur les teneurs en eau de la croûte inférieure et donc sa capacité ou non à fondre (fusibilité). Le faciès granulitique implique généralement des conditions relativement anhydres ce qui fait de la croûte inférieure un mauvais candidat pour la croissance crustale car peu fusible. D'autant plus que les conditions nécessaires pour générer les signatures chimiques des TTG nécessitent une forte pression afin de pouvoir stabiliser de grandes quantités de grenat (Nair et Chacko 2008). Or la croûte archéenne plus chaude (due à la plus grande production de chaleur par radioactivité ainsi qu'à la température plus élevée du manteau) rendent difficile l'empilement de grande quantités de roches sans réponse rapide sous forme de fluage de la croûte inférieure (Chardon et al., 2009 ; Flament et al., 2011). Les teneurs en Mg, Ni et Cr sont difficiles à expliquer dans ces conditions à l'inverse du modèle de subduction où l'interaction entre les magmas et les péridotites susjacentes l'explique très bien. Finalement, aucune roche à affinité TTG n'a été décrite dans les plateaux océaniques même pour les plus épais (Willbold et al., 2009).

Malgré des différences de composition chimique avec les granitoïdes modernes, les caractéristiques chimiques des TTG ne sont pas incompatibles avec une formation de celles-ci dans une zone de subduction moyennant des différences en terme de source et de paramètres de fusion partielle.

1.6. Evolution temporelle

Les processus décrits précédemment pour la genèse des granitoïdes d'arc modernes et des TTG sont quelque peu différents même s'ils ne sont pas incompatible avec un même site géodynamique de formation. On peut alors se demander si la transition de l'un à l'autre s'est faite rapidement ou progressivement et s'il n'y a pas eu d'étapes intermédiaires. Martin et Moyen on proposés en 2002 une évolution séculaire des TTG vers les granites modernes et ont décrit en détail en 2009 ce que pourrait être une de ces étapes intermédiaires. Il s'agit de roches grenues porphyroïdes appelées sanukitoïdes (Shirey and Hanson, 1984) et ayant des compositions en quelque sorte intermédiaire entre les deux. Ces roches sont supposées se former à partir de fusion partielle du coin de manteau métasomatisé non pas par les fluides issus de la plaque plongeante mais par des magmas de type TTG formées par fusion partielle de celle-ci. De plus, les teneurs maximales en Ni et Cr des TTG augmentent au cours du temps, ce qui peut être interprété comme reflétant d'une interaction prolongée avec des roches ultrabasiques constituant le coin de manteau (Martin et Moyen, 2002). Cette observation va de paire avec un refroidissement du manteau et avec un angle du plan de Wadati-Benioff augmentant, puisque la portion de manteau lithosphérique serait plus épaisse, et par conséquent un coin de manteau à traverser plus épais. Les teneurs en Sr augmentant aussi au cours du temps dans les TTG sont cohérentes avec une genèse plus profonde des magmas induisant une déstabilisation du plagioclase plutôt que sa préservation dans le résidu (Martin et Moyen, 2002).

Des exemples de subductions particulièrement chaudes sont visibles aujourd'hui en Amérique du Sud notamment où une ride océanique est subductée (Defant and Drummond, 1990). Les magmas générés sont appelés adakites et possèdent deux groupes (identifiés par leur teneurs en silice) ayant de grandes similarités avec les TTG et les sanukitoïdes à la fois en terme de majeurs et de traces (Martin et al., 2005 et Condie, 2005). Toutefois, les adakites sont des roches éruptives et par conséquent ne sont pas des analogues directs des TTG et des sanukitoïdes puisque ces roches sont plutoniques. Cependant, leur comparaison donne du crédit à l'hypothèse de la subduction chaude et permet de tirer des conclusions sur les processus de génération de la croûte archéenne.

2. La croissance des continents

Comprendre la croissance des continents est fondamental, et ce pour plusieurs raisons en relations à la fois avec la surface et l'intérieur de la Terre. Les continents jouent, et ont joué, un rôle majeur quant à l'apparition et au maintient de la vie ainsi que pour le climat puisqu'ils influencent fortement les courants océaniques et atmosphériques. Comme nous l'avons vu précédemment, les continents se sont formés en deux étapes, à partir des péridotites mantelliques. Ceci a profondément changé la composition d'une partie du manteau et par voie de conséquence cela a aussi modifié ses paramètres physiques tels que sa température et sa densité. Les échanges entre croûte continentale et manteau sont aussi très importants. La tectonique des plaques, moteur de la formation des continents actuels et probablement anciens, peut nous apprendre beaucoup sur le régime thermique de la Terre à différentes périodes ainsi que sur sa dynamique. La géochimie isotopique qui permet le plus souvent de déterminer la nature des sources des magmas, ainsi que de dater et d'établir leur succession temporelle, a permis de franchir des barrières que n'autorisaient pas des approches plutôt observationnels, comme la cartographie ou la sismologie. L'étude isotopique des roches fournis des informations qualitatives sur la croissance des continents qui sont fondamentales dans l'élaboration de modèles numériques quantitatifs. Les aspects clés de la croissance des continents sont :

- La chronologie de leur formation,
- Le volume émis et leur taux de croissance,
- leur composition,
- leur taux de destruction (recyclage),
- la composition minéralogique et chimique de leur source

Tous ces aspects sont les ingrédients que l'ont peut faire varier, dans les bornes des observations géologiques, dans des modélisations numériques dont je vais parler dans la section suivante.

2.1. Présentation et historique des modèles de croissance crustale

2.1.1. Qualitatif

Les modèles présentés ci-après et illustrés dans la Figure I-17 ne sont pas les seuls formulés, cependant, ils représentent des extrêmes, les autres étant globalement des versions intermédiaires de ceux-ci. L'un des premiers modèles de croissance crustale proposé, encore cité aujourd'hui, est basé sur des répartitions géographiques d'âges K-Ar et Rb-Sr à grandes échelles (Hurley and Rand, 1969). Toutefois, ces deux systèmes isotopiques sont très sensibles aux perturbations subies par les roches les plus anciennes après leur formation (orogenèses plus récentes). De plus, lors de l'élaboration de ce modèle, de nombreuses roches très anciennes (>3,7 Ga) n'avait pas encore été découvertes et donc pas prises en compte, par exemple celles du complexe d'Itsaq au Groenland (Black et al., 1971), des gneiss de Uivak (Wanless et al., 1979), du complexe Napier en Antarctique (Sobotovitch et al., 1976), des gneiss d'Acasta (Bowring et al, 1989), du craton Nord Chinois (Liu et al., 1992), et de la ceinture supracrustale du Nuvvuagittuq (David et al., 2002). Par la suite, Fyfe, en 1978, propose un modèle basé sur des paramètres tout autres puisqu'il s'agit d'une réflexion sur l'influence relative de différents phénomènes géologiques tel que l'érosion, la subduction de sédiments, l'altération hydrothermale du plancher océanique et l'influence du sous-placage de panaches sous les continents sur l'évolution des masses continentales. Ce modèle est le seul, cependant, à proposer que la masse continentale actuelle soit inférieure à ce qu'elle a été dans le passé. Reymer et Schubert proposent en 1984 des flux de croissance crustale actuels chiffrés déduits de profiles sismiques et ainsi extrapolent leurs observations à l'histoire de la Terre. Le modèle actuellement plébiscité est celui que Taylor et McLennan ont proposés en 1985 dans leur livre intitulé « The continental crust : its composition and evolution », modèle qu'ils affinent en 1995 en prenant en compte les pics d'âges obtenus à partir des analyses U-Pb sur de nombreux zircons détritiques depuis 1985. Leur modèle est principalement basé sur des observations couplées entre la composition (éléments majeurs et traces) de sédiments et de différentes parties de la croûte continentale (supérieure et inférieure).

Armstrong (1991) suggère une toute autre théorie basée principalement sur son interprétation personnelle de la tectonique des plaques et utilise des arguments relatifs au « free board » comme l'évolution du niveau des océans en réponse à l'augmentation des masses continentales ou de la diminution du nombre et de l'altitude des rides océaniques. Il pense que la tectonique des plaques engendre un état stationnaire entre manteau et croûte et donc que les taux d'extraction des magmas mantelliques sont complètement compensés par l'entrainement des sédiments continentaux (ou portions continentales) dans le manteau au niveau des zones de subduction. Le dernier modèle en date est celui de Belousova et al. (2010) qui est basé sur l'analyse d'une volumineuse base de données isotopiques d'Hf de zircons détritiques (n>10000) dont les âges et les provenances sont extrêmement variés. Ces minéraux sont censés représenter les continents dans le temps et l'espace. Dans un premier temps, les âges modèles (T_{DM}) des zircons sont utilisés puis des taux d'addition de croûte sont déterminés à chaque pas de temps en utilisant une combinaison des valeurs d' ϵ_{Hf} supérieures au CHUR à l'âge considéré et les zircons dont les âges modèles correspondent à l'âge considéré. Ils comparent leurs résultats avec ceux d'un modèle de tomographie de la lithosphère sous le continent Africain (GLAM) duquel ils ont déduit un autre modèle. Une certaine correspondance est à noter et favorise une croissance linéaire depuis le démarrage de la formation des continents (tectonique des plaques ?) avec une diminution de croissance nette aujourd'hui qui à long terme tendrait vers un état stationnaire.

A l'exception des modèles de Hurley and Rand (1969), Fyfe (1978) et Armstrong (1991), qui sont controversés, tous les modèles s'accordent sur le fait qu'environ 60 à 80% du volume des continents actuel avaient été extraits du manteau dès la fin de l'Archéen (il y a 2,5 Ga). Cela indique donc que cette période (Hadéen + Archéen) représentant presque la moitié de l'histoire de la Terre a été le siège d'intense activité magmatique qui découle sans doute d'une importante activité géodynamique interne et a du avoir de grandes implications sur les enveloppes superficielles et notamment sur le développement de conditions favorables à l'émergence de la vie.

Une observation supplémentaire liée aux progrès techniques de la géochimie isotopique a permis de comprendre un peu mieux la croissance continentale dans le sens où elle donne une idée des taux de croissance relatifs. Il s'agit des datations U-Pb sur zircon, notamment sur les grains détritiques, grâce à des méthodes dîtes in-situ utilisant un laser (comme décrite dans le chapitre II) ou un faisceau d'ions. Ces techniques permettent une datation extrêmement rapide et donc l'acquisition de nombreuses données en peu de temps. Il ressort clairement de ces analyses que les continents ne présentent pas un spectre d'âge continu, aux proportions semblables, mais à l'inverse des pics d'âges (Fig. I-17). L'interprétation la plus simple est de dire que la croûte s'est formée de façon épisodique et non de manière continue comme on s'attendrait à trouver dans le cas d'une subduction régulière de croûte océanique (Albarède, 1998a). Certains auteurs (Gurnis et Davies, 1986), invoquent une préservation/destruction préférentielle de certaines portions continentales pour réconcilier le caractère continu de la tectonique des plaques avec l'épisodicité visible avec les âges sur zircon. Cependant, aucune preuve de préservation/recyclage préférentielle n'a été présentée jusqu'à aujourd'hui même si un grand nombre d'auteurs ont plus ou moins adoptés ou cherchés à justifier cette idée.

Figure I-17 : Histogramme des âges U-Pb sur zircons détritiques de la littérature combiné avec les principaux modèles de croissance crustale. Les zircons ont été compilés à partir d'Amelin et al. (1999), Amelin et al. (2000), Bell et al. (2011), Belousova et al. (2009), Belousova et al. (2010), Blichert-Toft et Albarède (2008), Choi et al. (2006), Davis et al. (2005), Gerdes et Zeh (2009), Goodge et Vervoort (2006), Harrison et al. (2005), Harrison et al. (2005), Harrison et al. (2008), Hiess et al. (2009), Iizuka et al. (2009), Iizuka et al. (2010), Kemp et al. (2006), Kemp et al. (2008), Hiess et al. (2009), Iizuka et al. (2009), Iizuka et al. (2010), Kemp et al. (2006), Kemp et al. (2010), Liu et al. (2008), Luo et al. (2008), Mueller et al (2008), Mueller et al (2008), Polat et Münker (2004), Vervoort et Blichert-Toft (1999), Vervoort et al. (1996), Wang et al. (2009), Wang et al. (2011), Wu et al. (2008), Xia et al. (2008), Yang et al. (2008), Zeh et al. (2007), Zeh et al. (2008), Zeh et al. (2009), Zeh et al. (2010), Zeh et al. (2011), Zhang et al. (2006), et Zheng et al. (2007). La distribution des âges est tirée de ma compilation de zircons de la littérature et les courbes de croissance ont été redessinées à partir des articles correspondant aux annotations à proximité de celles-ci.

2.1.2. Quantitatif

Un des paramètres clés des modélisations présentées ci-après correspond à la source de la croûte continentale car le but est de suivre l'évolution isotopique du réservoir complémentaire de la croûte continentale, en d'autre terme celle du manteau résiduel après extraction de la croûte, pour pouvoir en tirer des informations quantitatives. Ceci est possible uniquement lorsque les couples isotopiques (père-fils) ont des coefficients de partage solide/liquide différents lors de la fusion de péridotites. Par exemple, le Rb est plus incompatible que le Sr lors de la fusion mantellique et par conséquent le Sr sera moins enrichi que le Rb dans les magmas et ces derniers auront donc des rapports Rb/Sr plus élevés que leur source. Les couples Sm-Nd et Lu-Hf ont des comportements similaires, et opposés au Rb-Sr, ce qui fait que les magmas produits auront des rapports Sm/Nd et Lu/Hf inférieurs à ceux de leur source. Entre parenthèse, ce comportement conforme est responsable du fameux « mantle array » décrit pour le Sm-Nd et Rb-Sr par DePaolo et Wasserburg (1976) et plus tard par Vervoort et Blichert-Toft (1999) pour les systèmes Lu-Hf et Sm-Nd.

Les modèles quantitatifs sont des modèles numériques (modèles de boîtes) qui font appel à des paramètres variant dans des bornes dictées par une vision qualitative du problème considéré. Cette dernière correspond à la structuration du manteau et aux liens génétiques entre ses différentes parties. Hofmann (1988) montre à travers l'exemple des éléments en traces, qu'il existe une complémentarité entre MORB et croûte continentale (Fig. I-5), ce qui est généralement interprété comme reflétant le fait que les continents ont été extraits du manteau source des MORB (asthénosphère) et l'ont appauvri en ces éléments. Cette vision est la base des modèles de boîtes dans lesquels nous suivons l'évolution du manteau supérieur dictée par l'extraction de la croûte continentale mais aussi son recyclage dans celui-ci. Cependant, tout n'est pas si simple et quelques questions se posent. Est-ce que la croûte continentale a été extraite progressivement à partir du manteau supérieur, qui par conséquent s'est appauvri, ou est-ce que le manteau supérieur s'est progressivement constitué de l'assemblage de portions mantelliques résiduelles liée à l'extraction des continents ? Le manteau supérieur et la croûte selon l'une ou l'autre des hypothèses n'auraient pas évolué de la même façon. Tout est question de lien génétique. Pour résumer, est-ce que les continents échantillonnent toujours une même source qui s'appauvrie constamment ou est-ce que les continents échantillonnent une source dont plusieurs portions successives ne contribuent qu'une fois et se mélangent ensuite au manteau supérieur que vont échantillonner les MORB (le manteau supérieur n'étant pas directement la source mais seulement le résidu mantellique de l'extraction des continents)?

Les premiers modèles isotopiques (basés sur le Sr et le Nd), mais aussi élémentaires, développés pour tenter de répondre à ces questions sont ceux d'O'Nions (1979) et Jacobsen et Wasserburg (1979). Le premier permet de déduire qu'environ la moitié du manteau a été appauvri par l'extraction des continents et explique aussi la composition en Ar de l'atmosphère. Le second requiert que 30% du manteau ait été affecté par l'extraction des

continents et explique le couplage Nd-Sr par un appauvrissement du manteau à partir d'un réservoir à la composition primitive plutôt que par l'appauvrissement continuel d'un même réservoir échantillonné à chaque épisode d'extraction crustal. Par la suite, DePaolo (1980) reexplore le sujet de façon relativement complète en utilisant aussi les isotopes du Sr et du Nd. Il teste et décrit différentes possibilités d'évolution des réservoirs en faisant varier plusieurs paramètres comme le taux de croissance, le taux de recyclage (nul jusqu'à un état stationnaire entre croissance et recyclage) et l'épisodicité, ou non de la croissance, entre autre. La déviation des valeurs des Sr et ENd d'une référence non-fractionnée (CHUR) dépend des masses respectives de croûte et de manteau ainsi que de l'âge moyen de la croûte selon ce modèle. De plus, la composition des continents peut être contrebalancée par 25 à 50% du manteau (dans la gamme des précédents auteurs) et le recyclage crustal durant les 3,6 derniers milliards d'années a du être négligeable ce qui n'est pas le cas entre 4,55 et 3,6 Ga où il a du être très important. Cependant, le modèle indique que l'hypothèse d'Armstong (1991) n'est pas tenable et que les continents ne sont pas à l'état stationnaire en ce qui concerne leur croissance et leur recyclage. Il précise que le manteau supérieur doit être appauvri de 90% de son Rb (et probablement aussi de son K, U et Th) ce qui a des implications directes sur la production de chaleur dans ce réservoir. Par la suite, Allègre et Rousseau mesurent en 1984 les isotopes du Nd dans des sédiments détritiques d'Australie et confirment une croissance plus ou moins continue de la croûte continentale, ces sédiments étant représentatifs de la moyenne de la croûte à des âges donnés comme indiqué par leurs rapports Sm/Nd nonfractionnés. Albarède et Brouxel (1987) développent un modèle basé sur les isotopes du Nd et déterminent non seulement que la croûte continentale s'est formée à partir de roches enrichies en Terres Rares légères (comme probablement des andésites ou des rhyolites) mais qu'elle s'est progressivement enrichie en ces éléments au dépend du manteau. Ceci nécessite cependant que les sédiments soient bien représentatifs de la croûte continentale moyenne. Selon ce même modèle, le rapport ¹⁴⁷Sm/¹⁴⁴Nd du manteau appauvri est resté constant depuis 3,8 Ga et le pourcentage de Nd stocké dans les continents serait passé de 40% à 50% durant cette même période. Ils concluent en disant qu'un état stationnaire entre croissance et recyclage nécessiterait un taux de recyclage trop important et que par conséquent une croissance uniforme, hors état stationnaire, est plus raisonnable. De plus, selon ces mêmes auteurs, le manteau appauvri se formerait continuellement à partir d'un réservoir de composition primitive (comme aussi conclu par Jacobsen et Wasserburg, 1979). Albarède (1989) illustre par la suite le problème de la différence entre le rapport Sm/Nd du manteau (et de la croûte) quand on le mesure aujourd'hui et quand on le calcule par rapport à son

évolution dans le temps. Concrètement, les roches juvéniles nous donnent l'évolution dans le temps du rapport isotopique ¹⁴³Nd/¹⁴⁴Nd du manteau et la mesure dans les roches actuelles nous permet de connaître le ¹⁴³Nd/¹⁴⁴Nd, et le ¹⁴⁷Sm/¹⁴⁴Nd, et d'estimer son évolution en système fermé. Or les deux sont en désaccord à la fois pour le manteau et la croûte (pour laquelle on utilise des sédiments détritiques) ce qui implique une évolution en système ouvert (échanges) des deux réservoirs l'un par rapport à l'autre. Ce même auteur conclue aussi que le système manteau-croûte est loin de l'état stationnaire et propose un taux de recyclage de croûte continentale chiffré en complément du taux de croissance déduit par DePaolo (1980). Nägler et Kramers (1998) replongent dans le sujet en utilisant de nombreuses nouvelles données acquises entre temps (notamment des données lunaires) ainsi qu'en établissant un modèle un peu plus complexe que les autres et montrent que la composition isotopique du Nd dans le manteau supérieur n'a que très peu évoluée entre l'Hadéen et le début de l'Archéen. Après 3 Ga celle-ci a augmenté de façon linéaire jusqu'à atteindre les valeurs caractéristiques des MORB actuelles à environ +10 unités d'epsilon. Ils notent aussi que les échantillons terrestres et lunaires montrent des valeurs initiales légèrement supérieures à celles du CHUR posant des questions quant à la composition initiale de la Terre et à la nature du ou des matériaux l'ayant formé.

Pour conclure sur ces travaux antérieurs, aucun consensus n'est atteint en ce qui concerne la source des continents ni la façon dont leur volume a changé au cours du temps, si ce n'est que la majeur partie de la croissance crustale s'est faîte à l'Archéen. Cependant, les modèles extrêmes de Fyfe (1978), Hurley and Rand (1969) et Armstrong (1991) peuvent être écartés car ils sont clairement incompatibles avec les observables. De plus, la tectonique des plaques ne résulte pas en un état stationnaire entre croissance et recyclage crustal. Un des gros défis est donc d'identifier la source des continents entre manteau inférieur et supérieur, ce dernier ayant dans tous les cas une composition résiduelle, et les processus dominants de croissance et d'interactions entre tous ces réservoirs.

2.2. Modélisation numérique

Afin de tester les différents modèles de croissance crustale proposés précédemment par divers auteurs et de voir lequel semble le plus a même d'expliquer les données d'Hf sur zircons (très abondantes), j'ai développé un modèle de boîte simple (Guitreau et al., 2010) inspiré des approches de DePaolo (1980) et d'Albarède et Brouxel (1987). Cela permet de tirer des conclusions de premier ordre quant à l'influence des divers paramètres et leurs bornes raisonnables. Le couple isotopique Lu-Hf est censé se comporter de manière conforme avec le Sm-Nd, par conséquent les conclusions attendues devraient être cohérentes avec celles des précédents auteurs avec probablement une meilleure contrainte liée à la résolution spatiale et temporelle offerte par les zircons détritiques. Avant de parler du modèle en détail, je vais présenter le couple isotopique Lu-Hf ainsi que son évolution au sein des différents réservoirs terrestres (à l'exception du noyau puisque le Lu et l'Hf sont des éléments lithophiles, et non sidérophiles, donc censés être absents de celui-ci).

2.2.1. Le système isotopique Lu-Hf

Le système Lu-Hf est extrêmement puissant et intéressant (au même titre que les systèmes Sm-Nd et le Rb-Sr) car lors de phénomènes magmatiques, les deux éléments chimiques sont fractionnés puisqu'ils n'ont pas les mêmes affinités vis-à-vis des phases minérales et des produits de fusion partielle. Les magmas mantelliques ont des rapports Lu/Hf (Père/Fils) plus faibles que leur source, elle même plus faible que le résidu. Ainsi, une portion de manteau primitif (non fondu) aura un rapport chondritique et une portion de manteau résiduel (préalablement fondue donc fractionnée) aura un rapport supra-chondritique. Etant donné que le Lu possède un isotope radioactif (le ¹⁷⁶Lu) qui se désintègre en ¹⁷⁶Hf (avec une période de 37 Ga), en conséquence, le rapport ¹⁷⁶Hf/¹⁷⁷Hf augmente au cours du temps dans un réservoir par accumulation radiogénique (l'isotope ¹⁷⁷Hf étant stable et donc sa quantité ne changeant pas au cours du temps). L'augmentation de ce rapport isotopique d'Hf va être plus rapide dans une portion de manteau résiduel que dans une portion de manteau primitif et va être plus lente dans une roche crustale et quasi nulle dans un zircon (Fig. I-18) car ce dernier possède beaucoup d'Hf et peu de Lu qui se substitue beaucoup moins aisément, que l'Hf, au Zr constituant majeur du zircon (ZrSiO₄). La Figure I-18 présente la structure de la Terre et l'évolution des différents réservoirs cités précédemment au cours du temps. Généralement, l'utilisation de la notation ε_{Hf} est utilisée car elle correspond à la déviation de la mesure d'un échantillon par rapport à un standard que sont les chondrites (CHUR= Chondritique Uniform Reservoir).

Ce système isotopique Lu-Hf a pour avantage, par rapport aux autres systèmes, de pouvoir être mesuré avec précision à la fois dans les roches mais aussi dans les cristaux de zircon qu'elles contiennent. En effet, le zircon, en plus de contenir beaucoup d'Hf (~1 %pds), est un minéral qui généralement résiste très bien à l'altération et au métamorphisme ce qui lui permet de bien préserver les informations qu'il contient. Les roches porteuses de zircon verront de par ce fait leur composition isotopique en Hf très peu voir pas du tout perturbée par des épisodes métamorphiques puisque généralement ce minéral tamponne en bonne partie le signal isotopique de l'Hf de sa roche-hôte.

Figure I-18 : Montage décrivant la structure de la Terre, le système isotopique Lu-Hf et l'évolution des différents réservoirs terrestres intéressants pour ce travail de thèse. Le symbole ß indique le type de désintégration radioactive affectant le ¹⁷⁶Lu. MS, MI et CC indiquent respectivement le manteau supérieur, le manteau inférieur et la croûte continentale. Les paramètres du CHUR utilisés sont ceux de Bouvier et al. (2008).

L'évolution temporelle de la quantité d'un élément radioactif dans un réservoir en système fermé est décrite par la formule suivante :

$$\Delta N = -N \times \lambda = \frac{dN}{dt} \tag{1}$$

Avec *N* la quantité de l'isotope radioactif donné, λ la constante de désintégration de cet isotope et *t* le temps. En intégrant cette équation différentielle, on obtient :

$$ln(N) = -\lambda t + ln(N_0) \tag{2}$$

Et ainsi :

$$N_{(t)} = N_0 \times e^{-\lambda t} \tag{3}$$

Avec 0 pour l'initial (moment où s'est formé ou a été modifié la roche ou le réservoir considéré).

Afin de suivre l'accumulation de l'isotope radiogénique, il est important de voir les choses de façon relative et de le normaliser à un isotope stable dont la quantité ne change pas au cours du temps (comme indiqué plus tôt). Si on appelle P l'isotope radioactif, F l'isotope radiogénique et F_s l'isotope stable de l'élément fils, on obtient :

$$\left(\frac{P}{F_s}\right)_t = \left(\frac{P}{F_s}\right)_0 \times e^{-\lambda t} \tag{4}$$

et

$$\left(\frac{F}{F_s}\right)_t = \left(\frac{F}{F_s}\right)_0 + \left(\frac{P}{F_s}\right)_0 - \left(\frac{P}{F_s}\right)_t \tag{5}$$

et donc

$$\left(\frac{F}{F_s}\right)_t = \left(\frac{F}{F_s}\right)_0 + \left(\frac{P}{F_s}\right)_t \times \left(e^{\lambda t} - 1\right) \tag{6}$$

Ce qui se traduit pour l'hafnium par :

$$\left(\frac{^{176}Hf}{^{177}Hf}\right)_{t} = \left(\frac{^{176}Hf}{^{177}Hf}\right)_{0} + \left(\frac{^{176}Lu}{^{177}Hf}\right)_{t} \times \left(e^{\lambda t} - 1\right)$$
(7)

2.2.2. Modèles de boîtes

Les équations de transport clés (d'après DePaolo, 1980) pour un élément *i* entre deux réservoirs sont les suivantes :

$$\frac{dC_i^m}{dt} = \frac{\dot{M}^{cm}}{M_m} \left(W_i C_i^c + D_i C_i^m \right) - \frac{\dot{M}^{mc}}{M_m} \left(D_i - 1 \right) C_i^m \tag{8}$$

Avec C_i^m la concentration de l'élément *i* dans le réservoir *m* (en l'occurrence le manteau), \dot{M}^{cm} le flux massique de la croûte vers le manteau, M_m la masse du manteau, W_i le coefficient de partage entre la croûte et le manteau (ou facteur d'enrichissement dans le manteau) de l'élément *i*, D_i le coefficient de partage entre manteau et croûte (ou facteur d'enrichissement dans la croûte) de l'élément *i* et *t* le temps.

Ce qui devient pour un isotope radioactif *j* :

$$\frac{dC_j^m}{dt} = \frac{\dot{M}^{cm}}{M_m} \left(W_j C_j^c + D_j C_j^m \right) - \frac{\dot{M}^{mc}}{M_m} \left(D_j - 1C_j^m \right) - \lambda C_j^m \tag{9}$$

Avec λ la constante de désintégration de l'isotope radioactif *j*.

Et pour un isotope radiogénique *i* * :

$$\frac{dC_{i*}^m}{dt} = \frac{\dot{M}^{cm}}{M_m} \left(W_{i*}C_{i*}^c + D_{i*}C_{i*}^m \right) - \frac{\dot{M}^{mc}}{M_m} \left(D_{i*} - 1C_{i*}^m \right) + \lambda C_j^m \tag{10}$$

Si on travaille avec des masses au lieu des concentrations et que l'on intègre ces équations pour connaître la masse d'un élément dans un réservoir donné à un instant t, on obtient une expression de la forme :

$$(M_i^m)_t = (M_i^m)_{t-1} + \frac{dM_i^m}{dt} \approx (M_i^m)_{t-1} + \frac{d(C_i^m)}{dt} M_m$$
(11)

Ceci peut se réécrire en introduisant l'équation de fusion partielle :

$$(M_i^m)_t = (M_i^m)_{t-1} + (Q^{cm}C_i^c) - \left(Q^{mc}C_i^m\left(\frac{1}{D_i + F(1-D_i)}\right)\right)$$
(12)

Avec Q^{cm} et Q^{mc} étant respectivement identiques à \dot{M}^{cm} et \dot{M}^{mc} . Le dernier terme $\frac{C_i^m}{D_i + F(1-D_i)}$ est l'équation classique de la fusion partielle et est utilisée plutôt que le coefficient de partage $D_i = \frac{C_i^{solide}}{C_i^{magma}}$ car ce dernier ne témoigne pas du caractère source du manteau supérieur pour les continents, cette équation s'appliquant plutôt entre le résidu et le magma. Ainsi, le manteau supérieur à un instant *t-1* sera la source d'un nouveau magma et à *t* en sera son résidu.

Ce qui donne pour notre isotope radioactif j:

$$(M_j^m)_t = (M_j^m)_{t-1} + (Q^{cm}C_j^c) - \left(Q^{mc}C_j^m \left(\frac{1}{D_j + F(1-D_j)}\right)\right) - \lambda (M_j^m)_{t-1}$$
(13)

Et pour notre isotope radiogénique i *:

$$(M_{i*}^m)_t = (M_{i*}^m)_{t-1} + (Q^{cm}C_{i*}^c) - \left(Q^{mc}C_{i*}^m\left(\frac{1}{D_i + F(1-D_i)}\right)\right) + \lambda \left(M_j^m\right)_{t-1}$$
(14)

Les signes devant le second et le troisième terme seront inversés selon le réservoir considéré (manteau ou croûte).

Un premier modèle correspond à une extraction de la croûte à partir d'un même réservoir ayant la masse du manteau supérieur avec une composition initiale chondritique et s'appauvrissant progressivement (Fig. I-19).

Un deuxième modèle (Fig. I-19) qui rendrait compte d'une accumulation progressive dans le manteau supérieur de portion résiduelles de manteau, à l'origine chondritique, nécessiterait l'ajout d'un terme supplémentaire aux équations qui rendrait compte de la masse de cette portion, de son rapport Lu/Hf et de sa composition isotopique d'Hf. Ces portions résiduelles auraient une masse plus ou moins variables mais cependant un rapport Lu/Hf relativement constant (moyennant des degrés de fusion partielles similaires) et une composition isotopique en Hf égale à celle du CHUR à l'âge de sa fusion ($_{\rm Hf} \sim 0$) car le manteau n'est pas entièrement appauvri. Dans ce cas précis nous suivrions non pas l'évolution de la source des continents mais de son résidu, le manteau (inférieur) chondritique étant sa source. De plus, les interactions entre croûte continentale et manteau supérieur sont négligeables donc le terme de recyclage disparaît alors.

	Modèle 1	Modèle 2	Modèle 3	
Croûte continentale	111	↑ : ↑		
Manteau Supérieur	A	: •	+ + + +	
Manteau Inférieur				

Figure I-19 : Détail des 3 modèles avec les interactions entre réservoirs. Les flèches pleines indiquent des interactions (flux d'échanges) dominantes alors que les flèches en pointillés indiquent des interactions réelles mais négligeables pour le modèle considéré.

Les équations 12, 13 et 14 deviennent dans ce cas :

$$(M_{i}^{m})_{t} = (M_{i}^{m})_{t-1} + \left(Q^{mpm}C_{i}^{mp}\left(\frac{1}{1+F\left(\frac{1}{D_{i}}-1\right)}\right)\right) \times f$$
(15)

Avec Q^{mpm} le flux massique entre le manteau inférieur mp et le manteau supérieur m, C_i^{mp} la concentration dans le manteau inférieur de l'élément i et f le facteur de mélange qui défini la vitesse à laquelle le panache se mélange avec le manteau supérieur.

$$\left(M_{j}^{m}\right)_{t} = \left(M_{j}^{m}\right)_{t-1} + \left(Q^{mpm}C_{j}^{mp}\left(\frac{1}{1+F\left(\frac{1}{D_{j}}-1\right)}\right)\right) \times f - \lambda\left(M_{j}^{m}\right)_{t-1} \quad (16)$$

et

$$(M_{i*}^m)_t = (M_{i*}^m)_{t-1} + \left(Q^{mpm}C_{i*}^{mp}\left(\frac{1}{1+F\left(\frac{1}{D_i}-1\right)}\right)\right) \times f + \lambda \left(M_j^m\right)_{t-1}$$
(17)

Un troisième modèle (Fig. I-19) intermédiaire pourrait rendre compte de l'hypothèse du modèle 1 auquel on ajoute une interaction entre le manteau supérieur et le manteau inférieur sous forme de panache mantelliques. La croûte serait extraite du manteau supérieur induisant un appauvrissement progressif mais des panaches mantelliques viendraient le réalimenter. Les équations utilisées sont semblables à celles du modèle 1 mais avec un terme supplémentaire témoignant de l'interaction entre manteau supérieur et inférieur semblable à ceux des équations 15, 16 et 17.

$$(M_{i}^{m})_{t} = (M_{i}^{m})_{t-1} + (Q^{cm}C_{i}^{c}) - \left(Q^{mc}C_{i}^{m}\left(\frac{1}{D_{i}+F(1-D_{i})}\right)\right) + \left(Q^{mpm}C_{i}^{mp}\left(\frac{1}{1+F\left(\frac{1}{D_{i}}-1\right)}\right)\right) \times f \quad (18)$$
et

$$(M_{j}^{m})_{t} = (M_{j}^{m})_{t-1} + (Q^{cm}C_{j}^{c}) - \left(Q^{mc}C_{j}^{m}\left(\frac{1}{D_{j}+F(1-D_{j})}\right)\right) - \lambda (M_{j}^{m})_{t-1} + \left(Q^{mpm}C_{j}^{mp}\left(\frac{1}{1+F\left(\frac{1}{D_{j}}-1\right)}\right)\right) \times f$$
(19)

et

$$(M_{i*}^m)_t = (M_{i*}^m)_{t-1} + (Q^{cm}C_{i*}^c) - \left(Q^{mc}C_{i*}^m\left(\frac{1}{D_i + F(1-D_i)}\right)\right) + \lambda \left(M_j^m\right)_{t-1} + \left(Q^{mpm}C_{i*}^{mp}\left(\frac{1}{1 + F\left(\frac{1}{D_i} - 1\right)}\right)\right) \times f \quad (20)$$

Les données de zircon utilisées proviennent d'une compilation que j'ai constituée à partir de la littérature que nous réutiliserons dans la suite de ce travail de thèse (Fig. I-17). Les zircons ont été rejetés lorsqu'ils étaient discordants de plus de 5%, pour fortement limiter l'utilisation d'âges différents de ceux de cristallisation, que leur rapport Th/U était plus petit que 0,2, généralement reflétant une cristallisation en contexte métamorphique, et que la différence entre le facteur f mesuré et calculé était plus grande que 10%. Ce facteur f est égal à (232 Th/ 238 U)/(208 Pb/ 206 Pb) pour la valeur mesurée et (e($^{(\lambda 232.t)}$ -1)/(e($^{(\lambda 238.t)}$ -1) pour la valeur calculée qui doivent être les mêmes dans un système isotopique clos. Ces filtres ont pour but

de rejeter les zircons qui n'auraient pas conservés de façon efficace les informations acquises lors de leur cristallisation.

Figure I-20 : Courbes de croissance de la croûte continentale utilisées dans les modèles de boîtes. La courbe 1 correspond au modèle d'Armstrong (1991), la courbe 2 est hypothétique, la 3 correspond à la vision de Taylor et McLennan (1985) et la courbe 4 est celle que j'ai définis et qui permet de reproduire au mieux les données des zircons. Notez que cette dernière courbe se rapproche beaucoup de celle présentée par Belousova et al. (2010).

L'hypothèse adoptée pour les modèles 1 et 3 est que la croûte continentale est extraite d'un manteau chondritique qui s'appauvri un peu plus à chaque épisode d'extraction de croûte continentale. Le recyclage de matériel crustal continental dans le manteau a pour effet de le refertiliser.

Une des premières hypothèses (appuyée par des observations) est que la croissance crustale a démarré il y a 4,4 à 4,5 Ga. Les taux d'ajout de nouvelle croûte à chaque pas de temps ainsi que la croissance générale au cours du temps (% du volume actuel) sont fixés et définissent les taux de recyclage (par différence) dans un modèle à l'état stationnaire (Fig. I-20). Les pas de temps adoptés sont de 50 Ma et par interpolation les courbes d'évolution du manteau supérieur et de la croûte sont déduites.

Deux types de taux d'ajout de croûte (Q) sont testés. Le premier correspond à une valeur constante de Q au cours du temps et le second à une décroissance exponentielle telle que $Q_{in} \approx 5 \ge Q_{aujourd'hui}$. Cette hypothèse dérive de la diminution non linéaire de la production de chaleur radioactive au cours du temps (Arevalo et al., 2009).

Figure I-21 : Résultats du modèle 1 pour un taux de croissance constant dans le temps selon les volumes cumulés des hypothèses d'Armstrong (1991) en bleu, de Taylor et McLennan (1985) en vert et d'une croissance purement linéaire orange. Les courbes présentées correspondent aux meilleures correspondances pour la période Archéenne. Il ressort clairement que les hypothèses d'Armstrong et de Taylor et McLennan ne fonctionnent pas alors que la croissance linéaire reproduit presque bien les données en ce qui concerne la forme de leur évolution mais pas les valeurs de façon satisfaisante.

Dans le modèle 1, les hypothèses de croissance d'Armstrong et de Taylor et McLennan sont testées ainsi qu'un modèle hypothétique de croissance purement linéaire (Fig. I-20).

Les masses utilisées pour la croûte continentale, le manteau supérieur et le manteau total sont respectivement 2,2. 10^{22} kg, 1.10^{24} kg et 4.10^{24} kg (Albarède, 2003 ; Allègre, 2005 ; Peterson et DePaolo, 2007).

Les valeurs des rapports isotopiques ¹⁷⁶Lu/¹⁷⁷Hf et ¹⁷⁶Hf/¹⁷⁷Hf des chondrites pris comme référence n'ont pas vraiment changés depuis 1997 (travaux de Blichert-Toft et Albarède) (respectivement 0,0332 et 0,282772) même si les valeurs communément utilisées aujourd'hui correspondent à celles de Bouvier et al. (2008) (respectivement 0,0336 et 0,282785) dont les différences résident dans la taille des barres d'erreurs. La constante de désintégration du ¹⁷⁶Lu utilisée est celle de Soderlund et al. (2004) (1,867.10⁻¹¹) même si cette valeur n'est pas réellement différence réside encore dans l'incertitude plus faible dans l'article de Soderlund. Cependant, ces deux constantes dîtes « terrestres » différent bel et bien de celle déterminée pour les chondrites puisque celle-ci vaut 1,93.10⁻¹¹ (Sguigna et al., 1982) semblable à la valeur de 1,94.10⁻¹¹ correspondant aux premières estimations de Patchett et al. (1981). Cette différence entre chondrites et échantillons terrestres est, semble t'il, liée à l'explosion d'une supernova à proximité du système solaire très tôt dans son histoire, ce qui

aurait provoqué une transition du ¹⁷⁶Lu vers un état isomérique d'excitation supérieure ayant une demi-vie beaucoup plus rapide de 3,7 h contre 37 Ga pour l'état de base (Albarède et al., 2006).

Les coefficients de partage sont estimés à partir des valeurs du GERM (http://earthref.org/GERM/) pour les basaltes et les andésites et sont modifiés pour rendre compte des rapports ¹⁷⁶Lu/¹⁷⁷Hf des TTG (ainsi que de leur concentration en Hf valant ~4ppm) liés à la présence de grenat dans la source. Ce coefficient est progressivement modifié pour correspondre à la transition entre TTG et granodiorites vers 2,5 Ga, ces derniers ayant des rapports ¹⁷⁶Lu/¹⁷⁷Hf entre 0,012 et 0,008. Cependant, aucune différence notable n'apparaît dans les modèles entre l'utilisation de l'une ou de l'autre des valeurs du rapport ¹⁷⁶Lu/¹⁷⁷Hf pour les granites. Le taux de fusion partielle du manteau est fixé à 15% puis testé entre 10% et 20%.

Figure I-22 : Résultats du modèle 1 pour un taux de croissance décroissant exponentiellement dans le temps selon les volumes cumulés des hypothèses d'Armstrong (1991) en bleu, de Taylor et McLennan (1985) en vert et d'une croissance purement linéaire orange. Les courbes présentées correspondent aux meilleures correspondances pour la période Archéenne. Il ressort clairement que les hypothèses d'Armstrong ne fonctionnent pas alors que la croissance linéaire et l'hypothèse de Taylor et McLennan sont presque en accord avec les données. Cependant ces deux dernières courbes ne reproduisent pas suffisamment bien les données pour être acceptables.

La valeur actuelle de l' ϵ_{Hf} du manteau supérieur est fixée à +17 (Chauvel et Blichert-Toft, 2001) sachant que si l'on veut rendre compte de la variabilité des MORB une barre d'erreur d'environ ±2 unités d'epsilon est à considérer. Pour les modèles présentés, nous avons supposés que les valeurs d'_{Hf} les plus élevées de l'enregistrement des zircons détritiques étaient représentatives de la composition du manteau appauvri à chaque âge. Nous suivons donc et cherchons à expliquer l'évolution du manteau appauvri pour contraindre la croissance crustale cette partie du manteau étant considéré dans tous les cas comme le résidu de l'extraction des continents.

Modèle 1 :

Les résultats des modélisations sont présentés dans les figures I-21, 22 et 23.

Figure I-23 : Résultats du modèle 1 pour un taux de croissance décroissant dans le temps selon un volume cumulé que j'ai fixé (Figure I-19) afin de définir la forme que décrivent les valeurs maximales des zircons. Les taux de croissance ont été ajustés pour correspondre aux données. La correspondance est très satisfaisante dans ce cas.

D'après ce modèle, aucun scénario de croissance crustale testé ne peut reproduire correctement les données d'Hf des zircons détritiques puisque les courbes ne correspondent pas aux valeurs maximales des ε_{Hf} des zircons détritiques. La Figure I-21 correspond au test avec un taux d'extraction des continents constant au cours du temps ce qui n'est visiblement pas en accord avec les données pour le modèle d'Armstrong (1991). L'hypothèse de Taylor et McLennan (1985) rend compte de la distribution des données pour l'Archéen, en considérant une grande barre d'erreur, mais plus du tout après 2,5 Ga. La croissance linéaire de la croûte semble marcher raisonnablement bien sauf que les valeurs des ε_{Hf} sont sensiblement plus faibles que celles des zircons. Cependant, l'allure générale de la courbe épouse raisonnablement bien l'évolution des valeurs les plus élevées.

Dans l'hypothèse d'une décroissance exponentielle (Fig. I-22) du taux d'extraction des continents, le modèle d'Armstrong (1991) ne satisfait toujours pas les données. Les modèles

de Taylor et McLennan (1985) ainsi que la croissance linéaire ne satisfont pas les valeurs mais ont des formes proches de celle définie par les zircons.

Un nouveau scénario de croissance a été déduit de ces données et est relativement proche du modèle présenté par Belousova et al. (2010) (intermédiaire entre Armstrong, 1991 et le modèle de croissance linéaire) (courbe 4 de la Figure I-20). La façon dont la croûte croît dans le temps a une influence majeure sur la forme de la courbe ε_{Hf} en fonction du temps et par conséquent a permis de définir cette nouvelle hypothèse de croissance. Les valeurs des flux respectifs jouent sur l'ouverture de cette courbe, ce qui m'a permis de faire correspondre mon modèle avec les données au mieux. J'ai considéré une barre d'erreur de $\pm 2 \epsilon_{Hf}$ sur les valeurs du manteau. Par conséquent, pour satisfaire les données, il faut que la croissance crustale ait démarré très tôt dans l'histoire de la Terre (entre 4,4 et 4,5 Ga), ait été linéaire jusqu'à la fin de l'Archéen après quoi elle aurait ralentie pour tendre vers un état stationnaire (pas encore atteint). De plus, le taux d'addition de nouvelle croûte doit avoir décrut de façon exponentielle. Les valeurs moyennes de croissance crustale et de recyclage déduites de ce modèle sont différentes de celles annoncées par DePaolo (1980) et Albarède (1989) à partir du système Sm-Nd puisque valant 4,1 km³.a⁻¹ pour Q^{mc} (contre 2,5 km³.a⁻¹) et 2,3 km³.a⁻¹ pour Q^{cm} (contre 0,8 km³.a⁻¹). Cependant, ces résultats montrent que les données isotopiques de l'hafnium des zircons peuvent être expliquées au premier ordre par le modèle 1.

Modèles alternatifs 2 et 3 :

Ces deux modèles sont des variantes du modèle 1 et par conséquent seulement la version du modèle 1 capable de reproduire les données a été utilisée (Fig. I-23). Les résultats sont synthétisés de façon schématique dans la Figure I-24. L'allure générale de l'évolution du manteau appauvri, entre les épisodes de réalimentation par des panaches, est relativement linéaire dans le modèle 2 et est plutôt courbe dans le modèle 3, puisque dans ce dernier la croûte est extraite du manteau supérieur (Fig. I-19). Les réalimentations par les panaches puis leur mélange dans le manteau supérieur est soit ponctuel, soit progressif (de l'ordre de 200 Ma maximum). Par conséquent, l'évolution du manteau appauvri est soit brusque soit progressive et nécessite des rapports plus ou moins élevés pour retrouver les valeurs du modèle 1 qui satisfont les données isotopiques de l'Hf des zircons.

Le problème mis en avant par Albarède (1989) n'en est plus vraiment un à la vue de ces deux derniers modèles puisqu'ils permettent de réconcilier la valeur du rapport ¹⁷⁶Lu/¹⁷⁷Hf du manteau supérieur déduit des ¹⁷⁶Hf/¹⁷⁷Hf mesurés dans le temps et celui mesuré aujourd'hui. Puisque les valeurs sont tirées vers le bas par le mélange avec des panaches à

valeurs chondritiques, le manteau appauvri pour revenir à des valeurs correspondant aux données mesurées doit accumuler rapidement des isotopes radiogénique d'¹⁷⁶Hf et par conséquent avoir un rapport ¹⁷⁶Lu/¹⁷⁷Hf plus élevé que celui du manteau du modèle 1. Dans un tel cas, les rapports ¹⁷⁶Lu/¹⁷⁷Hf actuel et déduit des ¹⁷⁶Hf/¹⁷⁷Hf mesurés à différents âges ne sont pas en accord. Cette évolution en système ouvert dans ce cas reflète une interaction majeure entre le manteau supérieur et le manteau inférieur. Il semble en regardant l'enregistrement des zircons détritiques qu'il y ait des périodes de culmination des valeurs d' $\epsilon_{\rm Hf}$ précédées d'augmentation de ces valeurs et suivies de leur diminution, le tout réapparaissant de façon épisodique avec une valeur de plus en plus élevée au fur et à mesure que le manteau vieilli.

Figure I-24 : Synthèse schématique des résultats des modèles 2 (a et b) et 3 (c et d). Deux hypothèses sont présentées pour la réalimentation du manteau supérieur: un cas où les panaches se mélangent immédiatement (a et c) et un cas où il leur faut environ 200 Ma (b et d) lissant plus ou moins le signal isotopique du manteau supérieur. De plus, la déviation des valeurs isotopiques sont subjectives et dépendent de la masse du panache. Les âges d'intrusion des panaches dans le manteau supérieur sont fixés arbitrairement. L'incurvation des courbes du modèle 3 a été volontairement exagérée pour montrer la différence avec le modèle 2.

Les températures du manteau au cours de l'histoire de la Terre ont dû avoir une incidence sur les taux de fusion et ainsi sur le taux d'appauvrissement des portions résiduelles. Les komatiites archéennes témoignent de taux de fusion supérieurs à ceux des basaltes modernes donc ceci a du avoir une influence sur les degrés d'appauvrissement du

manteau et par la même sa fusibilité. Griffin et O'Reilly, (2007), dans un article de synthèse, montrent que les enclaves de manteau sous continentale sont progressivement de moins en moins appauvries de l'Archéen au Phanérozoïque ce qui peut avoir une incidence sur les lieux de fusion partielle, la composition et l'implication relative des réservoirs mantelliques dans le temps. Les zircons pouvant provenir de différentes sources granitiques, nous allons voir ce que montrent les TTG et leurs zircons pour essayer de mieux contraindre la croissance crustale à l'Archéen en affirmant ou en réfutant l'hypothèse que les zircons sont isotopiquement représentatifs de leur roche totale (pour justifier l'emploi de zircons au lieu de roches-totales). L'hypothèse que l'on a faite en interprétant les zircons comme on interpréterait une roche n'est peut-être pas bonne et tout ceci peut être contraint avec une bonne compréhension des relations entre roche et minéral (TTG et zircon). L'Archéen, selon la plupart des modèles, est la période qui a vu la formation de la majorité de la masse continentale actuelle et surtout le démarrage de cette croissance, il est donc essentiel de se focaliser sur cette gamme de temps pour bien comprendre ce problème et le résoudre.

3. Conclusions

Les continents sont une particularité de la planète Terre et nous apprennent beaucoup sur son histoire puisqu'ils ont commencés à se former il y a environ 4,4 Ga et bien que chahutés par la tectonique des plaques qui les a probablement aussi formés, des portions crustales de différentes époques ont été préservées. Les premiers témoins sont cependant de plus en plus rares au fur et à mesure qu'on remonte dans le temps et la nature même des continents a changée. La croûte continentale actuelle est représentée par les granites alors que celle de l'Archéen est représentée par les TTG (Tonalite-Trondhjémite-Granodiorite) dont les différences de composition chimiques peuvent être expliquées par des variations des modalités de fusion partielle en contexte de subduction. La formation de la croûte actuelle mais aussi, et surtout, archéenne semble donc directement en relation avec un réservoir terrestre qui est lui aussi absent des autres corps du système solaire : l'hydrosphère. Le protolithe des TTG peut fondre uniquement car il a était en contact avec de l'eau liquide qui par interaction hydrothermale a permis de l'hydrater et rend possible sa fusion dans les conditions pression-température des zones de subduction. Il est de même pour la formation de la croûte aujourd'hui. Des modèles alternatifs existent cependant, mais ils possèdent des faiblesses alors que la plupart des observables sont en accord avec les modèles de subduction.

La répartition de la croûte continentale à la surface de la Terre est relativement complexe mais est bien comprise. Les limites des portions d'âges différents et leurs imbrications ont été largement dictées par le déplacement des plaques lithosphériques au cours des âges. L'évolution des masses continentales au cours du temps est un sujet de débat depuis plusieurs décennies mais la plupart des modèles récents ou intégrant le plus d'observations, sont d'accord sur le fait qu'à la fin de l'Archéen, entre 60 et 80 % de la masse des continents avait été formée. Ceci s'oppose à certaines hypothèses favorisant l'existence d'un état stationnaire entre formation et destruction de croûte. De plus, la croissance semble ne pas avoir été continue mais plutôt épisodique ce qui ne change pas foncièrement les résultats des modèles car à l'échelle de l'âge de la Terre et de la vitesse d'évolution des systèmes isotopiques radiogéniques, la croissance paraît relativement continue. Les modèles de boîtes élaborés pour répondre à ces questions nécessitent la connaissance de pas mal de paramètres très difficiles à déterminer comme notamment les taux d'addition de croûte continentale et les taux de recyclage vers le manteau de celle-ci. De plus, connaître leurs valeurs dans le temps de ces taux est aussi relativement dur. Cependant, en faisant des hypothèses et en regardant les modèles dans des bornes, on peut en tirer des informations précieuses. Les modèles basés sur l'évolution de couples isotopes (Nd et Sr) permettent de tester certaines hypothèses de croissance au niveau de leur réalisme et aussi de déduire des valeurs de certains paramètres que l'on peut difficilement contraindre. Les influences des différents réservoirs mantelliques peuvent aussi être testées. Les données isotopiques d'Hf insitu accumulées récemment permettent d'avoir accès à une résolution spatiale et temporelle incroyable comparée aux analyses Nd et Sr des roches totales des modèles précédents et sont en accord avec ces derniers même si plusieurs variantes marchent pour ces données et qu'il n'est pas possible de trancher entre elles. Cependant un bruit très important existe dans les données d'Hf des zircons et toute interprétation dépend de la façon dont on considère les informations apportées par les zircons qui ne sont pas forcément interprétables directement comme on le ferait pour une roche totale. Pour aller plus loin, une compréhension des relations entre roche-totale et zircons dans le système Lu-Hf (mais aussi U-Pb) est nécessaire pour filtrer ces abondantes données.

Chapitre II : Matériel et méthodes
Chapitre II : Matériel et méthodes

Ce second chapitre détaille les échantillons étudiés ainsi que tous les aspects techniques de leur préparation à leurs analyses. Ma thèse s'articule autour de deux types d'objets (des poudres de roche totale et des minéraux séparés, à savoir les TTG et les zircons) nécessitant des traitements différents, par conséquent les méthodes et techniques utilisées sont présentées séparément pour chacun d'entre eux.

4. Echantillons

Les échantillons analysés dans cette thèse ont été fournis par des collègues (excepté les gneiss d'Acasta) et ont, pour la plupart, déjà fait l'objet d'analyses géochimiques (éléments majeurs, traces et isotopes du néodyme) publiées ou non. La liste de ces échantillons est présentée dans le Tableau 1, cependant une liste plus détaillée est disponible en Annexe A.

Origine	Localité	Nombre d'échantillons	Ages	Donateur
Afrique du Sud	Craton du Kaapvaal	20	3,2-3,5 Ga	Hervé MARTIN et Jean-François MOYEN
Antarctique	Terre d'Enderby	3	2,75-3,93 Ga	Chris CARSON et le Geoscience Australia
Australie	Craton des Pilbara	14	3,47 Ga	Martin VAN KRANENDONK et Dave CHAMPION
Australie	Craton du Yilgarn	9	3,48 Ga	Dave CHAMPION
Brésil	Craton Sao Francisco	12	3,42 Ga	Hervé MARTIN
Canada	Complexe d'Acasta	34	3,6-4,0 Ga	Echantillonné par Martin GUITREAU
Canada	Ceinture supracrustale du Nuvvuagittuq	6	3,8 Ga	Steve MOJZSIS
Chine	Anshan	4	2,5-3,8 Ga	Mingguo ZHAI
Finlande	Carélie	12	2,7-2,9 Ga	Hervé MARTIN
Inde	Craton du Dharwar	17	3,1-3,3 Ga	Hervé MARTIN
Russie	Carélie	13	2,8-3,1 Ga	Svetlana LOBACH-ZHUCHENKO et Valery VETRIN
Sibérie	Sharyzhalgay uplift	9	3,3-3,4 Ga	Olga TURKINA
Swaziland	Ancient Gneiss complex	1	3,66 Ga	Hervé MARTIN
Groenland	Complexe d'Itsaq	24	3,5-3,8 Ga	Steve MOJZSIS et Minik ROSING
Norvège	Bouclier Fennoscandien	7	2,8-2,9 Ga	Valery VETRIN

Tableau II-2: Liste résumant les échantillons collectés et analysés dans cette thèse.

Les échantillons du complexe gneissique d'Acasta ont été échantillonnés par mes soins durant un camp de terrain mené par Stephen MOJZSIS et Wouter BLEEKER au cours de l'été 2009. Aucun des échantillons à ma disposition n'avait fait l'objet d'analyses des isotopes de l'hafnium que ce soit sur les roches totales ou sur les zircons. Cependant, certains géologues ont analysés les isotopes de l'Hf ou du Nd à partir d'échantillons (roches totales ou zircons mais jamais les deux à la fois) provenant des mêmes zones que certains de mes TTG (ex : Choi et al, 2006 ; Iizuka et al, 2009 ; Hiess et al, 2009 ; Hoffmann et al, 2011). L'avantage de cette collection de roches est qu'elle couvre dans le temps tout l'Archéen, et est géographiquement représentative d'environ tous les cratons affleurant aujourd'hui.

Il me semble très important de préciser que tous les zircons analysés durant ce travail de thèse ont été extraits des TTG eux aussi analysés ici.

5. Préparation des échantillons

Le travail d'analyse géochimique démarre toujours par la préparation des échantillons, ceux-ci devant être « conditionnés » d'une certaine façon, afin de pouvoir être traités selon les procédures chimiques décrites plus tard dans la section 3.

5.1. Roches totales (TTG)

L'objectif de cette préparation est d'obtenir des poudres de roche totale les plus représentatives de la roche et les plus homogènes possible, qui pourront être aisément dissoutes dans l'acide, à partir d'échantillons de taille, de poids et de formes variées.

Les roches sont donc découpées, à l'aide d'une scie diamantée, en petits fragments de volume inférieurs à $180 \text{ cm}^3 (18 \text{ x} 5 \text{ x} 2)$, étant environ la taille maximale pour passer dans le broyeur à mâchoire (Fig. II-1a et II-1b). Une attention toute particulière est portée à la sélection des fragments et l'élimination de toutes parties susceptibles d'être secondaires à la roche, pouvant ainsi entraîner des erreurs d'âge et de composition, à savoir les altérations de surface (notamment les croûtes de fer et autres patines d'altération), les veines de quartz hydrothermales ou veines d'injections de magma, etc... Les morceaux sciés sont ensuite broyés en petits graviers, à l'aide d'un broyeur à mâchoire, (granulométrie d'environ 1 cm à des tailles inférieures à 80 µm). Les graviers sont ensuite quartés afin d'en obtenir une petite quantité pour faire des poudres représentatives de la composition de la roche totale. Le

quarteur est composé de deux séries de fentes, faisant tomber les graviers alternativement à droite et à gauche, où sont placés des petits containeurs plastiques (Fig. II-1c).

Figure II-1 : Photos résumant chronologiquement les différentes étapes de broyage des roches totales. Les dispositifs utilisés sont : a) une scie diamantée, b) un broyeur à mâchoire, c) un quarteur, d) un broyeur en carbure de tungstène dans lequel sont placés les graviers à broyer (cependant tous les échantillons analysés dans cette thèse ont été broyés dans un broyeur similaire mais entièrement en agate), e) socle vibrant sur lequel est positionné et attaché le broyeur présenté en d) et f) broyeur contenant les graviers broyés. Dans cette dernière photo, la poudre de roche totale est bien visible. C'est cette dernière qui est ensuite transférée dans un tube plastique comme celui visible sur la gauche dans la photo d).Crédit photographique : Martin GUITREAU.

Ceci sert à diviser par deux la quantité de graviers tout en gardant la représentativité de la granulométrie (donc de la composition chimique de la roche). Pour obtenir la quantité suffisante pour faire des poudres de roches totales, tous les graviers d'un échantillon sont d'abord passés à travers le quarteur. Par la suite, plusieurs passages sont effectués en ne gardant que ce qui est tombé d'un des deux côtés du quarteur, le reste étant remis dans un sac portant le nom de l'échantillon (avec le reste). Le nombre de passages dépend bien sûr de la quantité de graviers utilisés et donc de la taille de la roche de départ. Les orthogneiss présentent tous une foliation importante et sont par conséquent très hétérogènes spatialement (Fig. II-2). Il est donc essentiel, pour être représentatif de leur composition, de travailler avec un gros volume de roche de départ.

Les graviers quartés forment, à cette étape, deux groupes : un premier avec peu de graviers (résultats du quartage) et un deuxième contenant la majorité des graviers, tous deux

Chapitre II : Matériel et méthodes

représentatifs de la roche totale. Le deuxième groupe sera utilisé pour extraire les zircons (voir section suivante). Le premier groupe (récupéré après quartage) est introduit dans un broyeur en agate composé d'un anneau et un cylindre central placés dans un socle cylindrique creux dont l'intérieur est en agate (Fig. II-1d). Le tout est monté sur un socle vibrant (Fig. II-1e) qui met les différentes parties du broyeur en mouvement et réduits les graviers à l'état de poudre (Fig. II-1f). Cette dernière est concentrée avec un pinceau puis disposée sur une feuille de papier propre qui est ensuite courbée pour former un conduit où la poudre glisse et tombe directement dans un tube plastique pour être stockée. Le tube est ensuite numéroté. Entre chaque échantillon, tous les éléments de la chaîne de broyage sont nettoyés avec un pistolet à air comprimé ainsi que de l'éthanol (sauf pour la scie). Les mâchoires du broyeur sont démontées et nettoyées séparément ainsi que les pièces du broyeur en agate.

Figure II-2 : Photo du gneiss d'Acasta AG09-008gt. La foliation fine et régulière de cette roche illustre bien l'hétérogénéité des TTG et donc le besoin de broyer une grande quantité de matériel pour s'approcher d'une composition lui étant représentative. Crédit photographique : Martin GUITREAU.

5.2. Zircons

5.2.1. Tri minéral

La grosse fraction, obtenue lors de l'étape de broyage pour produire des graviers (décrite dans la section précédente), est entièrement tamisée avec des tamis ayant des diamètres de maille de 500, 300 et 80 µm (Fig. II-3a). Selon la quantité de roche dont on dispose, une table à secousse peut-être utilisée (Fig. II-3b). Son principe est qu'on verse les graviers dans un flux d'eau qui, lié à l'inclinaison de la table, tri les minéraux par densité. Le problème de cette technique par rapport au tamis est que les rendements sont bien inférieurs, par conséquent je ne l'ai presque pas utilisée. Après tamisage, la fraction 80-300 µm est récupérée, mise dans un récipient puis mouillée afin de retirer les fines (c'est-à-dire de très fine particules pouvant coller les grains entre eux et empêcher un tri efficace). Le récipient remplit d'eau est vidé délicatement pour seulement éliminer les grains suffisamment fins pour flotter et non les grains mis en suspension par une turbulence lors de l'écoulement. Cette étape est répétée jusqu'à ce que l'eau ajoutée dans le récipient soit claire (plus de fines en suspension). Ceci étant fait, le récipient est mis à l'étuve à une température de 65°C jusqu'à ce qu'il soit parfaitement sec. Le contenu du récipient séché est vidé sur une feuille de papier propre. Un aimant à main est passé au dessus de ce sable fin, constituant la fraction 80-300 µm, afin de retirer les minéraux les plus magnétiques. Les grains sont ensuite passés à travers un Frantz pour éliminer une partie des minéraux magnétiques (Fig. II-3c) puis plongés dans une liqueur dense (préalablement versée dans une ampoule à décanter) : le bromoforme, dont la densité est de 2,89 (Fig. II-3d). Ainsi, tous les minéraux plus denses que cette valeur (notamment le zircon) sédimentent au fond de l'ampoule. Le robinet situé à la base de cette dernière est ouvert pour laisser couler uniquement la fraction inférieure (contenant les minéraux lourds) puis refermé. Le bromoforme passe à travers un filtre propre et tombe directement dans un bécher, ce qui permet de réutiliser la liqueur dense (non-souillée). Le bécher est enlevé et un nouveau est placé sous l'entonnoir contenant le filtre, ce dernier est ensuite rincé à l'acétone. Les minéraux lourds, quant à eux, restent sur le filtre, qu'on laisse sécher sous une lampe infra-rouge (Fig. II-3e), puis les grains sont plongés dans du diiodométhane (liqueur dense dont la densité est de 3,3). Le protocole est exactement le même que précédemment pour le bromoforme, à savoir : le fond de la liqueur est versé à travers un nouveau filtre, qui recueille uniquement les minéraux lourds, que l'on fait sécher sous une lampe après l'avoir rincé à l'acétone. Tous les instruments utilisés lors de cette étape sont nettoyés abondamment avec de l'acétone entre chaque utilisation de liqueurs denses (pour un même échantillon) et entre chaque échantillon.

Chapitre II : Matériel et méthodes

Les grains ainsi obtenus sont passés au Frantz (Fig. II-3c) qui sépare les minéraux magnétiques de ceux non-magnétiques en les soumettant à un champ magnétique plus ou moins intense. Les minéraux dans le Frantz glissent dans deux conduits, dont l'inclinaison peut-être contrôlée, menant à deux béchers différents. Le bécher des minéraux non-magnétique est récupéré et son contenu vidé sur un petit papier propre. Le zircon est un minéral non-magnétique, de densité environ égale à 4,5, et se trouve donc, après ces étapes de tri minéral, dans la fraction non magnétique sortie du Frantz (maintenant disposée sur un papier propre sous la loupe binoculaire) (Fig. II-3f). Par la suite les zircons sont stockés en pliant le papier sur lequel ils se trouvent et laissant les grains glisser dans un pilulier.

Figure II-3 : Photos résumant chronologiquement les différents dispositifs utilisés lors des étapes du tri minéral pour obtenir les zircons. a) un jeu de tamis à travers lesquels sont passés les graviers après quartage (ces tamis sont nettoyés extrêmement soigneusement après chaque échantillons pour éviter les contaminations croisées. b) dans le cas où l'on dispose de beaucoup de matière (graviers), une table à secousse peut être utilisée, cependant les rendements sont très inférieurs aux liqueurs denses. c) Le dispositif Frantz à travers lequel les zircons sont triés magnétiquement avant et après les liqueurs denses. d) une ampoule à décanter dans laquelle sont versés les liqueurs denses (dans le bas de l'ampoule, on peut observer le début de séparation par gravité de différentes phases minérales comme en témoigne les zones sombres en haut et en bas du liquide). e) le dispositif de séchage des filtres par des lampes infrarouge. f) loupe binoculaire grâce à laquelle on peut vérifier que la séparation a marchée. g) vue de la loupe binoculaire et h) zoom sur le minéral central : un zircon. Crédit photographique : Martin GUITREAU.

Les zircons récupérés sont généralement automorphes à sub-automorphes et mesurent entre 100 et 300 μ m (Fig. II-3g et II-3h). Ils sont la plupart du temps d'une couleur rose pâle à très prononcée, mais peuvent parfois être jaunâtre, orangés ou éventuellement brun-rouge selon leurs origines et leurs états d'altération. Selon la composition de la roche de laquelle les zircons ont été extraits, la plupart du temps acide (pourcentage massique de SiO₂ supérieur à 63%), ils sont associés à de l'apatite, de la monazite et du rutile principalement (du moins après toutes les étapes de tri décrites précédemment, car si une ou plusieurs étapes ne sont pas effectuées, de nouveau minéraux, normalement séparés, viendront s'associer à la liste précédente comme l'amphibole par exemple).

5.2.2. Montage de plots pour le laser

Le but est de créer un plot en résine dans lequel on enferme les zircons, de polir ce plot (et ainsi les zircons) pour pouvoir faire de l'imagerie sur ces minéraux, ainsi que des analyses ponctuelles.

Les zircons stockés dans les piluliers sont versés sur une petite feuille de papier propre (une feuille par échantillon est utilisée, jamais la même pour deux échantillons différents), et observés sous une loupe binoculaire. Les zircons sont sélectionnés et transférés sur un morceau de scotch double-face collé sur un socle, sur lequel viendra se fixer un cylindre creux d'un pouce (2,5 cm) de diamètre qui servira de moule pour la résine. Les zircons sont collés au bout d'une aiguille, préalablement frotté sur le nez, et ainsi couvert d'une matière grasse et collante, puis déposés sur le scotch double-face à l'endroit voulu. Afin de repérer les différents échantillons desquels ont été extraits les zircons, ces derniers sont placés selon des lignes, et des colonnes, plus ou moins espacés (voir Figure II-4).

Figure II-4 : Illustration des étapes successives de création d'un plot. La photo a) est prise à la loupe binoculaire et montre les zircons déposés sur le scotch, ainsi que la bague qui contiendra la résine (vue de dessus). La photo b) est aussi prise à la loupe binoculaire et montre le plot après coulage de la résine et polissage (vue de dessous). La photo c) est un montage d'image acquise par microscopie électronique à balayage en électrons rétrodiffusés. Cette dernière photo est un guide pour les futures analyses isotopiques insitu car les zircons y sont référencés dans l'espace. Crédit photographique : Martin GUITREAU.

Les limites du moule cylindrique sont dessinées ou indiquées sur le scotch pour placer les zircons de façon optimale. Ces derniers sont par ailleurs préférentiellement posés proche du centre afin d'éviter des pertes éventuelles lors du polissage, les bords étant plus vite polis que le centre. Une fois le montage terminé, le moule cylindrique est placé sur le socle et de l'araldite est mélangée avec un durcisseur, dans un récipient plastique propre, dans les proportions 1:5, en évitant de piéger des bulles d'air dans la résine. Les deux « ingrédients » sont mélangés pendant environ 20 minutes grâce à une petite tige en plastique en formant des 8. Ensuite, la résine est versée délicatement dans le moule pour éviter que des bulles d'air ne se fixe autour des zircons au quel cas, ils risqueraient d'être arrachés pendant le polissage.

Selon les laboratoires où j'ai travaillé, j'ai eu l'occasion d'essayer plusieurs techniques de polissage. Je ne présente dans cette partie que celle ayant donné les meilleures qualités de polissage (s'avérant être aussi la moins coûteuse). La surface du plot où se trouvent les zircons est polie grossièrement avec des disques en carbure de tungstène, de plus en plus fins pour dégager tous les zircons pris dans la résine. Un disque (P# 1200) contenant des grains d'environ 15 µm est d'abord utilisé, puis un autre (P# 4000) ayant des grains d'environ 5 µm. Il est possible de n'utiliser que le deuxième disque, cependant, cela rallonge le temps qu'il faut pour dégager les zircons, mais cela a l'avantage d'éviter de fracturer des zircons (les vieux zircons Archéens étant fragiles). Les disques sont fixés, à tour de rôle, sur une plaque de verre et mouillés, avec de l'eau, pour qu'ils collent sur cette dernière. Ensuite, le plot est poli a l'aide d'une feuille de papier standard collée sur la même plaque de verre à l'aide d'eau, mais sur laquelle est ajouté de la pâte diamantée. Les pâtes diamantées utilisées successivement contiennent des grains de tailles de 3 µm à 1µm (et éventuellement ½ µm pour des analyses à la sonde ionique). La feuille de papier est bien sûr changée entre chaque granulométrie de diamant et parfois pendant la même phase car elle peut se déchirer facilement. Pour polir les échantillons efficacement, des mouvements en forme de 8 sont effectués. L'avancée du polissage est vérifiée fréquemment grâce à un microscope optique en mode lumière réfléchie, ce qui permet de voir l'état de surface du zircon. Le polissage est considéré bon lorsqu'une seule génération de rayures extrêmement fine est visible sur la surface des zircons.

5.2.3. Imagerie MEB

J'ai eu l'occasion d'acquérir des images en cathodo-luminescence et en électrons rétrodiffusés avec 3 microscopes électroniques à balayage (MEB) différents au cours de cette thèse. Au Laboratoire Magmas et Volcans de Clermont-Ferrand sur un JEOL JSM-5910 LV, au Centre de Recherches Pétrographiques et Géochimiques de Nancy sur un JEOL JSM-6510 et à l'université de l'Idaho de Moscow (Etats-Unis) sur un Zeiss Leo Supra 35 VP. Cependant

il m'est arrivé d'utiliser ponctuellement les autres types de détection du MEB (SE ou électrons secondaires).

Le principe du microscope électronique est de bombarder un échantillon sous vide poussé avec un faisceau d'électron focalisé. Le MEB, ou microscope électronique à balayage, a pour particularité d'avoir un faisceau mobile qui peut balayer l'échantillon tout en étant synchronisé avec ses détecteurs. Les électrons sont générés par chauffage à très haute température et sous vide d'une cathode, généralement un filament de tungstène. Les électrons ainsi obtenus sont par la suite accélérés par une anode et dirigés grâce à des jeux de lentilles. Ils sont appelés « électrons primaires » ou « faisceau primaire ». Comme son nom l'indique le microscope électronique sert à acquérir des images mais il peut aussi mesurer des compositions chimiques selon la concentration des éléments dans les minéraux que l'on souhaite analyser (minimum de détection proche de 0,2 % poids). Les MEB sont équipés de quatre détecteurs : 2 mesurant des faisceaux d'électrons et 2 autres mesurant des rayons X.

Les analyses des rayons X se font soit par mesure de leur énergie, soit de leur longueur d'onde et permettent de connaitre la composition chimique d'un échantillon ou d'une partie de celui-ci. L'interaction entre le faisceau d'électrons primaires et les atomes résulte en la formation de ces rayons X. En effet, lorsque les électrons sont suffisamment énergétiques, ils pénètrent profondément au sein du cortège électronique des atomes et excitent ainsi les électrons les plus internes les faisant sauter à des niveaux énergétiques supérieurs. Ceux-ci devenant instables, retournent à leur niveau d'origine plus stable en émettant un rayonnement très énergétique : les rayons X. Les énergies et plus particulièrement les transitions d'énergie de ces électrons internes, évacuées sous forme de rayons X, sont dépendantes du Z (numéro atomique) de chaque noyau et ainsi caractéristique de chaque élément chimique. Il est possible d'effectuer des cartographies de répartition d'éléments chimiques dans l'échantillon de cette façon. Je n'ai pas utilisé ces techniques, ou très ponctuellement, mais plutôt celles liées à la détection d'électrons pour l'imagerie.

Les deux modes de détection des électrons sont appelés respectivement électrons secondaires et électrons rétrodiffusés. Ils permettent d'acquérir des images mais aussi d'avoir une idée de la composition dans le dernier cas. Les électrons secondaires par opposition aux primaires sont générés par l'échantillon et correspondent à des électrons superficiels qui sont arrachés par le trop plein d'énergie apporté par le faisceau incident. Cette technique permet donc d'avoir une image de la surface d'un échantillon qui, liée à la forte profondeur de champ du MEB, donne une impression de relief. Les électrons rétrodiffusés sont quant à eux issu d'une pénétration plus profonde au sein de l'échantillon. Ils sont en fait des électrons

Chapitre II : Matériel et méthodes

primaires qui ont pénétré dans l'échantillon, à proximité des noyaux, et selon les éléments chimiques (numéro atomique) ont été déviés et ré-envoyés vers l'extérieur de l'échantillon par interaction élastique. La pénétration de ces électrons reste quand même faible (< 1µm) mais est suffisante pour donner des indications chimiques fiables. Les électrons rétrodiffusés sont donc aussi un indicateur de composition chimique en plus d'un mode d'imagerie. Il existe cependant un autre type de détection basé lui sur la mesure de photons (contrairement aux électrons et aux rayons X) et est essentiel pour l'étude des zircons : la cathodo-luminescence. Ce phénomène est lié à la capacité de certains éléments, notamment les Terres Rares trivalentes, à s'exciter et à se désexciter sous le bombardement d'un faisceau de certaine énergie (rayons X ou dans notre cas électrons) en émettant un photon. Les détecteurs du MEB sont incapables de mesurer ces photons, c'est pourquoi le microscope électronique doit être équipé d'un détecteur spécial pour acquérir les images en cathodo-luminescence (CL).

Figure II-5: Planche illustrant de façon non-exhaustive les différentes structures internes des zircons révélées par la cathodo luminescence. Montage à partir de Corfu et al. 2003.

Cette technique d'imagerie est très utile car elle nous renseigne sur la structure interne des zircons et permet d'avoir une idée du type de roche desquels ils proviennent (roche magmatique acide ou basique ou roche métamorphique) ainsi que de leur état de conservation (zonations préservées, amorphisation ou altération avancée) (Fig. II-5). En effet, les zircons possèdent des structures internes différentes (mais aussi des formes macroscopiques différentes) selon leur contexte de formation.

Figure II-6 : Comparaison entre les techniques d'acquisition d'image MEB en électrons rétrodiffusés
(images a et b) et en cathodo-luminescence (c) sur un zircon de l'échantillon 030013 (Groenland). L'image a) correspond à une image brute et b) à une image dont le spectre lumineux a été traité pour faire ressortir les zonations. Le spectre lumineux à été réduit donc la différence entre deux longueurs d'onde est plus importante, par conséquent les zonations sont mieux visibles mais l'image est plus pixellisée. L'image c) a été acquise en CL et son spectre lumineux a aussi été traité pour optimiser la visualisation des zonations. Les zonations sont ainsi visibles avec les deux techniques, cependant elles sont beaucoup plus nettes avec la cathodo-luminescence même si la résolution est plus faible qu'avec les électrons rétrodiffusés. A noter que les trous et les fractures sont aussi beaucoup plus visibles en BSE. Crédit photographique : Martin GUITREAU.

Les zircons ignés (magmatiques) sont très généralement zonés ce qui dépendrait de la nature de l'interface magma/minéral, de la vitesse de diffusion des ions, des conditions d'oxydo-réduction et éventuellement d'effets de forçage du magma (Mattinson et al., 1996 and Hoskin, 2000). Ces zonations sont révélées par des phénomènes de luminescence des Terre-Rares trivalent, principalement le Dy (dysprosium) (Nasdala et al. 2003), induits par un faisceau d'électrons (Fig. II-5 et II-6c). Concrètement, les électrons crées et accélérés dans le microscope électronique à balayage sont envoyés sur l'échantillon et sont absorbés (selon leur énergie) par les atomes constituant les zircons notamment les Terre-Rares. Ces atomes ainsi « excités » gagnent en énergie et montent sur une orbitale atomique de plus forte énergie puis retournent à leur état d'origine (plus stable) en perdant leur excès d'énergie acquise sous forme de photon. La longueur d'onde de ce photon dépend de la transition énergétique qu'a effectuée l'atome, et est donc caractéristique d'un élément chimique donné. Ces photons sont

mesurés par des détecteurs et permettent d'obtenir l'image de leur répartition au sein du zircon après balayage complet par le faisceau d'électrons.

Les images en électrons rétrodiffusés (BSE pour back-scattered electrons) donnent généralement le même type d'information mais avec une plus grande résolution puisqu'on analyse des électrons à haute énergie et non des photons dans ce cas là (Fig. II-6). Cette technique est sensible au numéro atomique donc directement à l'élément considéré mais est cependant relativement moins sensible que la cathodoluminescence pour repérer des zonations. Dans certains cas, ces zonations peuvent s'observer au microscope optique.

Les informations recueillies par ces images MEB sont extrêmement utiles et sont mises à profit dans les deux techniques d'analyse des zircons que nous avons utilisés. En effet, dans le cas du laser, la préservation de la structure interne du minéral nous aide à choisir la meilleure zone à ablater. Dans le cas de la solution, ces images nous sont utiles pour déterminer la taille des zones à détruire autour du cœur, et ainsi définissent un temps d'abrasion, ce dont nous allons parler dans la section suivante.

5.2.4. Préparation pour la chimie en solution

Les roches Archéennes étant très vieilles, elles ont subit un grand nombre de phénomènes géologiques après leur mise en place comme des déformations, du métamorphisme ou de la fusion partielle. Au cours de ces épisodes, les zircons peuvent se résorber, recommencer à croitre ou ré-ouvrir un certain nombre de système isotopiques (U-Pb, Lu-Hf, Sm-Nd, ...). Une « auréole de surcroissance » qui n'a pas la même composition que le reste du zircon peut alors se former. Plusieurs de ces auréoles peuvent se former autour d'un même zircon (témoignant d'épisodes géologiques distincts) (Whitehouse et al., 1999). Un zircon peut même être hérité d'une roche antérieure, à laquelle il a été arraché mécaniquement. Une auréole peut alors se former (témoignant de la composition de la nouvelle roche). Les images MEB acquises sont utiles pour déterminer ce genre de phénomènes (Fig. II-5 et II-6). Le but des analyses isotopiques est de connaître la composition du cœur du zircon, qu'il corresponde à tout le zircon ou juste à une petite partie, le cœur signifiant la partie centrale ignée et originel du zircon. Pour la récupérer et se débarrasser des surcroissances, les zircons sont abrasés mécaniquement à l'aide d'un abraseur (dispositif décrit ci-dessous) en acier inoxydable semblable à celui décrit par Krogh (1982) (Fig. II-7).

Figure II-7 : Schéma éclaté de l'abraseur de zircons utilisé avec le détail de la circulation d'air comprimé. D'après Krogh (1982).

Selon la taille des surcroissances, les cristaux sont plus ou moins abrasés car le but est de récupérer un maximum de matériel pour les mesures (amenant une plus grande précision). Les piluliers contenants les zircons sont ouverts et une partie de leur contenu est vidé sur une petite feuille propre (papier à peser ou autre). Les zircons sont sélectionnés sous une loupe binoculaire et attrapés avec une aiguille dont l'extrémité est légèrement collante et déposés sur les bords intérieurs de l'abraseur. Le socle de l'abraseur est incliné puis tapoté sur la table pour amener les zircons en périphérie (là où ils vont tourner) car sinon, ils seront écrasés par le dispositif central propulsant l'air comprimé dans la « chambre de rotation », ce qui peut aussi induire une fuite d'air et une perte des zircons.

Par la suite, deux filtres (dont les mailles font 30 µm de diamètre) sont ajoutés sur l'abraseur (pour empêcher les zircons de sortir) et ce dernier est fermé. Le tuyau d'arrivée d'air est branché puis la pression est augmentée doucement jusqu'à environ 0,2 bars, pour que les zircons commencent à tourner et ne vole pas dans tous les sens, ce qui pourrait arriver si l'air était injecté trop vite. La durée d'abrasion dépend essentiellement de l'âge des zircons car les dégâts dans leur réseau cristallin, liés aux chaînes de désintégration de l'Uranium et Thorium, appelé métamictisation ou amorphisation, augmentent avec le temps. Les zircons deviennent donc de moins en moins durs, c'est pourquoi il faut varier le temps d'abrasion et l'âge des zircons. La Figure II-8 indique la relation en la durée d'abrasion et l'âge des zircon est perdue (Fig. II-9). Ces durées ont été obtenues expérimentalement et vérifiées plusieurs fois.

Figure II-8 : Graphiques illustrant en a) l'évolution de la concentration des principaux isotopes radioactifs de l'U et du Th au cours du temps, et en b) le temps d'abrasion des zircons en fonction de leur âge. Le graphe b) étant théorique, a été obtenu expérimentalement. Plus les zircons sont vieux et plus leur réseau cristallin a été détérioré par la désintégration des isotopes présentés dans le graphe a). Ainsi, leur désintégration étant linéaire, sauf pour le ²³⁵U, qui cependant peut être extrapolé par une droite pour des zircons plus jeunes que 3.5 Ga, le temps d'abrasion est une fonction inverse de la désintégration. Même si le temps d'abrasion absolu doit tenir compte du taux de recristallisation, de la concentration de ces isotopes, de l'état d'altération des zircons et de la taille des surcroissances, cette calibration marche suffisamment bien.

Après abrasion, les zircons sont recouverts d'une pellicule métallique constituée de l'alliage de l'abraseur (riche en Pb). Pour l'enlever, les zircons sont plongés dans un bécher de 7ml contenant environ 1 ml d'HF** concentré (29N) à froid pendant 5 minutes, ensuite de l'eau distillée est ajoutée, jusqu'à ras-bord du bécher, pour diluer l'HF. Tout le liquide est pipeté, sauf une goutte qu'on laisse dans le bécher car les zircons, étant lourds, tombe au fond du bécher et sont contenus dans cette goutte. Le reste de l'acide est jeté. Ensuite, 1 ml d'HNO₃* concentré (15N) est ajouté et les zircons sont ainsi leachés à froid pendant 5 minutes. L'acide nitrique est dilué avec de l'H₂O* (de la même façon que pour l'HF) puis pipeté en laissant une goutte au fond (idem que pour l'HF) et jeté.

Finalement, 1 à 2ml d'HCl* 6N sont ajoutés et le bécher est placé fermé sur plaque chauffante à environ 100°C pendant 15 minutes. Par la suite, le bécher est rempli d'eau distillée, pipeté, et comme pour les acides nitrique et fluorhydrique, une goutte et laissée derrière. De l'éthanol (environ 1 ml) est ajouté et pipeté, puis la première goutte (contenant les zircons) est mise dans un pilulier (préalablement rincé à l'eau distillée et à l'éthanol). L'éthanol est rapidement séché à l'air et par la suite stockés, ces derniers étant maintenant prêts à être attaqués. Les zircons sont plus tard chargés dans les béchers d'attaque sous une loupe binoculaire.

Certains zircons ont été récupérés à partir de plots et non de concentrés dans des piluliers. Pour ce cas particulier, les grains préalablement analysés à l'aide de techniques ponctuelles (sonde ionique, ablation laser ou/et imagerie MEB) sont retirés délicatement de leurs plots à l'aide d'une seringue puis chargés directement dans les béchers d'attaque. Les

étapes de leaching se passent donc dans ces derniers et sont identiques à celles suivant l'abrasion. Uniquement l'étape de chargement précédant l'attaque (voir section 3.2) diffère puisque les zircons se trouvent déjà dans les béchers d'attaque.

Figure II-9 : Illustration théorique et pratique de l'effet de l'abrasion sur les zircons. Le zircon abrasé de PG-9 est recouvert d'une fine couche métallique comme en témoignent la teinte plus sombre qu'avant abrasion ainsi que les reflets métalliques à sa surface. Crédit photographique : Martin GUITREAU.

6. Protocoles de chimie

6.1. Roches totales (TTG)

Les roches totales sont analysées par la méthode de dilution isotopique qui consiste à mélanger une quantité soigneusement mesurée d'échantillon (inconnu) avec un traceur (exactement connu) dont la quantité ajouté est aussi soigneusement mesurée. Les TTG étant très vieilles (Archéennes) nous devons connaître très précisément leurs rapports ¹⁷⁶Lu/¹⁷⁷Hf pour calculer leurs ¹⁷⁶Hf/¹⁷⁷Hf initiaux (acquis lors de leur cristallisation). Pour se faire, la seule technique suffisamment précise est la dilution isotopique dont le but est de calculer précisément les concentrations de Lu et d'Hf de l'échantillon à partir de la variation de rapports isotopiques induite par l'ajout de spike. Il est très important de déterminer les rapports ¹⁷⁶Lu/¹⁷⁷Hf et ¹⁷⁶Hf/¹⁷⁷Hf à partir de la même attaque car, même si les poudres de roche totale sont les plus homogènes possible, les mesures faîtes sur deux attaques différentes

Chapitre II : Matériel et méthodes

seront très proches mais induiront un rapport initial de ¹⁷⁶Hf/¹⁷⁷Hf faux si on applique une correction d'âge à un rapport ¹⁷⁶Hf/¹⁷⁷Hf avec un ¹⁷⁶Lu/¹⁷⁷Hf mesuré sur une autre attaque. A l'inverse, les corrections d'âge faîtes à partir des deux rapports respectifs des différentes attaques induiront des ¹⁷⁶Hf/¹⁷⁷Hf initiaux semblables aux barres d'erreurs près.

Figure II-10 : Dispositifs d'attaque des échantillons en bombes pour les roches totales en a) et pour les zircons en b). Les photos du haut montrent les parties manipulées en salle blanche alors que celles du bas montrent les parties manipulées en dehors. La Figure a) présente dans la partie supérieure les bombes PTFE (socle et couvercle), les manchons insérés autour de ces dernières ainsi que les pastilles de PTFE placés audessus et au-dessous de la bombe PTFE pour empêcher tout contact avec les parties métalliques (présentées dans la partie inférieure). La bombe Parr pour attaquer les zircons est visible dans la Figure b) avec, dans la partie supérieure, le liner (grosse bombe PTFE sur la gauche) et les 16 béchers PFA de 0,5 ml (dans lesquels sont chargés les zircons individuels). Ces mini-béchers sont placés dans le liner puis ce dernier inséré dans la bombe métallique présentée dans la partie inférieure de b). Crédit photographique : Martin GUITREAU.

Les roches totales sont toutes attaquées en bombe (Fig. II-10a) car ce sont toutes des roches acides et contiennent donc beaucoup de zircons, réputés difficiles à dissoudre, mais aussi car les bombes permettent d'obtenir une parfaite mise en solution et par la même une homogénéisation totale entre l'échantillon et le spike. La procédure de chimie décrite ci-après est basée sur les protocoles de Blichert-Toft et al. (1997, 2001 et 2002). La Figure II-11

résume le protocole de chimie des poudres de roches totales (appliqué ici aux TTG) détaillée ci-après.

Pesée, ajout de spike et attaque

Les échantillons sont pesés dans les parties Téflon des bombes (bombe PTFE) (Fig.II-10a) sur une balance de précision. La bombe PTFE est posée sur la balance (sans son couvercle, celui-ci étant mis de côté) qui est ensuite tarée. Une partie de la poudre de roche totale est versée délicatement, directement de son tube dans la bombe PTFE, ou prélevée avec une spatule propre, le tout en dehors de la balance. La bombe PTFE est ensuite repositionnée à l'intérieur de cette dernière. Le poids ajouté de l'échantillon est maintenant affiché par la balance. Cette dernière est à nouveau tarée, puis du spike (dont la quantité nécessaire est préalablement calculée, cf. équation 1) est ajouté goutte à goutte grâce à un petit compte goutte. Une attention particulière est apportée à cette étape, car il ne faut pas contaminer le flacon de spike en touchant quelque chose (ce qui est d'ailleurs une règle générale en salle blanche pour tout le matériel). La bombe PTFE est, ensuite, sortie de la balance, puis quelques gouttes de HNO₃ sont ajoutées en les faisant couler le long des parois du bécher afin d'y décollés les grains retenus électro-statiquement. La bombe PTFE est fermée avec son couvercle correspondant (ayant le même numéro) puis le tout est posé de côté, de façon à ne pas le cogner ou le renverser involontairement. La spatule utilisée est nettoyée à l'éthanol entre chaque échantillon.

Le spike mélangé (« mixed spike ») Lu-Hf est contenu dans un mélange de 0,5 N HCl* et 0,5 N HF** et consiste en une solution enrichie en ¹⁸⁰Hf et ¹⁷⁶Lu. L'HCl stabilise le Lu en solution tandis que l'HF stabilise l'Hf en solution. Cependant, trop d'HF pourrait faire précipiter le Lu sous forme de fluorures. Pour déterminer la quantité de spike à mélanger à l'échantillon, nous avons utilisé l'équation suivante :

$$m_{sp} = \frac{\left(\frac{m_{ech} \times C_{ech}^{\rm Hf} \times 1.10^3 \times Ab_{180} \times {}^{^{180}}\varphi}{M_{\rm Hf}}\right)}{N_{sp}^{{}^{180}\rm Hf}}$$
(1)

Avec m_{sp} la masse du spike à ajouter en g ; m_{ech} la masse d'échantillon pesée ; C_{ech}^{Hf} la concentration en Hf de l'échantillon (ppm) ; Ab_{180} l'abondance de l'isotope ¹⁸⁰Hf dans l'échantillon (égale à l'abondance naturelle) ; M_{Hf} la masse molaire de l'Hf ; $N_{sp}^{180_{Hf}}$ le

nombre de moles de l'isotope ¹⁸⁰Hf par gramme de spike et ¹⁸⁰ φ la proportion de l'isotope ¹⁸⁰Hf du spike dans le mélange spike-échantillon. Nous avons utilisés 3% pour *f*, ce qui correspond à un sous spiking de l'Hf et un spiking optimal du Lu résultant en une précision de 0,2% sur le rapport Lu/Hf (erreurs du spectromètre de masse comprises).

Après pesée, de l'HF** (acide fluorhydrique) concentré (29 N), distillé deux fois, est ajouté dans chaque bombe PTFE jusqu'à la marque inférieure du couvercle. Ils sont ensuite placés ouverts (pour évaporation), leur couvercle à côté d'eux, sur une plaque chauffante à environ 135° pendant une nuit. S'en suit un résidu non homogénéisé isotopiquement contenant le spike et l'échantillon. L'HF s'est, par contre, complexé avec une partie du silicium de l'échantillon et s'est évaporé sous forme de SiF₄ (volatil à température ambiante).

Une fois sec, le résidu est repris dans de l'HF** concentré (distillé deux fois) à 29 N avec de l'HNO₃* concentré (distillé une fois) à 15 N, dans les proportions respectives 10 : 1. L'acide nitrique étant très réactif sous pression et à haute température, l'ajout de cet acide en trop grandes proportions pourrait faire fuir la bombe. L'HNO3* est d'abord ajouté et s'en suit l'HF**. Le volume d'acide représente environ les 4/5^{ème} de la bombe PTFE, afin qu'il reste un espace d'air suffisant pour accommoder l'augmentation de pression induite par l'augmentation de la température au sein de l'étuve. Les bombes PTFE sont ensuite fermées avec leurs couvercles. Les numéros identiques, préalablement gravés, sur les deux parties sont alignés (et doivent toujours l'être) pour que les parties PTFE des bombes (socle et couvercle) se déforment toujours de la même façon, afin d'éviter les fuites d'acides pendant l'attaque dans l'étuve. Un manchon de téflon thermo-rétractable (préalablement moulé) est ensuite inséré autour de chaque bombe PTFE et le tout est placé dans des bombes en métal Parr modèle 4745. Ces dernières sont assemblées et fermement serrées puis placées dans une étuve à 156°C pendant une semaine (au minimum 5 jours). Le manchon thermo-rétractable placé autour des bombes PTFE sert à éviter une éventuelle « communication » entre l'intérieur (là où l'échantillon est en solution) et le métal des bombes, ce qui pourrait causer une contamination de l'échantillon. Ce design des manchons thermo-rétractables, a été introduit par Jon Patchett il y a 30 ans.

Les bombes sont sorties de l'étuve et laissées refroidir pendant une heure et demie. Une fois tièdes (suffisamment froide pour être prises à main nue), elles sont ouvertes et les parties PTFE (avec leur manchon encore autour) sorties et amenés en salle blanche. Les manchons sont décollés des parois des bombes PTFE en insérant une micro-spatule entre les deux et en effectuant un tour complet. Pour séparer ces deux parties, on pousse sur la base des bombes PTFE (tout en tenant le manchon) et ainsi, les deux se désolidarisent et le PTFE glisse dans le manchon. Il est important de pousser vers le haut, en tenant la bombe PTFE dans le bon sens (couvercle en haut), afin d'éviter les risques d'ouverture de ce dernier (même si les réactions chimiques s'étant passées, à l'intérieur de ce dernier, ont provoqué une souspression par rapport au milieu ambiant ce qui maintient le couvercle en place). Les bombes PTFE sont donc plus ou moins difficiles à ouvrir (à cause de cet effet d'aspiration). Cependant, une fois ouvertes, elles sont mises à évaporer sur des plaques à environ 135°C pendant une nuit ($\approx 12h$).

Une fois sec, elles sont sorties des plaques et rebouchées avec leurs couvercles respectifs. Les plaques sont chauffés jusqu'à environ 210°C. De l'acide perchlorique (HClO₄*) concentré (à 70%), est ajouté, goutte à goutte, dans les béchers jusqu'à humidifier l'ensemble du résidu d'évaporation (sans l'immerger complètement), puis le tout est placé sur les plaques à évaporer pendant environ 24h. L'acide perchlorique sert à détruire les fluorures (Mg, Ca, …) crées lors de l'attaque en HF et de les convertir en chlorures. A cette étape l'échantillon et le spike ne sont toujours pas homogénéisés car ils n'ont pas encore été parfaitement mis en solution ensemble.

Une fois l'acide évaporé, les bombes PTFE sont sorties des plaques et mises à refroidir. Pour se débarrasser complètement de l'HClO₄, encore présent sous forme de petites gouttelettes de condensation sur les parois, des gouttes d'eau distillée (contenues dans une compte goutte) sont versées le long des parois des bombes PTFE (maintenant tièdes) pour amener l'acide perchlorique au fond et tenter de l'évaporer un peu plus. Les bombes PTFE sont ensuite replacées, quelques heures, sur les plaques à environ 210°C. La manipulation est effectuée deux fois pour bien éliminer tout l'HClO₄, acide très dangereux car explosif, surtout sous pression.

Les PTFE sèches sont sortis des plaques, puis ces dernières refroidis à 135°C. Une fois tièdes, elles sont remplis, jusqu'au début de la pente correspondant au bouchon, d'HCl* 6N distillé une fois et placés ouverts sur une plaque à 135°C pendant 24h. Cette manipulation sert à enlever le plus possible d'HClO₄ avant remise des bombes dans l'étuve pour la dernière étape, suite à laquelle le spike et l'échantillon seront parfaitement homogénéisés.

De l'acide chlorhydrique 6N distillé une fois est ajouté dans les bombes PTFE jusqu'à environ 0,5 cm de la pente correspondant au couvercle. Les manchons sont placés autour d'elles et le tout dans les bombes. Ces dernières sont mises à l'étuve à 156°C pendant au moins 24h.

Après quelque temps dans l'étuve (décidé par le manipulateur), les bombes sont sorties et laissées refroidir gentiment pendant environ 1h30. Elles sont ensuite ouvertes, les parties métalliques sont mises à nettoyer et les parties téflon (PTFE) sont mises de côté et emportées en salle de chimie. Les manchons sont enlevés de la même façon que décrit précédemment et les bombes PTFE sont ouvertes. A cette étape, l'échantillon est totalement en solution (qui est parfaitement limpide), ce qui signifie qu'on a enfin atteint l'homogénéisation isotopique entre le spike et l'échantillon. Le liquide est ensuite transféré dans des béchers PFA (15, 23 ou 30 ml) numérotés de la même façon que les bombes, en le versant directement des PTFE dans les PFA correspondants. Ces derniers sont, ensuite, placés ouverts sur des plaques à environ 135°C afin d'être évaporés (ce qui prend environ une nuit). Une fois secs, les béchers sont enlevés des plaques puis fermés et rangés, en attendant de commencer la chimie à proprement parlé (séparations élémentaires par chromatographie ionique).

Purification de l'Hf

Première colonne : Hf-REE colonne

La première partie de la séparation chimique sur colonne sert à séparer l'Hf des Terres Rares. Les colonnes utilisées contiennent 6,8 ml (diamètre de 0,8 cm et hauteur de 13,5 cm) de résine cationique AG50W-X8, 200-400 mesh. Les colonnes sont conditionnées avec un volume de 21 ml d'HCl* 1N, correspondant à trois fois le volume de la résine. Les colonnes sont prévues pour environ 250 mg de roche totale en n'utilisant que 30% de la capacité maximale d'échange de la résine, ce qui assure une certaine souplesse quant à la variabilité des teneurs des matrices ainsi que de ne pas saturer les résine ce qui résulterait en une mauvaise séparation des éléments chimiques.

Les résidus d'évaporation sont repris dans 2 ml d'HCl* 1N, sur plaque chauffante (à 135°C) pendant 15 minutes, puis 15 minutes d'ultra-sons et finalement 15 autres minutes sur la plaque chauffante (à la même température). Une fois le résidu complètement repris, 50 µl d'HF* 4N sont mis dans chaque bécher, puis leur contenu est transféré dans des tubes (de 4 ml) qui sont par la suite centrifugés à 6000 rpm (tours par minute) pendant 5 minutes. Après centrifugation, il peut apparaître un précipité blanc correspondant à des fluorures, notamment de Ca et Mg, variable selon les matrices, mais qui peuvent dans l'absolu, se traduire par une perte de plusieurs éléments, ce qui n'est pas dérangeant puisqu'on a spiké l'échantillon et que le spike s'est équilibré avec la totalité de l'échantillon (lorsqu'ils étaient complètement en solution).

Des béchers de 15 ml propres sont positionnés sous chaque colonne puis le contenu de chaque tube est pipeté (avec un embout différent pour chaque échantillon) et chargé

directement sur les colonnes (différentes pour chaque échantillon). Un millilitre du mélange 1N HCl* et 0,1N HF est versé sur chaque colonne afin de rincer les parois de la colonne qui a touché à l'échantillon et commencer à collecter l'Hf (associé au Cr, à l'Al, au Ti, au Zr, au W, au Ta et tous les autres HFSE) puis 5 ml supplémentaire (de ce même mélange) sont ajoutés pour finir de récupérer l'hafnium. Une fois que tout le liquide est passé à travers les colonnes, la dernière goutte de solution à la base de chaque colonne peut être pipetée (pour un rendement maximum) en enlevant la colonne du rack sur lequel elle est placée, en l'inclinant et en aspirant la goutte, avec une pipette d'un millilitre (avec un nouvel embout pour chaque colonne) et en la reversant dans le bécher correspondant. Ensuite, la colonne est replacée sur le rack en faisant attention de ne pas le toucher. Les béchers de 15 ml sont retirés de sous les colonnes et mis à évaporer sur plaque chauffante à 135°C.

Les poubelles, utilisées lors du conditionnement, sont alors repositionnées sous les colonnes, puis 33 ml d'HCl* 2,5 N sont ajoutés sur les colonnes en trois fois (11 ml à chaque fois) car les réservoirs des colonnes ne font que 15 ml. A cette étape, tous les éléments majeurs et traces (sauf les Terres Rares) sont décrochés des colonnes.

Par la suite, les premiers béchers utilisés (c'est à dire les béchers de récupération des échantillons en solution parfaite après l'attaque en bombe), après avoir été rincés abondamment à l'eau distillée, sont mis sous chaque colonne (correspondant à leur échantillon respectif), puis 10 ml d'HCl* 6N sont ajoutés à la colonne, ce qui décroche les Terres Rares des masses les plus lourdes vers les plus légères. Le lutétium et l'ytterbium tombent dans les 10 ml alors que pour décrocher le néodyme, 20 ml (au total) sont nécessaires. Une fois les liquides collectés, les béchers sont mis à évaporer sur plaque à 135°C. La fraction d'hafnium donne des résidus extrêmement légers et pouvant s'envoler facilement après évaporation. Il est donc important de surveiller son évaporation et de refermer les béchers sur la plaque avant même de les déplacer.

Pour nettoyer la résine, il faut d'abord la détendre, puisque les résines cationiques se contractent avec la molarité des acides et que le premier acide utilisé est l'HF* 4N. Or le volume de la résine dans l'HF* 4N est supérieur à celui dans l'HCl*6N (dernier acide utilisé). La détente de la résine est donc effectuée à l'aide d'une pompe et de l'eau distillée (l'HF étant très dangereux et le volume de la résine dans de l'H₂O étant le même que dans de l'HF 4N). Un bécher, prévu pour le nettoyage sale (dirty backwashing), est remplit d'eau distillée. Une colonne est enlevée de son rack, débouchonnée, puis un bouchon spécial (percé) est vissé sur son réservoir. Mais d'abord un petit peu d'eau distillée est ajouté à la colonne. Le bas de la colonne est essuyé avec un kleenex propre, puis plongé dans le bécher contenant l'H₂O*. Le

dispositif de la pompe est mis en place à travers le bouchon percé puis l'air est d'abord évacué suite à quoi la résine est pompée. L'eau rentre donc par la base de la résine au travers du fritté et la résine remonte jusque dans le réservoir. A ce moment là, on laisse la résine sédimenter dans la colonne, pleine d'eau et sans bulles d'air, et on la replace sur le rack. Cette manipulation est effectuée pour toutes les colonnes. Afin de finir de décrocher les éventuels éléments chimiques encore accrochés sur la résine, environ 40 ml (équivalent à trois réservoirs et six fois le volume de la résine) d'HF* 4N, puis 40 ml d'HCl* 6N, sont passés au travers des colonnes. Pour finir, la résine nécessite d'être détendue à nouveau puisque le conditionnement se fait avec de l'HCl*1N. Ceci est effectué de la même façon que décrit précédemment à l'exception de l'utilisation d'un autre bécher propre (clean backwashing) remplit, lui aussi, d'eau distillée et d'une attention toute particulière pour remettre en place les colonnes car elles ne doivent pas toucher le rack (qui n'est pas aussi propre que les colonnes).

Deuxième colonne : Hf column 1 (ou colonne Hf 1)

Cette colonne sert à séparer l'Hf, le Zr et le Ti des éventuels autres éléments (Cr, Al.....) non éliminés lors de la colonne Hf-REE, en utilisant une résine anionique et un mélange d'HF**0,5N : HCl*0,5N. L'HF complexe les « High Field Strength Elements », dont fait parti l'Hf, qui s'accroche à faible molarité et l'HCl complexe le reste qui élue à des vitesses différentes, le plus lent étant l'Aluminium.

La résine utilisée est une AG1-X8 (100-200 mesh) dans des colonnes polyéthylène BioRad de 2 ml, pour le lit de la résine, et de 10 ml pour le réservoir contenant l'éluant. Le conditionnement de la colonne se fait avec 6 ml (3 fois le volume de la résine, mais en pratique le réservoir de 10 ml est remplit) d'un mélange 0,5N HF** : 0,5N HCl*. Les poubelles, placées sous les colonnes, ne sont remplacées par des béchers de collecte qu'à la fin de l'élution, lorsque l'Hf, le Zr et le Ti sortent de la résine.

Les échantillons sont repris dans 1 ml de ce même mélange, en plaçant les béchers (les contenants), fermés, sur plaque chauffante à environ 135°C pendant 15 minutes, puis dans le bain à ultrasons pendant 15 minutes et à nouveau 15 minutes sur plaque chauffante (à la même température). Le contenu de chaque bécher est versé dans un tube à centrifuger de 1,5 ml (portant le numéro de l'échantillon) et centrifugé à 8000 rpm pendant 2 minutes. Par la suite, chaque échantillon est pipeter (avec un embout différent) et chargé sur les colonnes, après quoi, un millilitre du mélange 0,5N HF** : 0,5N HCl* est versé goutte par goutte, en faisant le tour des parois de la colonne, afin de récupérer les gouttelettes d'échantillon qui aurait pu être projetées lors du chargement de l'échantillon. Cette opération est répétée deux

fois. Ensuite, 2 x 4 ml du même mélange sont versés sur les colonnes, puis 2 x 5 ml, à la suite de quoi, des béchers de collecte PTFE (de 10ml) sont numérotés et placés sous chaque colonne. A ce moment là, 6 ml d'HCl* 6N sont versés sur la colonne, ce qui a pour but de pousser les complexes HF-HFSE hors de la colonne du fait de la saturation des sites de la résine avec les ions Cl^{-} .

Pour passer sur la colonne Hf 2 (étape suivante), l'absence d'HF est indispensable puisque l'Hf doit s'accrocher ce qui ne se fait que sous sa forme Hf⁴⁺ donc en absence de F⁻, c'est pourquoi, celui présent dans les béchers de collecte doit être éliminé. Pour se faire, environ 10 gouttes d'HClO₄**sont versées dans chaque bécher PTFE, contenant les 6ml d'HCl*6N suite à l'élution, puis ils sont mis sur plaque chauffante (évidemment située dans une hotte d'aspiration) à 135°C et laissés évaporer jusqu'à ce qu'il ne reste qu'une grosse goutte correspondant à l'HClO₄, l'HCl*6N s'étant évaporé. La plaque est ensuite montée jusqu'à environ 215°C et des petits rectangles en PTFE sont disposés sur cette dernière. Les béchers sont placés à cheval sur ces petits morceaux de téflon pour minimiser les surfaces en contact avec l'air et avec le fond du bécher, ce qui ralentit l'évaporation et nous permet de mieux la contrôler. L'évaporation ne doit jamais être complète car sinon des oxydes précipitent et la seule façon de les reprendre en solution est l'utilisation de l'HF, ce dont on doit se débarrasser. Les béchers doivent toujours être inclinés dans le sens du flux laminaire, afin que celui-ci passe par-dessus eux, et en aucun cas ne pénètre dedans.

Les échantillons sont laissés à évaporer jusqu'à ce qu'il ne reste qu'une petite goutte. Les béchers sont alors enlevés de la plaque, laissés refroidir un peu et dès qu'ils ne fument plus (vapeurs blanches liées à l'évaporation d'HClO₄), les gouttes sur les parois sont récupérées en tapotant le bécher, en l'inclinant légèrement et en le faisant tourner (attention les béchers sont ouverts). Ensuite, de l'HClO₄ est ajouté dans les béchers, goutte par goutte, en faisant le tour des parois, puis ils sont remis à évaporer jusqu'à obtenir, de nouveau, une petite goutte. Cette opération est effectuée trois fois. A la fin de la troisième évaporation, une petite goutte obtenue et les béchers refroidis, du parafilm est utilisé pour les couvrir en attendant de passer à la colonne Hf 2. Ce passage est absolument effectué au plus tard le lendemain pour éviter que l'Hf ne sorte de la solution qui, après l'évaporation du HClO₄, ne contient plus d'HF pour le stabiliser.

Le nettoyage de cette colonne est plus simple qu'avec les résines cationiques, car les résines anioniques ne se contractent pas avec la molarité des acides, donc le « backwashing » n'est pas nécessaire. A chaque étape de nettoyage, les réservoirs sont remplis (ce qui représente environ 10 ml) et ce pour tous les liquides utilisés qu'il s'agisse d'HF, d'HCl ou

d'H₂O. La procédure est la suivante : remplissage avec de l'HF* 24N, puis H₂O* suivi de 6N HCl*, puis H₂O. L'étape de nettoyage avec ces deux derniers liquides est répétée trois fois de suite et les colonnes sont donc stockées dans de l'eau distillée. La base des colonnes est bouchée avec du parafilm et un petit bouchon plastique. Finalement, le réservoir est fermé avec un couvercle placé sur le haut de la colonne.

Troisième colonne : Hf column 2 (ou colonne Hf 2)

La résine utilisée est une cationique AG50W-X8, 200-400 mesh similaire à la première colonne utilisée (Hf-REE) mais avec un volume de 1,9 ml (diamètre de 0,45 cm et hauteur de 12 cm). Les colonnes sont conditionnées avec 8 ml d'HCl* 2,5N.

Le parafilm est enlevé des béchers PTFE, puis 0,3 ml de 2,5N HCl* et 60 µl de H₂O₂ concentrée sont ajoutés dans chaque bécher (en faisant attention d'éviter les gouttes sur les parois au cas où il reste d'éventuelles traces d'HF). Les béchers sont, par la suite, remués doucement et les échantillons pipetés, puis transférés dans des tubes de 1,5 ml et centrifugés à 8000 rpm pendant 2 minutes. L'ajout d'eau oxygénée colore les solutions car le Ti (majoritairement) se complexe avec celle-ci. Les colorations vont du jaune (faible teneur en Titane) au rouge (forte teneur). Les échantillons sont, après centrifugation, pipetés (avec leurs embouts respectifs) et chargés sur les colonnes. Un mélange d'HCl* 2,5N et traces d'H2O2 est effectué dans un bécher de 60 ml (en ajoutant 60 µl d'H₂O₂ pour chaque 15 ml d'HCl* 2,5N). 0,4 ml de ce mélange sont pipetés et ajoutés sur chaque colonne en faisant le tour de ces dernières afin de récupérer d'éventuelles gouttelettes d'échantillons sur les parois. Par la suite, 5 ml de ce même mélange sont ajoutés à chaque colonne pour éluer le Ti et une fois qu'ils sont passés à travers la résine, les béchers de collecte sont placés sous chaque colonne (ces béchers sont ceux qui ont contenus la fraction Hf après la colonne Hf-REE et qui ont été rincé avec de l'eau distillé et séchés entre temps). Pour récupérer l'Hf (et le Zr qui vient avec), 5 ml d'un mélange de 2,5N HCl* et 0,3N HF** sont ajoutés. A la fin de l'élution, la dernière goutte est récupérée (en tapotant légèrement la colonne) puis les béchers sont mis à évaporer sur plaque chauffante à environ 135°C. L'évaporation doit toujours être surveillée car les petits résidus obtenus sont très légers et peuvent s'envoler hors des béchers, notamment à cause du flux laminaire et/ou de l'électricité statique. Une fois secs, les béchers sont rebouchés sur la plaque, sortis, laissés refroidir et stockés. Les compositions isotopiques d'Hf des roches totales sont dès lors prêtes à être mesurées sur le spectromètre de masse à multicollection.

Chapitre II : Matériel et méthodes

Pour être lavées, les colonnes subissent un backwashing sale, à la fin duquel il est souvent nécessaire de remonter les frités dans la colonne avec une tige de verre ou un embout de pipette propre. Par la suite, 10 ml d'HF* 4N sont ajoutés sur les colonnes puis 2 x 10 ml d'HCl* 6N (non titré). Pour terminer, un backwashing propre est effectué, l'H₂O* est laissé couler au travers, puis la base des colonnes est bouchée avec du parafilm et de l'eau distillée est mise dans les réservoirs. Les bouchons sont reposés sur les colonnes, puis elles sont stockées. Si de l'air se coince dans les colonnes, la ou les bulles sont pipetées avec une pipette et un embout de 0,1 ml propre. Les résines sont maintenant propres.

Purification du Lu :

Quatrième colonne : HDEHP (séparation Lu-REE)

La résine utilisée est une résine HDEHP dont le volume est de 1,6 ml (diamètre de 0,6 cm et hauteur de 5,8 cm). Cette résine étant très légère, elle a tendance à se remobiliser lorsqu'on charge des échantillons et des liquides dessus (même en le faisant très doucement). Pour éviter cela, nous avons placé un petit bouchon de résine anionique à son sommet (ce qui n'a absolument aucune influence sur l'élution des Terres Rares). Les résines HDEHP sont conditionnées avec 20 ml de 2,5N HCl* (théoriquement 5 ml) et les échantillons repris dans 2 ml de ce même acide. Concrètement, 2 ml de l'acide de conditionnement sont ajoutés très doucement avec une pipette de 1 ml, le tout en tournant la colonne pour éviter de remobiliser le bouchon et ainsi atteindre la résine HDEHP. Ensuite, les 18 ml restants sont versés toujours doucement avec une pipette de 5 ml. Une fois repris, le contenu de chaque bécher est versé dans un tube à centrifuger différent, puis après centrifugation, 1 ml de chaque fraction de Terres Rares (REE) est pipetée et chargée sur des colonnes différentes, toujours très doucement. L'autre millilitre des échantillons est mis de côté et gardé au cas où il y aurait eu un problème durant le protocole de chimie ou le passage sur l'MC-ICP-MS. Un millilitre de rinçage (de 2.5 N HCl*) est versé dans chaque colonne, une fois que l'échantillon est passé dans la résine, en essayant de récupérer d'éventuelles gouttes sur les parois. Puis 6 ml de 2,5N HCl* sont versés dans les colonnes pour se débarrasser des Terres Rares jusqu'à la première partie du pic de l'ytterbium compris. Par la suite, 15 ml de 6N HCl* sont versés pour récupérer le Lu et une partie de l'Yb (dans des béchers propres de 15 ml préalablement placés sous les colonnes).

Figure II-11 : Schéma récapitulatif des étapes de la chimie des roches totales.

Les colonnes sont ensuite nettoyées avec 120 ml (correspondants à 4 réservoirs) de 6N HCl* pour bien faire sortir tout le Lu qui pourrait être resté accrocher sur la colonne, celui-ci étant très dur à éliminer complètement car les résines HDEHP sont connues pour avoir des effets de traine (« tailing effect »).

Les 120 ml sont versés très délicatement avec une pissette de 6N HCl*. Ensuite, 20 ml de 0,2N HCl* sont versés dans les colonnes et après que 10 ml soit passés à travers, les colonnes sont bouchées à la base avec deux feuilles de parafilm et du film plastique au sommet, puis rangées.

6.2. Zircons

Procédure de transfert des zircons dans les « bébés » béchers (0,5 ml)

Un pilulier, contenant les populations de zircon d'un échantillon de TTG, est ouvert, puis une partie de son contenu est versé dans une boîte de pétrie contenant de l'éthanol, que l'on met alors sous la loupe binoculaire.

Un ou plusieurs zircons sont sélectionnés et écartés des autres grâce à une seringue propre. En effet, ces dernières étant très pointues, elles permettent de pousser les zircons facilement, sans problème de tension de surface qui empêche alors de toucher les zircons. La seringue est utilisée pour tous les échantillons mais rincée à l'éthanol entre chaque et en s'assurant que aucun zircon n'est collé dessus, ce que l'on peut voir facilement sous la loupe binoculaire. Une fois isolé, le zircon est aspiré avec une pipette jetable et versé sur un filtre ayant des mailles de 30 µm. Lorsque l'éthanol s'est évaporé, le filtre est positionné sous la loupe binoculaire et la taille du zircon est estimée par rapport au nombre de mailles en largeur et en longueur (le zircon étant collé au filtre grâce à l'éthanol évaporé, la manœuvre en est facilitée). Ensuite, le filtre est plié puis le zircon détaché en frottant les deux bouts du filtre l'un contre l'autre, et il glisse directement dans le bécher d'attaque. Il est bien sûr important de contrôler la propreté du filtre et de le nettoyer à l'air comprimé entre chaque grain chargé. Les béchers sont, ensuite, fermés, et lorsque tous les zircons d'un même échantillon ont été chargés, la boite de pétrie et la pipette sont jetées. Une même boite de pétrie ainsi qu'une même pipette sont utilisées pour un même échantillon. Une fois les 16 béchers chargés, ils sont emmenés en salle blanche et sont prêts à être recevoir l'acide d'attaque puis à être placés en bombe.

Procédure d'attaque des zircons dans la bombe Parr

L'attaque des zircons se fait en bombe en utilisant un modèle Parr de gros volume (modèle 4748) (Fig. II-10b) selon une méthode adaptée de Parrish (1987). Pour dissoudre les grains se trouvant dans les béchers de 0,5 ml, de l'HF** concentré est ajouté de la même façon que lors de la troisième étape de nettoyage : dans un bécher de 60 ml, 12 ml d'HF** concentré (29 N) et 6 gouttes (180 µl) d'HNO₃* concentré (16 N), sont mélangés. Ce mélange va être utilisé pour attaquer les zircons, en étant pipeté et en étant versé dans les béchers et le liner (intérieur en téflon PTFE de la grosse bombe). 0,35 ml du mélange précédent sont ajoutés dans chaque bécher et ces derniers sont faiblement fermés (bouchon « lâche ») pour équilibrer leurs pressions avec celle du liner. Huit d'entre eux sont positionnés, à l'aide d'une pince, au fond du liner et ensuite 5 ml du mélange d'acide sont ajoutés suite à quoi les huit autres béchers sont mis sur les huit premiers (toujours à l'aide d'une pince). Le liner est fermé, placé dans sa boîte plastique de transport, emmené en dehors de la salle blanche pour être inséré dans la bombe en métal, qui est finalement fermée. Cette dernière est mise à l'étuve à 240°C pendant 48 h. La bombe est serrée selon une procédure décrite dans l'Annexe B. Après attaque, la bombe est ouverte et démontée sous une hotte puis le liner (fermé par sous-pression résultant de l'attaque) est emporté en salle blanche dans sa boîte de transport. Une micro-spatule est utilisée pour « casser le vide » dans le liner, puis les béchers sont péchés un à un (avec une pince) puis placés de coté. Le liner est ensuite vidé et rincé à l'eau distillée. Les béchers de 0,5 ml sont attrapés et maintenus avec une pince pour pouvoir être rincés grâce à une pipette d'eau distillée. Ils sont par la suite essuyés et leur contenu transféré directement dans des béchers de 7 ml, qui sont numérotés de la même façon que les béchers d'attaque (eux-mêmes gravés). Quelques gouttes d'HNO3* peuvent être ajoutées dans les béchers de 0,5 ml puis versées dans ceux de 7 ml, afin de récolter toutes les petites gouttes qui n'auraient pas été transférées la première fois. Les béchers de 7ml sont placés ouverts sur une plaque chauffante (à 135°C) afin d'être évaporés. Une fois secs les échantillons sont repris dans 1 ml d'HNO₃* 8N car c'est sous forme de nitrures que se trouvent les échantillons pour passer sur l'ICP-MS. Cinquante microlitres de chaque échantillon sont prélevés (en utilisant un embout de pipette de 200 µl propre pour chaque échantillon) et ajoutés dans de nouveaux béchers (numérotés), puis évaporés à sec et mis de côté pour mesurer, plus tard, les rapports Lu/Hf à l'ICP-MS. Ces rapports permettent de déterminer les ¹⁷⁶Lu/¹⁷⁷Hf des zircons sans utiliser de spike, ce que l'on peut faire uniquement parce qu'ils sont extrêmement faibles (¹⁷⁶Lu/¹⁷⁷Hf de l'ordre de 5.10⁻⁴) et donc que l'erreur liée à la mesure sur l'ICP-MS (environ 5%) n'a alors pas d'influence significative sur les rapports ¹⁷⁶Hf/¹⁷⁷Hf initiaux calculés par correction d'âge. Les béchers d'origine (qui contenaient un millilitre et suite au prélèvement de l'aliquote de 5%) sont évaporés, puis repris avec 1 ml d'HCl* 6N (pour repasser en forme chlorure) et à nouveau évaporés, en attendant de passer sur la colonne Hf-REE.

Hf-REE colonne :

L'élution des éléments chimiques d'intérêt est présentée en Figure II-12 tandis que la procédure complète (chargement et protocole de chimie) est résumée dans la Figure II-13. Les colonnes en téflon thermo-rétractable ont un lit de résine de 0,18 ml (largement suffisant pour les petits zircons). Elles sont stockées à sec dans un « kim wipe » et sont nettoyées avant chaque chimie en remplissant leur réservoir alternativement avec de l'H₂O*, de l'HCl* 6N et de l'eau distillée à nouveau. Il faut faire très attention aux bulles d'air qui pourraient se coincer pendant le chargement de la résine (et ainsi empêcher l'élution) car les colonnes sont très petites et fines. La résine utilisée est une résine cationique AG50W-X8 à 200-400 mesh. Pour la nettoyer, une petite quantité (suffisamment pour remplir les colonnes) est versée dans un bécher propre de 15 ml, dans lequel on ajoute de l'H₂O*. Le bécher est secoué, la résine laissé décanter puis le surnageant est vidé. De l'HCl* 6N est, ensuite, ajouté et le bécher est à nouveau secoué puis le surnageant est jeté. Cette opération est effectuée deux fois, à la suite de quoi de l'H2O* est versé dans le bécher, puis la résine est pipetée et chargée sur les colonnes. Le conditionnement se fait en remplissant le réservoir (contenant environ 2 ml) une fois avec de l'HCl* 1N. Un bécher de 60 ml est utilisé pour pipeter les acides afin de les mettre dans les béchers contenant les zircons ou les chargés sur les colonnes. Entre temps, les échantillons sont repris dans 0.1 ml de HCl* 1N (ce qui représente un petit volume donc il faut essayer de bien placé la goutte sur le résidu sec) et placés fermés dans des bacs à ultrasons pendant 20 à 30 minutes puis 25 µl d'HF** 0.4 N sont ajoutées (l'échantillon se trouve alors dans un milieu HCl*1N : HF** 0.1N). L'utilisation des plaques chauffantes est proscrite car la goutte ajouté au béchers pour reprendre les résidus de zircons est trop petite et risquerait de s'évaporer dans le bécher (même fermé). Après avoir secoué légèrement les béchers, les échantillons sont pipetés avec un embout de 0.2 ml (propre pour chaque échantillon).

Avant de charger les échantillons, des béchers propres de 7 ml (référencés en écrivant le numéro et Hf) sont placés sous chaque colonne. L'Hf passe à travers les colonnes sans s'accrocher et est directement collecté dans les béchers après chargement de l'échantillon sur la résine. Pour le faire traverser la colonne en totalité (rendement de 100%), après chargement de l'échantillon, 0.125 ml puis 0.1 ml du mélange 1N HCl*/0,1N HF** sont successivement

ajoutés sur la colonne. Les béchers sont, par la suite, enlevés et mis à évaporer sur plaque à 135° C (très rapide car seulement 350 µl sont à évaporer). De nouveaux béchers de 7ml sont positionnés sous les colonnes, chacun référencé avec la mention Pb écrite dessus, et 0.7 ml du mélange d'HCl* 2.5N sont ajoutés dans les colonnes.

Figure II-12 : graphique illustrant l'élution des éléments d'intérêts (Hf, Pb, Lu et Yb) des zircons individuels. Les pourcentages poids de chaque élément collecté à la sortie de la colonne sont représentés en fonction des volumes d'acides chargés sur la résine cationique.

Par la suite, les béchers sont enlevés et mis à évaporer sur plaque à 135°C. Les béchers une fois secs sont fermés et emballés dans du film plastique. Les Terres Rares des zircons sont encore accrochés sur la résine mais cette dernière peut être jetée si le Lu est mesuré sur l'aliquote prélevée précédemment. Sinon, 0,5 ml d'HCl*2,5N sont ajoutés sur chaque colonne pour se débarrasser de la matrice des zircons puis pour finir, 1,9 ml du même acide sont chargés après avoir positionné des béchers de collecte sous les colonnes. La résine peut être jetée entre chaque utilisation car les quantités utilisées sont faibles (2,88 ml au total pour 16 colonnes par série). Les colonnes sont vidées et rincées à l'eau distillée puis stockées à sec dans un kim wipe.

Figure II-13 : Schéma récapitulatif des étapes de la chimie des zircons.

7. Analyses élémentaires et isotopiques

Les mesures dans cette thèse ont été effectuées à l'aide de spectromètres de masse à plasma inductif couplé possédant un simple collecteur (ICP-MS), pour les mesures élémentaires et isotopiques, et à multi-collecteur (MC-ICP-MS) pour les analyses isotopiques uniquement (Fig. II-14). Ces machines sont plus couramment appelées spectromètres de masse. J'ai en plus utilisé deux types de sources (solide et liquide) branchées sur ces machines. Par soucis de clarté et en introduction de ces analyses, je vais détailler le principe de ces techniques de mesures.

7.1. La spectrométrie de masse

7.1.1. Principe et fonctionnement

Figure II-14 : Schéma d'un MC-ICP-MS avec le détail des différents composants majeurs ainsi qu'un suivi théorique du faisceau d'ions à l'intérieur de la machine. (tiré du livre Géologie isotopique (2005) écrit par Claude ALLEGRE)

Le principe du spectromètre de masse est de mesurer des abondances d'ions selon leur masse. Pour se faire, un échantillon sous forme de molécules (en solution ou vaporisé) est amené à l'aide d'un gaz porteur (Ar ou He principalement) dans un plasma d'Ar à environ 8000°K. Ce dernier permet de briser les molécules en ions, qui grâce à leur charges, sont attirés puis accélérés dans la machine par un jeu de lentilles électrostatiques. Ces ions peuvent être sélectionnés, grâce à un quadrupôle ou un secteur électromagnétique, selon leur rapport masse/charge pour ainsi être mesurés par les collecteurs. Les différents types de spectromètres de masse cités plus haut (simple ou multi-collection) contiennent donc un unique ou plusieurs collecteurs correspondant principalement soit à des cages de Faraday (mesurant un courant induit par le bombardement des ions), soit à des compteurs d'ions (mesurant le nombre d'impacts reçus). Dans le cas des MC-ICP-MS, plusieurs masses sont mesurées en même temps en mode statique donc un puissant aimant est utilisé pour disperser le faisceau d'ions, contenant une certaine gamme de masses qui sont mesurées séparément sur chaque collecteur (Fig. II-14).

Ces machines mesurent donc des isobares : atomes ayant le même nombre de masse mais un numéro atomique différent. Autrement dit, ils mesurent, sur le même collecteur, la contribution additionnée d'isotopes (même numéro atomique mais nombre de masse différent) de plusieurs éléments chimiques distincts. Or, en géochimie isotopique nous nous intéressons aux isotopes d'un même élément. Des corrections sont donc à effectuer sur ces mesures selon les éléments chimiques que l'on souhaite étudier. Par exemple, les isotopes du Ti, du Cr et du V de masse 50 seront mesurés sur le même collecteur. A la masse 176, ceux seront les isotopes de l'Yb, du Lu et de l'Hf. Ces interférences sont appelées, à juste titre, « interférences isobares ». Cependant, un autre type d'interférence existe est correspond à des recombinaisons d'éléments dans le plasma, qui est un phénomène statistiquement rare. Cependant, son importance réside dans le fait que les éléments (ou un des éléments) qui se recombine sont abondants puisqu'ils correspondent généralement à l'Ar du gaz porteur et du plasma, ainsi qu'à l'O et l'N de l'acide nitrique utilisé lorsque l'échantillon se trouve initialement en solution. Dans le cas du laser, l'He devient aussi gênant. Pour éliminer ce dernier type d'interférences, on fait appelle soit à une chambre de collision contenant de l'He dont le but est de casser ces molécules, soit on peut dans certaines machines augmenter la résolution des masses analysées et ainsi discriminer la masse des isotopes que l'on veut mesurer de celle des interférences de recombinaison. Pour les interférences isobares, les rapports d'isotopes stables (et libres d'interférences) des éléments que l'on ne veut pas analyser sont aussi mesurés et, connaissant leurs valeurs naturelles, permettent de calculer les contributions des isotopes sur certaines masses et d'ainsi les soustraire au signal. Ces corrections sont cependant possibles uniquement lorsque les interférences sont faibles par rapport au signal de l'isotope qui nous intéresse (de l'ordre de 10^{-4}). Dans le cas de l'Hf, du

Lu et du Pb, les interférences isobares sont le type dominant. Les détails de ce genre de correction sont explicités dans les sections suivantes (4.2, 4.3 et 4.4).

7.1.2. Les types de sources utilisées

Comme précisé dans l'introduction de cette section analytique, les spectromètres de masses type ICP-MS utilisent deux types de sources : solide ou liquide (Fig. II-15). Durant ce travail de thèse, j'ai eu l'opportunité de pouvoir utiliser les deux.

Figure II-15 : Planche illustrant les deux types de sources utilisés pour les analyses. a) source solide (consistant en un laser) utilisé pour les analyses in-situ et b) Source liquide utilisée pour les analyses en solution. Crédit photographique : Martin GUITREAU.

La source solide (Fig. II-15a) correspond au branchement d'un laser sur l'ICP-MS. Cette technique consiste à inclure l'échantillon (minéral ou fragment de roche) dans un plot de résine, à le polir et, à l'aide du laser, d'en ablaté une partie. Les molécules de l'échantillon ainsi ablaté sont transportées vers le spectromètre de masse à l'aide d'un gaz porteur (Ar et/ou He). L'avantage de cette méthode est qu'elle est rapide et demande peu de travail en amont au contraire des analyses en solution. Cependant, le fait que l'on ablate directement l'échantillon maximise les interférences isobares, puisque tous les éléments sont présents, et donc augmente les corrections à effectuer et par la même réduit la précision des mesures. Elle permet, par contre, d'obtenir une grande résolution spatiale sur l'échantillon, ce qui peut être très intéressant surtout dans l'étude de zircons ayant des histoires complexes.

La source liquide (Fig. II-15b) correspond, quant à elle, au branchement sur l'ICP-MS d'une pompe qui va aspirer l'échantillon se trouvant en solution dans un acide dilué (principalement de l'HNO₃). Cette méthode nécessite en amont un long travail de séparation et de purification des éléments chimiques, à l'aide de chromatographie sur colonne, mais a pour résultat de minimiser les interférences isobares, donc aussi les corrections, et ainsi d'augmenter considérablement la précision des mesures. Dans le cas des zircons, par contre, nous perdons la résolution spatiale et si ceux-ci sont composites, cette approche peut être remise en cause à moins d'utiliser des moyens techniques pour s'affranchir des complexités comme par exemple un abraseur ou en sélectionnant les zircons les plus « simples » à l'aide des images en cathodo-luminescence.

Pour résumer, chaque méthode a ses avantages et inconvénients mais elles sont très complémentaires dans l'étude des zircons.

7.2. TTG

Avant de commencer à mesurer les rapports isotopiques sur le spectromètre de masse, plusieurs réglages sont effectués quelles que soit les éléments considérés. L'intensité du signal est optimisée pour obtenir les meilleures précisions possibles, ce qui se fait en réglant principalement la position de la torche, la tension aux bornes des lentilles électrostatiques ainsi que le flux dans le DSN (dispositif qui a pour effet d'assécher le gaz portant l'échantillon avant d'entrer dans la machine).

7.2.1. Mesures isotopiques de l'hafnium (Nu Plasma 500 HR)

Mesures :

Les mesures ont été effectuées sur le Nu Plasma 500 HR (Fig. II-16) du Laboratoire de Géologie de Lyon à l'Ecole Normale Supérieure de Lyon (ENSL). La salle de spectrométrie de masse de l'ENSL étant équipée d'une annexe propre pour préparer les échantillons avant analyse, le travail décrit ci-après se passe donc là bas. Les échantillons sont repris dans 1 ml
Chapitre II : Matériel et méthodes

d'HNO₃* 0,05N, puis placés sur plaque chauffante pendant environ 15 minutes. Ensuite, ils sont introduits dans un bain d'ultrasons pendant une durée similaire, puis ils sont finalement repositionnés sur la plaque chauffante environ 10 minutes. Les échantillons sont, par la suite, transférés dans des tubes (à centrifuger) de 1,5 ml et centrifugés à 8000 rpm pendant 2 minutes, à la suite de quoi, ils sont pipetés et introduits dans des tubes (à centrifuger) de 2 ml (dont les bouchons sont percés pour laisser passer et bloquer le tuyau qui aspire les échantillons vers la machine). De l'HNO₃* 0,05N est ajouté dans chaque tube pour arriver à 2 ml. Les échantillons sont alors prêts à être mesurés et les dilutions éventuelles sont adaptées au cas par cas en fonction du signal mesuré par les collecteurs.

Figure II-16 : Nu Plasma 500 HR avec lequel ont été analysées les compositions isotopiques d'Hf des TTG et des zircons ainsi que les compositions isotopiques du Lu des TTG. Crédit photographique : Martin GUITREAU.

La cage H3 des collecteurs (voir Figure II-17) est prise pour référence car elle correspond à l'isotope ¹⁸⁰Hf qui est le plus abondant et donc qui induit le plus fort courant. Les cages saturent à environ 10V, c'est pourquoi lors de la mesure, le voltage maximal à atteindre se trouve aux environs de 8V ce qui correspond à un rapport signal/bruit optimal. De plus, la réponse électrique des collecteurs au flux d'ions incident n'est pas toujours linéaire au-delà de 8V et l'aspiration de la machine pouvant fluctuer, il n'est alors pas impossible de saturer ponctuellement les collecteurs ce qui résulte en une mesure faussée. Les échantillons

sont repris six par six, cependant, uniquement deux (voir trois) tubes sont préparés à la fois car l'Hf n'est pas stable en solution dans le polyéthylène (et en absence d'HF). Lors des analyses, le standard JMC-475 est utilisé pour vérifier que la machine reproduise bien les bonnes valeurs isotopiques certifiées pour celui-ci. Ce standard est mesuré tous les deux échantillons ou trois si la machine est bien stable. Pour nettoyer le spectromètre entre chaque mesure, trois solutions sont utilisées dans l'ordre suivant : d'abord une solution contenant 200 μ l d'HF* concentré dans 400 ml d'H₂O* (environ 0,015 N), puis de l'HNO₃* à 3% et finalement de l'HNO₃* 0,05N (le milieu dans lequel se trouvent les échantillons et le standard). La machine ayant un fort effet mémoire lié à l'Hf, l'utilisation d'acide fluorhydrique dilué est nécessaire pour bien la nettoyer entre chaque mesure (échantillons et standards).

ro 1		HG	H5	H4	НЗ	H2	H1	Ax	L1	L2	ICO	L3	IC1	L4	IC2	L5	Integ. Time
183 <u>181 180</u> 179 178 177 176 175 173 10	lero 1		182.5	180.5	179.5	178.5	177.5	176.5	175.5	174.5	annin.	172.5	in and a		(contra		20
						170	170	477	470	(75)	(170	(<u></u>)	y	(1)		
			183	181	180	1/9	1/8	1//	1/6	1/5		1/3					10
Mass Separation : 1. No.of measurements 90 Magnet delay time 3	Mas	s Sepai	ation : 1					No	o.of me	asuren	nents	9	10	Magr	net del	lay time	3
Mass Separation : 1. No.of measurements per block 90 Magnet delay time 3 Exit Save Print No. of blocks 1 Image: Centre each Block	Mas	s Separ Exit	ation : 1	Save		Pi	rint	Na pe Na	o.ofme erblock b.ofbl	asuren k ocks	nents	9	1	Magr	net del IZ Co	lay time entre ea	3 ch Block

Figure II-17 : Configuration des cages du Nu Plasma 500 HR pour les mesures isotopiques de l'Hf.

Les valeurs isotopiques du standard d'Hf (JMC-475) utilisé comme référence pendant les analyses, ainsi que les variations acceptables sur ces rapports, sont les suivantes :

 176 Hf/¹⁷⁷Hf = 0,282160 ± 15 178 Hf/¹⁷⁷Hf = 1,46716 ± 20 180 Hf/¹⁷⁷Hf = 1,88666 ± 20

Les masses mesurées sont présentées en Figure II-17 et correspondent à tout ce qu'il faut pour corriger les mesures à la fois des interférences isobares et pour déterminer un biais

en masse (voir équation 2). Concrètement, l'Hf possède six isotopes (¹⁸⁰Hf, ¹⁷⁹Hf, ¹⁷⁸Hf, ¹⁷⁷Hf, ¹⁷⁶Hf et ¹⁷⁴Hf) dont la moitié possède des interférences isobares :

¹⁸⁰Hf avec le ¹⁸⁰Ta et le ¹⁸⁰W

¹⁷⁶Hf avec le ¹⁷⁶Lu et le ¹⁷⁶Yb

¹⁷⁴Hf avec le ¹⁷⁴Yb

L'Hf possède un septième isotope le ¹⁸²Hf qui n'est pas pris en compte puisqu'il est radioactif avec une période de 8,9 millions d'années et se désintègre en ¹⁸²W. Cet isotope de l'hafnium s'est par conséquent totalement désintégré et fait partie des radioactivités éteintes. L'isotope ¹⁷⁴Hf ne représente que 0,16 % et donc n'est ni mesuré et ni pris en compte dans les analyses. De plus, la configuration des collecteurs lors des mesures d'Hf ne permet pas la mesure du ¹⁷⁴Hf (Fig. II-17). L'isotope ¹⁸⁰Hf peut donc être contaminé par les isotopes de même masse du Ta et du W. Cependant, ceux-ci représentent respectivement 0,012 et 0,12 % de leurs éléments chimiques respectifs et donc ne sont pas réellement gênants. En revanche, en ce qui concerne l'isotope ¹⁷⁶Hf, les choses sont plus délicates. En effet, cet isotope est le moins abondant de ceux que l'on mesure au sein de l'hafnium puisqu'il représente environ 5,26%, et possède deux isobares. Le ¹⁷⁶Lu lui aussi est relativement peu abondant (2,59% du Lu) alors que l'¹⁷⁶Yb l'est beaucoup plus (12,76% de l'Yb). Cet isotope ¹⁷⁶Hf est de plus celui que l'on souhaite connaitre puisqu'il provient de la désintégration radioactive du ¹⁷⁶Lu. Cependant, toutes ces interférences isobares ne posent aucun problème lors des mesures, puisque la chimie de purification de l'Hf faîte en amont est sensée nous en avoir débarrassé (ce qui est le cas). Toutefois, par mesure de sécurité les isotopes sans interférences isobares des éléments possédant les isotopes gênants pour l'analyse de l'Hf (à savoir le Ta, le W, l'Yb et le Lu) sont quand même mesurés pour vérifier qu'ils aient bien été éliminés. Il s'agit du ¹⁸¹Ta (99,99% du Ta), le ¹⁸³W (14,31% du W), l'¹⁷³Yb (16,13% de l'Yb) et le ¹⁷⁵Lu (97,41% du Lu).

Corrections :

Le spectromètre de masse ne donne pas directement les valeurs certifiées des rapports isotopiques car il affecte un biais en masse aux mesures qui est proportionnel à la masse des isotopes concernés. La loi décrivant le mieux (étant celle utilisée) le comportement du spectromètre de masse à plasma inductif couplé est appelée la loi de fractionnement exponentielle et est formulée de la façon suivante :

Chapitre II : Matériel et méthodes

$$\left(\frac{^{179}\text{Hf}}{^{177}\text{Hf}}\right)^{mes} = \left(\frac{^{179}\text{Hf}}{^{177}\text{Hf}}\right)^{vrai} \times \left(\frac{M_{179}}{M_{177}}\right)^{\beta_{\text{Hf}}}$$
(2)

Avec *mes* pour mesuré (ou inconnu) ; *vrai* pour certifié ; M_{179} et M_{177} pour les masses respectives des isotopes ¹⁷⁹Hf et ¹⁷⁷Hf ; et β_{Hf} pour le facteur de biais en masse de l'hafnium.

Ce facteur est le même pour tous les isotopes de l'Hf et donc plus la différence de masse entre l'isotope du numérateur et du dénominateur est élevée plus le biais est important. Chaque élément chimique possède sont propre facteur qui peut varier de façon significative, même si habituellement il reste dans une même gamme de valeur lors d'une même session de mesures. Il est donc vital de mesurer ce biais à chaque analyse pour être sur d'avoir des valeurs correctes. Les valeurs certifiées utilisées pour déterminer les facteurs de biais en masse sont les valeurs dîtes naturelles des isotopes « stables » puisqu'elles ne changent pas au cours du temps et sont donc censées être les mêmes depuis la formation du système solaire pour tout type d'objet. Dans le cas de l'Hf, il s'agit des isotopes ¹⁸⁰Hf, ¹⁷⁹Hf, ¹⁷⁸Hf, ¹⁷⁷Hf. Uniquement l'¹⁷⁶Hf est radiogénique est donc change au cours du temps par la désintégration radioactive du ¹⁷⁶Lu.

Dans notre cas, les échantillons ont été spikés, par conséquent nous ne connaissons pas la « vraie » composition isotopique en Hf des mélanges spike/échantillons et l'équation 2 n'est pas directement applicable. Le principe des corrections à effectuer est de retirer la contribution des interférences isobares, puis de retirer celle du spike et finalement de corriger les valeurs déterminées pour l'échantillon du biais en masse du spectromètre de masse. La première correction a effectuée concerne donc le retrait de ces interférences, ce qui est fait à partir des signaux obtenus pour les isotopes sans interférences des éléments ayant les isotopes gênants et en connaissant leurs rapports naturels. Les biais en masse doivent aussi être connus (cf. équation 2) cependant étant donné qu'ils varient toujours dans une même gamme de valeur (généralement -1,6 à -2,0) et que les interférences sont extrêmement faibles, l'erreur sur les corrections est négligeable. Nous obtenons ainsi l'équation suivante pour le ¹⁷⁶Hf/¹⁷⁷Hf :

$$\left(\frac{{}^{176}\text{Hf}}{{}^{177}\text{Hf}}\right)_{mix}^{mes} = \frac{\left({}^{176}\text{Hf} + {}^{176}\text{Lu} + {}^{176}\text{Yb}\right)^{mes} - \left({}^{175}\text{Lu}\right)^{mes} * \left(\frac{{}^{176}\text{Lu}}{{}^{175}\text{Lu}}\right)_{nat}^{vrai} \div \left(\frac{M_{176}}{M_{175}}\right)^{\beta_{Lu}} - \left({}^{173}\text{Yb}\right)^{mes} * \left(\frac{{}^{176}\text{Yb}}{{}^{173}\text{Yb}}\right)_{nat}^{\murai} \div \left(\frac{M_{176}}{M_{173}}\right)^{\beta_{Lu}}}{\left({}^{177}\text{Hf}\right)^{mes}}$$
(3)

avec nat pour naturel et mix pour le mélange échantillon/spike.

Cette équation s'applique aussi au ¹⁸⁰Hf en retirant les contributions du ¹⁸⁰W avec (${}^{183}W/{}^{180}W = 119,48$) et du ¹⁸⁰Ta avec (${}^{181}Ta/{}^{180}Ta = 8129,1$).

Le biais en masse de l'Hf doit vérifier l'équation suivante :

$$\left(\frac{^{180}\text{Hf}}{^{177}\text{Hf}}\right)_{mix}^{mes} \times \left(\frac{^{M}_{180}}{^{M}_{177}}\right)^{\beta_{\text{Hf}}} - \alpha \times \left(\frac{^{179}\text{Hf}}{^{177}\text{Hf}}\right)_{mix}^{mes} \times \left(\frac{^{M}_{179}}{^{M}_{177}}\right)^{\beta_{\text{Hf}}} - \left(\frac{^{180}\text{Hf}}{^{177}\text{Hf}}\right)_{nat}^{vrai} - \alpha \times \left(\frac{^{179}\text{Hf}}{^{177}\text{Hf}}\right)_{nat}^{vrai} = 0 \quad (4)$$

Avec *mes* pour mesuré ; *mix* pour mélange spike et échantillon ; *vrai* pour certifié ; *nat* pour naturel ; et :

$$\alpha = \frac{\left(\frac{^{180}\text{Hf}}{^{177}\text{Hf}}\right)_{sp}^{vrai} - \left(\frac{^{180}\text{Hf}}{^{177}\text{Hf}}\right)_{nat}^{vrai}}{\left(\frac{^{179}\text{Hf}}{^{177}\text{Hf}}\right)_{sp}^{vrai} - \left(\frac{^{179}\text{Hf}}{^{177}\text{Hf}}\right)_{nat}^{vrai}}$$
(5)

Le biais en masse est calculé par itération convergente (méthode de Newton) en changeant la valeur de β_{Hf} jusqu'à obtenir un résultat proche de zéro pour l'équation 4.

Maintenant que le biais en masse de l'Hf est connu, il est possible de déterminer la « vraie » composition isotopique du mélange (échantillon + spike) grâce à l'équation 1 appliquée à tous les isotopes. Par exemple, cette dernière devient pour les isotopes ¹⁷⁸Hf et ¹⁷⁶Hf :

$$\begin{pmatrix} \frac{178}{177} \text{Hf} \\ \frac{177}{177} \text{Hf} \end{pmatrix}_{mix}^{vrai} = \begin{pmatrix} \frac{178}{177} \text{Hf} \\ \frac{177}{177} \text{Hf} \end{pmatrix}_{mix}^{mes} \times \left(\frac{M_{178}}{M_{177}} \right)^{-\beta_{\text{Hf}}}$$
et
$$\begin{pmatrix} \frac{176}{177} \text{Hf} \\ \frac{177}{177} \text{Hf} \end{pmatrix}_{mix}^{vrai} = \left(\frac{176}{177} \text{Hf} \\ \frac{177}{177} \text{Hf} \right)_{mix}^{mes} \times \left(\frac{M_{176}}{M_{177}} \right)^{-\beta_{\text{Hf}}}$$
(6)

Pour extraire le signal du spike et ainsi obtenir les rapports propres de l'échantillon, la proportion du spike par rapport à l'échantillon doit être connue, ce qui peut être fait grâce à l'équation suivante :

$${}^{177}\varphi = \frac{\left(\frac{{}^{180}\text{Hf}}{{}^{177}\text{Hf}}\right)_{mix}^{vrai} - \left(\frac{{}^{180}\text{Hf}}{{}^{177}\text{Hf}}\right)_{nat}^{vrai}}{\left(\frac{{}^{180}\text{Hf}}{{}^{177}\text{Hf}}\right)_{sp}^{vrai} - \left(\frac{{}^{180}\text{Hf}}{{}^{177}\text{Hf}}\right)_{nat}^{vrai}}$$
(7)

Le retrait de la « pollution » de l'échantillon par le spike est effectué à l'aide de l'équation suivante :

$$\left(\frac{{}^{179}\text{Hf}}{{}^{177}\text{Hf}}\right)_{ech}^{vrai} = \frac{\left(\frac{{}^{179}\text{Hf}}{{}^{177}\text{Hf}}\right)_{mix}^{vrai} - \left({}^{177}\varphi \times \left(\frac{{}^{179}\text{Hf}}{{}^{177}\text{Hf}}\right)_{mix}^{vrai}\right)}{(1 - {}^{177}\varphi)}$$
(8)

Cette équation 8 est ensuite appliquée à tous les isotopes de l'hafnium afin d'obtenir la composition isotopique « vraie » de l'échantillon.

Nous pouvons vérifier que la part de spike utilisée est bien de 3% en utilisant le calcul suivant :

$${}^{180}\varphi = \frac{{}^{177}\varphi \times \left(\frac{{}^{180}\text{Hf}}{{}^{177}\text{Hf}}\right)_{sp}^{vrai}}{\left({}^{177}\varphi \times \left(\frac{{}^{180}\text{Hf}}{{}^{177}\text{Hf}}\right)_{sp}^{vrai} + (1 - {}^{177}\varphi) \times \left(\frac{{}^{180}\text{Hf}}{{}^{177}\text{Hf}}\right)_{sp}^{vrai}}\right)}$$
(9)

Comme précisé plus haut, cette technique de dilution isotopique permet de déterminer la concentration de l'échantillon en les éléments dont un ou plusieurs isotopes ont été spikés. Ceci est effectué grâce à la formule :

$$[Hf] = \left(\frac{M_{\rm Hf}}{Ab_{177}}\right) \times \left(\frac{^{177}{\rm Hf}}{^{180}{\rm Hf}}\right)_{sp}^{vrai} \times \left(\frac{^{177}{\rm Hf}_{ech}}{^{177}{\rm Hf}_{sp}}\right) \times \frac{m_{sp}}{m_{ech}} \times N_{sp}^{^{180}{\rm Hf}}$$
(10)

Cette concentration s'exprime en ppm ($\mu g/g$).

7.2.2. Mesures isotopiques du Lu (Nu Plasma 500 HR)

Mesures :

Les échantillons sont repris de la même façon et dans le même acide (HNO₃* 0,05N) que pour les analyses de l'Hf. La procédure de lavage utilisée est la même que pour l'Hf à savoir un premier tube contenant de l'HF* dilué, un second contenant de l'HNO₃* 3% et un dernier avec de l'HNO₃* 0,05N.

Les standards utilisés sont au nombre de trois et consistent en un premier contenant 15 ppb de Lu, un second contenant 50 ppb Yb et un troisième contenant environ 8ppb de Lu et 25 ppb d'Yb. Ils sont préparés de la façon suivante :

Premier : 1,5 ml de la solution à 0,5 ppm de Lu est dilué dans 50ml d'HNO₃^{*} 0,05N Second : 2,5 ml de la solution à 1 ppm d'Yb est dilué dans 50 ml d'HNO₃^{*} 0,05N Troisième : 20 ml de la première et de la deuxième sont mélangées.

Figure II-18 : Configuration des collecteurs du Nu 500 HR pour les analyses des isotopes du Lu.

La difficulté de la mesure du Lu réside dans le fait qu'on ne peut pas déterminer son biais en masse de façon interne car cet élément chimique ne possède que deux isotopes. De plus, séparer totalement le Lu de l'Yb est impossible avec les résines HDEHP, or ce dernier crée une interférence isobare majeure avec le Lu à la masse 176 qui est celle qui nous intéresse. Comme indiqué précédemment, le ¹⁷⁶Lu correspond à seulement 2,59% du Lu alors

que l'¹⁷⁶Yb représente 12,76% de l'Yb, ce qui indique qu'à concentration égale, la contribution de l'Yb à la masse 176 est beaucoup plus importante que celle du Lu. L'ytterbium possède sept isotopes dont trois sont totalement dépourvus d'interférences isobares et permettent de déterminer correctement le biais en masse pour l'Yb de façon interne. Ceci nous est utile pour estimer le biais en masse du Lu d'où l'intérêt de ne pas séparer le Lu de l'Yb. Les masses mesurées seront donc celles permettant la mesure et la correction efficaces du Lu et de l'Yb afin d'en déduire le rapport ¹⁷⁶Lu/¹⁷⁵Lu de l'échantillon (cf. Figure II-18). Concrètement, tous les isotopes du Lu et de l'Yb (à l'exception des isotopes ¹⁶⁸Yb et ¹⁷⁰Yb) sont mesurés avec en plus l'¹⁷⁷Hf, pour s'assurer que l'Hf soit bien absent de la fraction des Terres Rares.

La masse de référence à absolument surveiller pour éviter la saturation des collecteurs est la masse 174 car elle correspond à l'isotope de l'Yb le plus abondant (31,83%).

Les valeurs des rapports isotopiques des standards de Lu et d'Yb utilisées sont les valeurs naturelles, à savoir :

 176 Lu/¹⁷⁵Lu = 0,02656 172 Yb/¹⁷¹Yb = 1,5287 173 Yb/¹⁷¹Yb = 1,1295 174 Yb/¹⁷¹Yb = 2,2290

Corrections :

Le souci de la mesure du Lu est qu'il n'est pas séparé de l'Yb qui est gênant pour la masse ¹⁷⁶Lu. Le biais en masse du lutétium ne pouvant pas être déterminé indépendemment du rapport ¹⁷⁵Lu/¹⁷⁶Lu, nous utilisons donc le biais en masse de l'Yb pour le Lu qui est supposé être approximativement le même et est calculé grâce à l'équation 2. Concrètement, ce biais est calculé pour les trois rapports isotopiques de l'Yb dont les isotopes n'ont pas d'interférences isobares (i.e. le ¹⁷¹Yb/¹⁷⁴Yb, le ¹⁷²Yb/¹⁷⁴Yb et le ¹⁷³Yb/¹⁷⁴Yb). Ces biais sont ensuite corrélés suivant leur covariance afin d'obtenir une seule valeur qui est la plus cohérente.

Le retrait du signal de l'¹⁷⁶Yb sur la masse 176 se fait à l'aide de l'équation suivante :

$$\left(\frac{{}^{176}\text{Lu}}{{}^{175}\text{Lu}}\right)_{mix}^{vrai} = \frac{\left({}^{176}\text{Lu} + {}^{176}\text{Yb}\right)_{mes} - \left(\left[\left(\frac{{}^{176}\text{Yb}}{{}^{174}\text{Yb}}\right)_{nat}^{vrai} \times \left(\frac{M_{176}}{M_{174}}\right)^{\beta_{\text{Yb}}}\right] \times {}^{174}\text{Yb}_{mes}\right)}{{}^{175}\text{Lu}_{mes}} \tag{11}$$

Le « vrai » rapport isotopique du Lu du mélange est ensuite obtenu à l'aide de l'équation 6 qui devient alors :

$$\left(\frac{{}^{176}\text{Lu}}{{}^{175}\text{Lu}}\right)_{mix}^{vrai} = \left(\frac{{}^{176}\text{Lu}}{{}^{175}\text{Lu}}\right)_{mix}^{mes} \div \left(\frac{M_{176}}{M_{175}}\right)^{\beta_{\text{Lu}}}$$
(12)

Par la suite, il convient de mesurer la proportion de Lu du spike par rapport à l'échantillon puis de calculer la concentration de Lu dans l'échantillon, ce qui est obtenu ainsi :

$$\frac{{}^{175}\text{Lu}_{ech}}{{}^{175}\text{Lu}_{sp}} = \frac{\left(\frac{{}^{176}\text{Lu}}{{}^{175}\text{Lu}}\right)_{sp}^{vrai} - \left(\frac{{}^{176}\text{Lu}}{{}^{175}\text{Lu}}\right)_{mix}^{vrai}}{\left(\frac{{}^{176}\text{Lu}}{{}^{175}\text{Lu}}\right)_{mix}^{vrai} - \left(\frac{{}^{176}\text{Lu}}{{}^{175}\text{Lu}}\right)_{nat}^{vrai}}$$
(13)

et ensuite :

$$[Lu] = \left(\frac{M_{Lu}}{Ab_{175}}\right) \times \left(\frac{^{175}Lu}{^{176}Lu}\right)_{sp}^{vrai} \times \left(\frac{^{175}Lu_{ech}}{^{175}Lu_{sp}}\right) \times \frac{m_{sp}}{m_{ech}} \times N_{sp}^{^{176}Lu}$$
(14)

Cette concentration, comme pour l'Hf, s'exprime en ppm (μ g/g).

Afin de déterminer le rapport ¹⁷⁶Lu/¹⁷⁷Hf propre de l'échantillon, nous devons appliquer ce dernier calcul :

$$\left(\frac{{}^{176}\text{Lu}}{{}^{177}\text{Hf}}\right)_{ech}^{vrai} = \frac{[\text{Lu}]}{[\text{Hf}]} \times \left(\frac{M_{\text{Hf}} \times Ab_{{}^{176}\text{Lu}}}{M_{\text{Lu}} \times Ab_{{}^{177}\text{Hf}}}\right)$$
(15)

7.3. Zircons en solution

Les échantillons sont repris dans 1 ml de HNO₃* 0.05N contenant 1 ppb d'In (plaque à 130°C et surtout ultrasons pendant 30 minutes). Une fois dissous ils sont versés dans des cônes à centrifugés de 2 ml (dont le bouchon a été coupé) qui sont, ensuite, placés dans le fond de tubes de 10 ml neufs et 1 ml supplémentaire d'HNO₃* contenant 1 ppb d'In est ajouté.

Chapitre II : Matériel et méthodes

Les standards et les tubes de blanc sont, par contre, mis dans des tubes pour passeur de 10 ml propres. Ces derniers ainsi que les cônes à centrifugés sont préalablement lavés dans des bains d'HCl* à environ 20% avec un peu d'HF** et le tout dilué dans de l'eau distillée. Les tubes de rinçage entre échantillons et blancs, lors de l'analyse, sont des tubes de 50 ml (Falcon). Le protocole décrit dans ce paragraphe s'applique à la préparation des échantillons à la fois pour les analyses en Pb mais aussi pour les rapports Lu/Hf.

Figure II-19 : Photographie de l'Element 2 de ThermoFinnigan avec lequel les rapports Lu/Hf et les isotopes du Pb des zircons en solution ont été mesurés. Cette même machine a été utilisée pour les analyses ponctuelles à la Washington State University mais cette fois couplée au laser visible dans la Figure II-15a. Crédit photographique : Martin GUITREAU.

7.3.1. Mesures des rapports Lu/Hf (Element 2)

Mesures :

Les rapports Lu/Hf des zircons sont mesurés sur l'Element 2 (Fig. II-19) à partir des aliquotes de 5% prélevées après attaque en bombe des zircons. Les standards utilisés pour calibrer la machine et ainsi pouvoir mesurer les concentrations de Lu et d'Hf sont les suivants :

Std 1 : 0.001 ppb de Lu et 0.5 ppb d'Hf

Std 2 : 0.005 ppb de Lu et 1 ppb d'Hf

Std 3 : 0.010 ppb de Lu et 3 ppb d'Hf

Std 4 : 0.030 ppb de Lu et 6 ppb d'Hf

Les 2 tubes de lavages contiennent respectivement de l'HF** très dilué (0.015N préparé dans une grande bouteille en diluant 500 μ l d'HF** 29N dans 1000 ml d'H₂O*) et HNO₃* 2% (0.5N) avec 1 ppb d'In (pour suivre la dérive de la transmission).

Les blancs sont mesurés dans de l'HNO₃* 0.5N contenant 1 ppb d'In.

Les isotopes mesurés pour obtenir les concentrations sont le ¹¹⁵In, le ¹⁷⁵Lu, le ¹⁷⁷Hf, le ¹⁷⁸Hf, le ¹⁷⁸Hf, le ¹⁷⁹Hf et le ¹⁸⁰Hf car ils n'ont pas d'interférences isobares, excepté pour le ¹⁸⁰Hf. Puisque l'Hf est très abondant dans les zircons (~1%) comparé au Ta et au W, et que les isotopes ¹⁸⁰Ta et ¹⁸⁰W ont des abondances respectives de 0,012 et 0,12% (au sein de leurs éléments chimiques), ils peuvent être considérés comme négligeables vis-à-vis de l'¹⁸⁰Hf. Des recombinaisons d'éléments, notamment les Terres Rares, avec de l'Ar, de l'O, de l'H ou de l'N peuvent aussi créer des interférences. Cependant, elles peuvent être déterminées en mesurant une solution de Terres Rares sans Lu et Hf et ne dépassent pas les 2%, ce qui est négligeable.

Corrections :

L'intensité mesurée par les collecteurs sur un ICP-MS fluctue et surtout dérive aux cours des sessions d'analyses. Par conséquent nous avons utilisé l'¹¹⁵In comme standard interne pour suivre la dérive et ainsi normaliser les autres isotopes mesurés. Le signal mesuré pour les blancs précédant chaque échantillon est soustrait de celui-ci pour tous les isotopes. La concentration annoncée pour le Lu est uniquement dérivée du ¹⁷⁵Lu alors que pour l'Hf, il s'agit de la moyenne des quatre isotopes mesurés. Le rapport de concentration Lu/Hf est ensuite converti en rapport isotopique selon le calcul suivant correspondant à l'équation 15 :

$$\left(\frac{^{176}\text{Lu}}{^{177}\text{Hf}}\right)_{ech}^{vrai} = \frac{[\text{Lu}]}{[\text{Hf}]} \times \left(\frac{M_{\text{Hf}} \times Ab_{^{176}\text{Lu}}}{M_{\text{Lu}} \times Ab_{^{177}\text{Hf}}}\right)$$
(15)

Le dernier terme de droite est environ égal à 0,1419.

7.3.2. Mesures des isotopes du plomb (Element 2)

Mesures :

Les rapports isotopiques du Pb des zircons sont mesurés sur l'Element 2 à partir des fractions récupérées à la sortie des colonnes. Les standards utilisés pour calibrer la machine et ainsi pouvoir mesurer les rapports isotopiques sont préparés à partir de NIST 981 et sont les suivants :

Std 1:0.5 ppb de Pb

Std 2 : 1 ppb de Pb

Std 3 : 2 ppb de Pb

Std 4 : 5 ppb de Pb

Les mesures sont effectuées en standard bracketing ce qui consiste à encadrer chaque mesure d'un inconnu (échantillon) par un standard connu.

Le tube de lavage et les blancs contiennent chacun de l'HNO₃* 2% (0,5N) avec 1 ppb d'In. Les masses mesurées sont la 115 (In), la 200 (Hg), la 204 (Pb), la 206 (Pb), la 207 (Pb) et la 208 (Pb).

Corrections :

L'In est utilisé pour suivre la dérive du signal et le normaliser. Le Hg est mesuré car il crée des interférences sur la masse 204 correspondant aussi au ²⁰⁴Pb lui-même étant l'isotope du plomb le moins abondant. Cette interférence est éliminée en soustrayant le signal de ²⁰⁴Hg au signal de ²⁰⁴Pb de la façon suivante.

$${}^{204}\text{Pb}^{mes} = ({}^{204}\text{Pb} + {}^{204}\text{Hg})^{mes} - {}^{200}\text{Hg}^{mes} \times \left(\frac{{}^{204}\text{Hg}}{{}^{200}\text{Hg}}\right)_{nat}^{vrai}$$
(16)

Le rapport naturel de 204 Hg/ 200 Hg utilisé est égal à 0,2974.

Comme indiqué précédemment, les rapports isotopiques du plomb sont corrigés de la dérive du spectromètre de masse grâce au standard bracketing dont l'équation est la suivante :

$$\left(\frac{{}^{207}\text{Pb}}{{}^{206}\text{Pb}}\right)_{ech}^{vrai} = \left(\frac{{}^{207}\text{Pb}}{{}^{206}\text{Pb}}\right)_{std}^{vrai} \times \frac{\left(\frac{{}^{207}\text{Pb}}{{}^{206}\text{Pb}}\right)_{ech}^{mes}}{\left(\frac{{}^{207}\text{Pb}}{{}^{206}\text{Pb}}\right)_{std1}^{mes\theta} \times \left(\frac{{}^{207}\text{Pb}}{{}^{206}\text{Pb}}\right)_{std2}^{mes(1-\theta)}}$$
(17)

Plus généralement :

$$(R)_{ech} = (R)_{std} \times \frac{(r)_{ech}}{(r)_{std1}^{\theta} \times (r)_{std2}^{(1-\theta)}}$$

Avec θ un facteur arbitraire fixé à 0,5.

Cette correction est appliquée aux rapports ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb et ²⁰⁸Pb/²⁰⁴Pb. Ensuite, une correction de plomb commun, en supposant un Pb récent (Stacey et Kramers, 1975), est effectuée pour les rapports ²⁰⁷Pb/²⁰⁶Pb et ²⁰⁸Pb/²⁰⁶Pb suivant l'équation suivante :

$$\frac{{}^{207}\text{Pb}^{*}}{{}^{206}\text{Pb}^{*}} = \frac{\left(\frac{{}^{207}\text{Pb}}{{}^{204}\text{Pb}}\right)_{ech} - \left(\frac{{}^{207}\text{Pb}}{{}^{204}\text{Pb}}\right)_{com}}{\left(\frac{{}^{206}\text{Pb}}{{}^{204}\text{Pb}}\right)_{ech} - \left(\frac{{}^{206}\text{Pb}}{{}^{204}\text{Pb}}\right)_{com}}$$
(18)

et

$$\frac{{}^{208}\text{Pb}^{*}}{{}^{206}\text{Pb}^{*}} = \frac{\left(\frac{{}^{208}\text{Pb}}{{}^{204}\text{Pb}}\right)_{ech} - \left(\frac{{}^{208}\text{Pb}}{{}^{204}\text{Pb}}\right)_{com}}{\left(\frac{{}^{206}\text{Pb}}{{}^{204}\text{Pb}}\right)_{ech} - \left(\frac{{}^{206}\text{Pb}}{{}^{204}\text{Pb}}\right)_{com}}$$
(19)

Avec * et *com* pour indiquer qu'il s'agit respectivement de plomb radiogénique et commun.

Le rapport ²⁰⁷Pb^{*}/²⁰⁶Pb^{*} est utilisé pour calculer l'âge des zircons grâce à l'équation :

$$\frac{{}^{207}\text{Pb}^{*}}{{}^{206}\text{Pb}^{*}} = \frac{{}^{235}\text{U}}{{}^{238}\text{U}} \times \frac{\left(e^{t\lambda_{235}} - 1\right)}{\left(e^{t\lambda_{238}} - 1\right)}$$
(20)

Avec λ_{235} et λ_{238} les constantes de désintégrations de l'²³⁵U et de l'²³⁸U valant respectivement 9,8485.10⁻¹⁰ et 1,55125.10⁻¹⁰ et *t* l'âge du zircon. Le rapport ²³⁸U/²³⁵U est relativement bien connu et vaut 137,875. La détermination directe de l'âge n'est pas possible, par conséquent, il est obtenu en soustrayant le rapport mesuré au rapport calculé avec un âge fixé. Théoriquement la valeur de cette soustraction est zéro si l'âge est le « bon » (c'est-à-dire qu'il donne le même rapport ${}^{207}\text{Pb}^*/{}^{206}\text{Pb}^*$ que les mesures). Donc, l'âge est obtenu par itération convergente, en changeant le paramètre « *t* » jusqu'à obtenir une valeur proche de zéro pour la soustraction.

Le rapport ²⁰⁸Pb^{*}/²⁰⁶Pb^{*} est ensuite utiliser pour calculer le rapport Th/U des zircons.

$$\frac{\mathrm{Th}}{\mathrm{U}} \approx \frac{^{232}\mathrm{Th}}{^{238}\mathrm{U}} = \frac{^{208}\mathrm{Pb^*}}{^{206}\mathrm{Pb^*}} \div \frac{\left(e^{t\lambda_{232}} - 1\right)}{\left(e^{t\lambda_{238}} - 1\right)}$$
(21)

Avec λ_{232} la constante de désintégration du ²³²Th valant 4,9475.10⁻¹¹. L'âge « *t* » utilisé pour le calcul est l'âge ²⁰⁷Pb/²⁰⁶Pb trouvé juste avant. Cette approche implique implicitement que le rapport Th/U du zircon n'a pas changé depuis sa cristallisation.

7.3.3. Mesures isotopiques de l'hafnium (Nu Plasma 500 HR)

Mesures :

La technique de reprise des échantillons est la même que pour les roches totales sauf que les résidus de zircons étant beaucoup plus petits, ils se reprennent plus rapidement, et ne sont pas centrifugés. Une fois en solution, les échantillons sont pipetés de leur béchers et transférés dans des tubes à centrifugés de 2 ml (avec le bouchon percé pour laisser passer le tuyau du spectromètre de masse) puis prêt à être mesurés. L'Hf n'étant pas stable en solution, mais les analyses plus rapides que pour les TTG, les échantillons sont repris 6 par 6 mais préparés 3 par 3 (ou éventuellement 4 par 4 si la machine est stable). Les échantillons sont donc repris et mesurés dans 1 ml d'HNO3^{*} 0.05N. Dans le cas où le zircon dissous était gros, et du coup l'Hf trop concentré dans 1 ml (saturation des collecteurs), la solution est diluée avec de l'HNO3^{*} 0.05N. Une estimation de la dilution optimale peut être faîte grâce aux analyses préalables des concentrations d'Hf des aliquotes de 5%.

Le standard d'Hf JMC-475, comme pour les roches totales, est utilisé pour suivre et corriger la dérive de la machine afin d'obtenir les valeurs certifiées des standards. Ce dernier est dilué à 100 ppb. Entre chaque mesure (standard et échantillons), le spectromètre de masse est nettoyé à l'aide d'un tube d'HF** dilué, d'HNO₃* à 3% et d'HNO₃* à 0,05N. Les masses mesurées sont exactement les mêmes que pour la mesure de l'Hf dans les roches totales ainsi que la configuration des collecteurs.

Corrections :

Les corrections appliquées aux mesures pour obtenir les rapports ¹⁷⁶Hf/¹⁷⁷Hf sont moins nombreuses et plus simples que pour les roches totales car les zircons n'étant pas spikés, ils indiquent directement leurs rapports isotopiques propres. Cependant, il faut tout de même déterminer le biais en masse de l'Hf pour recalculer les vrais rapports, ce qui est effectué à partir de l'équation 2 (loi de fractionnement exponentielle). Les zircons ayant subit une séparation chimique grâce à la chromatographie sur résine échangeuse d'ions avant les mesures, l'Hf est sensé être débarrassé des interférences isobares. Nous vérifions cependant qu'aucune de ces dernières n'est présente. Si c'étais le cas, elles sont corrigées grâce à l'équation suivante :

$$\left(\frac{{}^{176}\text{Hf}}{{}^{177}\text{Hf}}\right)_{ech}^{vrai} = \frac{\left(\frac{{}^{176}\text{Hf} + {}^{176}\text{Lu} + {}^{176}\text{Yb}\right)^{mes} - \left({}^{175}\text{Lu}\right)^{mes} * \left(\frac{{}^{176}\text{Lu}}{{}^{175}\text{Lu}}\right)_{nat}^{vrai} \div \left(\frac{M_{176}}{M_{175}}\right)^{\beta_{Lu}} - \left({}^{173}\text{Yb}\right)^{mes} * \left(\frac{{}^{176}\text{Yb}}{{}^{173}\text{Yb}}\right)_{nat}^{vrai} \div \left(\frac{M_{176}}{M_{173}}\right)^{\beta_{HF}}}{\left({}^{177}\text{Hf}\right)^{mes}} \times \left(\frac{M_{176}}{M_{177}}\right)^{\beta_{HF}}}$$
(22)

Les biais en masse du Lu et de l'Yb sont impossibles à déterminer de façon précise car ces éléments sont présents en extrêmement faible proportions. Nous utilisons donc le biais en masse de l'Hf. Les valeurs des rapports ¹⁷⁶Lu/¹⁷⁵Lu et ¹⁷⁶Yb/¹⁷³Yb utilisés sont respectivement 0,02656 et 0,796218. Les variations du rapport ¹⁷⁶Hf/¹⁷⁷Hf liées à ces corrections se situent généralement au niveau du 6^{ème} chiffre après la virgule indiquant que le Lu et l'Yb ont bien été éliminés pendant la chimie.

Figure II-20 : photos prises au microscope polarisant en lumière transmise polarisée non-analysée (a) et polarisée analysée (b) d'un zircon du gneiss d'Acasta AG09-017. Deux trous sont bien visibles et correspondent aux zones ablatées lors des mesures isotopiques U-Pb (en haut du grain) et Lu-Hf (au milieu du grain). Ce zircon montre de belles zonations magmatiques simples du cœur jusqu'aux bordures. Crédit photographique : Martin GUITREAU.

7.4. Zircons par laser

Les analyses par ablation laser sont effectuées sur les mêmes plots polis et avec le même laser qu'il s'agisse d'U-Pb ou de Lu-Hf. Cependant, les réglages de celui-ci sont différents ainsi que les machines auxquelles il est branché. Le laser utilisé est un New Wave Research Nd-YAG de 213 nm (cf. Fig. II-15a). Les plots contenants les zircons (échantillons) sont positionnés dans une chambre dont l'air est purgé et remplacé par de l'He.

7.4.1. Mesures isotopiques U-Pb (Element 2)

Mesures :

Le laser est branché sur un Element 2 pour mesurer les isotopes de l'U et du Pb, ce qui se fait par standard bracketing similaire aux mesures en solution. Les standards utilisés pour cette méthode sont PEIXE et FC-1 dont les rapports certifiés (Dickinson et Gehrels, 2003, et Paces et Miller, 1993) sont respectivement :

 235 U/ 207 Pb = 0,74266 et 1,9516

 $^{238}\text{U}/^{206}\text{Pb} = 0,09143 \text{ et } 0,18588$

 ${}^{207}\text{Pb}/{}^{206}\text{Pb} = 0,05891 \text{ et } 0,07615$

Les isotopes mesurés sont le ²⁰²Hg, le ²⁰⁴Pb, le ²⁰⁶Pb, le ²⁰⁷Pb, le ²⁰⁸Pb, le ²³²Th, le ²³⁵U et le ²³⁸U.

La taille de spot du laser est fixée à 30µm et la fréquence d'ablation à 5Hz. Les vieux zircons ayant beaucoup de Pb radiogénique, la fréquence et la taille du spot sont déterminantes. En effet, la taille du spot permet de jouer sur la résolution alors que la fréquence, elle, joue sur la quantité de matériel envoyée au spectromètre de masse. Pour certains zircons très riches en U (donc aussi en plomb), la fréquence a même été baissée à 3Hz. De plus, ce spectromètre de masse n'ayant qu'un collecteur, les masses sont mesurées les unes après les autres mais de façon extrêmement rapide grâce à une amélioration technique de l'appareil pour les analyses ponctuelles (i.e. fast scan). Or les collecteurs comportent deux types de détecteurs plus ou moins sensibles et basculement de l'un à l'autre est plus lent que le passage d'une masse à l'autre (par exemple du ²⁰⁶Pb au ²³⁸U). Par conséquent, si lors de la mesure d'²³⁸U, le détecteur le plus sensible sature, il va basculer sur le détecteur

moins sensible, puis la mesure finie, la machine va scanner une autre masse moins abondante et le temps que le détecteur rebascule vers le plus sensible, la mesure sera faussée.

Corrections :

Une première correction consiste à mesurer un blanc (pour tous les isotopes) lorsque le laser est éteint est ensuite de soustraire ce blanc au signal mesuré lorsque le laser fonctionne et ablate l'échantillon. Les corrections de blanc sont essentielles car les gaz porteurs contiennent un peu de mercure (Hg) créant des interférences sur la masse 204 (²⁰⁴Hg et ²⁰⁰Hg+⁴He, ce second étant minoritaire). Comme pour les analyses en solution, le ²⁰²Hg sert à corriger le ²⁰⁴Pb de l'interférence isobare créée par le ²⁰⁴Hg en utilisant le rapport ²⁰⁴Hg/²⁰²Hg de 0,2301 selon l'équation 16.

Au fur et à mesure que le laser creuse dans le zircon, les domaines échantillonnés peuvent varier (i.e. cœur, bordure, surcroissance, inclusions, ...) et donc un suivi de l'évolution du signal isotopique est nécessaire pour éventuellement filtrer les zircons suspects. Le laser crée un fractionnement élémentaire entre l'U et le Pb dépendant du temps, par conséquent, la pente de cette dérive est calculée et les valeurs des rapports ²³⁸U/²⁰⁶Pb et ²³⁵U/²⁰⁷Pb sont extrapolées au temps zéro grâce à l'intercepte de cette tendance. Les isotopes du Pb, par contre, ne fractionnemt pas au cours du temps.

Les âges sont par la suite calculés de la façon suivante :

$${}^{206}\text{Pb}^* = {}^{238}\text{U}*(e^{\lambda t} - 1)$$
(23)

d'où

$$t = \frac{ln\left(\frac{^{238}U}{^{206}Pb^*} + 1\right)}{\lambda_{238}}$$
(24)

Les mêmes formules sont appliquées à l²³⁵U et au ²⁰⁷Pb. Ces calculs sont uniquement possible parce que les zircons lors de leur formation n'incorporent quasiment pas de Pb. Plus les zircons sont vieux et plus ils contiennent de Pb radiogénique et par la même, plus les éventuelles traces de Pb commun sont négligeables. Des corrections de Pb commun ont toute fois été effectuées de la même façon que pour les analyses en solution (voir section 2.3.2), cependant les rapports ²⁰⁶Pb/²⁰⁴Pb (>1000) sont majoritairement beaucoup plus élevés qu'en

solution, ce qui résulte en une différence entre le rapport 207 Pb/ 206 Pb corrigé et non corrigé généralement inférieur ou similaire à l'erreur sur ce rapport (0,5%).

Pour les âges ²⁰⁷Pb/²⁰⁶Pb, nous sommes confrontés au même problème que pour les analyses en solution et avons donc adopté la même approche (cf. section 4.3.2).

7.4.2. Mesures isotopiques de l'hafnium (Neptune)

<u>Mesures :</u>

Le laser est branché sur un Neptune pour mesurer les isotopes de l'Hf, de l'Yb et du Lu. Les standards utilisés pour suivre la dérive du spectromètre de masse sont 91500, Plesovice, FC-1, R-33, GJ-1 et MudTank. Leurs rapports isotopiques certifiés sont respectivement : 176 Hf/¹⁷⁷Hf = 0,282311 (Vervoort, 2010) ; 0,282484 (Slama et al, 2008) ; 0,282182 (Vervoort, 2010) ; 0,282767 (Vervoort 2010) ; 0,28200 (Morel et al, 2008) et 0,282507 (Woodhead and Hergt, 2005).

Les rapports ¹⁷⁶Lu/¹⁷⁷Hf varient relativement pas mal au sein des populations et par conséquent, leurs donner un rapport certifié n'aurait pas réellement de sens. Les isotopes mesurés pour obtenir la composition isotopique en Hf sont le ¹⁷¹Yb, le ¹⁷³Yb, le ¹⁷⁵Lu, le ¹⁷⁶Hf (et par conséquent aussi le ¹⁷⁶Yb et le ¹⁷⁶Lu), le ¹⁷⁷Hf, le ¹⁷⁸Hf, ¹⁷⁹Hf, le ¹⁸⁰Hf et le ¹⁸²W.

La taille du spot du laser pour analyser l'Hf est fixée à 40 µm et la fréquence à 10Hz afin d'avoir suffisamment de signal pour déterminer les rapports isotopiques avec précision. De l'N est ajouté au flux d'Ar entrant dans le MC-ICP-MS et au flux d'He portant l'échantillon ablaté. Ceci a pour effet d'augmenter considérablement la transmission de l'Hf dans le spectromètre et par conséquent d'avoir plus de signal.

Corrections :

La correction majeure consiste à retirer les interférences du Lu et de l'Yb à l'Hf pour obtenir un rapport ¹⁷⁶Hf/¹⁷⁷Hf propre, ce qui se fait par l'intermédiaire de l'équation 22:

$$\binom{{}^{176}\text{Hf}}{{}^{177}\text{Hf}}_{ech}^{vrai} = \frac{\binom{{}^{176}\text{Hf} + {}^{176}\text{Lu} + {}^{176}\text{Lu} + {}^{176}\text{Lu})}{({}^{177}\text{Hc})}_{nat}^{mes} \cdot \binom{{}^{4776}\text{Lu}}{{}^{175}\text{Lu})}_{nat}^{vrai} \cdot \binom{{}^{4776}\text{Lu}}{{}^{4776}\text{Lu}}_{nat}^{p} \binom{{}^{6}\text{Lu}}{{}^{477}\text{Hf}}_{nes}^{pes} \cdot \binom{{}^{176}\text{Hf}}{{}^{477}\text{Hf}}_{nat}^{pes} + \binom{{}^{4776}\text{Lu}}{{}^{477}\text{Hf}}_{nes}^{pes} \times \binom{{}^{4776}\text{Lu}}{{}^{477}\text{Hf}}_{nes}^{pes} \times \binom{{}^{4776}\text{Hf}}{{}^{4776}\text{Hf}}_{nes}^{pes} \times \binom{{}^{4776}\text{Hf}}{{}^{4776}\text{Hf}}_{n$$

Les biais en masse de l'Hf et de l'Yb sont déterminés à partir des rapports isotopiques ¹⁷⁹Hf/¹⁷⁷Hf (0,7325 selon Patchett et al, 1981) et ¹⁷³Yb/¹⁷¹Yb (1,132685 selon Chu et al, 2002) mesurés et le biais en Lu est supposé égal à celui de l'Hf. Les valeurs des rapports ¹⁷⁶Lu/¹⁷⁵Lu

et 176 Yb/ 173 Yb utilisés sont respectivement 0,02655 (Vervoort et al, 2004) et 0,796218 (Chu et al, 2002).

Le rapport ¹⁷⁶Lu/¹⁷⁷Hf est obtenu de la façon suivante :

$$\left(\frac{{}^{176}\text{Lu}}{{}^{177}\text{Hf}}\right)_{ech}^{vrai} = \frac{\left({}^{175}\text{Lu}\right)^{mes} * \left(\frac{{}^{176}\text{Lu}}{{}^{175}\text{Lu}}\right)_{nat}^{vrai} \div \left(\frac{{}^{M}\!_{176}}{{}^{M}\!_{175}}\right)^{\beta_{\text{Lu}}} \times \left(\frac{{}^{M}\!_{176}}{{}^{M}\!_{177}}\right)^{\beta_{\text{Hf}}}$$
(25)

Le rapport ¹⁷⁶Yb/¹⁷⁷Hf peut être aussi obtenu de la même façon :

$$\left(\frac{{}^{176}\text{Yb}}{{}^{177}\text{Hf}}\right)_{ech}^{vrai} = \frac{({}^{173}\text{Yb})^{mes} * \left(\frac{{}^{176}\text{Yb}}{{}^{173}\text{Yb}}\right)_{nat}^{vrai} \div \left(\frac{M_{176}}{M_{173}}\right)^{\beta_{\text{Yb}}}}{({}^{177}\text{Hf})^{mes}} \times \left(\frac{M_{176}}{M_{177}}\right)^{\beta_{\text{Hf}}}$$
(26)

Le Neptune a tendance à donner des valeurs de standard bien reproductibles mais décalés par rapports aux valeurs certifiées. Par exemple, le standard JMC-475 dont le rapport ¹⁷⁶Hf/¹⁷⁷Hf certifié est 0,282160 donnera des valeurs plus proches de 0,282140 lors des mesures. Par conséquent, nous avons appliqué une dernière correction liée à cet effet de la façon suivante :

$$R = r \times g \tag{27}$$

Où R est le rapport vrai, r le rapport mesuré par la machine et corrigé du biais en masse ainsi que des interférences et g le facteur de décalage du rapport.

Nous avons calculé un facteur moyen pour le rapport ¹⁷⁶Hf/¹⁷⁷Hf à l'aide des standards ayant différents rapports Yb/Hf. Aucune corrélation entre la valeur de ce facteur et le rapport Yb/Hf n'a été observée.

7.5. Valeurs annoncées et calculs d'erreurs

Toutes les valeurs annoncées pour les résultats correspondent aux moyennes respectives de chaque type de donnée (ex : ¹⁷⁶Hf/¹⁷⁷Hf, ²⁰⁷Pb/²⁰⁶Pb, [Hf], [Lu], ...) acquise lors d'un ou plusieurs cycles de mesures continues.

L'erreur sur les valeurs annoncées et estimée à 2 fois l'erreur moyenne calculée à partir du ou des cycle(s) de mesures continues respectivement pour chaque type de donnée de chaque échantillon. Les formules utilisées sont les suivantes :

$$X = \frac{\sum_{i=1}^{n} x_i}{n} \tag{28}$$

et

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (X - x_i)^2}{(n-1)}}$$
(29)

et

$$\sigma_{moy} = \frac{\sigma}{\sqrt{n}} \tag{30}$$

Avec X la moyenne des valeurs mesurées, x_i la valeur de chaque mesure *i*, *n* le nombre de mesures, σ l'écart-type et σ_{moy} l'écart-type moyen.

Chapitre III : Résultats des analyses isotopiques

Chapitre III : Résultats des analyses isotopiques

Les résultats complets des analyses isotopiques sont présentés sous forme de tableaux en Annexe B.

8. TTG

Les TTG n'ayant pas tous été datés dans cette thèse, certains des âges utilisés pour calculer leur composition initiale en ¹⁷⁶Hf/¹⁷⁷Hf (et par la même leur ϵ_{Hf} initial) proviennent d'analyses U-Pb in-situ (LA-ICP-MS ou SIMS) réalisées par les donateurs de nos échantillons, ou certains de leur collaborateurs, lors de travaux antérieurs. Ces derniers ont d'ailleurs, pour la plupart, fait l'objet de publications (ex : Harley and Black 1997 ; Martin et al, 1997 ; Bibikova et al, 2006, Cates and Mojzsis, 2006 et Rosen and Turkina 2007). Tous les âges considérés ont été acquis sur des zircons extraits des mêmes échantillons que les miens ou de roches prélevées dans les mêmes zones. Tous les détails techniques concernant l'analyse des roches totales sont présentés dans le chapitre II.

Les résultats des TTG sont présentés dans la Figure III-1 en deux parties, la première correspondant aux rapports ¹⁷⁶Hf/¹⁷⁷Hf initiaux des TTG en fonction de leurs âges (Fig. III-1a) et la deuxième aux Hf initiaux aussi en fonction de leurs âges (Fig. III-1b). Les ¹⁷⁶Hf/¹⁷⁷Hf sont anti-corrélés aux âges et présentent une variabilité quasi constante d'environ 1 à 2.10⁻⁴. Une lacune est clairement visible pour les âges entre 3,1 et 2,9 milliards d'années liée à l'absence de roches de ces âges dans ma collection. Cependant les valeurs des rapports 176 Hf/ 177 Hf (et des ε_{Hf}) semblent globalement chondritiques à légèrement supra-chondritiques avec quelques valeurs extrêmes sub-chondritiques (-14,6 unités d'epsilon) à très suprachondritiques (9,9 unités d'epsilon). Il ne semble pas y avoir d'augmentation visible des ε_{Hf} initiaux en fonction de leurs âges mais plutôt une constance autour de valeurs légèrement supra-chondritiques ce qui se traduit par une distribution horizontale dans la Figure III-1b avec des valeurs variant principalement de -1 à +5 unités d'epsilon. Les valeurs positives extrêmes quant à elles montrent une décroissance de 4 Ga jusqu'à 3,6 Ga puis une augmentation jusqu'à 3.3 Ga puis une décroissance jusqu'à 2,6 Ga et finalement une croissance jusqu'à 2,5 Ga où s'arrête notre enregistrement. La limite inférieure des ¹⁷⁶Hf/¹⁷⁷Hf (et des ε_{Hf}) ne suit pas de logique définissable comme la partie supérieure. Aucune relation n'est visible entre les valeurs des 176 Hf/ 177 Hf (ainsi que celles des ε_{Hf}) et une quelconque répartition géographique. Au contraire, la gamme de variation de ces paramètres est relativement similaire dans la majorité des cratons à l'échelle de notre échantillonnage.

Aucune différence n'est visible lorsque l'on présente uniquement les TTG dont les zircons ont été analysés ni lorsque l'on retire de l'enregistrement les échantillons ayant des populations de zircons ne reproduisant pas la composition de la roche totale dans une gamme de variation raisonnable ($\pm 5.10^{-5}$ sur le rapport ¹⁷⁶Hf/¹⁷⁷Hf initial) ou simplement ayant des populations complexes. Cependant, certaines valeurs très négatives disparaissent en éliminant ces TTG visiblement plus complexes.

Figure III-3 : résultats des analyses isotopiques Lu-Hf pour les TTG. La partie a) présente les rapports ¹⁷⁶Hf/¹⁷⁷Hf initiaux en fonction de l'âge utilisé pour les calculer alors que la partie b) montre les ε_{Hf} initiaux aussi en fonction de l'âge des TTG. Les lignes noires continues illustrent l'évolution au cours du temps du CHUR (Chondritic Uniform Reservoir). Les parties grises correspondent à une zone interdite où se positionneraient des échantillons ayant un rapport ¹⁷⁶Hf/¹⁷⁷Hf inférieure à l'initial des chondrites calculé avec la constante de désintégration terrestre (1,867.10⁻¹¹, Soderlünd et al, 2004).

9. Zircons

Les résultats de l'étude des zircons sont, dans un premier temps, présentés séparément pour les analyses par solution et par ablation-laser puis elles sont ensuite comparées. Les détails techniques sur les analyses des zircons sont présentés dans le chapitre II.

а I : Zircons analysés par solution avec Th/U < 0,15 et > 1 : Zircons analysés par solution avec Th/U entre 0,15 et 1 0.2814 0.2812 0.2810 ¹⁷⁶Hf/¹⁷⁷Hf_{in} 0 2808 0.2806 0.2804 0.2802 CHUR 0.2800 0.2798 0.2796 2200 2400 2600 2800 3000 3200 3400 4400 3600 3800 4000 4200

9.1. Analyses en solution

Age Pb-Pb (Ma)

Figure III-4 : résultats des analyses des zircons par solution avec en a) les rapports ¹⁷⁶Hf/⁴⁷⁷Hf initiaux en fonction des âges ²⁰⁷Pb/²⁰⁶Pb mesurés par solution et en b) leurs ε_{Hf} initiaux. Les lignes noires ainsi que les parties grises sont les mêmes que dans la Figure III-1. Les zircons représentés par des losanges bleus possèdent des rapports Th/U (calculés à partir de leurs rapports ²⁰⁸Pb/²⁰⁶Pb) compris entre 0,15 et 1. Les losanges verts sont des zircons avec des rapports Th/U supérieurs à 1 ou inférieurs à 0,15.

Les zircons analysés par solution (Fig. III-2) ont pour la majorité des valeurs de 176 Hf/ 177 Hf (et d' ϵ_{Hf}) sub-chondritiques et présentent une gamme de variation très importante pour un âge donné. Les valeurs les plus extrêmes en terme d'_{Hf} sont -25,1 et +11,5. Aucune tendance générale n'est visible mis à part un éventail fruste s'ouvrant sur les âges les plus jeunes. Cependant des corrélations positives semblent visibles dans la Figure III-2b correspondant à des lignes horizontales dans la Figure III-2a illustrées plus spécifiquement dans les encarts de ces figures. Ces tendances dans l'espace ϵ_{Hf} en fonction de l'âge semblent globalement parallèles à la pente de la limite supérieure de la zone interdite, c'est-à-dire correspondraient à un rapport Lu/Hf égal ou très proche de zéro, ce qui est cohérent avec leur horizontalité dans la Figure III-2a. De plus le sommet de ces tendances (valeur d' ϵ_{Hf} la plus élevée) se situe toujours dans un intervalle de -1 à +5 epsilons, sans relation avec l'âge de ces maximums, ce qui correspond à la gamme de variation principale des TTG.

Nous avons filtré les zircons sur la base de leur rapport Th/U (calculés à partir de leur ²⁰⁸Pb/²⁰⁶Pb) en ne gardant que les zircons ayant des valeurs comprises entre 0,15 et 1 puisque cette gamme correspond principalement à des valeurs magmatiques (Hoskin et Schaltegger, 2003). Ces zircons filtrés sont représentés par des losanges bleus dans la Figure III-2 et ne font en rien disparaître les tendances ni ne réduisent la gamme de variation des compositions des zircons.

Aucune lacune d'âge n'est clairement visible avec les analyses par solution. De plus, trois grains très vieux, présentant des barres d'erreurs importantes, se placent loin des valeurs chondritiques et deux d'entre eux se situent très près de la zone interdite. Ces zircons sont suspects puisque leurs barres d'erreurs (> 4 unités d'epsilon) dépassent de loin les valeurs obtenues habituellement (< 2 unités d'epsilon). De plus, ces zircons proviennent de deux TTG du Nuvvuagittuq et d'un gneiss d'Acasta et étaient très petits ; à la limite de la quantité mesurable avec précision sur le MC-ICP-MS (c'est-à-dire environ 10 ng d'Hf). D'autres grains analysés montrent qu'il existe une cohérence pour les isotopes de l'Hf au sein des populations de zircons de ces deux échantillons du Nuvvuagittuq et de celui d'Acasta. Ces populations ont des compositions isotopiques en Hf différentes des 3 zircons décrits plus haut et par conséquent les données de ces derniers sont peu fiables.

9.2. Analyse par ablation-laser

Les zircons analysés par ablation-laser sont présentés dans les Figures III-3a et b, et les données numériques (comme pour tous les autres résultats) sont présentées sous forme de tableaux dans l'Annexe B.

Figure III-5 : Résultats des analyses de zircons par ablation-laser. La partie a) illustre les rapports ¹⁷⁶Hf^{A77}Hf initiaux alors que la partie b) présente les ε_{Hf} initiaux, le tout en fonction de leurs âges ²⁰⁷Pb/²⁰⁶Pb aussi mesurés par ablation-laser. Les losanges violets correspondent aux zircons concordants (c'est-à-dire que la différence entre les âges ²⁰⁷Pb/²⁰⁶Pb et ²³⁸U/²⁰⁶Pb n'excède pas 5%) alors que les losanges rouges correspondent aux zircons discordants. Les lignes noires ainsi que les parties grises sont les mêmes que dans la Figure III-1.

Les rapports ¹⁷⁶Hf/¹⁷⁷Hf varient beaucoup pour un âge donné même si une anticorrélation est tout de même visible autour des valeurs du CHUR (Chondritic Uniform Reservoir). Cependant l'amplitude des variations des ¹⁷⁶Hf/¹⁷⁷Hf, le long de cette tendance, est relativement élevée (3 à 4.10^{-4} unités). Les ϵ_{Hf} initiaux sont par conséquent très dispersés dans la figure III-3b puisque les valeurs maximale et minimale obtenues sont respectivement +22,6 et -34,3. Comme pour les analyses en solution, des tendances horizontales sont visibles dans la Figure III-3a, transposées en corrélations positives dans la Figure III-3b et parallèles à la zone interdite, notamment la plus belle partant d'une valeur sub-chondritique (\approx -2) à 4 Ga pour atteindre une valeur d' ϵ_{Hf} d'environ -27 à 3,1 Ga.

Les zircons concordants lorsqu'ils sont considérés seuls ne montrent pas de tendances (ou très limitées), ces dernières étant liées en grande majorité aux zircons discordants. Les zircons plus vieux que 3,4 milliards d'années possèdent pour la majoritée des _{Hf} initiaux négatifs entre -2 et -7 même si un petit paquet correspondant au Groenland est parfaitement chondritique. La majorité des zircons négatifs concordants et plus âgés que 3,4 Ga sont des zircons extraits des gneiss d'Acasta. Les zircons plus jeunes que 3,4 Ga montrent des ε_{Hf} initiaux généralement positifs entre 0 et +5 même si un petit nombre sont négatifs (mais pas indépendants des grandes tendances) jusqu'à -15 unités d'epsilon.

Une lacune d'âge très importante est bien visible entre 3,1 et 2,9 milliards d'années, surtout pour les valeurs proches du CHUR. Un groupe isolé de 5 zircons plus âgés que 3,6 Ga (dont un seul est concordant) présente des ε_{Hf} initiaux positifs et supérieurs à +5. Aucune relation entre eux n'est visible cependant certains d'entre eux semblent se trouver sur le prolongement de certaines des grandes tendances observées. C'est le cas du zircon d'Acasta (AG09014-3) âgé de 4,2 Ga qui semblerait intersecter la grande tendance décrite plus haut (ε_{Hf} de -2 à 4 Ga et -27 à 3,1 Ga) et du zircon âgé de 3,8 Ga qui pourrait se trouver sur le prolongement d'une tendance partant de 0 à 3,5 Ga pour arriver à -17 à 2,9 Ga. Ces zircons viennent de TTG d'Acasta (3,96 Ga), d'Antarctique (3,93 Ga), du Groenland (3,8 Ga) du Swaziland (3,64 Ga) et de Finlande (2,9 Ga) dont d'autres zircons ont été analysés. Ces derniers donnent des résultats bien différents du groupe isolé (soit en terme d'âge, soit en terme des isotopes de l'Hf) mais cohérents au sein de chaque échantillon. Ces 5 zircons isolés sont donc suspects, un ou les deux systèmes isotopiques étudiés serait différent de la majorité de leur population respective.

Une certaine quantité de zircons analysés par ablation-laser ont été uniquement datés et sont présentés dans l'Annexe E. Ces zircons n'apportent cependant pas d'informations supplémentaires par rapport à ceux aussi analysés pour les isotopes de l'Hf si ce n'est qu'ils permettent d'augmenter la précision statistique sur l'âge probable de leur roche hôte.

9.3. Comparaison solution et ablation-laser

Pour comparer ces deux techniques, nous allons d'abord considérer les résultats d'un point de vue global en prenant en compte la totalité des analyses faites par solution et la totalité faites par ablation-laser. Ensuite, nous rentrerons plus dans les détails en nous focalisant sur 41 zircons en particulier car ceux-ci ont d'abord été analysés par ablation-laser (U-Pb et Lu-Hf) puis extraits de leurs plots pour être dissous et finalement analysés par solution (Pb et Lu-Hf). Cette approche permet une comparaison beaucoup plus rigoureuse des deux techniques employées ce qui (à ma connaissance) n'a jamais été fait jusqu'à lors.

En comparant les figures III-2 et III-3, il semble que les données acquises en solution et par ablation-laser montrent une certaine cohérence. Des tendances (corrélations positives pour les $\epsilon_{\rm Hf}$ et des distributions horizontales pour les $^{176}{\rm Hf}/^{177}{\rm Hf}$) similaires sont visibles dans les deux cas, et de plus, les points proches des valeurs chondritiques (entre -1 et +5 unités d'epsilon) pour les analyses en solution sont relativement semblables aux zircons concordants des analyses in-situ (ablation-laser), même si ces derniers sont beaucoup plus nombreux que les zircons en solution.

Figure III- 6 : Planche présentant 10 zircons clés analysés à la fois par ablation-laser et par solution. Cette figure contient conjointement les images en cathodo-luminescence, les âges mesurés (par ablation-laser et solution) et les rapports isotopiques mesurés (par ablation-laser et solution) de ces zircons. Crédit photographique : Martin GUITREAU.

Les grains sélectionnés pour être extraits de leurs plots, afin d'avoir des mesures insitu et en solution, l'ont été sur les critères suivants. Les images en cathodo-luminescence (CL) étaient simples (belles zonations magmatiques visibles et sans surcroissances évidentes), leurs âges U-Pb étaient concordants et relativement homogènes à l'échelle du minéral et les mesures des isotopes de l'Hf semblaient bonnes (c'est-à-dire que l'erreur sur les mesures étaient raisonnables donc de l'ordre de quelques 10⁻⁵ sur le rapport ¹⁷⁶Hf/¹⁷⁷Hf et, pour certains grains, les isotopes de l'Hf étaient cohérents entre deux analyses effectuées sur le même minéral). Les mesures étant faites par ablation-laser, il nous est possible de suivre l'évolution du signal (en Hf mais aussi en Pb) pendant que le laser creuse dans le zircon et ainsi écarter ceux qui sont complexes ou montrent clairement des domaines de croissances différents.

La Figure III-4 montre les images en cathodo-luminescence de 10 zircons clés, l'emplacement des spots U-Pb et Hf (lieux d'ablation par le laser) lors des analyses in-situ ainsi que les valeurs obtenues pour les âges et les rapports ¹⁷⁶Hf/¹⁷⁷Hf mesurés à la fois par ablation-laser et par solution. Cette figure illustre clairement le fait que les rapports isotopiques de l'Hf sont généralement reproductibles dans les barres d'erreurs mais que les âges sont systématiquement, et très souvent de façon significative (c.-à-d. au-delà des barres d'erreurs), plus jeunes pour les analyses en solution que pour celles par ablation-laser. Il n'y a par ailleurs aucun lien direct entre l'âge des zircons et les différences observés entre les rapports ¹⁷⁶Hf/¹⁷⁷Hf mesurés. Les grains sont relativement simples et montrent des zonations magmatiques sauf pour le grain appelé « Acasta 1-1 » qui est cependant très homogène pour les isotopes de l'Hf et présente un âge légèrement plus jeune en solution par rapport à l'ablation-laser.

Les grains CG-24-1 et 060010-2 paraissent quelque peu complexes au vue des images CL, mais le premier est très cohérent en ce qui concerne l'Hf alors que le second présente une différence de 15,6.10⁻⁵ sur le rapport ¹⁷⁶Hf/¹⁷⁷Hf équivalent à 5,6 unités d' $\epsilon_{\rm Hf}$.

La Figure III-5 présente la totalité des zircons analysés à la fois par solution et par ablation-laser. Les âges (Fig. III-5a) et les rapports ¹⁷⁶Lu/¹⁷⁷Hf (Fig. III-5b) diffèrent significativement entre la méthode d'analyse par solution et celle par ablation-laser alors que les rapports ¹⁷⁶Hf/¹⁷⁷Hf mesurés (Fig. III-5c) sont très cohérents entre les deux techniques. De plus, les âges ²⁰⁷Pb/²⁰⁶Pb ainsi que les rapports ¹⁷⁶Lu/¹⁷⁷Hf sont systématiquement plus élevés avec la méthode par ablation-laser par rapport à celle par solution (Fig. III-5a et III-5b). Les ¹⁷⁶Hf/¹⁷⁷Hf initiaux calculés (Fig. III-5d) sont cependant cohérents entre les 2 techniques, au même titre que ceux mesurés, car les rapports ¹⁷⁶Lu/¹⁷⁷Hf sont très faibles dans les zircons et

par conséquent le rapport ¹⁷⁶Hf/¹⁷⁷Hf ne change quasiment pas avec le temps. A l'inverse, les âges ayant une forte influence sur le rapport ¹⁷⁶Hf/¹⁷⁷Hf du CHUR (car le ¹⁷⁶Lu/¹⁷⁷Hf des chondrites est relativement élevé puisque valant 0,0336 selon Bouvier et al, 2008), les valeurs des $\epsilon_{\rm Hf}$ actuels des zircons analysés entre les deux techniques sont corrélés mais pas kes _{Hf} initiaux.

Figure III-7 : Comparaison des analyses par ablation-laser et par solution selon trois paramètres : les âges calculés à partir des ²⁰⁷Pb/²⁰⁶Pb mesurés en a), les rapports ¹⁷⁶Lu/^{A77}Hf mesurés en b), les rapports ¹⁷⁶Hf/^{A77}Hf mesurés en c) et les rapports ¹⁷⁶Hf/^{A77}Hf initiaux calculés en d). Les quatre graphes sont construits de la même façon et présentent les valeurs des paramètres par solution sur l'axe des ordonnées et ceux par ablation-laser sur l'axe des abscisses. Il ressort clairement de ces graphiques que les rapports ¹⁷⁶Hf/^{A77}Hf sont fortement cohérents entre les deux méthodes d'analyses alors que les âges ²⁰⁷Pb/²⁰⁶Pb et les rapports ¹⁷⁶Lu/^{A77}Hf ne le sont pas. Cependant, les rapports ¹⁷⁶Lu/^{A77}Hf des zircons étant très faibles, les rapports ¹⁷⁶Hf/^{A77}Hf mesurés et donc les données par ablation-laser et par solution sont toujours corrélées. Cette cohérence implique aussi que les corrections isobares de l'¹⁷⁶Hf (¹⁷⁶Lu et ¹⁷⁶Yb), critiques dans le cas de l'ablation-laser, sont bien faîtes.

Par exemple, le zircon « Acasta 1-1 » donne des rapports ¹⁷⁶Hf/¹⁷⁷Hf extrêmement cohérents puisque variant de 3.10^{-6} , mais des ¹⁷⁶Lu/¹⁷⁷Hf très différents (0,00184 pour l'ablation-laser contre 0,00067 pour la solution) (Tableau B-6 dans l'Annexe B), ce qui induit une différence de 8,9.10⁻⁵ sur les rapports ¹⁷⁶Hf/¹⁷⁷Hf initiaux (équivalente à 3 epsilons sur l' $\epsilon_{\rm Hf}$ initial). Le zircon 4003_1 (Tableau B-6) possède un rapport ¹⁷⁶Lu/¹⁷⁷Hf déterminé par ablation-laser (0,00063) quasiment deux fois plus grand que celui déterminé par solution

(0,00032), ce qui résulte en une différence entre les rapports ¹⁷⁶Hf/¹⁷⁷Hf initiaux (calculés à partir de l'âge de 3375 Ma déterminé par ablation-laser) de 1,9.10⁻⁵ contre 2.10⁻⁶ pour les rapports mesurés (actuels). Cependant, la différence sur les rapports initiaux équivaux à 0,7 unités d'epsilon ce qui est négligeable car inférieur à l'incertitude sur les mesures in-situ et de l'ordre de la reproductibilité externe des mesures en solution. Pourtant, les âges diffèrent d'approximativement 113 millions d'années entre les deux techniques d'analyse (pour ce même zircon) ce qui montre la très faible quantité d'¹⁷⁶Hf radiogénique accumulée depuis environ 3,4 Ga (due au très faible rapport ¹⁷⁶Lu/¹⁷⁷Hf). Le dernier exemple, AG09-032-2, possèdent une différence de 2,6.10⁻⁵ pour les rapports ¹⁷⁶Hf/¹⁷⁷Hf mesurés, de 318 Ma pour les âges déterminés et de 0,00015 pour les ¹⁷⁶Lu/¹⁷⁷Hf mesurés. Les rapports ¹⁷⁶Hf/¹⁷⁷Hf initiaux calculés sont 0,280377 pour l'ablation-laser contre 0,280365 pour la solution donc diffèrent de seulement 1,2.10⁻⁵ équivalent à 0,4 unités d'epsilon. Cependant les différences entre _{Hf} initiaux calculés pour les âges mesurés sont significatives (> 2 unités d'epsilon) puisque le CHUR à partir duquel les échantillons sont normalisés est très sensible à l'âge.

Pour conclure, ces deux techniques sont parfaitement compatibles en ce qui concerne la détermination des rapports ¹⁷⁶Hf/¹⁷⁷Hf, cependant les âges Pb-Pb et les rapports ¹⁷⁶Lu/¹⁷⁷Hf diffèrent ce qui n'a pas d'influence majeure sur le calcul des ¹⁷⁶Hf/¹⁷⁷Hf initiaux mais qui est complètement critique pour les $\epsilon_{\rm Hf}$ initiaux.

10. Comparaison TTG/Zircons

Pour comparer les TTG et les zircons, j'ai choisi de présenter les choses d'un point de vue global puis de montrer des exemples types de comportement entre zircon et roche hôte. La Figure III-6 montre les rapports isotopiques ¹⁷⁶Hf/¹⁷⁷Hf initiaux des zircons en fonction de celui de leur roche hôte pour les grains analysés par ablation-laser (Fig. III-6a) et par solution (Fig. III-6b). Il apparait clairement un bon accord de premier ordre entre les TTG et leurs zircons puisque les données s'alignent principalement selon une droite de pente 1 (avec son ordonnée à l'origine valant 0) et ceci pour les deux techniques employées indiquant en plus une bonne cohérence entre elles (comme démontré dans la section précédente). De plus, la variabilité autour de cette tendance correspond à une barre d'erreur typique très raisonnable équivalente à plus ou moins une unité d' ε_{Hf} . Cependant, les analyses par ablation-laser présentent une meilleure reproductibilité des données pour les vieux zircons (>3.4 Ga), ce qui est très net dans les échantillons d'Acasta (en dessous de l'âge modèle 4 Ga). Certains zircons

montrent cependant des compositions différentes de leur roche hôte (même si généralement une majeure partie d'une population est en accord avec sa roche totale et reproduit ses valeurs) ce qui provoque une dispersion horizontale dans la Figure III-6a surtout visible en solution (Fig. III-6b). Ces dispersions sont plus ou moins prononcées et sont généralement associées aux zircons montrant des structures internes parfois complexes visibles en cathodoluminescence ou présentant des surcroissances (que l'on a pu éviter en in-situ mais que l'on n'a probablement pas totalement détruites par abrasion pour les analyses en solution). Les analyses par ablation-laser de cette Figure III-6 correspondent uniquement aux grains ayant des âges U-Pb discordants de moins de 5%, donc considérés comme concordants.

Figure III-8 : relation entre les zircons (abscisse) et leurs TTG hôtes (ordonnée) vis à vis des rapports ¹⁷⁶Hf/⁴⁷⁷Hf initiaux. La partie a) correspond aux analyses faîtes par ablation-laser et la partie b) par solution. Les chiffres le long de la droite 1:1 correspondent aux âges modèles chondritiques. Les zircons présentés dans les graphes sont ceux concordants pour le laser et ceux avec des Th/U entre 0,15 et 1 pour la solution.

L'accord entre roche totale et zircon est peut-être un peu plus net par ablation-laser que par solution sachant que les zircons en solution présentés dans la Figure III-6 sont ceux filtrés pour leurs rapports Th/U. Cependant, comme vu plus haut, cette correction ne provoque aucun changement majeur dans les données contrairement à l'élimination des zircons discordants. En ce qui concerne ces derniers (non présentés dans la Figure III-6a), ils montrent des dispersions horizontales très semblables à celles visibles pour les analyses en solution. Un seul échantillon ne présente aucune cohérence entre zircons et roches totales visible avec les deux techniques même si cette fois la solution produit des données plus reproductibles. Il s'agit du groupement avec sa roche totale ayant un rapport ¹⁷⁶Hf/¹⁷⁷Hf initial d'environ 0,2811 et une population de zircons par laser entre 0,2806 et 0,2809 et entre 0 ,2808 et 0,2810 en solution. Cette roche est l'échantillon PG-25 (voir Figure III-7) du craton du

Dharwar, en Inde, et possède des zircons d'âges variant entre 3,4 Ga (concordant) et 2,6 Ga (concordant) et de réelles différences existent entre ces deux populations puisque les zircons les plus vieux sont toujours associés aux rapports ¹⁷⁶Hf/¹⁷⁷Hf les moins radiogéniques. Les âges intermédiaires (ex : 2,8 Ga) sont ceux qui présentent le plus de discordance. Le rapport ¹⁷⁶Lu/¹⁷⁷Hf apparent calculé à partir de l'évolution des rapports ¹⁷⁶Hf/¹⁷⁷Hf entre les deux âges (700 Ma) équivaut à 0.015 ce qui est différent de celui de la roche puisqu'il vaut 0.0042. Cet échantillon est donc complexe par rapport à la majorité des autres TTG de ma collection qui semblent relativement simples vis-à-vis du système Lu-Hf. Cependant, les échantillons 78285007 (Fig. III-7) et 78582013 d'Enderby land en Antarctique sont eux-aussi complexes puisque les zircons présentent des âges et des compositions isotopiques extrêmement variables même si certains reproduisent les compositions de leur roche hôte. Certains échantillons à l'inverse montrent une très bonne cohérence entre roche et zircons qu'il s'agisse d'analyses par solution ou par ablation-laser. Les échantillons 030013 et H412 en sont de bons exemples et sont présentés dans la Figure III-7. D'autres échantillons présentent encore un comportement différent puisqu'ils sont cohérents pour les ¹⁷⁶Hf/¹⁷⁷Hf initiaux mais pas pour les âges ce qui peut parfois être non négligeables comme illustré dans la Figure III-8. Les plus beaux exemples sont les échantillons d'Acasta AG09-008gt (Fig. III-8A) et AG09-016 (Fig. III-8B) dans lesquels une différence d'âge d'environ 1000 millions d'années existe alors que les rapports ¹⁷⁶Hf/¹⁷⁷Hf initiaux ne varient que de 5.10⁻⁵ à 8.10⁻⁵ (équivalents respectivement à 1,8 et 2,8 ε_{Hf}) ce qui est compris dans la barre d'erreurs des analyses in-situ (Fig. III-8a). Les ε_{Hf} initiaux calculés pour ces zircons s'alignent donc sur une tendance correspondant à une perte de Pb avec un rapport ¹⁷⁶Lu/¹⁷⁷Hf apparent virtuellement indistinguable de celui des zircons (Fig. III-8b). Cette notion de perte de plomb est renforcée par les diagrammes Terra-Wasserburg (Fig. III-8c) où il apparaît clairement des discordia (relations linéaires) entre les rapports ²³⁸U/²⁰⁶Pb et ²⁰⁷Pb/²⁰⁶Pb mesurés caractéristiques de perturbation du Pb. Plus le degré de discordance augmente et plus les rapports ²⁰⁷Pb/²⁰⁶Pb mesurés diminuent et s'écartent de l'intercepte supérieur entre discordia et concordia, celui-ci indiquant l'âge de cristallisation magmatique du zircon. Il s'en suit la détermination d'un âge calculé discordant différent de l'âge réel du zircon. Ce phénomène de perte de Pb est aussi visible par solution comme en témoigne l'échantillon Stp (Steynsdorp, Afrique du Sud) (Fig. III-7) puisque la gamme de variation des âges est de 700 Ma pour une variation des rapports ¹⁷⁶Hf/¹⁷⁷Hf initiaux de 5.10⁻⁵. Ces dispersions d'âges créent des tendances subhorizontales (dépendantes des rapports ¹⁷⁶Lu/¹⁷⁷Hf des zircons) dans le diagramme ¹⁷⁶Hf/¹⁷⁷Hf initiaux en fonction de l'âge, et des corrélations positives, dans l'espace ε_{Hf} en fonction de l'âge, de pente

correspondant au rapport moyen ¹⁷⁶Lu/¹⁷⁷Hf des zircons (0,0004) avec plus ou moins de variation selon la dispersion des valeurs isotopiques de l'Hf (voir Fig. III-8b). Les analyses insitu permettent de mettre en avant ce comportement illustré dans la Figure III-8 à travers quatre des plus beaux exemples de mes TTG.

Figure III-7 : Graphes présentant les rapports ¹⁷⁶Hf/¹⁷⁷Hf initiaux en fonction de l'âge utilisé pour les calculer pour les TTG et leurs zircons, analysés par ablation-laser et par solution. Cinq échantillons illustrant des comportements types sont présentés. PG-25 (Dharwar, Inde) est visiblement complexe, la roche ne présentant pas de composition isotopique en Hf cohérente avec les zircons analysés. Cependant une partie des zircons (les plus jeunes) sont relativement cohérents entre les deux techniques à la fois en âge et en ¹⁷⁶Hf^{A77}Hf. L'échantillon 78285007 (Terre d'Enderby, Antarctique) est aussi complexe mais différemment car une partie des zircons reproduisent la composition isotopique de la roche mais une autre partie varient à la fois au dessus et au-dessous avec des âges variant de façon relativement continue de 3,9 Ga à 2,4 Ga sans logique définissable. Stey1408 et Stp (Steynsdorp, Afrique du Sud) correspondent au pluton et présentent à première vue une certaine complexité liée au fait que les zircons analysés par laser reproduisent bien les âges mais seuls les zircons concordants reproduisent le ¹⁷⁶Hf/¹⁷⁷Hf initial de la roche. À l'inverse, les zircons analysés par solution reproduisent assez bien la composition isotopique en Hf de la roche alors que les âges varient significativement. Les deux derniers échantillons 030013 (Amitsoa, Groenland) et H412 (Carélie, Finlande) sont de très bons exemples de comportements parfaits car les zircons reproduisent à la fois le ¹⁷⁶Hf/¹⁷⁷Hf initial et l'âge de la roche avec des barres d'erreurs raisonnables (respectivement inférieures à ± 1.10^{-4} et ± 50 Ma).

Figure III-8 : Illustration intégrée ¹⁷⁶Hf/⁴⁷⁷Hf, ε_{H5} ²⁰⁷Pb/²⁰⁶Pb et ²³⁸U/²⁰⁶Pb de certains comportements types de mes TTG. Les Figures a) illustrent des âges variant entre zircons possédant cependant des ¹⁷⁶Hf/⁴⁷⁷Hf initiaux identiques dans les barres d'erreurs. Les Figures b) illustrent cet effet dans un diagramme ε_{Hf} en fonction des âges mesurés alors que les Figures c) montrent des diagrammes Terra-Wasserburg dans lesquels de nettes discordia sont visibles. Les échantillons A, B, C et D sont respectivement AG09-008gt et AG09-016 du complexe gneissique d'Acasta au Canada, SV-11 de la région du Sete Voltas au Brésil et 40-03 du Sharyzhalgay uplift en Sibérie.

En général, la plupart des TTG contiennent des populations de zircon avec les mêmes compositions isotopiques en Hf mais présentent des âges parfois variables associés aux degrés de discordance U-Pb. Même si certaines roches montrent des complexités évidentes (âges et 176 Hf/¹⁷⁷Hf variables), une partie de ces populations contient des zircons ayant le même 176 Hf/¹⁷⁷Hf et reproduisant celui de leur roche hôte. Le résultat de ces complexités induit la formation de corrélations positives dans un diagramme $\epsilon_{\rm Hf}$ initial en fonction de l'âge mesuré du zircon. La grande majorité de nos TTG sont situent entre les cas de figure exemplifiés par les échantillons Stp/Stey1408 et 030013/H412 (Fig. III-7) et 8 échantillons peuvent vraiment être écartés comme c'est le cas pour PG-25 et 78285007 (Fig. III-7).

11. Comparaison avec la littérature

11.1. Base de données

Les Figures III-9 et III-10 correspondent à une compilation de données sur zircons de la littérature que j'ai rassemblées et ne contiennent pas les données acquises dans ce travail de thèse. Cette base de données est composée de 9036 zircons dont la grande majorité (91%) sont détritiques (provenant de sédiments ou méta-sédiments détritiques) et par conséquent la roche hôte (dans laquelle ils se sont formés) n'est pas connue. Les articles dont ont été tirées ces données sont : Amelin et al. (1999), Amelin et al. (2000), Bell et al. (2011), Belousova et al. (2009), Belousova et al. (2010), Blichert-Toft and Albarède (2008), Choi et al. (2006), Davis et al. (2005), Gerdes and Zeh (2009), Goodge and Vervoort (2006), Harrison et al. (2008), Hiess et al. (2009), Iizuka et al. (2009), Iizuka et al. (2008), Luo et al. (2008), Mueller et al (2008), Kemp et al. (2009), Kemp et al. (2010), Liu et al. (2008), Polat et al. (2004), Vervoort and Blichert-Toft (1999), Vervoort et al. (1996), Wang et al. (2007), Zeh et al. (2008), Zeh et al. (2009), Zeh et al. (2010), Zeh et al. (2011), Zhang et al. (2006), and

Zheng et al. (2007). Les Figures III-9 et III-10 présentent toutes les deux les 176 Hf/ 177 Hf et les ϵ_{Hf} initiaux en fonction des âges des zircons de la littérature sachant que la première correspond à la période de l'Archéen uniquement alors que la deuxième à l'ensemble de l'histoire de la Terre. Les zircons ont été filtrés de telle façon que les zircons discordants de plus de 5% ont été rejetés ainsi que ceux présentant des rapports Th/U inférieurs à 0,15 ou supérieurs à 1. Ce filtre a cependant été appliqué uniquement lorsque les informations étaient disponibles.

La Figure III-9a montre les rapports ¹⁷⁶Hf/¹⁷⁷Hf initiaux de zircons détritiques provenant de roches générés à différentes périodes de l'Archéen. Ces valeurs évoluent à proximité du réservoir chondritique uniforme (CHUR) en quatre groupes principaux, temporellement différents. Le premier groupe part d'environ 4,4 Ga et s'arrête à 3,9 Ga alors que le second démarre à 3,8 Ga et se termine vers 3,5 Ga. Le troisième commence aux alentours de 3,4 Ga et fini à 2,9 Ga alors que le quatrième démarre à 2,9 Ga et se termine vers 2,3 Ga. Le premier groupe est majoritairement groupé autour de valeurs sub-chondritiques, le second est très majoritairement chondritique, le troisième et chondritique à sub-chondritique et le quatrième est chondritique avec beaucoup de variabilité autour de ces valeurs ($\pm 2.10^{-4}$). La variabilité maximale des trois premiers groupes est de $\pm 1.10^{-4}$ et il apparaît clairement en leur sein que les âges les plus vieux correspondent aux valeurs les plus élevées

Quelques valeurs très radiogéniques isolées sont aussi visibles dans le premier groupe entre 4,4 et 4,1 Ga. Le quatrième groupe peut éventuellement être découpé en deux ; de 2,9 Ga à 2,5 Ga et 2,5 à 2,3 Ga avec un recouvrement assez important cependant entre ces deux sous-groupes.

Le diagramme ε_{Hf} en fonction de l'âge mesuré des zircons (Fig. III-9b) permet de voir foncièrement les mêmes choses qu'avec les ¹⁷⁶Hf/¹⁷⁷Hf initiaux (cependant plus dispersées grâce à la normalisation) mais il ressort plus clairement que ces groupes contiennent tous des corrélations positives plus ou moins prononcées et relativement semblables. Leurs pentes ne différent pas radicalement entre elles et sont compatibles avec celle de la bordure de la zone interdite. Cependant, la densité des points créent beaucoup de bruit rendant la détermination de ces tendances quelque peu subjective. Associées à ces quatre groupes, cinq lacunes temporelles correspondants à des valeurs chondritiques à supra-chondritiques sont visibles (avant 4,2 Ga, de 4 à 3,9 Ga, de 3,6 à 3,5 Ga ; de 3,1 à 3 Ga ; 2,4 à 2,3 Ga). Si l'on fait abstraction des valeurs très élevées avant 3,8 Ga, les ε_{Hf} les plus élevées semblent augmenter légèrement jusqu'à 2,5 Ga et les valeurs les plus basses diminuer aussi jusqu'à cette même période. Chaque groupe démarre avec des valeurs très proches du CHUR ou suprachondritiques et une partie s'en écarte en formant une corrélation positive.

Figure III-9 : compilation des rapports ¹⁷⁶Hf/¹⁷⁷Hf (a) et des ε_{Hf} initiaux (b) de la littérature pour l'Hadéen, l'Archéen et le protérozoïque inférieur. La ligne noire continue représente l'évolution du réservoir CHUR et le triangle grisé est la zone interdite définie précédemment.

La Figure III-10 prolonge l'enregistrement détritique jusqu'à l'actuel et permet d'avoir une vision globale de l'histoire de la Terre. Les observations faîtes sur la Figure III-9 (zoom de la III-10 sur la période 4,56 Ga à 2,2 Ga) sont bien visibles même si l'échelle réduit la dispersion des données. D'un point de vue global, les valeurs des ¹⁷⁶Hf/¹⁷⁷Hf initiaux se

groupent relativement uniformément autour du CHUR avec une variabilité de plus en plus importante ($\pm 1.10^{-4}$ pour l'Archéen à $\pm 3.10^{-4}$ au Phanérozoïque) sauf entre 4,1 et 3,9 Ga où la majorité est sous le CHUR et entre 1,4 et 1,3 Ga où la majorité des points sont au-dessus du CHUR. Les valeurs des ϵ_{Hf} plus élevées augmentent de façon linéaire à légèrement hyperbolique jusqu'à 800 Ma où le maximum est atteint (+20) et ensuite diminuent jusqu'à atteindre +17 aujourd'hui.

Figure III-10 : compilation des rapports ¹⁷⁶ $Hf/^{177}Hf$ (a) et des ε_{Hf} initiaux (b) de la littérature pour l'intégralité de l'histoire de la Terre. La ligne noire continue représente l'évolution du réservoir CHUR et le triangle grisé la zone interdite.

Les tendances vues sur le début de l'histoire de la Terre sont toujours bien visibles et semblent disparaitre après 2,2 Ga et sont remplacées par des groupements de points à étalement vertical et horizontal plus ou moins prononcés. Les valeurs des ε_{Hf} les plus basses semblent ne pas avoir statistiquement changées depuis ~4,4 Ga même si des points dispersés marquent une diminution linéaire dans le prolongement de la tendance du premier groupe (4,4 à 3,9 Ga) jusqu'à 1,7 Ga après quoi plus de systématique n'est visible. Ces points très négatifs n'ont pas passés le filtre de discordance ni de Th/U car les informations n'étaient pas disponibles. Ils peuvent donc être très discordants ou avec des Th/U non-magmatiques. Deux grandes dispersion verticales des données au profit du champ des ε_{Hf} négatifs sont visibles à 2000 et 600 Ma. Ils vont de façon continue respectivement de +5 à -32 (prolongé de façon non-continue jusqu'à +30 et -42) et de +2 à -20 (prolongé de façon non-continue jusqu'à -25).

Figure III-11 : Histogramme en 2D de la base de données des zircons de la littérature. Cette représentation permet de retirer le bruit issu de la dispersion des données et de retirer les valeurs aberrantes. Les teintes sont d'autant plus claires que les champs contiennent beaucoup de points. Chaque champ coloré contient 10% des données totales.

Des domaines de composition préférentielle en ε_{Hf} sont visibles entre 1 Ga et l'actuel. Ces paquets ont des cœurs compacts et des bordures bruités résultants en le peuplement de pratiquement tout l'espace entre ces paquets ce qui crée un bruit de fond des données même si ces groupements sont bien visibles car plus peuplés en données. Cette Figure III-10b correspond donc à un éventail s'ouvrant vers des âges plus jeunes, à la fois sur le domaine positif et le négatif.

Pour essayer de réduire le bruit lié à la dispersion des points, nous avons choisis de représenter le graphe de la Figure III-10b sous forme d'histogramme 2D dans la Figure III-11. Cette figure montre des domaines de regroupement préférentiels des données à la fois en âges et en ε_{Hf} . Les maximas sont quasiment tous compris entre 0 et +5 entre 3,8 et 1 Ga excepté pour les zircons de Jack Hills, un petit paquet à -10 à 3,4 Ga et un autre petit vers -5 à 2 Ga. Après 1 Ga, un groupe (le plus jeune de tous) est retrouvé dans la gamme de 0 à +5 alors que deux autres, plus peuplés, à 700 et 350 Ma ont des valeurscd' _{Hf} autour de +10 à +12. Un petit paquet à -3 est visible autour de 800 Ma. Les dispersions verticales à 2000 et 600 Ma ont quasi-entièrement disparues ainsi que les valeurs très négatives en ε_{Hf} . Les valeurs reproductibles les plus négatives sont relativement constantes vers -8 alors que l'augmentation des valeurs les plus élevées est toujours visible même si elles correspondent à des contours de champs contenant peu de points donc statistiquement peu représentées.

11.2. Comparaison générale de cette étude (zircons et TTG) avec la littérature (base de données)

Lorsque l'on considère les données des TTG et des zircons complètes pour les comparer à l'enregistrement détritique plusieurs traits dominent. Les valeurs **en** _{Hf} initiaux obtenues pour nos TTG correspondent aux valeurs maximales visibles dans les zircons de la littérature (si l'on ne considère pas les valeurs extrêmes isolées). Les zircons extraits de nos TTG reproduisent relativement bien la distribution des zircons détritiques dans l'espace ε_{Hf} en fonction des âges (même si la littérature est beaucoup plus abondante) car les zircons ignés possèdent des ¹⁷⁶Hf/¹⁷⁷Hf initiaux semblables à leur roche hôte mais des âges souvent variables. Il ne semble donc ne pas y avoir de différences majeures, au premier ordre, entre l'enregistrement détritique et igné correspondant à mon travail de thèse. Au second ordre, il pourrait y avoir une différence dans les valeurs négatives en ε_{Hf} initiaux. D'après la comparaison entre les deux techniques d'analyses des zircons il ressort que probablement les valeurs les plus élevées en ε_{Hf} (correspondant aux âges les plus vieux) sont les plus fiables et de plus ceux sont celles qui reproduisent le mieux les valeurs obtenues pour leurs TTG hôtes. Cependant, à la vue de la Figure III-11, les TTG analysés dans cette thèse présentent une composition isotopique en Hf statistiquement plus radiogénique que les zircons de la

littérature excepté pour les groupes entre 2,8 et 2,5 Ga et entre 3,8 et 3,6 Ga, ce dernier intervalle correspondant principalement à des zircons ignés du Groenland, de Chine, d'Antarctique et du Swaziland.

12. Conclusions des résultats

Mon travail de thèse permet de voir que la majorité des zircons sont cohérents avec leur roche hôte du point de vue du système Lu-Hf. Cependant, certaines populations extraites d'un même échantillon peuvent avoir des âges variables mais que dans la majorité des cas les 176 Hf/ 177 Hf initiaux sont cohérents entre roche hôte et zircons. Ces différences d'âges induisent la détermination d' $_{\rm Hf}$ initiaux non seulement différents de ceux des TTG mais en plus qui forment des tendances dans le diagramme $\varepsilon_{\rm Hf}$ en fonction du temps. Ces dernières sont principalement constituées par les zircons discordants.

Les deux techniques d'analyse des zircons (ablation-laser et dissolution de grains individuels) ont été comparées et montrent un très bon accord en ce qui concerne la détermination des rapports ¹⁷⁶Hf/¹⁷⁷Hf initiaux. Cependant, les rapports ¹⁷⁶Lu/¹⁷⁷Hf ainsi que les ²⁰⁷Pb/²⁰⁶Pb (donc les âges) sont sensiblement différents et toujours plus élevés en in-situ que par solution. Il en résulte la détermination d' $\epsilon_{\rm Hf}$ initiaux différents entre les deux techniques alors que les ¹⁷⁶Hf/¹⁷⁷Hf initiaux sont très généralement similaires.

Mes données comparées à celles de la littérature (zircons détritiques très majoritairement) montrent un bon accord de premier ordre en ce qui concerne la distribution des données et les valeurs les plus élevées statistiquement reproductibles ($_{\rm Hf}$ entre 0 et +5). Mais seule cette dernière observation subsiste si l'on rejette les grains discordants.

Finalement, la base de données issue de la littérature bien que très bruitée montre la formation de groupements avec des âges et des ε_{Hf} initiaux préférentiels cohérents avec les TTG analysés dans cette thèse. Alors qu'une augmentation des valeurs les plus élevées au cours du temps semble visible, une constance en ce qui concerne les zones les plus peuplées de ces groupements, autour de valeurs comprises entre 0 et +3 unités d' ε_{Hf} approximativement, est aussi clairement visible. Les valeurs les plus faibles cependant n'ont pas changées depuis ~4,3 Ga et valent environ -7 unités d'epsilons.

Chapitre IV : Interprétations des analyses isotopiques et discussion

Chapitre IV : Interprétations des analyses isotopiques et discussion

La source des continents : Argument apporté par les isotopes de l'Hf dans des roches granitiques archéennes en faveur d'une origine mantellique profonde des continents.

Cette section correspond à un article qui est «*in press* » au journal *Earth and Planetary Science Letters*. Par conséquent le texte est en anglais mais la mise en page à été modifiée de l'originale pour s'harmoniser avec le reste de ce manuscrit de thèse.

Il est question de la nature de la source des continents. A travers l'analyse des TTG et de leurs zircons à l'aide du sytème isotopique Lu-Hf, nous avons observé une certaine constance au cours du temps des valeurs d' ϵ_{Hf} des TTG ce que l'on retrouve dans le reste de l'hisoire de la Terre (post-Archéen) si l'on traite les données des zircons détritiques de façon statistique. Nous avons aussi observé une grande perturbation du système U-Pb dans les zircons Archéens contrairement au système Lu-Hf ce qui résulte en la formation de tendance dans un espace ϵ_{Hf} en fonction du temps et pourrait expliquer les valeurs négatives principalement obtenues pour les zircons Archéens ou Hadéens. Les zircons se groupent selon des pics d'âges déjà observés par d'autres auteurs et qui sont interprétés comme des épisodes de croissance accrue de la croûte ou juste majeurs. La constance des valeurs ainsi que l'épisodicité ne semble pas être en accord avec une origine des TTG dans les zones de subduction par fusion partielle d'une source appauvri mais plutôt par la fusion partielle de plateau océaniques (volumineux) probablement en contexte de subduction.

Hafnium Isotope Evidence from Archean Granitic Rocks for Deep-Mantle Origin of Continental Crust

Martin Guitreau¹, Janne Blichert-Toft^{1*}, Hervé Martin², Stephen J. Mojzsis^{1,3} and Francis Albarède¹

¹ Laboratoire de Géologie de Lyon, Ecole Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, CNRS UMR 5276, 46 Allée d'Italie, 69007 Lyon, France

² Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS UMR 6524, 5 Rue Kessler, 63038 Clermont-Ferrand, France

³ Department of Geological Sciences, University of Colorado, 2200 Colorado Avenue, Boulder, Colorado 80309-0399, USA

* Corresponding author; jblicher@ens-lyon.fr; +33 4 72 72 84 88

Accepted by Earth and Planetary Science Letters, 23 May, 2012

Keywords : TTG, zircon, Hf isotopes, continental crust, Archean, oceanic plateaus

Highlights :

- Zircons and their host whole-rocks have consistent Hf isotope compositions.
- The U-Pb system in old zircons is often disturbed, leading to spurious initial ɛHf.
- Time-integrated source Lu/Hf for TTGs and zircons has been chondritic for 4 Gy.
- Continental crust derives from the deep rather than the depleted upper mantle.
- Oceanic plateau recycling was the major crustal growth process in the past.

Abstract

Combined whole-rock and zircon MC-ICP-MS Lu-Hf isotope data are reported for a large collection of Archean granitoids belonging to typical tonalite-trondhjemite-granodiorite (TTG) suites. Our data demonstrate that the time-integrated Lu/Hf of the mantle source of TTGs has not significantly changed over the last 4 Gy. Continents therefore most likely grew from nearly primordial unfractionated material extracted from the deep mantle via rising plumes that left a depleted melt residue in the upper mantle. The deep mantle could retain its primitive relative element abundances over time because sinking plates are largely stripped barren of their oceanic and continental crust components at subduction zones; this process results in only small proportions (<15-25%) of present-day continental mass getting recycled to great depths. Zircon populations extracted from the analyzed TTGs have Hf isotopic compositions broadly consistent with those of their host whole-rocks, whereas the U-Pb system in the same grains is often disturbed, causing a discrepancy that creates spurious initial ε_{Hf} values. This problem is endemic to the Archean detrital zircon record and consistent with experimental results bearing on the relative retentivity of Hf vs. U and Pb in zircon. We argue that this behavior biases the Archean zircon record toward negative ε_{Hf} values, which are at odds with the present TTG data set. If Hadean Jack Hills zircons are considered in light of these results, the mantle source of continents has remained unchanged for the last 4.3 Gy.

1. Introduction

The principle that growth of continents depletes the upper mantle of its most fertile fraction goes back several decades (Hoffman, 1988; Jacobsen and Wasserburg, 1979). A widely held tenet is that continental crust grows either by melting of the oceanic crust (Drummond and Defant, 1990; Martin, 1993) or by fluxing the mantle wedge above subduction zones (Kelemen, 1995). An alternative view holds that continents form through magmatic processing at subduction zones, not of regular oceanic crust, but of oceanic plateaus (Abouchami et al., 1990; Boher et al., 1992; Hawkesworth et al., 2010; Stein and Goldstein, 1996), which would account for the apparent episodic character of crustal growth (Albarède, 1998a). Hafnium isotopes in zircons have become a widely used tracer of crustal evolution. Zircon is a ubiquitous accessory phase in all granitic rocks. It resists weathering extremely well and, hence, detrital zircons are abundant in river bedload and sands. In addition, the very low Lu/Hf of zircons allows for accurate determination of ¹⁷⁶Hf/¹⁷⁷Hf at the time of zircon

crystallization. The advent of laser-ablation Lu-Hf isotope analysis of igneous and detrital zircons has triggered a surge in voluminous data sets with major implications for the understanding of crustal growth (Condie et al., 2009a). Yet, because of the relative scarcity of samples older than 3.4 Ga and ongoing debates over the integrity of the chronological information carried by old zircons, the ancient Hf isotope record appears less reliable than that of younger samples. This has introduced an uncomfortable degree of uncertainty into interpretations of Earth's earliest history based on Hf isotopes. Better insights into the geodynamical nature of the Hadean and early Archean eons are crucial in this regard because these times follow the demise of the postulated terrestrial magma ocean, and very probably witnessed the onset of plate tectonics.

The ≥4.1 Ga detrital zircons from Jack Hills, Western Australia, have attracted considerable attention because they are the sole repositories of direct information about the Hadean crust. Their host granites have been suggested to represent the remelting of a ca. 4.35 Ga protocrust, which carried the geochemical fingerprint of the latest residual liquids of the magma ocean, dubbed as KREEP by analogy with the lunar magmatic component enriched in K, rare-earth elements, and P (Blichert-Toft and Albarède, 2008; Kemp et al., 2010). It was further proposed that a connection exists between this protocrust and the source of the oldest TTGs (tonalite-trondhjemite-granodiorite) as both show indications of a mantle strongly enriched in incompatible elements (Blichert-Toft and Albarède, 2008). In order to further explore the potential relation between TTGs and the earliest Hadean/Archean crust, we report here Lu-Hf isotopic data for 2.5-4.0 Ga TTGs from a large number of localities worldwide, including most known cratons (Antarctica, Australia, Brazil, Canada, China, Greenland, India, Russia, Scandinavia, Siberia, South Africa, and Swaziland). In order to assess potential inheritance issues, Lu-Hf and Pb-Pb isotope data for individual zircons from about half of the analyzed TTG samples also are provided. The complete data set and the details of the analytical techniques (solution and laser-ablation MC-ICP-MS for whole-rocks and single zircons) together with sample descriptions are given in the following sections and the online Supplementary Material.

2. Samples

The analyzed sample suite reported herein comprises 141 TTG rocks of worldwide distribution (see Table 1 in the Supplementary Material) ranging in age from 2.5 to 4.0 Ga. The samples were either donated by colleagues during the course of this study or collected in

the field by the authors. The Archean terranes represented by the samples are Enderby Land (the Napier Complex, Antarctica), the Pilbara and Yilgarn Cratons (Western Australia), the North Atlantic Craton (the Itsaq Gneiss Complex), the Slave Craton (the Acasta Gneiss Complex, Northwest Territories in Canada), the Superior Province (gneisses of the Nuvvuagittuq supracrustal belt, Québec, Canada), the Indian Craton (Dharwar, Bastar), the Kaapvaal Craton in southern Africa (Barberton, Ancient Gneiss Complex), the Baltic Shield (Finland, Norway, and Russia), the Tungus-Anabar Shield (the Sharyzhalgay uplift, central Siberia), the North China Craton (Anshan), and the São Francisco Craton (Sete Voltas, Brazil). The petrology, mineralogy, and major and trace element compositions of most of the samples, as well as their isotope compositions (notably Sr and Nd), are well documented in the literature. A description of the samples collected by the authors is given in the Supplementary Material.

Figure IV-1 : Histogram of two-sigma error bars for in-situ Hf isotope measurements of single zircons in epsilon units. This plot shows that the data set is of consistent quality: for a single population of points with a similar number of measurements, the variances are expected to follow a chi-squared distribution. About 90 percent of the samples have 2-sigma errors <3 epsilon units. The light grey part of the histogram (9 samples) may hold outliers and the corresponding samples have therefore been disregarded.

3. Analytical techniques

Whole-rock powders used for isotope analysis were crushed and powdered in agate mortars. Zircons, if not previously separated and accompanying the whole-rock samples, were extracted using standard heavy liquid techniques and a magnetic Frantz apparatus.

3.1. TTG whole-rock Lu-Hf isotope analysis by solution MC-ICP-MS

After dissolution in Parr bombs, Lu and Hf were separated from ~250 mg aliquots of whole-rock powder by ion-exchange column chromatography (at the Ecole Normale Supérieure clean laboratory in Lyon, France) and measured for their isotopic compositions by MC-ICP-MS (Nu Plasma HR) according to procedures described elsewhere (Blichert-Toft, 2001; Blichert-Toft et al., 2002; Blichert-Toft et al., 1997; Blichert-Toft and Puchtel, 2010). Lutetium and Hf concentrations were determined by isotope dilution using a >98% pure mixed ¹⁷⁶Lu-¹⁸⁰Hf spike. The JMC-475 Hf standard was analyzed in alternation with the TTG samples and the mass fractionation-corrected ¹⁷⁶Hf/¹⁷⁷Hf ratio gave 0.282164 ± 0.000015 (2 σ ; n=145) over the two-year period during which these data were collected. Since this value is identical within errors to the accepted value for the JMC-475 Hf standard of 0.282163 ± 0.000009 (Blichert-Toft et al., 1997), no correction was applied to the data. Total procedural blanks for Hf and Lu were <20 pg.

The ages used to calculate the initial Hf isotopic compositions of the TTGs are the oldest concordant and reproducible ages obtained on single zircons with the Pb-Pb and U-Pb chronometers. Some of these ages were determined in this study by solution and/or laser-ablation MC-ICP-MS (see below), while others are from the literature or, in rare cases, personal communications based on unpublished data. All ages were measured on zircons that were taken either from the exact same samples as analyzed here, or from different samples from the same outcrop.

3.2. Zircon Lu-Hf and Pb-Pb isotope analyses by, respectively, solution MC-ICP-MS and ICP-MS

The TTG samples were ground to sand-sized grains and sieved to collect mineral fractions between 300 and 80 μ m. The zircons were separated from these fractions using a Frantz isodynamic magnetic separator and heavy liquids. Single zircons were subsequently handpicked under a binocular microscope and abraded in an air abrasion device similar to that of Krogh (1982) to eliminate outer rims that may be either recrystallized material or represent younger overgrowths. Severely metamict grains being particularly fragile tended to break or

be entirely abraded "away" and hence became eliminated by abrasion. Selection of individual zircons under optical microscopy favored the clearest grains without visible inclusions. Pressure and abrasion times were calibrated experimentally and were critical parameters because of the fragile nature of old, potentially metamict zircons. Cathodo-luminescence (CL) images of most of the TTG zircon populations were acquired on a JEOL JSM-5910LV in Clermont-Ferrand and used to identify structural heterogeneities, as well as to estimate average potential overgrowth widths in order to abrade the zircons to recover only their cores. Because the zircon grains were always covered by metal dust after the abrasion procedure, and because (younger) outgrowths may not have been entirely removed in the process, the zircons were further leached prior to dissolution. We deliberately used short leaching times with concentrated acids (see details below) as opposed to the standard procedures described by Corfu (2000) and Das and Davies (2010), which call for long durations with weak acids. This is because Hadean and Archean zircons are old enough to have been massively exposed to the alpha-decay of U-series isotopes and, hence, readily dissolve in acid at room pressure and temperature due to their often metamict condition. The use, therefore, of a short-duration bath of strong acid results in well-leached grain surfaces, which is where the potential contamination resides. This approach to eliminate younger, more resistant, external margins does not result in dissolution of partly amorphized cores. The use of more dilute acids for longer durations of time, by contrast, potentially results in the preferential dissolution of the most damaged parts of the zircons, such as the oldest igneous core regions. This procedure could, therefore, destroy the principal parts of the zircons, which are the most important for studies such as the present one, while preserving younger, more resistant domains such as overgrowths or other less damaged parts that include the unwanted material. The abundant cracks typical of ancient metamict zircons and their old igneous cores represent a ready conduit for weak acids at long exposure times. To avoid this problem, our three-step leaching procedure consists of successive baths of concentrated double-distilled HF (a few minutes at room temperature), concentrated distilled HNO₃ (a few minutes at room temperature), and 6N distilled HCl (10 minutes at 135°C). Subsequently, individual abraded and leached zircons were transferred into 0.5 ml Savillex® beakers to which a mixture of concentrated doubledistilled HF and traces of concentrated distilled HNO₃ were added. Batches of 16 Savillex® beakers were loaded in a 4748 Parr® bomb for digestion in an oven at 240°C for at least 24 hours (Parrish, 1987). The dissolved grains were then transferred into clean Savillex® beakers, dried down, and re-dissolved in 1 ml (to be able to remove a precise aliquot volume) distilled 8N HNO₃ on a hot plate. A 5% aliquot (50 µl) was taken for each sample for Lu/Hf ratio measurement and the HNO₃ subsequently evaporated to dryness. Lutetium and Hf concentrations were determined on the aliquot using a ThermoFinnigan Element 2 ICP-MS at the Ecole Normale Supérieure in Lyon, and the ¹⁷⁶Lu/¹⁷⁷Hf ratios were calculated from the measured concentrations. The 95% that remained in the beakers from the original zircon solution was dissolved in distilled 1N HCI:0.1N HF and loaded onto 0.18 ml Teflon cation-exchange columns (AG50W-X8, 200-400 mesh). Hafnium is in the form of a negative fluoride complex and therefore does not stick on this column and is immediately recovered. Lead is subsequently eluted with distilled 2.5N HCl. The Pb isotope compositions were measured on the Element 2 ICP-MS and the Hf isotope compositions on the Nu Plasma HR MC-ICP-MS, both at the Ecole Normale Supérieure in Lyon.

Figure IV-2 : Two-dimentional histogram of initial $\varepsilon_{Hf}(T_0)$ of detrital and magmatic zircons as a function of their Pb-Pb age. Spacing between density contours corresponds to 10% of the population. Only data from zircons with less than 5% discordance, and with Th/U ratios between 0.15 and 1.0 and consistent with 208 Pb/ 206 Pb ratios, have been included in the compilation. TTG whole-rock data are superimposed as white (this study) and yellow (Hoffmann et al., 2011) crosses. The grey triangle in the lower right-hand corner shows the forbidden zone with Lu/Hf ≤ 0 .

The JMC-475 Hf standard was analyzed in alternation with the zircon samples and the mass fractionation-corrected 176 Hf/ 177 Hf ratio gave 0.282162 ±0.000017 (2 σ ; n=87) over the two-year duration of sessions of single zircon data collection. Again, this value is within error bars of the accepted value for the JMC-475 Hf standard eliminating the need for

normalization. Total procedural blanks were <10 pg for Lu and <20 pg each for Hf and Pb. The relative abundance of oxides was <2%, which represents a negligible correction for the present analyses. Fluctuations in the ion beams of Lu, Hf, and Pb were monitored using a 1 ppb internal In standard. The isobaric interference of ²⁰⁴Hg on ²⁰⁴Pb (<0.1%) was corrected using ²⁰⁰Hg and a ²⁰⁴Hg/²⁰⁰Hg ratio of 0.2974. It was considered that ²⁰⁴Pb is largely derived from mineral inclusions and from the blank, so each zircon was corrected using the modern common Pb isotope composition of Stacey and Kramers (1975). Sample-standard bracketing was done using the NIST-SRM 981 standard and the values of Eisele et al. (2003). The equations used are those of Albarède et al. (2004). The Th/U ratios of the zircons were calculated using the measured ²⁰⁸Pb/²⁰⁶Pb and the age *T* of the zircon given by its ²⁰⁷Pb*/²⁰⁶Pb* ratio (* = radiogenic):

$$\frac{{}^{208}\text{Pb}^*}{{}^{206}\text{Pb}^*} = \frac{{}^{232}\text{Th}}{{}^{238}\text{U}} \times \frac{e^{\lambda_{232\text{Th}}t} - 1}{e^{\lambda_{238U}t} - 1}$$
(1)

This calculation assumes that the Th/U and the 208 Pb/ 206 Pb ratios of the zircon have not been disturbed significantly throughout its history, which we consider to be a reasonable assumption as these elements are relatively immobile (Cherniak et al., 1997a). Although the Th/U ratio in zircons can range from ~10 to 1×10^{-4} , it has been shown (e.g., (Hoskin and Schaltegger, 2003)) that Th/U of around 0.5 is a reasonable average estimate for igneous zircons, while Th/U <0.2 is more representative of metamorphic zircons. The majority of the zircons analyzed in this study have Th/U ratios consistent with a magmatic origin. The 207 Pb- 206 Pb ages were calculated by iterative convergence using the Excel® goal-seek function.

3.3. Zircon Lu-Hf and U-Pb isotope analyses by, respectively, laser-ablation MC-ICP-MS and ICP-MS

The zircons analyzed by laser-ablation MC-ICP-MS were handpicked under a binocular microscope, placed on double-sticky tape, and mounted in epoxy. The 2.54 cm epoxy mounts were first polished on 5 μ m silicon-carbide mats and then with 0.5 μ m diamond paste and distilled water. Prior to laser ablation analysis, the zircons were imaged by CL using either a Leo Supra 35VP scanning electron microprobe (SEM) at the University of Idaho (Moscow), or a JEOL JSM6510 SEM at the Centre de Recherches Pétrographiques et Géochimiques in Nancy (France). The acquired CL images were used to assess the internal structure of the zircons in order to target their cores and areas where the best-preserved parts

with magmatic zoning were still visible. U-Pb analyses were carried out using a 213 nm New Wave Research Nd-YAG laser connected to a ThermoFinnigan Element 2 (LA-ICP-MS). Hafnium isotope measurements were performed using the same laser but connected to a ThermoFinnigan Neptune (LA-MC-ICP-MS). All laser ablation Hf and Pb isotope work was carried out at the Department of Geology of Washington State University, Pullman. The ablation cell for both types of measurements was filled with He. The carrier gas used in both instruments was Ar, but N₂ was added to increase the Hf ion beam intensity. For the U-Pb isotope analyses, the laser spot size was 30 µm using a frequency of 5 Hz in order to avoid saturation of the collectors due to the high radiogenic Pb abundances in Archean zircons. For particularly U-rich grains, the frequency was reduced to 3 Hz. For the Hf isotope analyses, laser spot sizes of 40 µm at 10Hz were used. U-Pb corrections were made by sample-standard bracketing using both Peixe (Dickinson and Gehrels, 2003) and FC-1 (Paces and Miller, 1993) zircon standards. Isobaric interferences of ²⁰⁴Hg on ²⁰⁴Pb were corrected using ²⁰²Hg and a ²⁰⁴Hg/²⁰²Hg ratio of 0.2301 to determine ²⁰⁴Pb/²⁰⁶Pb ratios that were always below 0.001. For the Hf isotope measurements on the Neptune, mass bias, isobaric interferences (Yb and Lu on mass 176), and instrument drift were corrected according to the procedures described by Bahlburg et al. (2011) and Gaschnig et al. (2011). The precision on $\varepsilon_{\rm Hf}(T_0)$ can be assessed by examination of the 2- σ intervals of the 396 in-situ measurements undertaken here (Fig. 1). The analyses form a consistent histogram (Fig. 1) with no objective justification for ignoring (i.e., discarding) specific measurements and with a range that is consistent, given the large number of data, with that obtained in previous investigations on the same instrument.

3.4. The zircon Hf isotope database

A zircon Hf isotope database was compiled for this study in order to provide a broader context within which the TTG data are discussed. It comprises 12786 data points, with the vast majority of the data (91%) being derived from detrital zircons (11698). The references that this compilation is based on are listed in the Supplementary Material. Zircons with a U-Pb discordance in excess of 5% and with Th/U ratios >1 and <0.15, as calculated from their 208 Pb*/ 206 Pb* and ages, were disregarded. The initial ϵ_{Hf} values of literature samples were calculated using the CHUR values of Bouvier et al. (2008) (176 Hf/ 177 Hf = 0.282785 and 176 Lu/ 177 Hf = 0.0336) and the 176 Lu decay constant of 1.867 x 10⁻¹¹ of Söderlund et al. (2004), identical to the original determination by Scherer et al. (2001) but with reduced error bars.

Figure IV-3: 176 Hf/ 177 Hf (T₀) and ε_{Hf} (T₀) versus Pb-Pb age diagrams combined with Tera-Wasserburg (²⁰⁷Pb/²⁰⁶Pb versus ²³⁸U/²⁰⁶Pb) concordia plots for zircon populations from four representative TTG samples. Panels A, B, C, and D refer to, respectively, samples AG09-008gt (Acasta gneiss, Slave Craton, Canada), AG09-016 (Acasta gneiss, Slave Craton, Canada), SV11 (Sete Voltas, São Francisco Craton, Brazil), and 40-03 (Onot terrane, Tungus-Anabar shield, Siberia). Diagrams (a) illustrate that, among a given TTG zircon population, ${}^{176}Hf/{}^{177}Hf(T_0)$ is generally consistent within the quoted error bars, whereas ${}^{207}Pb/{}^{206}Pb$ ages vary well beyond analytical uncertainties for discordant grains (red diamonds). In contrast, concordant grains (purple diamonds) have consistent ${}^{176}Hf/{}^{177}Hf$ (T₀) and ${}^{207}Pb/{}^{206}Pb$ ages. Note that in panels C and D, single zircons analyzed by solution chemistry (green diamonds) show similar behavior as zircons analyzed by laserablation. The sample displayed in panels D further shows that the solution zircon population has slightly more radiogenic Hf than the in-situ zircon population resulting in a shift of about one epsilon unit. This is due, likely, to slight overcorrection of the large ¹⁷⁶Yb and ¹⁷⁶Lu isobaric interferences for the laser-ablation analyzed zircons, whereas the zircons analyzed by solution chemistry and, therefore, free of any isobaric interferences due to efficient purification of Hf by ion-exchange chromatography, give more reproducible 176 Hf/ 177 Hf (T₀). Despite the complex metamorphic histories of TTGs, it appears that single zircons of these rocks analyzed by solution chemistry yield the same results as zircons analyzed by laser-ablation, indicating that either the zircon populations are simple, or the combined air-abrasion and leaching techniques undertaken in the present study were efficient enough to preserve only the igneous cores of the zircons. Note also that 176 Hf 177 Hf (T_0) of the TTG whole-rocks (black circles) are consistent with 176 Hf 177 Hf (T_0) of the zircon populations. Diagrams (b) show the effect of perturbed (or discordant) ages (i.e., different from the crystallization age) on the ε_{Hf} (T_0) of the zircon populations. Because of the very low $^{176}Lu/^{27}Hf$ ratio (~0.0005) of zircons (Fig. 9), their $^{176}Hf^{177}Hf$ (T) is virtually insensitive to age corrections, while this is not true for ε_{Hf} (T). Slopes regressed with Isoplot[®] indicate apparent ${}^{176}Lu/{}^{177}Hf$ ratios of ~0, which is incompatible with radiogenic ingrowth in any geological reservoir but zircons. Note that these trends are particularly well defined for the zircons in panels A-(b) and B-(b) compared to those in panels C-(b) and D-(b) because of a larger overall spread in ${}^{207}Pb/{}^{206}Pb$ ages for the former two samples. It appears that concordant zircons give reproducible $\varepsilon_{Hf}(T_0)$ and ${}^{207}Pb/{}^{206}Pb$ ages within error bars. Diagrams (c) are Tera-Wasserburg concordia plots that demonstrate that it is disturbance of the U-Pb isotopic system (Pb loss) which is responsible for the age variability.

4. Results

4.1. TTG whole-rock and single zircon Lu-Hf isotope data

The initial ε_{Hf} (T₀) of the 141 TTG whole-rock samples analyzed here (Table 1, Supplementary Material) are shown in Fig. 2 on the background of zircon data from both the literature (12786 zircons) and the present study (340 zircons analyzed by wet chemistry and insitu techniques filtered from 615 zircons from 72 of the 141 TTGs; Tables 2-6, Supplementary Material). As pointed out by Zeh et al. (2007), igneous zircons extracted from the same sample often show a positive correlation between their measured 207 Pb/ 206 Pb ages T₀ and ϵ_{Hf} (T_0) , indicating that zircons with strongly negative ε_{Hf} (T₀) have experienced severe Pb loss, while their Hf isotopes have remained unaffected. Lenting et al. (2010) demonstrated experimentally that these different conducts of the U-Pb and Lu-Hf isotope systems are a general feature of zircons under metamorphic conditions. This means that for these zircons, their initial Hf isotopic compositions are calculated at the wrong age and result in incorrect initial $\varepsilon_{\rm Hf}$ values. This conclusion applies to a substantial fraction of the single zircons in Fig. 3. We therefore regard all samples for which $\varepsilon_{\rm Hf}(T_0)$ correlates with age as suspect. This is the reason why discordant zircons (for LA-ICP-MS and ion microprobe analyses) and zircons with distinctly non-magmatic Th/U ratios (for solution MC-ICP-MS analyses) have been filtered out in Fig. 2. Figure 4 shows that, after filtering, 75% of the zircons for the laserablation data and 61% of the zircons for the solution data fall within a band of ± 2 epsilon units of the 1:1 correlation line which corresponds to the external reproducibility of zircons from the same zircon populations extracted from Archean granitic rocks (Zeh et al. 2007; 2011). We consider that the $\varepsilon_{\rm Hf}(T_0)$ in the zircons and their host TTG whole-rocks analyzed in this work are reasonably consistent indicating that the assumed TTG ages are correct and that the TTG Lu-Hf isotope systematics have not been significantly disturbed subsequent to TTG magma crystallization. This in turn enhances the reliability of the TTG $\varepsilon_{\rm Hf}$ (T₀) reported values to within a few epsilon units. Figure 4 also demonstrates that the inheritance of older zircons plays a very negligible role and that laser-ablation and solution chemistry zircon isotope data are mutually consistent. This last observation is further strengthened by the results shown in Fig. 5, which displays the similar ¹⁷⁶Hf/¹⁷⁷Hf ratios obtained on zircons that were first analyzed by laser-ablation, then dismounted, dissolved, and measured by solution MC-ICP-MS. Figure 5 further illustrates that both present-day and initial Hf isotope compositions agree between the two techniques, whereas Pb-Pb ages and ¹⁷⁶Lu/¹⁷⁷Hf very often disagree to variable degrees.

Given the large size of the database (~12786 samples), a 2-dimensional histogram presentation has been chosen for Fig. 2 because it allows the main data structure to stand out and minimizes the spread caused by outliers. The present Hf isotope data corroborate the observation that suprachondritic $\varepsilon_{Hf}(T_0)$ values existed prior to 2.9 Ga (Hoffmann et al., 2011; Vervoort and Blichert-Toft, 1999). The Archean TTG whole-rock data in this study tend to populate the low-density domains of $\varepsilon_{Hf}(T_0)>0$, with the exception of samples older than 3.8 Ga. These data are, therefore, consistent with the ε_{Nd} (T₀)>0 commonly reported for these rocks (Hoffmann et al., 2011; Vervoort and Blichert-Toft, 1999), and attests to overall congruent Hf-Nd isotope behavior. Moderately radiogenic Nd and Hf is a common feature of Archean and early Proterozoic mantle-derived magmas (Bennett et al., 1993; Shirey and Hanson, 1986; Vervoort and Blichert-Toft, 1999). Even when potentially contaminated or peripheral samples are filtered out (Albarède and Brouxel, 1987; Stein and Hofmann, 1994), the apparent Sm/Nd of the mantle source inferred from the ε_{Nd} (T₀) evolution curve is definitely smaller than that of the upper mantle .

Figure IV-4 : Correspondence of ¹⁷⁶Hf^{A77}Hf (T₀) between individual zircons analyzed by solution (bottom) and laser-ablation (top) MC-ICP-MS and their host TTG whole-rocks (analyzed by solution MC-ICP-MS).
Only concordant zircons (laser ablation) and zircons with Th/U ratios (solution) in the range of 0.15-1.0 have been considered. The tick marks and numbers on the 1:1 line refer to the CHUR model ages (Ga). The consistency of the two types of data indicates mutual agreement between solution chemistry and laser-ablation techniques. The overall distribution of the data along the 1:1 trend means that inheritance of older zircons is insignificant. The horizontal spread towards more radiogenic Hf isotope compositions observed for zircons analyzed by solution chemistry is attributed to incomplete elimination of the outer parts of the grains after abrasion and leaching.

In this context, we suggest that the apparently uncommon radiogenic Hf among >4.0 Ga old zircons in Fig. 2 is largely statistical: both positive and near-chondritic ε_{Hf} (T₀) values have been reported for Jack Hills zircons (Blichert-Toft and Albarède, 2008; Harrison et al., 2005), even for homogeneous grains. Parametric Student and non-parametric Wilcoxon tests based on initial ¹⁷⁶Hf/¹⁷⁷Hf ratios show that the data set of Harrison et al. (2005) is indistinguishable from those of Blichert-Toft and Albarède (2008) and Kemp et al. (2010) (Fig. 6). However, when considering the initial ε_{Hf} values, the data set of Kemp et al. (2010) and the most recent data set of Harrison et al. (2008) become statistically distinct from that of Blichert-Toft and Albarède (2008) and Harrison et al. (2005) because the former two do not include values above a certain negative ε_{Hf} (T₀) threshold (Fig. 7). We therefore emphasize that, even if it is a rare signal, radiogenic Hf (i.e., positive ε_{Hf} (T₀)) existed at the time the source rock of the Jack Hills zircons crystallized.

Figure IV-5. Diagrams comparing zircons analyzed by both laser-ablation and bulk solution chemistry for their 207 Pb/ 206 Pb ages (a), their 176 Lu/ 177 Hf (b), their present-day 176 Hf/ 477 Hf (c), and their initial 176 Hf/ 477 Hf (d). These plots illustrate that measured 207 Pb/ 206 Pb ages and 176 Lu/ 477 Hf ratios often are significantly different between the two techniques, whereas present-day 176 Hf/ 477 Hf ratios are highly consistent within the analytical uncertainties and, hence, that isobaric interferences during laser-ablation are well corrected for. Initial 176 Hf/ 477 Hf ratios are also in good agreement between the laser-ablation and solution chemistry methods because the average zircon 176 Lu/ 477 Hf is so low that age correction is usually negligible even if age differences exceed the analytical uncertainty. In contrast, the consequences of the variable 207 Pb/ 206 Pb ages are severe for the $\varepsilon_{\rm Hf}$ determination due to the sensitivity of the CHUR reference to changes in age (the CHUR reference frame changes rapidly with age: 2.2 $\varepsilon_{\rm Hf}$ units per 100 Ma).

The smaller frequency of >4.0 Ga old zircons with radiogenic Hf may be the result of undersampling simply because the Jack Hills outcrop does not reflect the wide watersheds that supplied the detrital zircons used for other studies. Likewise, >3.9 Ga Acasta samples occur as small meter-thick sheets in otherwise younger orthogneisses (Bowring et al., 1989) and may be local biased representatives of the common mid-crust at that time.

4.2. Impact on the results from the choice of reference frame for the Lu-Hf isotope system

The modern chondritic Lu-Hf reference may be perceived as an issue but, beyond the confusion introduced by multiple normalization values, the choice of one over the other is inconsequential as the two reference frames currently in use are nearly identical within the quoted error bars. For example, adopting the 2008 chondritic parameters (Bouvier et al., 2008) instead of the 1997 reference (Blichert-Toft and Albarède, 1997) changes the epsilon values from +0.45 for modern samples to -0.36 at 3 Ga, which is within the analytical errors of both the samples and the reference parameters themselves.

4.3. Comparison between laser-ablation and single grain dissolution techniques

Forty-one carefully selected zircons were analyzed by laser-ablation and then extracted from their mounts to be dissolved separately according to the single grain dissolution technique described earlier (Table 6, Supplementary Material). The zircons were chosen based on CL imagery, concordant ages, small ¹⁷⁶Hf/¹⁷⁷Hf error bars, and reproducible age and/or similar ¹⁷⁶Hf/¹⁷⁷Hf from different spots on the same grain. The results are presented in Fig. 5 and illustrate that ²⁰⁷Pb/²⁰⁶Pb ages (Fig. 5a) as well as ¹⁷⁶Lu/¹⁷⁷Hf measured (Fig. 5b) by solution and laser-ablation often do not agree. In particular, the solution Pb-Pb ages are systematically younger than the laser-ablation ages and the Lu/Hf ratios determined by laser-ablation are higher in most cases than those measured by solution. In contrast, ¹⁷⁶Hf/¹⁷⁷Hf is far more consistent between the two techniques, forming a positive correlation with a slope of 0.97 ± 0.07 (Fig. 5c). The same is true for initial ¹⁷⁶Lf/¹⁷⁷Hf, which plots on a trend with a slope of 0.94 ± 0.08 (Fig. 5d). Although age and ¹⁷⁶Lu/¹⁷⁷Hf disagree, the latter is so low that differences in calculated initial Hf isotopic compositions due to age correction are generally insignificant. Considering metamictization processes and volume

diffusion theory, these results are consistent with experiments of Cherniak et al. (1997a, 1997b, 2001) that show Hf to be a highly retentive element within the zircon lattice, whereas Pb and Lu are relatively mobile. This is consistent with the experiments of Lenting et al. (2010). We attribute age differences to localized Pb loss within zircon grains (poorly sampled by laser-ablation but unavoidable by solution chemistry) and ¹⁷⁶Lu/¹⁷⁷Hf ratio differences to magmatic zonation within the zircons and/or perhaps Lu loss.

Jack Hills zircons initial ¹⁷⁶Hf/¹⁷⁷Hf

Figure 6. Histograms of the initial ¹⁷⁶Hf^{A77}Hf distribution for four different Jack Hills zircon data sets (Blichert-Toft and Albarède, 2008; Harrison et al., 2005; Harrison et al., 2008; Kemp et al., 2010). All the distributions are similar and centered around the same maxima. Each increment in initial ¹⁷⁶Hf/^{A77}Hf is 2.8.10⁻⁵, which corresponds to 1 ε_{Hf} unit.

Note that by metamictization we are not referring to completely amorphized grains but to partly and localized destroyed zircon lattices (Utsunomiya et al., 2004). The observed ¹⁷⁶Lu/¹⁷⁷Hf differences between the two techniques also could derive from Lu-Hf fractionation during acid leaching of the abraded zircon grains (Lu being a 3+ rare-earth element and Hf being a 4+ high-field-strength element), as observed for U and Pb (Mattinson, 2005). As mentioned above, however, zircon Lu/Hf ratios are so low that this disturbance is essentially inconsequential for the initial Hf isotope compositions. In conclusion, we consider the in-situ concordant laser-ablation ages to be the correct ages, while the generally younger

discordant wet chemistry ages of the whole grains do not reflect the true crystallization ages because Pb loss zones in these zircons could not be avoided by solution chemistry. This is contrary to laser-ablation, where it is possible to systematically place the laser beam on spots that appear pristine, hence avoiding Pb loss areas.

5. Discussion

Figure 2 reinforces evidence accumulated over half a century (Condie et al., 2009a) that the crustal growth record is episodic. The conspicuous gap in crustal growth at 2.3-2.4 Ga identified by Condie et al. (2009a) also is evident in Fig. 2. We will now focus on the preservation of the crustal growth record, the effect of crustal reworking, and the nature of crustal growth.

Figure 7. Histograms of the solution-MC-ICP-MS data sets of Harrison et al. (2005) and Blichert-Toft and Albarède (2008) (left panel), and the in-situ data sets of Kemp et al. (2010) (middle panel) and Harrison et al. (2008) (right panel) showing that, in contrast to the solution data set, the two in-situ data sets are biased with respect to their predicted theoretical histograms (red and blue curves), as calculated in two different ways (see below), in that the high-epsilon Hf values are missing. This leaves the false impression of no depleted component in the Hadean mantle and no memory of transient effects inherited from the original differentiation of the Earth. The red curves represent the mean and standard deviation of the three data sets calculated from the standard formulas, where potential problems are outliers and distribution tails. The blue curves represent the assessment of tails by least-square polynomial fit of the central part of the cumulated frequency plots. Both methods predict similar histograms, demonstrating that the assessment is robust.

5.1. Preservation of the crustal growth record

It has been suggested that age peaks represent artifacts of preservation (Gurnis and Davies, 1986; Hawkesworth et al., 2010). If so, the U-Pb age records of igneous and detrital zircons should mirror each other, which is precluded by available evidence (Condie et al., 2009a). Figure 2 illustrates that, prior to 1.7 Ga, zircon $\varepsilon_{\rm Hf}$ (T₀) values decrease during

individual orogenic cycles and, therefore, the degree of crustal reworking increased with particularly clear examples at 2.1, 2.4, and 3.8 Ga. Evidence that at the time of supercontinents young terranes are selectively removed remains unsubstantiated. In contrast, evidence shows that continental assembly efficiently accretes landmasses and oceanic plateaus (Boher et al., 1992; Schubert and Sandwell, 1989).

5.2. Juvenile versus reworked orogenic segments

The impact of crustal reworking on the interpretation of the present data set must be assessed. Many orogenic belts consist of vast expanses of 'juvenile' areas, where the contribution of pre-existing continental material to new crust is minor and crustal residence time is short. This is in particular the case of Abitibi (2.7 Ga) (Davis et al., 2005), the Birimian (2.1 Ga) of West Africa (Boher et al., 1992), and Arabia (0.6 Ma) (Stein and Goldstein, 1996). The orogenic cycle, which leads from the protolith to new stable continental crust, is invariably short (<150 Ma). In contrast, radiogenic and stable isotope geochemistry of granites shows that some other orogenic segments are clearly reworked, with the 1.8 Ga terranes of the Svecofennian (Condie et al., 2009a; Hoffman et al., 1988 ; Patchett et al. 1987) being a good example.

Figure 8. Two-dimensional histogram of time-integrated ¹⁷⁶Lu/¹⁷⁷Hf of detrital and magmatic zircons (contours mark 10% intervals) as a function of their Pb-Pb age. The TTG whole-rock data of this study are superimposed as white crosses.

More than three decades of geochemical work on recent granites have demonstrated that if crustal reworking is indeed common, its importance in a particular orogenic segment can be clearly assessed by combining oxygen and radiogenic isotopes. A very illustrative example of such disentanglement is the 90-130 Ma old Peninsular Range batholith of California (Taylor and Silver, 1978; DePaolo, 1981; Kistler et al., 2003). By restricting the analysis to the granites with the isotopically lighter oxygen, the least radiogenic Sr, and the most radiogenic Nd (and Hf), the 'mantle component' and 'mantle-like' granites clearly show up in the data and can be focused on for insight into the nature and evolution of their mantle source. A similar approach was successfully adopted by Kemp et al. (2006, 2007) for older granites. Here we therefore focus on the most radiogenic part of the two-dimensional histogram of Fig. 2 (the most negative ε_{Hf} (0) values clearly being the products of reworking). This strategy is supported by the lack of strong contrast between orogens in which the bulk of the material is juvenile, such as in the Abitibi (2.7 Ga) and the Birimian (2.1 Ga), and those dominated by reworking, such as the 1.8 Ga terranes of the Svecofennian.

Figure 9. Histogram of ¹⁷⁶Lu/⁴⁷⁷Hf in TTGs from this study and the literature (references are listed in the Supplementary Material). The inset shows the ¹⁷⁶Lu/⁴⁷⁷Hf distribution of zircons analyzed in this study. The grey bars represent laser-ablation ¹⁷⁶Lu/⁴⁷⁷Hf measurements, while the white bars correspond to ¹⁷⁶Lu/⁴⁷⁷Hf measured by solution chemistry. Note the broader range of the distribution for in-situ analyses compared to the single zircon dissolution technique, which overlaps with the low-Lu/Hf tail of the TTG whole-rock distribution.

The comparison of these terranes shows that assimilation of older crust does not define the first-order Hf isotopic characteristics of crustal segments. In addition, the effect of assimilation of continental crust on the apparent time-integrated Lu/Hf ratio of the mantle source is in any case minimal for most of crustal history: a given variation $\delta \epsilon_{Hf}$ is equivalent to a relative variation of the time-integrated Lu/Hf of $\delta \epsilon_{Hf}/21.8 \times (4.5 - T)$, where T is the age in Ga of the orogeny in question. Using as $\delta \epsilon_{Hf}$ the difference between the density maxima (Fig. 2) and the mantle ϵ_{Hf} values at the same age from Vervoort and Blichert-Toft (1999), this effect is $\pm 20\%$ at 3.5 Ga and $\pm 10\%$ at 2.5 Ga.

5.2. Nature of the crustal growth

The time-integrated ¹⁷⁶Lu/¹⁷⁷Hf (parent-daughter) ratios of the source were calculated from the age and ε_{Hf} (T₀) of each sample using the ε_{Hf} (4.568 Ga) value of Bouvier et al. (2008). This use of apparent time-integrated Sm/Nd and Lu/Hf is essentially equivalent to the μ analysis of Pb isotope evolution, and has been used for decades to understand the dynamics of planetary mantles (e.g., Nyquist and Shih, 1992). Figure 8 shows that, when the TTG data are taken into account, the ¹⁷⁶Lu/¹⁷⁷Hf ratio of the mantle source of continents has not varied notably $(0.032-0.038 (\pm 10\%))$ with respect to the chondritic value of 0.0336 (Bouvier et al., 2008) over the last 3.8 Gy. Again, the pre-3.8 Ga samples (notably Acasta and Jack Hills) are exceptions (not visible in Fig. 8 because of their relative scarcity) that may attest to either undersampling of the crust from that time or some transient effects inherited from the original differentiation of the Earth. Highly radiogenic $\varepsilon_{Hf}(T_0)$ values seem to have become common only in the late Proterozoic. The dramatic reduction in Lu/Hf variability during the first 0.7-1 Gy mirrors the possible reduction in ¹⁴²Nd/¹⁴⁴Nd variability as put forth by Bennett et al. (2007). This decrease in isotopic variability early in Earth's history, as suggested by two independent isotopic records, is striking and can be interpreted in different ways. The time interval in question is conspicuously reminiscent of the half-life of ²³⁵U, the major provider of radiogenic heat in the Hadean and which for all geophysical intents and purposes is an 'extinct' radioactivity. The decay of ²³⁵U clearly is a forcing parameter for mantle convection. The termination of extreme mantle heterogeneity by the end of the Hadean also coincides with the end of the Late Heavy Bombardment of the inner Solar System. However, as long as it is not firmly established whether this event represents a spike or the final demise of accretion Hartmann and Berman (2000), its effect on terrestrial geodynamics cannot be properly understood. Alternatively, the large variability in the apparent Sm/Nd and Lu/Hf ratios of Early Archean samples may simply reflect a misconstrued primordial isotope composition of Nd and Hf in the Earth. The only strong statement that safely emerges from Fig. 8 is that the geochemically transient state of the Earth lasted for about 1 Gy Albarède et

al. (2000).

For ~4 Gy, extraction of continental crust does not, therefore, appear to have depleted the mantle source of the continental protolith (Fig. 8). Island arc rocks and, to an even greater extent, TTGs, are characterized by particularly low ¹⁷⁶Lu/¹⁷⁷Hf ratios (Blichert-Toft and Albarède, 2008); Fig. 9) and strong depletions in Nb and Ta (Hoffmann et al., 2011; Kamber et al., 2002). Both types of magmas derive from mafic melts through a second-stage process and do not represent melts extracted directly from the (ultramafic) mantle. In contrast, both mid-ocean ridge (MORB) and plateau basalts have ¹⁷⁶Lu/¹⁷⁷Hf ratios not very different from the chondritic value (0.033) (Blichert-Toft and Albarède, 1997; Blichert-Toft and Albarède, 2008 ; Bouvier et al., 2008), while the ¹⁷⁶Lu/¹⁷⁷Hf ratio of the modern depleted upper mantle (0.045 for Salters and Stracke, 2004, and 0.053 for Workman and Hart, 2005) is estimated to be much higher. Trace element and isotopic evidence (Hofmann et al., 1997) further indicates that MORB originates in a mantle that went through multiple melt extraction events in the distant past. In addition, MORB extraction visibly is a continuous process, which conflicts with the episodic record of continental crust formation (Albarède, 1998a). A mantle resembling the modern upper (MORB) mantle therefore does not provide a suitable precursor for continents.

Figure 10. Lu-Hf isochron diagram in normalized $\varepsilon_{Hf}(T_0)$ and $f_{Lu/Hf}$ variables showing that the Bulk Silicate Earth (BSE = 0,0), the depleted mantle, and continental crust form a good alignment, which supports that crust form from the BSE by leaving the depleted mantle as a residue. $f_{Lu/Hf}$ is defined as $[(^{176}Lu/^{177}Hf)_{sample'}((^{176}Lu/^{177}Hf)_{CHUR}] - 1$, with $(^{176}Lu/^{177}Hf)_{CHUR} = 0.0332$. The respective $^{176}Lu/^{477}Hf$ ratios of these reservoirs are those of Rudnick and Fountain (1995), Workman et al. (2005), and Blichert-Toft and Albarède (1997). The mean present-day ε_{Hf} of the crust was taken from the average value of the Amazon bedload (Vervoort et al., 1999), while the value for the depleted mantle (+14) was taken from the maximum frequency of MORB samples in the GEOROC database.

The continental protolith hence was extracted without noticeable geochemical fractionation from a part of the mantle whose incompatible element content remained geochemically unchanged for 4 Gy. We surmise that this undepleted source could be the deep mantle and that it remained largely undepleted simply because melting of the rising plume head transporting the deep mantle material upwards only occurred in the upper mantle. A rising diapir of deep mantle separating at rather shallow depth into a basaltic protolith (the plume head) and a refractory residue merging with the residual upper mantle constituted the first step. The equivalence of greenstone belts with oceanic plateaus, the episodic character of their extraction from the mantle, and the age correspondence with peaks of crustal growth is well established (Condie, 1995). Unfortunately, trace element geochemistry is of little help to support this suggestion: a compilation of 327 samples of oceanic plateaus (from http://www.georoc.org/portal.php) gives a mean ¹⁷⁶Lu/¹⁷⁷Hf value of 0.027, but with a wide range of variation of 300%, which attests to the complexity of melting conditions in this environment. The second step takes place at subduction zones and involves the melting of thick oceanic plateaus to form the orogenic magmas that will accrete to pre-existing continental crust. The depleted residues could return to the upper mantle either through subduction (Condie, 1998; Rollinson, 1997) or by subsequent delamination of the underplated residues (Arndt and Goldstein, 1989; Plank, 2005; Rudnick and Fountain, 1995). The volume of deep-seated fertile mantle source available for continent formation therefore decreases with time but without experiencing major chemical changes. The strikingly constant Lu/Hf ratio of the continent protolith demonstrates a connection between crust-forming processes and deepmantle dynamics. This interpretation is consistent with the prevalence of superplume events in crustal growth (Boher et al., 1992; Hawkesworth et al., 2010; Schubert and Sandwell, 1989; Stein and Goldstein, 1996), possibly triggered by mantle avalanches (Stein and Hofmann, 1994), and with the origin of plateau basalts in ancient primitive mantle (Jackson and Carlson, 2011). There is, in contrast, no large-scale geochemical record of ε_{Hf} (T₀)>8 and, hence, no record of direct upper mantle involvement in crustal growth prior to the late Proterozoic (Fig. 2). However incontrovertible the evidence of subduction-related magmatic activity on the present Earth, it seems that this process was not the primary cause of crustal growth during most of geologic history. Oceanic crust consumption at subduction zones and creation at ridge crests are two complementary surface expressions of mantle convection: crustal growth is forcibly episodic, but there is no hint in the geological record that plate tectonics repeatedly came to a full stop for protracted periods of time. In other words, the composition and the episodicity of crust formation is related to plume-driven processes, while the main

mechanism able to transform oceanic plateaus into continental crust is subduction. In a twostage process, the first stage is controlled by deep-mantle dynamics and the second stage is controlled by plate tectonics (subduction).

Defining the source of continental crust as the 'deep mantle' is nonetheless ambiguous as there is a need to assess how such an entity relates to the lower mantle defined by geophysics as the mantle underlying the 660 km seismic discontinuity. In the Lu-Hf isochron plot of Fig. 10, continental crust and the depleted mantle form an alignment with the bulk silicate Earth. The respective ¹⁷⁶Lu/¹⁷⁷Hf ratios of these reservoirs are those of Rudnick and Fountain (1995), Workman et al. (2005), and Blichert-Toft and Albarède (1997). The mean $\varepsilon_{\rm Hf}(0)$ of the crust (-16) was taken from the average value of the Amazon bedload (Vervoort et al., 1999), for which U-Pb and Lu-Hf systematics in zircons show that it is supplied by rocks with ages spanning almost the entire Earth record, from a recent time to > 3 Ga (Iizuka et al. 2010), making the Amazon river a very good candidate to represent an average isotopic composition of the continental crustThe value for the depleted mantle (+14) was taken from the maximum frequency of MORB samples in the GeoRoc database (http://www.georoc.org/portal.php). These values indicate that, upon crustal growth from a primitive mantle that leaves depleted MORB mantle as a residue, 46% of Hf fractionates into the crust. Using Hf concentrations of 0.28 ppm in the primitive mantle (McDonough and Sun, 1995), 3.7 ppm in the crust (Rudnick and Fountain, 1995), and 0.16 ppm in the depleted mantle (Workman and Hart, 2005), the proportion of the mantle depleted by crust formation is estimated to be 21%.

How does this interpretation differ from the decades-old paradigm of layered mantle convection and, in particular, how does subduction of lithospheric plates affect the composition of the deep mantle? Ancient fluxes of continental crust recycled into the mantle are poorly constrained. Scholl and von Huene (2009) acknowledged this limitation and assessed that the equivalent of the volume of modern crust may have been returned to the mantle over the last 3 Ga. The ⁴⁰K–⁴⁰Ar budget of crust and atmosphere formation clearly is incompatible with such a large volume. Coltice et al. (2000) showed that such a volume is incompatible with the ⁴⁰K-⁴⁰Ar budget of crust and atmosphere and used the amount of 'orphaned' ⁴⁰Ar in the atmosphere to bring the upper limit of crust recycled into the mantle over that period down to 25% of the present crust. One reason why fluxes of recycled continental crust are so low is that before sinking into the deep mantle, lithospheric plates are effectively stripped of their mobile elements, either because they are incompatible or because

they are labile in the presence of fluids. Deep subduction of barren plates (Albarède, 1998b) only negligibly changes the Lu/Hf ratio of the deep mantle, but dilutes incompatible element concentrations by up to a factor of two assuming present-day subduction rates and that all plates reach the lower mantle. If, by extrapolating the modern rate of plate subduction, it is assumed that a volume equivalent to that of the whole mantle has been processed through mid-ocean ridges, the proportion of the mantle depleted by crust formation should be raised from 21 to 40%. This range is to be compared with a mass proportion of 25% for the part of the mantle lying above the 660 km discontinuity, which seems to store plume material prior to eruption (Cao et al., 2011). If the deep mantle has a chondritic Lu/Hf ratio and a primordial Hf concentration, the modern upper mantle, therefore, is almost completely made up of residues of crust extraction. This cannot, however, have been the case for most of Earth's history, and hence largely accounts for, among other parameters that also play a role, the scarcity of ancient MORB-like magmas (Arndt, 2008).

The fertile mantle, which is the ultimate source of continental crust, therefore has receded downwards through geological time at the pace of crustal growth. Whichever proportion of U, Th, and K is presently hosted by the continental crust was, >3 Gy ago, still largely contained within the upper mantle and its activity substantially higher. Consequently, the temperature gradient in the upper mantle was significantly greater than its modern equivalent. In such a context, the predominant restriction of TTGs to crustal segments older than 1.8 Ga indicates that the geodynamics of the first ~3 Gy of Earth's history were controlled by hot partial melting of oceanic plateau basalts possibly in subduction-like environments (Condie, 2005), with both types of settings experiencing subsequent collisions, such as at Isua (Hiess et al., 2009), and the steady decantation of Mg-rich, buoyant depleted residues into the upper mantle.

6. Conclusions

This study addresses the long-standing and widely debated problem of the origin and evolution of the continental crust through Earth's history with special emphasis on the Hadean-Archean transition. We have revisited this question through a large new Lu-Hf isotope data set on a global collection of TTG rocks from almost every known craton, together with paired Hf (tracer) and Pb (age) isotopic measurements on single zircons from the same samples. The zircon work was undertaken with the goal of (i) demonstrating that the Hf isotopic compositions of zircons are representative of those of their host rock and, hence, can be used to make inferences about continental growth, and to (ii) either verify or determine the Pb-Pb ages of the samples. We also show that solution and laser-ablation Hf isotopic measurements are in good agreement. We use this data set, together with a large database of previously published Hf isotopic compositions on detrital and magmatic zircons, to show that the time-integrated Lu/Hf ratios recorded in TTGs and the global zircon database have remained essentially unchanged—and approximately similar to the chondritic ratio—over the past 4 Gy. We argue that the narrow range of near-chondritic Lu/Hf supports derivation of continental crust from primitive (chondritic) mantle instead of, as commonly assumed, the depleted upper mantle (MORB-source). We surmise that this primitive reservoir resides in the lower mantle, implying that continental crust is generated from a deep mantle source rather than the upper mantle. In this scenario, continental crust principally formed early on through partial melting at subduction zones of oceanic plateaus, which in turn formed by shallow melting of primitive mantle material brought from the lower mantle in upwelling plume heads. The depleted plume residues would remain in and merge with the upper mantle after crust extraction.

7. Acknowledgements

We are grateful to Geoscience Australia, Chris Carson, Olga Turkina, Valery Vetrin, Martin Van Kranendonk, Dave Champion, Minik Rosing, Thomas Naeraa, Jean-François Moyen, Mingguo Zhaï, Peng Peng, and Svetlana Lobach-Zhuchenko for generously providing most of the samples analyzed in this study. We further thank Philippe Telouk, Chantal Douchet, Emmanuelle Albalat, Florent Arnaud-Godet, Gilles Montagnac, Bertrand Van De Moortele, Jean-Louis Paquette, Jean-Marc Hénot, Denis Mangin, Marc Chaussidon, Wouter Bleeker, Mireille Besairie, Nicole Cates, Oleg Abramov, Charles Knaack, Thomas Williams, Richard Gaschnig, and Jeff Vervoort for help with either technical or analytical matters or field work. JBT and FA acknowledge financial support from the French Programme National de Planétologie of the Institut National des Sciences de l'Univers and Centre National d'Etudes Spatiales, and from the French Agence Nationale de la Recherche (grants BEGDy – Birth and Evolution of Terrestrial GeoDynamics and M&Ms - Mantle Melting - Measurements, Models, Mechanisms), while SJM acknowledges financial support from the NASA Exobiology Program (grant Exploring the Hadean Earth) and NASA Lunar Science Institute Program (Center for Lunar Origin and Evolution), the National Geographic Society, University of Colorado and the J. William Fulbright Foundation. We thank Matthew Jackson for inspiring discussion, Klaus Mezger and an anonymous reviewers for their helpful comments.
Conclusions

et

perspectives

Conclusions et perspectives

Conclusions et perspectives

La Terre a une particularité par rapport à ses homologues du système solaire : elle possède une croûte différenciée qui est directement liée à une autre de ses particularités la présence d'eau liquide à sa surface. Les continents, constitués par cette croûte différenciée, sont quasi-indestructibles et ont tendance à rester en surface ce qui est extrêmement intéressant puisqu'ils vont constituer une puissante archive accessible de l'histoire de la Terre. Les continents nous informent sur les processus internes et externes de la Terre mais aussi sur la composition et l'évolution de certains réservoirs comme le manteau supérieur, inférieur et les océans. L'ossature de la croûte continentale est représentée actuellement par les granodiorites et les granites, mais les portions d'âge archéen sont plutôt constituées de TTG (Tonalite-Trondhjémite-Granodiorite) qui différent de ces premiers par leur minéralogie mais surtout par leur teneurs en certains éléments majeurs (notamment Na et K) et certains éléments incompatibles principalement les Terres Rares lourdes (peu concentrées dans les TTG). Ces différences peuvent être expliquées en termes de source et de paramètres de fusion partielle en contexte de subduction même si quelques hypothèses annexes on été proposées. Les continents seraient donc liées à la tectonique des plaques ce qui permettrait de dater son démarrage. Les segments continentaux ont été progressivement datés avec le développement au cours du siècle dernier d'un certain nombre de techniques analytiques très puissantes et la découverte de chronomètres isotopiques dont nous avons acquis une bonne compréhension de nos jours. Dans ce travail de thèse, je me suis focalisé sur l'analyse des isotopes du Lu et de l'Hf dans des TTG, et leurs zircons, de provenance diverses représentative d'environ tous les cratons.

Les analyses Lu-Hf des TTG révèlent une constance dans le temps des valeurs desc _{Hf} initiaux variant toujours dans une même gamme entre -1 et +4 sans corrélation avec leurs âges. Les zircons analysés par solution ont montré qu'au sein d'une même population, les âges variaient sensiblement, sauf pour certains échantillons, et que généralement les ¹⁷⁶Hf/¹⁷⁷Hf initiaux ne différaient pas de façon significative excepté pour des zircons complexes ou avec des surcroissances notables. Les analyses de zircon par ablation-laser ont montré dans l'ensemble un bien meilleur accord en ce qui concerne les âges qu'en solution, même si certains échantillons varient beaucoup (>200 Ma). Ces cristaux de zircon ont aussi montré un bon accord général entre les compositions isotopiques initiales en Hf au sein d'une population même lorsque les âges variaient. Quarante et un zircons ont été extraits de leurs plots après analyses par ablation-laser pour être dissous et analysés selon les méthodes en solution. Les résultats montrent un très bon accord entre les deux techniques en ce qui concerne les ¹⁷⁶Hf/¹⁷⁷Hf et les âges Pb-

Pb diffèrent significativement dans une bonne partie des cas. Les ¹⁷⁶Hf/¹⁷⁷Hf initiaux sont en bon accord, entre solution et ablation-laser, uniquement car la correction d'âge sur les rapports mesurés est très faible puisque le rapport ¹⁷⁶Lu/¹⁷⁷Hf moyen d'un zircon est de l'ordre de quelques 10⁻⁴. Dans la plupart des cas, les ¹⁷⁶Hf/¹⁷⁷Hf initiaux des zircons sont en bon accord avec ceux de leur roche-hôte mais seules les valeurs des $\epsilon_{\rm Hf}$ initiaux des zircons ayant les âges les plus vieux au sein d'une même population sont en accord avec celles des TTG. Ces âges sont très généralement en bon accord avec ceux ayant été estimés précédemment par d'autres auteurs comme étant ceux des roches analysées dans cette thèse. Les autres zircons présentant des âges plus jeunes mais des compositions isotopiques en Hf semblables, s'alignent et forment des tendances dans un diagramme $\epsilon_{\rm Hf}$ initial en fonction de l'âge qui ressemblent fortement à celles visibles dans l'enregistrement des zircons détritiques archéens. Selon ces analyses U-Pb et Lu-Hf des zircons, il semble que l'Hf soit très souvent en bon accord entre les zircons d'une même population et qu'à l'inverse, les âges varient significativement, ainsi que les rapports Lu/Hf.

Par comparaison avec des zircons issus d'une base de données s'étalant sur toute l'histoire de la Terre, les valeurs observées pour les EHF initiaux des TTG se prolongent jusqu'à ~800 Ma, si les valeurs des zircons sont traitées de façon statistiques dans un histogramme à 2 dimensions. Cette représentation permet de mettre en avant le regroupement préférentiel des données des zircons de la littérature selon certains âges qui est un argument fort en la faveur d'une croissance épisodique de la croûte continentale. Les données de la littérature pour l'Archéen ne sont pas en bon accord avec les données des TTG mesurées dans cette thèse à l'exception des zircons ignés du Groenland, âgés de 3,8 Ga, et des zircons détritiques de Finlande et du Canada, principalement âgés de 2,7 Ga. Cette différence est probablement liée à l'utilisation d'âges non-magmatiques, liés à des pertes de Pb, dans le calcul des ε_{Hf} initiaux, ce qui parait être fréquent dans ces vieux minéraux. Par conséquent, lorsque l'on prend en compte ce facteur, il apparait que des corrélations positives sont fréquemment observées pour l'éon Archéen entre ε_{Hf} et âge (et disparaissent après 2,5 Ga). Les valeurs les plus élevées de ces tendances correspondent aux valeurs des TTG comme il est aussi le cas pour les populations de zircon extraites de celles-ci. Les continents semblent avoir été extraits de façon épisodique à partir d'un manteau ayant des valeurs d'ɛHf globalement inchangées tout au long de l'histoire de la Terre. Ceci implique que la source des continents n'a pas vue son rapport Lu/Hf significativement fractionné. Le calcul intégré dans le temps du ¹⁷⁶Lu/¹⁷⁷Hf de la source des continents indique par ailleurs non seulement qu'il n'a pas changé dans le temps mais qu'il est très peu différent de celui des chondrites. Le

Conclusions et perspectives

caractère épisodique de l'extraction des continents ainsi que la nature primitive de leur source mantellique est cohérent avec l'origine de la croûte continentale dans le manteau inférieur. Un scénario compatible avec cette hypothèse serait le recyclage de plateaux océaniques, provenant de la fusion partielle dans le manteau supérieur de panaches mantelliques prenant leur source dans le manteau inférieur, dans des zones de subduction. La croissance des continents se serait donc faite en grande majorité par recyclage de plateaux océaniques et non de croûte océanique. A la vue des résultats sur les zircons ignés, le démarrage de la croissance des continents et probablement de la tectonique des plaques se serait produit il y a ~4,3 Ga.

Le développement des techniques d'analyses de chronomètres à courte période va, à l'avenir, nous aider à mieux comprendre et interpréter les signatures isotopiques des roches et minéraux très anciens pour contraindre à la fois les processus d'accrétion de la Terre primitive et de différenciation s'étant passés à l'Hadéen, ainsi que leurs effets. De plus, ces chronomètres à courte période tendent à montrer que des domaines mantelliques peuvent être préservés d'un re-mélange avec le manteau ambiant pendant longtemps (> 1 Ga) ce qui peut, dans certains cas, remettre en cause l'interprétation des données isotopiques de chronomètres à longue période et apporte un regard nouveau sur les hétérogénéités mantelliques et leur survie.

La découverte de roches > 4 Ga aiderait beaucoup à cette compréhension même si la découverte de roches et minéraux de plus en plus anciens a aussi amené un certain nombre de controverses et de questions supplémentaires cependant stimulantes.

Un travail de fond devrait être fait en complément des travaux déjà effectués sur l'évolution cristalline des zircons et leur capacité à préserver un signal isotopique acquis lors de leur cristallisation ou de leur évolution supposée en système fermé. Les techniques in-situ de pointes (e.g. rayons X par synchrotron) pourraient être utilisées pour comprendre la répartition des éléments en traces dans les zircons et leur mobilité par diffusion de volume ou par chenaux liés à la désintégration radioactive des chaînes de l'U et du Th.

Connaître les gammes d'hétérogénéités isotopiques initiales en Hf des granitoïdes contenants des zircons, par la mesure sur ces derniers, permettrait une meilleure et plus juste interprétation de ces données, spécialement pour des roches très anciennes. Pour se faire des cristaux de zircon d'échantillons d'âges très divers, entre quelques millions et quelques milliards d'années, pourraient être analysés en conjugaison avec leur roche-hôte.

Certains débats existent sur l'interprétation des données isotopiques en Hf et Nd des roches granitiques et l'effet de la contamination par de la croûte pré-existante sur celles-ci.

Une méthode robuste et moins sensible que le Rb-Sr pour répondre à ces questions est l'utilisation du chronomètre Re-Os. Ce dernier se comporte de façon opposée aux systèmes Sm-Nd et Lu-Hf de telle sorte que la croûte continentale possède un rapport Re/Os très supérieur à sa source et acquière très vite des compositions isotopiques très radiogéniques. La contamination de magmas mantelliques par une croûte continentale relativement âgée induirait une contamination très visible dans le signal isotopique en Os de ceux-ci, ce qui permettrait de filtrer les données.

- Abbott, D. H., Burgess, L., Longhi, J. & Smith, W. H. F. (1994). An empirical thermal history of the Earth's mantle. *Journal of Geophysical Research* **99**, 13835-13850.
- Abouchami, W., Boher, M., Michard, A. & Albarède, F. (1990). A major 2.1 Ga event of mafic magmatism in West Africa-An early stage of crustal accretion. *Journal of Geophysical Research* 95, 17605-17629.
- Albarède, F. & Brouxel, M. (1987). The Sm/Nd secular evolution of the continental crust and the depleted mantle. *Earth and Planetary Science Letters* **82**, 25-35.
- Albarede, F. (1989). Sm/Nd constraints on the growth rate of continental crust. *Tectonophysics* 161, 299-305.
- Albarède, F. (1998a). The growth of continental crust. *Tectonophysics* 296, 1-14.
- Albarède, F. (1998b). Time-dependent models of U-Th-He and K-Ar evolution and the layering of mantle convection. *Chemical Geology* **145**, 413-429.
- Albarède, F., Blichert-Toft, J., Vervoort, J. D., Gleason, J. D. & Rosing, M. (2000). Hf-Nd isotope evidence for a transient dynamic regime in the early terrestrial mantle. *Nature* **404**, 488-490.
- Albarède, F. (2003). Geochemistry: An Introduction. Cambridge: Cambridge Univ. Press.
- Albarède, F., Telouk, P., Blichert-Toft, J., Boyet, M., Agranier, A. & Nelson, B. (2004). Precise and accurate isotopic measurements using multiple-collector ICPMS. *Geochimica et Cosmochimica Acta* 68, 2725-2744.
- Albarède, F., Scherer, E. E., Blichert-Toft, J., Rosing, M., Simionovici, A. & Bizzarro, M. (2006). gamma-ray irradiation in the early Solar System and the conundrum of the ¹⁷⁶Lu decay constant. *Geochimica et Cosmochimica Acta* 70, 1261-1270.
- Allègre, C. J. (1982). Genesis of Archaean Komatiites in a Wet Ultramafic Subducted Plate. *Komatiites*: London 495-500.
- Allègre, C. J. & Rousseau, D. (1984). The growth of the continents through geological time studied by Nd isotope analysis of shales. *Earth and Planetary Science Letters* **67**, 19-34.
- Allègre, C. J., Hofmann, A. W. & O'Nions, R. K. (1996). The argon constraints on mantle structure. *Geophysical Research Letters* 23, 3555-3557.
- Allègre, C. J. (2005). Géologie isotopique. Belin.
- Althoff, F. J. (1996). Etude pétrologique et structurale des granitoïdes de Marajoara (Pará, Brésil): leur rôle dans l'évolution archéenne du craton amazonien (2,7-3,2 Ga). Thèse de l'Université de Nancy, France, 296.
- Amelin, Y., Lee, D.-C., Halliday, A. N. & Pidgeon, R. T. (1999). Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. *Nature* 399, 252-255.
- Amelin, Y., Lee, D. C. & Halliday, A. N. (2000). Early-middle archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. *Geochimica et Cosmochimica Acta* 64, 4205-4225.
- Amelin, Y., Krot, A. N., Hutcheon, I. D. & Ulyanov, A. A. (2002). Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. *Science* 297, 1679-1683.
- Anhaeusser, C. R. (1971). The Barberton mountain land, South Africa- A guide to the understanding of the Archean geology of Western Australia. *Geological Society of Australia special publication* 3, 103-120.
- Arevalo, R. J., McDonough, W. F., Luong, M. & (2009). The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution. *Earth and Planetary Science Letters* 278, 361–369.

- Armstrong, R. L. (1991). The persistent myth of crustal growth. *Australian journal of Earth sciences* **38**, 613-630.
- Arndt, N. T. & Goldstein, S. L. (1989). An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. *Tectonophysics* **161**, 201-212.
- Arndt, N. T., Lesher, M. C., Houlé, M. G., Lewin, E. & Lacaze, Y. (2004). Intrusion and crystallisation of a spinifex-textured komatiite sill in Dundonald township, Ontario. *Journal of Petrology* 45, 2555-2571.
- Arndt, N. T. (2008). Komatiites: Cambridge University Press.
- Bahlburg, H., Vervoort, J. D., DuFrane, S. A., Carlotto, V., Reimann, C. & Cardenas, J. (2011). The U-Pb and Hf isotope evidence of detrital zircons of the Ordovician Ollantaytambo Formation, southern Peru, and the Ordovician provenance and paleogeography of southern Peru and northern Bolivia. *Journal of South American Earth Sciences* 32, 196-209.
- Barbarin, B. (1999). A review of the relationships between granitoid types, their origins and their geodynamic environments. *Lithos* 46, 605-626.
- Barker, F. & Arth, J. G. (1976). Generation of trondhjemitic-tonalitic liquids and Archaean bimodal trondhjemite-basalt suites. *Geology* **4**, 596-600.
- Barker, F., Millard, H. T. & Lipman, P. W. (1979). Four low-K siliceous rocks of the western USA. *Trondhjemites, dacites and related rocks*, 415-433.
- Beard, J. S. & Lofgren, G. E. (1989). Effect of water on the composition of partial melts of greenstones and amphibolites. *Science* 244, 195-197.
- Beard, J. S. & Lofgren, G. E. (1991). Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 Kb. *Journal of Petrology* **32**, 465-501.
- Bédard, J. (2006). A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle *Geochimica et Cosmochimica Acta* **70**, 1188-1214.
- Bell, E. A., Harrison, T. M., McCulloch, M. T. & Young, E. D. (2011). Early Archean crustal evolution of the Jack Hills Zircon source terrane inferred from Lu-Hf, ²⁰⁷Pb/²⁰⁶Pb, and δ¹⁸O systematics of Jack Hills zircons. *Geochimica et Cosmochimica Acta* 75, 4816-4829.
- Belousova, E. A., Reid, A. J., Griffin, W. L. & O'Reilly, S. Y. (2009). Rejuvenation vs. recycling of Archean crust in the Gawler Craton, South Australia: Evidence from U-Pb and Hf isotopes in detrital zircon. *Lithos* 113, 570-582.
- Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., Begg, G. C., O'Reilly, S. Y. & Pearson, N. J. (2010). The growth of the continental crust: Constraints from zircon Hf-isotope data. *Lithos* 119, 457-466.
- Bennett, V. C., Nutman, A. P. & McCulloch, M. T. (1993). Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the Earth. *Earth and Planetary Science Letters* 119, 299-317.
- Bennett, V. C., Brandon, A. D., Nutman, A. P. (2007). Coupled ¹⁴²Nd-¹⁴³Nd Isotopic Evidence for Hadean Mantle Dynamics. *Science* **318**, 1907-1910.
- Bevan, A. W. R. (2007). Early solar system materials, processes and chronology. *Earth's oldest rocks*. Elsevier, 31-59.
- Bibikova, E. V., Turkina, O. M., Kirnozova, T. I. & Fugzan, M. M. (2006). Ancient Plagiogneisses of the Onot Block of the Sharyzhalgai Metamorphic Massif: Isotopic Geochronology. *Geochemistry International* 44, 310-315.
- Bickle, M. J. (1978). Heat loss from the Earth: a constraint on Archean tectonics from the relation between geothermal gradients and rate of plate production. *Earth and Planetary Science Letters* 40, 301-315.

- Bickle, M. J., Battenay, L. F., Barley, M. E., Chapman, H. J., Groves, D. I., Campbell, I. H. & deLaeter, J. R. (1983). Origin of the 3500-3300 Ma calc-alkaline province in the Pilbara Archaean: isotopic and geochemical constraints from the Shaw batholith. *Precambrian Research* 60, 117-149.
- Black, L. P., Gale, N. H., Moorbath, S., Pankhurst, R. J. & McGregor, V. R. (1971). Isotopic dating of very early Precambrian amphibolite facies gneisses from the Godthaab district, West Greenland *Earth and Planetary Science Letters* 12, 245-259.
- Black, L. P., Williams, I. S. & Compston, W. (1986). 4 Zircon Ages From One Rock The History Of A 3930 Ma-Old Granulite From Mount Sones, Enderby Land, Antarctica. *Contributions to Mineralogy and Petrology* 94, 427-437.
- Blichert-Toft, J. & Albarède, F. (1997). The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. *Earth and Planetary Science Letters* **148**, 243-258.
- Blichert-Toft, J., Chauvel, C. & Albarède, F. (1997). Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. *Contributions to Mineralogy and Petrology* 127, 248-260.
- Blichert-Toft, J. (2001). On the Lu-Hf Isotope Geochemistry of Silicate Rocks. *Geostandards Newsletter* **25**, 41-56.
- Blichert-Toft, J., Boyet, M., Télouk, P. & Albarède, F. (2002). ¹⁴⁷Sm-¹⁴³Nd and ¹⁷⁶Lu-¹⁷⁶Hf in eucrites and the differentiation of the HED parent body. *Earth and Planetary Science Letters* **204**, 167-181.
- Blichert-Toft, J. & Albarède, F. (2008). Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. *Earth and Planetary Science Letters* **265**, 686-702.
- Blichert-Toft, J. & Puchtel, I. S. (2010). Depleted mantle sources through time: Evidence from Lu-Hf and Sm-Nd isotope systematics of Archean komatiites. *Earth and Planetary Science Letters* **297**, 598-606.
- Boher, M., Abouchami, W., Michard, A., Albarède, F. & Arndt, N. T. (1992). Crustal growth in West-Africa at 2.1 Ga. *Journal of Geophysical Research* 97, 345-369.
- Bohlen, S. R. & Mezger, K. (1989). Origin of Granulite Terranes and the Formation of the Lowermost Continental Crust. *Science* **244**, 326-329.
- Bonin, B. (1986). *Ring complex granites and anorogenic magmatism*. North Oxford academic publication.
- Boryta, M. & Condie, K. C. (1990). Geochemistry and origin of the Archaean Beit Bridge complex, Limpopo belt, South Africa *Journal of the Geological Society of London* 147, 229-239.
- Bouhallier, H., Chardon, D. & Choukroune, P. (1995). Strain patterns in Archaean dome-and-basin structures: The Dharwar craton (Karnataka, South India). *Earth and Planetary Science Letters* 135, 57-75.
- Bouvier, A., Vervoort, J. D. & Patchett, P. J. (2008). The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. *Earth and Planetary Science Letters* 273, 48-57.
- Bowring, S. A., Williams, I. S. & Compston, W. (1989). 3.96 Ga Gneisses From The Slave Province, Northwest-Territories, Canada. *Geology* 17, 971-975.
- Bowring, S. A., Housh, T. B. & Isachsen, C. E. (1990). The Acasta gneisses: Remnant of Earth's early crust. In: Newsom, H. & Jones, J. (eds.) *Origin of the Earth*. Oxford: Unversity Press, 319-343.
- Boyet, M., Blichert-Toft, J., Rosing, M., Storey, M., Télouk, P. & Albarède, F. (2003). ¹⁴²Nd evidence for early Earth differentiation. *Earth and Planetary Science Letters* **214**, 427-442.
- Boyet, M. & Carlson, R. W. (2005). ¹⁴²Nd Evidence for Early (>4.53 Ga) Global Differentiation of the Silicate Earth. *Science* **309**, 576-581.

- Bridgwater, D. & McGregor, V. R. (1974). Field work on the very early Precambrian rocks of the Isua area, southern West Greenland. *Rapport Grønlands Geologiske Undersogelse*. **65**, 49-54.
- Brown, G. C. (1985). Processes and problems in the continental lithosphere: geological history and physical implications. *Geological Society of London, Memoirs* **10**, 326-346.
- Cao, Q., van der Hilst, R. D., de Hoop, M. V. & Shim, S. H. (2011). Seismic imaging of transition zone discontinuities suggests hot mantle West of Hawaii. *Nature* **332**, 1068-1071.
- Caro, C., Bourdon, B., Birck, J. L. & Moorbath, S. (2003). ¹⁴⁶Sm-¹⁴²Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth's mantle. *Nature* **423**, 428-432.
- Caro, G. & Bourdon, B. (2010). Non-chondritic Sm/Nd ratio in the terrestrial planets: Consequences for the geochemical evolution of the mantle–crust system. *Geochimica et Cosmochimica Acta* 74, 3333-3349.
- Carson, C.J., Ague, J.J., Grove, M., Coath, C.D., Harrison, T.M., 2002. U–Pb isotopic behaviour of zircon during upper-amphibolite facies fluid infiltration in the Napier Complex, east Antarctica. *Earth and Planetary Science Letters* **199**, 287–310.
- Cates, N. L. & Mojzsis, S. J. (2006). Chemical and isotopic evidence for widespread Eoarchean metasedimentary enclaves in southern West Greenland. *Geochimica et Cosmochimica Acta* **70**, 4229-4257.
- Cates, N. L. & Mojzsis, S. J. (2007). Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Québec. *Earth and Planetary Science Letters* **255**, 9-21.
- Cavosie, A. J., Valley, J. W. & Wilde, S. A. (2007). The oldest terrestrial mineral record: a review of the 4400 to 4000 Ma detrital zircons from Jack Hills, Western Australia. *Earth's oldest rocks*. Elsevier, 91-111.
- Champion, D. C. & Sheraton, J. W. (1997). Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: implications for crustal growth processes. *Precambrian Research* 83, 109-132.
- Champion, D. C. and Smithies, R. H (2007). Chapter 4.3 Geochemistry of Paleoarchean Granites of the East Pilbara Terrane, Pilbara Craton, Western Australia: Implications for Early Archean Crustal Growth. *Developments in Precambrian Geology*: Elsevier, 369-409.
- Chappell, B. W. & White, A. J. R. (1974). Two contrasting granite types. Pacific Geology 8, 173-174.
- Chardon, D., Choukroune, P. & Jayananda, M. (1996). Strain patterns, décollement and incipient sagducted greenstone terrains in the Archaean Dharwar craton (South India). *Journal of structural Geology* 18, 991-1004.
- Chardon, D., Choukroune, P. & Jayananda, M. (1998). Sinking of the Dharwar basin (South India): implications for Archaean tectonics. *Precambrian Research* **91**, 15-39.
- Chardon, D., Gapais, D. & Cagnard, F. (2009). Flow of ultra-hot orogens: a view from the Precambrian, clues for the Phanerozoic. *Tectonophysics* **477**, 105-118.
- Chase, C. G. & Patchett, P. J. (1988). Stored mafic/ultramafic crust and early Archean mantle depletion. *Earth and Planetary Science Letters* **91**, 66-72.
- Chauvel, C. & Blichert-Toft, J. (2001). A hafnium isotope and trace element perspective on melting of the depleted mantle. *Earth and Planetary Science Letters* **190**, 137-151.
- Cherniak, D. J., Hanchar, J. M. & Watson, E. B. (1997a). Diffusion of tetravalent cations in zircon. *Contributions to Mineralogy and Petrology* **127**, 383-390.
- Cherniak, D. J., Hanchar, J. M. & Watson, E. B. (1997b). Rare-earth diffusion in zircon. *Chemical Geology* **134**, 289-301.
- Cherniak, D. J. & Watson, E. B. (2001). Pb diffusion in zircon. Chemical Geology 172, 5-24.

- Choi, S. H., Mukasa, S. B., Andronikov, A. V., Osanai, Y., Harley, S. L. & Kelly, N. M. (2006). Lu-Hf systematics of the ultra-high temperature Napier Metamorphic Complex in Antarctica: Evidence for the early Archean differentiation of Earth's mantle. *Earth and Planetary Science Letters* 246, 305-316.
- Choukroune, P., Ludden, J., Chardon, D., Calvert, A. J. & Bouhallier, H. (1997). Archaean crustal growth and tectonic processes : a comparison of the Superior province, Canada and the Dharwar craton, India. *Orogeny through time*. Geological Society Special Publication, 63-98.
- Christensen, N. I. & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: a global view. *Journal of Geophysical Research* **100**, 9761-9788.
- Chu, N.-C., Taylor, R. N., Chavagnac, V., Nesbitt, R. W., Boella, R. M., Milton, J. A., German, C. R., Bayon, G. & Burton, K. (2002). Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. *Journal of Analytical Atomic Spectrometry* 17, 1567-1574.
- Coltice, N., Albarède, F. & Gillet, P. (2000). ⁴⁰K-⁴⁰Ar constraints on recycling continental crust into the mantle. *Science* **288**, 845-847.
- Compston, P. (1978). Rare-earth evidence for the origin of the Nûk gneisses Buksefjorden region, southern West Greenland. *Contributions to Mineralogy and Petrology* **66**, 283-294.
- Compston, W. & Pidgeon, R. T. (1986). Jack Hills, evidence of more very old detrital zircons in Western Australia. *Nature* **321**, 766-769.
- Compston, W. & Kröner, A. (1988). Multiple zircon growth within early Archaean tonalitic gneiss from the Ancient Gneiss Complex, Swaziland. *Earth and Planetary Science Letters* **87**, 13-28.
- Condie, K. C., Allen, P. & Narayana, B. L. (1982). Geochemistry of the Archaean low- to high-grade transition zone, Southern India. *Contributions to Mineralogy and Petrology* **81**, 157-167.
- Condie, K. C. (1995). Episodic ages of greenstones: A key to mantle dynamics? *Geophysical Research Letters* 22, 2215-2218.
- Condie, K. C. (1998). Episodic continental growth and supercontinents: a mantle avalanche connection? *Earth and Planetary Science Letters* **163**, 97-108.
- Condie, K. C. (1999). Mafic crustal xenoliths and the origin of the lower continental crust. *Lithos* 46, 95-101.
- Condie, K. C. (2005). TTGs and adakites: are they both slab melts? Lithos 80, 33-44.
- Condie, K. C., Beyer, E., Belousova, E., Griffin, W. L. & O'Reilly, S. Y. (2005). U-Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust. *Precambrian Research* 139, 42-100.
- Condie, K. C. (2007). The distribution of paleoarchean crust. Earth's oldest rocks. Elsevier, 9-18.
- Condie, K. C., Belousova, E., Griffin, W. L. & Sircombe, K. N. (2009a). Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. *Gondwana Research* **15**, 228-242.
- Condie, K. C., O'Neill, C. & Aster, R. C. (2009b). Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. *Earth and Planetary Science Letters* **282**, 294-298.
- Corfu, F. (2000). Extraction of Pb with artificially too-old ages during stepwise dissolution experiments on Archean zircon. *Lithos* **53**, 279-291.
- Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. (2003). Atlas of zircon textures. Zircon., in: Reviews in Mineralogy and Geochemistry. Mineralogical Society of America. 53, 469-500.
- Das, A. & Davis, D. W. (2010). Response of Precambrian zircon to the chemical abrasion (CA-TIMS) method and implications for improvement of age determinations. *Geochimica et Cosmochimica Acta* **74**, 5333-5348.

- David, J., Parent, M., Stevenson, R. K., Nadeau, P. & Godin, L. (2002). La séquence supracrustale de Porpoise Cove, région d'Inukjuak; un exemple unique de croûte paléo-archéenne (ca. 3.8 Ga) dans la Province du Supérieur. *Ministère des Ressources naturelles, Québec* DV-2002, 10-17.
- Davis, D. W., Amelin, Y., Nowell, G. M. & Parrish, R. R. (2005). Hf isotopes in zircon from the western Superior province, Canada: Implications for Archean crustal development and evolution of the depleted mantle reservoir. *Precambrian Research* 140, 132-156.
- Day, W. C. & Weiblen, P. W. (1986). Origin of late Archaean granite: geochemical evidence from the Vermilion granitic complex of northern Minnesota. *Contributions to Mineralogy and Petrology* 93, 283-296.
- Defant, M. J. & Drummond, M. S. (1990). Derivation of some modern arcs by melting of young subducted lithosphere. *Nature* 347, 662-665.
- DePaolo, D. J. & Wasserburg, G. J. (1976). Nd isotopic variations and petrogenetic models. *Geophysical Research Letters* **3**, 249-252.
- DePaolo, D. J. (1980). Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. *Geochimica et Cosmochimica Acta* 44, 1185-1196.
- De Ronde, C. E. J. & Kamo, S. L. (2000). An Archaean arc-arc collisional event: a short-lived (ca 3 Myr) episode, Weltevreden area, Barberton greenstone belt, South Africa. *Journal of African Earth Sciences* 30, 219-248.
- Dhoundial, D. P., Paul, D. K., Amitabha, S., Triverdi, J. R., Gopalan, K. & Potts, P. J. (1987). Geochronology and geochemistry of precambrian granitic rocks of Goa, SW India. *Precambrian Research* 36, 287-302.
- Dickinson, W. R. & Gehrels, G. E. (2003). U-Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: paleogeographic implications. *Sedimentary Geology* **163**, 29-66.
- Drummond, M. S. & Defant, M. J. (1990). A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting : Archean to modern comparisons. *Journal of Geophysical Research* **95**, 503-521.
- Eisele, J., Abouchami, W., Galer, S. J. G. & Hofmann, A. W. (2003). The 320 kyr Pb isotope evolution of Mauna Kea lavas recorded in the HSDP-2 drill core. *Geochemistry, Geophysics, Geosystems*. 4, 1-32.
- Ernst, R. E. (2007). Mafic-ultramafic large igneous provinces (LIPs): importance of the pre-mesozoic record. *Episodes* **3**, 108-114.
- Feng, R. & Kerrich, R. (1992). Geochemical evolution of granitoids from the Archaean Abitibi southern volcanic zone and the Pontiac subprovince, Superior province, Canada: implications for the tectonic history and source regions. *Chemical Geology* 98, 23-70.
- Flament, N., Rey, P. F., Coltice, N., Dromart, G. & Olivier, N. (2011). Lower crustal flow kept Archean continental flood basalts at sea level. *Geology* 39, 1159-1162.
- Froude, D. O., Ireland, T. R., Kinny, P. D., Williams, I. S., Compston, W., Williams, I. R. & Myers, J. S. (1983). Ion microprobe identification of 4100-4200 Myr-old terrestrial zircons. *Nature* 304, 616-618.
- Fuchs, K., Kozlovsky, E. A., Krivtsov, A. I. & Zoback, M. D. (1990). Super-Deep continental drilling and deep geophysical sounding. Springer-Verlag.
- Fyfe, W. S. (1978). The evolution of the Earth's crust: modern plate plate tectonics to ancient hot spot tectonics. *Chemical Geology* **23**, 89-114.
- Galer, S. J. G. & Goldstein, S. L. (1991). Early mantle differentiation and its thermal consequences. *Geochimica et Cosmochimica Acta* 55, 227-239.

- Garde, A. (1997). Accretion and evolution of an Archaean high-grade grey gneiss amphibolite complex: the Fiskefjord area, southern West Greenland. *Geology of Greenland Survey bulletin* **177**, 115.
- Gaschnig, R. M., Vervoort, J. D., Lewis, R. S. & Tikoff, B. (2011). Isotopic evolution of the Idaho batholith and Challis intrusive province, Northern US cordillera. *Journal Of Petrology* **52**, 2397-2429.
- Gastil, G. (1960). The distribution of mineral dates in space and time. *American Journal of Science* **258**, 1-35.
- Gerdes, A. & Zeh, A. (2009). Zircon formation versus zircon alteration -- New insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. *Chemical Geology* **261**, 230-243.
- Goodge, J. W. & Vervoort, J. D. (2006). Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence. *Earth and Planetary Science Letters* **243**, 711-731.
- Gorman, B. E., Pearce, T. H. & Birkett, T. C. (1978). On the structure of Archaean greenstone belts. *Precambrian Research* 6, 23-41.
- Griffin, W. L. & O'Reilly, S. Y. (2007). The earliest subcontinental lithospheric mantle. *Earth's oldest* rocks, in: Developments in Precambrian Geology. Elsevier. **15**, 1013-1035.
- Grimes, C. B., John, B. E., Kelemen, P. B., Mazdab, F. K., Wooden, J. L., Cheadle, M. J., Hanghøj, K. & Schwartz, J. J. (2007). Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. *Geology* 35, 643-646.
- Guitreau, M., Blichert-Toft, J., Martin, H., Mojzsis, S. J. & Albarède, F. (2010). Progressive removal of an upper-mantle KREEP component by TTG magmatism through the Archean. *American Geophysical Union, Fall Meeting 2010*, abstract# V53A-2228.
- Gurnis, M. & Davies, G. J. (1986). Apparent episodic crustal growth arising from a smoothly evolving mantle. *Geology* 14, 396-399.
- Harley, S. L. & Black, L. P. (1997). A revised Archaean chronology for the Napier Complex, Enderby Land, from SHRIMP ion-microprobe studies. *Antarctic Science* 9, 74-91.
- Harley, S. L. (2003). Archaean to Pan-African crustal development and assembly of East Antarctica: metamorphic characteristics and tectonic implications. *Proterozoic East Gondwana: Supercontinent Assembly and Breakup*. Geological Society of London special publication 203-230.
- Harrison, T. M., Blichert-Toft, J., Müller, W., Albarede, F., Holden, P. & Mojzsis, S. J. (2005). Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga. Science 310, 1947-1950.
- Harrison, T. M., Schmitt, A. K., McCulloch, M. T. & Lovera, O. M. (2008). Early (\geq 4.5 Ga) formation of terrestrial crust: Lu-Hf, δ^{18} O, and Ti thermometry results for Hadean zircons. *Earth and Planetary Science Letters* **268**, 476-486.
- Hartmann, W. K. & Berman, D. C. (2000). Elysium Planitia lava flows: Crater counts chronology and geological implications. *Journal of Geophysical Research* 105, 15011-15025.
- Hawkesworth, C. J., Hergt, J. M., McDermott, F. & Ellam, R. M. (1991). Destructive margin magmatism and the contributions from the mantle wedge and subducted crust. *Australian journal of Earth sciences* **38**, 577-594.
- Hawkesworth, C. J., Dhuime, B., Cadwood, P. A., Kemp, A. I. S. & Storey, C. D. (2010). The generation and evolution of the continental crust. *Journal of the Geological Society of London* **167**, 229-248.
- Helz, R. T. (1976). Phase relations in basalts in their melting range at $P(H_2O) = 5$ kb. Part II. Melt compositions. *Journal of Petrology* 17, 139-193.

- Hiess, J., Bennett, V. C., Nutman, A. P. & Williams, I. S. (2009). In situ U-Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchaean rocks, West Greenland: New insights to making old crust. *Geochimica et Cosmochimica Acta* 73, 4489-4516.
- Hoffman, P. F. (1988). United plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. *Annual reviews in Earth and Planetary Sciences* **16**, 543-603.
- Hoffmann, J. E., Münker, C., Næraa, T., Rosing, M. T., Herwartz, D., Garbe-Schönberg, D. & Svahnberg, H. (2011). Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs. *Geochimica et Cosmochimica Acta* 75, 4157-4178.
- Hofmann, A. W. (1988). Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. *Earth and Planetary Science Letters* **90**, 297-314.
- Hofmann, A. W. (1997). Mantle geochemistry: the message from oceanic volcanism. *Nature* **385**, 219-229.
- Holloway, J. R. & Burnham, C. W. (1972). Melting relations of basalt with equilibrium water pressure less than total pressure. *Journal of Petrology* **13**, 1-29.
- Hoskin, P. W. O. (2000). Patterns of chaos: Fractal statistics and the oscillatory chemistry of zircon. *Geochimica et Cosmochimica Acta* 64, 1905-1923.
- Hoskin, P. W. O. & Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic petrogenesis. *Zircon*, Mineralogical Society of America, 27-62.
- Hunter, D. R., Barker, F. & Millard, H. T. (1984). Geochemical investigation of Archaean bimodal and Dwalile metamorphic suites, Ancient Gneiss complex, Swaziland. *Precambrian Research* 24, 131-155.
- Hurley, P. M. & Rand, J. R. (1969). Pre-drift continental nuclei. Science 164, 1229-1242.
- Iizuka, T., Horie, K., Komiya, T., Maruyama, S., Hirata, T., Hidaka, H. & Windley, B. F. (2006). 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: Evidence for early continental crust. *Geology* 34, 245-248.
- Iizuka, T., Komiya, T., Ueno, Y., Katayama, I., Uehara, Y., Maruyama, S., Hirata, T., Johnson, S. P. & Dunkley, D. J. (2007). Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: New constraints on its tectonothermal history. *Precambrian Research* 153, 179-208.
- Iizuka, T., Komiya, T., Johnson, S. P., Kon, Y., Maruyama, S. & Hirata, T. (2009). Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: Evidence from in-situ Lu-Hf isotope analysis of zircon. *Chemical Geology* 259, 230-239.
- Iizuka, T., Komiya, T., Rino, S., Maruyama, S. & Hirata, T. (2010). Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. *Geochimica et Cosmochimica Acta* 74, 2450-2472.
- Jackson, M. G., Carlson, R. W., Kurz, M. D., Kempton, P. D., Francis, D. & Blusztajn, J. (2010). Evidence for the survival of the oldest terrestrial mantle reservoir. *Nature* **466**, 853-856.
- Jackson, M. G. & Carlson, R. W. (2011). An ancient recipe for flood-basalt genesis. *Nature* **476**, 316-319.
- Jacobsen, S. B. & Wasserburg, G. J. (1979). The mean age of mantle and crustal reservoirs. *Journal of Geophysical Research* 84, 7411-7427.
- Jayananda, M., Moyen, J. F., Martin, H., Peucat, J. J., Auvray, B. & Mahabaleswar, B. (2000). Late Archaean (2550-2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry. *Precambrian Research* 99, 225-254.

- Jiang, N. & Guo, J.-H. (2010). Hannuoba intermediate-mafic granulite xenoliths revisited: Assessment of a Mesozoic underplating model. *Earth and Planetary Science Letters* **293**, 277-288.
- Juteau, T. & Maury, R. (2008). La croûte océanique-Pétrologie et dynamique endogène. Vuibert.
- Kamber, B. S., Ewart, A., Collerson, K. D., Bruce, M. C. & McDonald, G. D. (2002). Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. *Contributions to Mineralogy and Petrology* 144, 38-56.
- Kelemen, P. B. (1995). Genesis of high Mg# andesites and the continental crust. *Contributions to Mineralogy and Petrology* **120**, 1-19.
- Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A. & Kinny, P. D. (2006). Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. *Nature* **439**, 580-583.
- Kemp, A. I. S., Foster, G. L., Scherstén, A., Whitehouse, M. J., Darling, J. & Storey, C. (2009). Concurrent Pb-Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas. *Chemical Geology* 261, 244-260.
- Kemp, A. I. S., Wilde, S. A., Hawkesworth, C. J., Coath, C. D., Nemchin, A., Pidgeon, R. T., Vervoort, J. D. & DuFrane, S. A. (2010). Hadean crustal evolution revisited: New constraints from Pb-Hf isotope systematics of the Jack Hills zircons. *Earth and Planetary Science Letters* 296, 45-56.
- Kinny, P. D. (1986). 3820 Ma zircons from a tonalitic Amîtsoq gneiss in the Godthåb district of southern West Greenland. *Earth and Planetary Science Letters* **79**, 337-347.
- Kistler, R.W., Wooden, J.L., Morton, D.M. (2003). Isotopes and Ages in the Northern Peninsular Ranges Batholith, Southern California. USGSOpen-File Report 03-489. pp.45.
- Klein, E. M. (2003). Geochemistry of the igneous oceanic crust. *Treatise of Geochemistry*. Elsevier, 433-463.
- Kosler, J., Fonneland, H., Sylvester, P., Tubrett, M. & Pedersen, R.-B. (2002). U-Pb dating of detrital zircons for sediment provenance studies a comparison of laser ablation ICPMS and SIMS techniques. *Chemical Geology* 182, 605-618.
- Kozlovsky, Y. A. (1987). The superdeep well of the Kola peninsula. Springer-Verlag.
- Kremenetsky, A. A. & Ovchinnikov, L. N. (1986). The Precambrian continental crust: its structure, composition and evolution as revealed by deep drilling in the U.S.S.R. *Precambrian Research* **33**, 11-43.
- Krogh, T. E. (1982). Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. *Geochimica et Cosmochimica Acta* **46**, 637-649.
- Kröner, A., Hegner, E., Wendt, J. I. & Byerly, G. R. (1996). The oldest part of the Barberton granitoidgreenstone terrain, South Africa: evidence for crust formation between 3.5 and 3.7 Ga. *Precambrian Research* 78, 105-124.
- Kröner, A. & Van Kranendonk, M. J. (2007). Chapter 5.2 The Ancient Gneiss Complex of Swaziland and Environs: Record of Early Archean Crustal Evolution in Southern Africa. *Developments in Precambrian Geology*: Elsevier, 465-480.
- Lacroix, A. (1933). Classification des roches éruptives. Nancy, Berger-Levrault.
- Lameyre, J. & Bowden, P. (1982). Plutonic rock type series: discrimination of various granitoid series and related rocks. *Journal of volcanology and geothermal research* 14, 169-186.
- Lenting, C., Geisler, T., Gerdes, A., Kooijman, E., Scherer; E. E. and Zeh, A. (2010). The behavior of the Hf isotope system in radiation-damaged zircon during experimental hydrothermal alteration. *American Mineralogist* 95, 1343-1348.
- Liu, D. Y., Nutman, A. P., Compston, P., Wu, J. S. & Shen, Q. H. (1992). Remnants of >3800 Ma crust in the Chinese part of the Sino-Korean craton. *Geology* **20**, 339-342.

- Liu, D., Wilde, S. A., Wan, Y., Wu, J., Zhou, H., Dong, C. & Yin, X. (2008). New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton. *American Journal of Science* 308, 200-231.
- Luo, Y., Sun, M., Zhao, G., Li, S., Ayers, J. C., Xia, X. & Zhang, J. (2008). A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups: Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. *Precambrian Research* 163, 279-306.
- Ma, C. (1999). Magmatic plumbing as a window to crustal dynamics: an example from the Dabieashan ultradeep metamorphic rock region, Central China. *PhD thesis Turku*, 142.
- Manning, C. E., Mojzsis, S. J. & Harrison, T. M. (2006). Geology, age and origin of supracrustal rocks at akilia, West Greenland. *American Journal of Science* **306**, 303-366.
- Martin , E. & Sigmarsson, O. (2005). Trondhjemitic and granitic melts formed by fractional crystallisation of an olivine tholeite from Reykjanes Peninsula, Iceland *Geological magazine* 142, 651-658.
- Martin , E. & Sigmarsson, O. (2007). Low-pressure differentiation of tholeiitic lavas as recorded in segregation veins from Reykjanes (Iceland), Lanzarote (Canary Islands) and Masaya (Nicaragua). *Contributions to Mineralogy and Petrology* 154, 559-573.
- Martin, H. (1986). Effect of steeper Archaean geothermal gradient on geochemistry of subduction-zone magmas. *Geology* 14, 753-756.
- Martin, H. (1994). Chapter 6 The Archean Grey Gneisses and the Genesis of Continental Crust. Archean crustal evolution, in: Developments in Precambrian Geology. Elsevier. 11, 205-259.
- Martin, H., Peucat, J. J., Sabaté, P. & Cunha, J. C. (1997). Crustal evolution in the early Archaean of South America: example of the Sete Voltas Massif, Bahia State, Brazil. *Precambrian Research* 82, 35-62.
- Martin, H. (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46, 411-429.
- Martin, H. & Moyen, J.-F. (2002). Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. *Geology* **30**, 319-322.
- Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F. & Champion, D. (2005). An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. *Lithos* 79, 1-24.
- Mattinson, J. M., Graubard, C. M., Parkinson, D. L. & McLelland, W. C. (1996). U-Pb reverse discordance in zircons: the role of fine-scale oscillatory zoning and sub-microscopic transport of Pb American Geophysical Union, Geophysical Monographs 95, 355-370.
- Mattinson, J. (2005). Zircon U–Pb chemical abrasion ("CA-TIMS") method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. *Chemical Geology* 220, 47-66.
- Maury, R. C., Sajona, F. G., Pubellier, M., Bellon, H. & Defant, M. J. (1996). Fusion de la croûte océanique dans les zones de subduction/collision récentes: l'exemple de Mindanao (Philippines). Bulletin de la Société Géologique de France 167, 579-595.
- McDonough, W. F. & Sun, S. S. (1995). The composition of the Earth. *Chemical Geology* **120**, 223-253.
- Mezger, K. & Krogstad, E. J. (1997). Interpretation of discordant U-Pb ages: An evaluation *Journal of metamorphic Geology* **15**, 127-140.
- Miao, L., Qiu, Y., McNaughton, N., Luo, Z., Groves, D., Zhai, Y., Fan, W., Zhai, M.-G. & Guan, K. (2002). SHRIMP U–Pb zircon geochronology of granitoids from Dongping area, Hebei Province, China: constraints on tectonic evolution and geodynamic setting for gold metallogeny. Ore Geology Reviews 19, 187-204.

- Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P. & Friend, C. R. L. (1996). Evidence for life on Earth before 3,800 million years ago. *Nature* **384**, 55-59.
- Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. (2001). Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. *Nature* **409**, 178-181.
- Morel, M. L. A., Nebel, O., Nebel-Jacobsen, Y. J., Miller, J. S. & Vroon, P. Z. (2008). Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. *Chemical Geology* 255, 231-235.
- Moyen, J. F., Stevens, G. & Kisters, A. F. M. (2006a). Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa. *Nature* **443**, 559-562.
- Moyen, J. F. & Stevens, G. (2006). Experimental constraints on TTG petrogenesis: Implications for Archean geodynamics. *Archean geodynamics and environments. Monographs*. AGU, 149–178.
- Moyen, J.-F., Stevens, G., Kisters, A. F. M. & Belcher, R. W. (2007). Chapter 5.6 TTG Plutons of the Barberton Granitoid-Greenstone Terrain, South Africa. *Earth's oldest rocks, in: Developments in Precambrian Geology.* Elsevier. 15, 607-667.
- Moyen, J. F. & Martin, H. (2012). 40 years of TTG research. Submitted to Lithos.
- Mueller, P. A., Kamenov, G. D., Heatherington, A. L. & Richards, J. (2008). Crustal Evolution in the Southern Appalachian Orogen: Evidence from Hf Isotopes in Detrital Zircons. *The Journal of Geology* 116, 414-422.
- Mueller, P. A. & Wooden, J. L. (2012). Trace Element and Lu-Hf Systematics in Hadean-Archean Detrital Zircons: Implications for Crustal Evolution. *The Journal of Geology* **120**, 15-29.
- Nägler, T. F. & Kramers, J. D. (1998). Nd isotopic evolution of the upper mantle during the Precambrian: models, data and the uncertainty of both. *Precambrian Research* **91**, 233-252.
- Nair, R. & Chacko, T. (2008). Role of oceanic plateaus in the initiation of subduction and origin of continental crust. *Geology* 36, 583-586.
- Nasdala, L., Zhang, M., Kempe, U., Panczer, G., Gaft, M., Andrut, M. & Plötze, M. (2003). Spectroscopic methods applied to zircon. *Zircon, in: Reviews in Mineralogy and Geochemistry*. Mineralogical society of America. 53, 427-467.
- Nisbet, E. G., Cheadle, M. J., Arndt, N. T. & Bickle, M. J. (1993). Constraining the potential temperature of the Archean mantle: a review of evidence from komatiites. *Lithos* **30**, 291-307.
- Nyquist, L. E. & Shih, C.-Y. (1992). The isotopic record of lunar volcanism. *Geochimica et Cosmochimica Acta* 56, 2213-2234.
- O'Brien, H., Huhma, H. & Sorjonen-Ward, P. (1993). Petrogenesis of the late Archaean Hattu shist belt, Ilomansi, eastern Finland: geochemistry and Sr, Nd isotopic composition. In: Geological development, gold mineralization and exploration methods in the late Archaean Hattu schist belt, Ilomantsi, eastern Finland (P. Nurmi and P. Sorjonen-Ward, eds.). *Geological Survey of Finland, Special paper* **17**, 147-184.
- O'Connor, J. T. (1965). A classification for quartz-rich igneous rocks based on feldspar ratios. *United States Geological Survey professional papers* **525-B**, 79-84.
- Öhlander, B., Skiöld, T., Hamilton, P. J. & Claesson, L. (1987). The western border of the Archaean province of the Baltic Shield: evidence from northern Sweden. *Contributions to Mineralogy and Petrology* 95, 437-450.
- O'Neil, J., Carlson, R. W., Francis, D. & Stevenson, R. K. (2008). Neodymium-142 Evidence for Hadean Mafic Crust. *Science* **321**, 1828-1831.
- O'Nions, R. K., Evensen, N. M. & Hamilton, P. J. (1979). Geochemical modeling of mantle differentiation and crustal growth. *Journal of Geophysical Research* 84, 6091-6101.

- Paces, J. B. & Miller, J. D. (1993). Precise U-Pb Ages of Duluth Complex and Related Mafic Intrusions, Northeastern Minnesota' Geochronological Insights to Physical, Petrogenetic, Paleomagnetic, and Tectonomagmatic Processes Associated With the 1.1 Ga Midcontinent Rift System. *Journal of Geophysical Research* 98, 13997-14013.
- Parrish, R. R. (1987). An improved micro-capsule for zircon dissolution in U-Pb geochronology. *Chemical Geology* 66, 99-102.
- Patchett, P. J., Kouvo, O., Hedge, C. E. & Tatsumoto, M. (1981). Evolution Of Continental-Crust And Mantle Heterogeneity - Evidence From Hf Isotopes. *Contributions to Mineralogy and Petrology* 78, 279-297.
- Patchett, P. J., Todt, W., Gorbatschev, R. (1987). Origin of continental crust of 1.9–1.7 Ga age : Nd isotopes in the Svecofennian orogenic terrains of Sweden. *Precambrian Research* 35, 145–160.
- Peterson, B. T. & DePaolo, D. J. (2007). Mass and composition of the continental crust estimated using the CRUST2.0 model. *American Geophysical Union, Fall Meeting 2007*, abstract# V33A-1161.
- Pidgeon, R. T. & Wilde, S. A. (1998). The interpretation of complex zircon U-Pb systems in Archean granitoids and gneisses from the Jack Hills, Narryer Gneiss Terrane, Western Australia *Precambrian Research* 91, 309-332.
- Pietranik, A. B., Hawkesworth, C. J., Storey, C. D., Kemp, A. I. S., Sircombe, K. N., Whitehouse, M. J. & Bleeker, W. (2008). Episodic, mafic crust formation from 4.5 to 2.8 Ga: New evidence from detrital zircons, Slave craton, Canada. *Geology* 36, 875-878.
- Plank, T. (2005). Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. *Journal of Petrology* **46**, 921-944.
- Polat, A. & Münker, C. (2004). Hf-Nd isotope evidence for contemporaneous subduction processes in the source of late Archean arc lavas from the Superior Province, Canada. *Chemical Geology* 213, 403-429.
- Pride, C. & Muecke, G. K. (1980). Rare earth element geochemistry of the Scourian complex, N. W. Scotland-Evidence for granite granulite link. *Contributions to Mineralogy and Petrology* 73, 403-412.
- Puchtel, I. S., Hofmann, A. W., Mezger, K., Jochum, K. P., Shchipansky, A. A. & Samsonov, A. V. (1998). Oceanic plateau model for continental crustal growth in the Archaean: A case study from the Kostomuksha greenstone belt, NW Baltic Shield. *Earth and Planetary Science Letters* 155, 57-74.
- Rapp, R. P., Watson, B. E. & Miller, C. F. (1991). Partial melting of amphibolite/eclogite and the origin of Archaean trondhjemites and tonalites. *Precambrian Research* **51**, 1-25.
- Rapp, R. P. & Watson, B. E. (1995). Dehydration melting of a metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. *Journal of Petrology* 36, 891-931.
- Reymer, A. & Schubert, G. (1984). Phanerozoic addition rates to the contiental crust. *Tectonics* **3**, 63-77.
- Rollinson, H. (1997). Eclogite xenoliths in west African kimberlites as residues from Archaean granitoid crust formation. *Nature* **389**, 173-176.
- Rosen, O. M., Turkina, O. M. (2007). Chapter 6.4 The Oldest Rock Assemblages of the Siberian Craton. *Developments in Precambrian Geology*: Elsevier, 793-838.
- Rosing, M. T. (1999). ¹³C-depleted carbon microparticles in >3700 Ma sea-floor sedimentary rocks from West Greenland. *Science* **283**, 674-676.
- Rudnick, R. L. (1995). Making continental crust. Nature 378, 571-578.

- Rudnick, R. L. & Fountain, D. M. (1995). Nature and composition of the continental crust: a lower crustal perspective. *Reviews in Geophysics* **33**, 267-309.
- Rudnick, R. & Gao, S. (2003). Composition of the continental crust. *Treatise of Geochemistry*: Elsevier, 1-64.
- Rushmer, T. (1991). Partial melting of two amphibolites: contrasting experimental results under fluidabsent conditions. *Contributions to Mineralogy and Petrology* **107**, 41-59.
- Salters, V.J.M., Stracke, A. (2004). Composition of the depleted mantle. *Geochemistry Geophysics Geosystems* 5, Q05004.
- Scherer, E., Münker, C. & Mezger, K. (2001). Calibration of the Lutetium-Hafnium Clock. *Science* **293**, 683-687.
- Scholl, D. W. & von Huene, R. (2009). Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens. *Geological Society of London special publications* **318**, 105-125.
- Schubert, G. & Sandwell, D. (1989). Crustal volumes of the continents and of oceanic and continental submarine plateaus. *Earth and Planetary Science Letters* **92**, 234-246.
- Sergeev, S. A., Lobach-Zhuchenko, S. B., Arestova, N. A., Tolmacheva, E. V., Berezhnaya, N. G., Matukov, D. I., Lokhov, K. I. & Antonov, A. V. (2008). Age and geochemistry of zircons from the ancient granitoids of the Vyg river, Southeastern Karelia. *Geochemistry International* 46, 595-607.
- Sguigna, A. P., Larabee, A. J. & Waddington, J. C. (1982). The half-life of ¹⁷⁶Lu by a γ- γ coincidence measurement. *Canadian Journal of Physics*. **60**, 361-364.
- Shand, S. J. (1943). Eruptive rocks. Their genesis, composition, classification and their relations to oredeposits. Wiley, New York.
- Shirey, S. B. & Hanson, G. N. (1984). Mantle-derived Archaean monzodiorites and trachyandesites *Nature* **310**, 22-24.
- Shirey, S. B. & Hanson, G. N. (1986). Mantle heterogeneity and crustal recycling in Archean granitegreenstone belts: Evidence from Nd isotopes and trace elements in the Rainy Lake area, Superior Province, Ontario, Canada. *Geochimica et Cosmochimica Acta* **50**, 2631-2651.
- Sisson, T. W., Ratajeski, K., Hankins, W. B. & Glazner, A. F. (2005). Voluminous granitic magmas from common basaltic sources. *Contributions to Mineralogy and Petrology* **148**, 635-661.
- Sláma, J., Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. (2008). Plesovice zircon -- A new natural reference material for U-Pb and Hf isotopic microanalysis. *Chemical Geology* 249, 1-35.
- Sleep, N. & Windley, B. F. (1982). Archean plate tectonics: constraints and inferences. *Journal of Geology* 90, 363-379.
- Smith, J. B., Barley, M. E., Groves, D. I., Krapez, B., McNaughton, N. J., Bickle, M. J. & Chapman, H. J. (1998). The sholl shear zone, West Pilbara: evidence for a domain boundary structure from integrated tectonostratigraphic analyses, SHRIMP U-Pb dating and isotopic and geochemical data on granitoids *Precambrian Research* 88, 143-171.
- Smithies, H. R., Champion, D. C. & Van Kranendonk, M. J. (2009). Formation of paleoarchean continental crust through infracrustal melting of enriched basalt. *Earth and Planetary Science Letters* 281, 298-306.
- Sobotovitch, E. V., Kamenev, Y. N., Komaristyy, A. A. & Rudnik, V. A. (1976). The oldest rocks of Antarctic (Enderby Land). *International Geology Review* 18, 371-388.

- Söderlund, U., Patchett, P. J., Vervoort, J. D. & Isachsen, C. E. (2004). The ¹⁷⁶Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. *Earth and Planetary Science Letters* **219**, 311-324.
- Spaggiari, C., Pidgeon, R. T. & Wilde, S. A. (2007). The Jack Hills greenstone belt, Western Australia Part 2: Lithological relationships and implications for the deposition o£4.0 Ga detrital zircons. *Precambrian Research* 155, 261-286.
- Stacey, J. S. & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth and Planetary Science Letters* **26**, 207-221.
- Stein, M. & Hofmann, A. W. (1994). Mantle plumes and episodic crustal growth. Nature 372, 63-68.
- Stein, M. & Goldstein, S. L. (1996). From plume head to continental lithosphere in the Arabian-Nubian shield. *Nature* 382, 773-778.
- Streckeisen, A. (1976). To each plutonic rock its proper name. Earth Science reviews 12, 1-33.
- Sun, S. S. & McDonough, W. F. (1989). Geochemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. *Geological Society Special Publication*. 42, 313-345.
- Taylor, H.P., Silver, L.T. (1978). Oxygen Isotope Relationships in Plutonic Igneous Rocks of the Peninsular Ranges Batholith, Southern and Baja California. USGS Open-File Report 78-701. pp. 423–436.
- Taylor, S. R. & McLennan, S. M. (1985). *The continental crust: its composition and evolution*. Oxford: Blackwell Scientific Publications.
- Taylor, S. R. & McLennan, S. M. (1995). The geochemical evolution of the continental crust. *Reviews in Geophysics* **33**, 241-265.
- Tessalina, S. G., Bourdon, B., Van Kranendonk, M., Birck, J.-L. & Philippot, P. (2010). Influence of Hadean crust evident in basalts and cherts from the Pilbara craton. *Nature Geoscience* **3**, 214-217.
- Thiéblemont, D., Delor, C., Cocherie, A., Lafon, J. M., Goujou, J. C., Baldé, A., Bah, M., Sané, H. & Fanning, M. C. (2001). A 3.5 Ga granite-gneiss basement in Guinea: further evidence for Early Archean accretion within the West African craton. *Precambrian Research* 108, 179-194.
- Thrane, K., Connelly, J. N., Bizzarro, M., Meyer, B. S. & The, L.-S. (2010). Origin of excess ¹⁷⁶Hf in meteorites. *The Astrophysical Journal* **717**, 861-867.
- Turkina, O. M., Nozhkin, A. D., Bayanova, T. B., Dmitrieva, N. V. & Travin, A. V. (2007). Precambrian terranes in the southwestern framing of the Siberian craton: isotopic provinces, stages of crustal evolution and accretion-collision events. *Russian Geology and Geophysics* 48, 61-70.
- Turkina, O. M., Berezhnaya, N. G., Larionov, A. N., Lepekhina, E. N., Presnyakov, S. L. & Saltykova, T. E. (2009). Paleoarchean tonalite-trondhjemite complex in the northwestern part of the Sharyzhalgai uplift (southwestern Siberian craton): results of U-Pb and Sm-Nd study. *Russian Geology and Geophysics* 50, 15-28.
- Utsunomiya, S., Palenik, C.S., Valley, J.W., Cavosie, A.J., Wilde, S.A., Ewing, R.C. (2004). Nanoscale occurrence of Pb in an Archean zircon. *Geochimica et Cosmochimica Acta* 68, 4679–4686.
- Van Kranendonk, M., Smithies, H. R., Hickman, A. H. & Champion, D. C. (2007). Paleoarchean development of a continental nucleus: the East Pilbara tarrane of the Pilbara craton, Western Australia *Earth's oldest rocks*: Elsevier, 307-337.
- Vervoort, J. D. & Jonathan Patchett, P. (1996). Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites. *Geochimica et Cosmochimica Acta* 60, 3717-3733.

- Vervoort, J. D. & Blichert-Toft, J. (1999). Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. *Geochimica et Cosmochimica Acta* **63**, 533-556.
- Vervoort, J. D., Patchett, P. J., Blichert-Toft, J. & Albarède, F. (1999). Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. *Earth and Planetary Science Letters* 168, 79-99.
- Vervoort, J. D., Patchett, P. J., Söderlund, U. & Baker, M. (2004). Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. *Geochemistry, Geophysics, Geosystems.* 5, 1-15.
- Vervoort, J. D. (2010). Hf analysis in zircon by LA-MC-ICP-MS: promise and pitfalls. *Geological* Society of America Abstracts with Programs 42, 667.
- Vielzeuf, D. & Holloway, J. R. (1988). Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. *Contributions to Mineralogy and Petrology* 98, 257-276.
- Wang, C. Y., Campbell, I. H., Allen, C. M., Williams, I. S. & Eggins, S. M. (2009). Rate of growth of the preserved North American continental crust: Evidence from Hf and O isotopes in Mississippi detrital zircons. *Geochimica et Cosmochimica Acta* 73, 712-728.
- Wang, C. Y., Campbell, I. H., Stepanov, A. S., Allen, C. M. & Burtsev, I. N. (2011). Growth rate of the preserved continental crust: II. Constraints from Hf and O isotopes in detrital zircons from Greater Russian Rivers. *Geochimica et Cosmochimica Acta* 75, 1308-1345.
- Wanless, R. K., Bridgwater, D. & Collerson, K. D. (1979). Zircon age measurements for Uivak II gneisses from the Saglek area, Labrador. *Canadian journal of Earth sciences* 16, 962-965.
- White, A. J. R. & Chappell, B. W. (1983). Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia *Circum Pacific plutonic terranes*: Geological Society of America, Memoir 159, 21-34.
- Whitehouse, M. J., Kamber, B. S. & Moorbath, S. (1999). Age significance of U-Th-Pb zircon data from early Archaean rocks of west Greenland - a reassessment based on combined ionmicroprobe and imaging studies. *Chemical Geology* 160, 201-224.
- Wilde, S. A. & Pidgeon, R. T. (1990). Geology of the Jack Hills metasedimentary rocks. *Third international Archaean Symposium, Perth.* University of Western Australia Publication, 82-92.
- Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. *Nature* **409**, 175-178.
- Willbold, M., Hegner, E., Stracke, A. & Rocholl, A. (2009). Continental geochemical signatures in dacites from iceland and implications for models of early Archaean crust formation *Earth and Planetary Science Letters* 279, 44-52.
- Windley, B. F. (1986). The evolving continents. John Wiley & Sons.
- Winther, T. K. & Newton, R. C. (1991). Experimental melting of an hydrous low-K tholeiite: evidence on the origin of Archaean cratons. *Bulletin of Geological Society of Danemark* **39**.
- Wolf, M. B. & Wyllie, P. J. (1991). Dehydration-melting of solid amphibolite at 10 Kbar: textural development, liquid interconnectivity and applications to the segregation of magmas. *Mineralogy* and Petrology 44, 151-179.
- Woodhead, J. D. & Hergt, J. M. (2005). A Preliminary Appraisal of Seven Natural Zircon Reference Materials for In Situ Hf Isotope Determination. *Geostandards and Geoanalytical Research* 29, 183-195.
- Workman, R. K. & Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). *Earth and Planetary Science Letters* **231**, 53-72.

- Wu, F.-Y., Zhang, Y.-B., Yang, J.-H., Xie, L.-W. & Yang, Y.-H. (2008). Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. *Precambrian Research* 167, 339-362.
- Wyche, S., Nelson, D. R. & Riganti, A. (2004). 4350-3130 Ma detrital zircons in the Southern Cross granite-greenstone terrane, Western Australia: implications for the early evolution of the Yilgarn Craton. *Australian journal of Earth sciences* 51, 31-45.
- Xia, X., Sun, M., Zhao, G., Wu, F., Xu, P., Zhang, J. & He, Y. (2008). Paleoproterozoic crustal growth in the Western Block of the North China Craton: Evidence from detrital zircon Hf and whole rock Sr-nd isotopic compositions of the Khondalites from the Jining Complex. *American Journal of Science* 308, 304-327.
- Yamashita, K., Creaser, R. A., Jensen, J. E. & Heaman, L. M. (2000). Origin and evolution of mid- to late Archaean crust in the Hanikahimajuk Lake area, Slave Province, Canada; evidence from U-Pb geochronological, geochemical and Nd-Pb isotopic data. *Precambrian Research* 99, 197-224.
- Yang, J.-H., Wu, F.-Y., Wilde, S. A. & Zhao, G. (2008). Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: Geochronological, geochemical and Nd-Hf isotopic evidence. *Precambrian Research* 167, 125-149.
- Zeh, A., Gerdes, A., Klemd, R. & Barton, J. M. (2007). Archaean to Proterozoic Crustal evolution in the Central Zone of the Limpopo Belt (South Africa-Botswana): Constraints from combined U-Pb and Lu-Hf isotope analyses of zircon. *Journal of Petrology* 48, 1605-1639.
- Zeh, A., Gerdes, A., Klemd, R. & Barton Jr, J. M. (2008). U-Pb and Lu-Hf isotope record of detrital zircon grains from the Limpopo Belt - Evidence for crustal recycling at the Hadean to early-Archean transition. *Geochimica et Cosmochimica Acta* 72, 5304-5329.
- Zeh, A., Gerdes, A. & Barton, J. M. (2009). Archean Accretion and Crustal Evolution of the Kalahari Craton-the Zircon Age and Hf Isotope Record of Granitic Rocks from Barberton/Swaziland to the Francistown Arc. *Journal of Petrology* 50, 933-966.
- Zeh, A., Gerdes, A., Barton Jr, J. & Klemd, R. (2010). U-Th-Pb and Lu-Hf systematics of zircon from TTG's, leucosomes, meta-anorthosites and quartzites of the Limpopo Belt (South Africa): Constraints for the formation, recycling and metamorphism of Palaeoarchaean crust. *Precambrian Research* 179, 50-69.
- Zeh, A., Gerdes, A. & Millonig, L. (2011). Hafnium isotope record of the Ancient Gneiss Complex, Swaziland, southern Africa: evidence for Archaean crust-mantle formation and crust reworking between 3.66 and 2.73 Ga. *Journal of the Geological Society of London* 168, 953-963.
- Zhang, S.-B., Zheng, Y.-F., Wu, Y.-B., Zhao, Z.-F., Gao, S. & Wu, F.-Y. (2006). Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China. *Earth and Planetary Science Letters* **252**, 56-71.
- Zheng, Y.-F., Zhang, S.-B., Zhao, Z.-F., Wu, Y.-B., Li, X., Li, Z. & Wu, F.-Y. (2007). Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. *Lithos* 96, 127-150.

Annexe A

Détail des échantillons analysés dans cette thèse

Tableau A-1 : détail des échantillons analysés dans cette thèse

Origine	Localité	Nom	âge (Ma)	Forme	Donateur	référence
Finlande (Karélie)	Kivijärvi	H54	2900	Roche + zircons	Hervé MARTIN	Thèse Hervé MARTIN
Finlande (Karélie)	Kivijärvi	H53	2900	Roche + zircons	Hervé MARTIN	Thèse Hervé MARTIN
Finlande (Karélie)	Kivijärvi	H70	2900	Roche + zircons	Hervé MARTIN	Thèse Hervé MARTIN
Finlande (Karélie)	Karelia	H391	2700	Roche + zircons	Hervé MARTIN	Thèse Hervé MARTIN
Finlande (Karélie)	Naavala	H392	2700	Roche + zircons	Hervé MARTIN	Thèse Hervé MARTIN
Finlande (Karélie)	Karelia	H395	2700	Roche + zircons	Hervé MARTIN	Thèse Hervé MARTIN
Finlande (Karélie)	Karelia	H405	2700	Roche + zircons	Hervé MARTIN	Thèse Hervé MARTIN
Finlande (Karélie)	Karelia	H406	2700	Roche + zircons	Hervé MARTIN	Thèse Hervé MARTIN
Finlande (Karélie)	Kuusamonkyla	H412	2700	Roche + zircons	Hervé MARTIN	Thèse Hervé MARTIN
Finlande (Karélie)	Karelia	H471	2700	Roche + zircons	Hervé MARTIN	Thèse Hervé MARTIN
Finlande (Karélie)	Naavala	H472	2700	Roche + zircons	Hervé MARTIN	Thèse Hervé MARTIN
Finlande (Karélie)	Naavala	H473	2700	Roche + zircons	Hervé MARTIN	Thèse Hervé MARTIN
Brésil	Sete Voltas	SV4	3400	Roche	Hervé MARTIN	Martin et al, 1997
Brésil	Sete Voltas	SV7	3400	Roche	Hervé MARTIN	Martin et al, 1997
Brésil	Sete Voltas	SV9	3400	Roche	Hervé MARTIN	Martin et al, 1997
Brésil	Sete Voltas	SV11	3400	Roche	Hervé MARTIN	Martin et al, 1997
Brésil	Sete Voltas	SV28	3140	Roche	Hervé MARTIN	Martin et al, 1997
Brésil	Sete Voltas	SV1	3140	Roche	Hervé MARTIN	Martin et al, 1997
Brésil	Sete Voltas	SV2	3140	Roche	Hervé MARTIN	Martin et al, 1997
Brésil	Sete Voltas	SV6	3140	Roche	Hervé MARTIN	Martin et al, 1997
Brésil	Sete Voltas	SV10	3140	Roche	Hervé MARTIN	Martin et al, 1997
Brésil	Sete Voltas	SV24	3140	Roche	Hervé MARTIN	Martin et al, 1997
Brésil	Sete Voltas	SV25	3140	Roche	Hervé MARTIN	Martin et al, 1997
Brésil	Sete Voltas	SV27	3140	Roche	Hervé MARTIN	Martin et al, 1997
Afrique du Sud	Steynsdorp	Stp	3538	Roche + zircons	Hervé MARTIN	Kröner et al, 1996
Afrique du Sud	Steynsdorp	STEY 1.4/08	3510 à 3502	Roche + zircons	Jean-François MOYEN	Kröner et al, 1996
Afrique du Sud	Steynsdorp	STEY 1.5/08	3510 à 3502	Roche + zircons	Jean-François MOYEN	Kröner et al, 1996
Afrique du Sud	Steynsdorp	STEY 1.7/08	3510 à 3502	Roche + zircons	Jean-François MOYEN	Kröner et al, 1996
Afrique du Sud	Steynsdorp	STEY 2.2/08	3510 à 3502	Roche + zircons	Jean-François MOYEN	Kröner et al, 1996
Afrique du Sud	Stolzburg	ST-J6	3437 à 3470	Roche + zircons	Jean-François MOYEN	Kröner et al, 1996
Afrique du Sud	Stolzburg	ST-J7	3437 à 3470	Roche + zircons	Jean-François MOYEN	Kröner et al, 1996
Afrique du Sud	Stolzburg	ST-J19	3437 à 3470	Roche + zircons	Jean-François MOYEN	Kröner et al, 1996
Afrique du Sud	Stolzburg	ST-J23	3437 à 3470	Roche + zircons	Jean-François MOYEN	Kröner et al, 1996
Afrique du Sud	Stolzburg	ST-J33	3437 à 3470	Roche + zircons	Jean-François MOYEN	Kröner et al, 1996
Afrique du Sud	Kaap Valley	KV 1.1/08	3227	Roche + zircons	Jean-François MOYEN	De rondo 2000
Afrique du Sud	Kaap Valley	KV 2.1/08	3227	Roche + zircons	Jean-François MOYEN	De rondo 2000
Afrique du Sud	Kaap Valley	KV 3.1/08	3227	Roche + zircons	Jean-François MOYEN	De rondo 2000
Afrique du Sud	Kaap Valley	KV 4.1/08	3227	Roche + zircons	Jean-François MOYEN	De rondo 2000
Afrique du Sud	Vlakplaats	VLK 2/08	3450	Roche + zircons	Jean-François MOYEN	Kröner et al, 1996
Afrique du Sud	Nelshoogte	NLS 2.2/08	3236	Roche + zircons	Jean-François MOYEN	De rondo 2000
Afrique du Sud	Nelshoogte	NLS 5.1/08	3236	Roche + zircons	Jean-François MOYEN	De rondo 2000
Afrique du Sud	Nelshoogte	NLS 5.3/08	3236	Roche + zircons	Jean-François MOYEN	De rondo 2000
Afrique du Sud	Nelshoogte	NLS 7.2/08	3236	Roche + zircons	Jean-François MOYEN	De rondo 2000
Afrique du Sud	Nelshoogte	NLS 8.1/08	3236	Roche + zircons	Jean-François MOYEN	De rondo 2000
Swaziland	Ancient Gneiss complex	AGC	3644 à 3433	Roche + zircons	Hervé MARTIN	Compston et al 1988
Australie (Pilbara)	Muccan batholith	142828	3471	Roche + zircons	Martin VAN KRANENDONK	Martin VAN KRANENDONK com perso
Australie (Pilbara)	North Shaw batholith	153188	3484	Roche + zircons	Martin VAN KRANENDONK	Martin VAN KRANENDONK com perso
Australie (Pilbara)	North Shaw batholith	1/8044	3470	Koche + zircons	Martin VAN KRANENDONK	Martin VAN KRANENDONK com perso
Australie (Pilbara)	Yandicoogina	98047020	3300	Roche	Dave CHAMPION	Dave CHAMPION com perso
Australie (Pilbara)	Edgar	98047052	3300	Roche	Dave CHAMPION	Dave CHAMPION com perso
Australie (Pilbara)	Edgar	98047062	3450	Koche	Dave CHAMPION	Dave CHAMPION com perso
Australie (Pilbara)	Boodallana	98047071	3300	Roche	Dave CHAMPION	Dave CHAMPION com perso
Australie (Pilbara)	Boodallana	98047082	3300	Koche	Dave CHAMPION	Dave CHAMPION com perso

Tableau A-1 (suite): détail des échant	illons analysés dans cette thèse					
Australie (Pilbara)	Coppin Gap	98047108	3300	Roche	Dave CHAMPION	Dave CHAMPION com perso
Australie (Pilbara)	Chimingadgi	98047118	3300	Roche	Dave CHAMPION	Dave CHAMPION com perso
Australie (Pilbara)	Chimingadgi	98047119	3300	Roche	Dave CHAMPION	Dave CHAMPION com perso
Australie (Pilbara)	Edgar	98047247	3450	Roche	Dave CHAMPION	Dave CHAMPION com perso
Australie (Pilbara)	Edgar	98047248	3450	Roche	Dave CHAMPION	Dave CHAMPION com perso
Australie (Pilbara)	Yule	98049072C	3450	Roche	Dave CHAMPION	Dave CHAMPION com perso
Australie (Yilgarn)	No. 2 Well granite	92969073	2680	Roche	Dave CHAMPION	Champion et al 1997
Australie (Yilgarn)	Jims Well granite	92969125	2680	Roche	Dave CHAMPION	Champion et al 1997
Australie (Yilgarn)	Christmas Pool Gneiss	97969067A	2840	Roche	Dave CHAMPION	Dave CHAMPION com perso
Australie (Yilgarn)	Wingora gneiss	94969222	2680	Roche	Dave CHAMPION	Champion et al 1997
Australie (Yilgarn)	Toil and Trouble granite	97969248	3334	Roche	Dave CHAMPION	Dave CHAMPION com perso
Australie (Yilgarn)	Bencubbin granodiorite	97969137	2436	Roche	Dave CHAMPION	Dave CHAMPION com perso
Australie (Yilgarn)	Woolgangie monzogranite	97969043A	2935	Roche	Dave CHAMPION	Dave CHAMPION com perso
Australie (Yilgarn)	One Mile Well Gneiss	97969099B	2840	Roche	Dave CHAMPION	Dave CHAMPION com perso
Australie (Yilgarn)	Couttes granite	98969143	2441	Roche	Dave CHAMPION	Dave CHAMPION com perso
Inde	Dharwar	OEA 13	3274	Roche	Hervé MARTIN	Hervé MARTIN com perso
Inde	Closepet	CG24	3304	Roche + zircons	Hervé MARTIN	Hervé MARTIN com perso
Inde	Kolar	PG1	2750	Roche	Hervé MARTIN	Hervé MARTIN com perso
Inde	Kolar	PG2	3110	Roche	Hervé MARTIN	Jayananda 2000
Inde	Kolar	PG9	2800	Roche + zircons	Hervé MARTIN	Hervé MARTIN com perso
Inde	Kolar (Bettadalasur)	PG14	2550	Roche	Hervé MARTIN	Hervé MARTIN com perso
Inde	Kolar (Bettadalasur)	PG14a	2550	Roche	Hervé MARTIN	Hervé MARTIN com perso
Inde	Kolar (Bettadalasur)	PG15	2550	Roche	Hervé MARTIN	Hervé MARTIN com perso
Inde	Kolar (Guddadahalli)	PG20	2750	Roche	Hervé MARTIN	Hervé MARTIN com perso
Inde	Kolar (Guddadahalli)	PG21	2750	Roche	Hervé MARTIN	Hervé MARTIN com perso
Inde	Kolar (Byatarayapura)	PG24	3276	Roche + zircons	Hervé MARTIN	Hervé MARTIN com perso
Inde	Kolar (Byatarayapura)	PG25	2600	Roche + zircons	Hervé MARTIN	Hervé MARTIN com perso
Inde	Holeharsipur	Ind 54a	3340	Roche	Hervé MARTIN	Hervé MARTIN com perso
Inde	Krishnagiri	Ind 218	2508	Roche	Hervé MARTIN	Hervé MARTIN com perso
Inde	Goa	Ind 433	3151	Roche	Hervé MARTIN	Hervé MARTIN com perso
Inde	Goa/Mangalore	Ind 449	3218	Roche	Hervé MARTIN	Hervé MARTIN com perso
Inde	West Kolar	BH 145a	2550	Roche	Hervé MARTIN	Hervé MARTIN com perso
Ouest Groenland	Akilia Island	GR0012	3700	Roche	Steve MOJZSIS	Manning et al 2006
Ouest Groenland	Akilia Island	GR0050	3700	Roche	Steve MOJZSIS	Manning et al 2006
Ouest Groenland	Akilia Island	GR9802	3700	Roche	Steve MOJZSIS	Manning et al 2006
Ouest Groenland	Akilia Island	GR0071	3830	Roche	Steve MOJZSIS	Cates et al 2006
Ouest Groenland	Akilia Island	GR9715	3820	Roche	Steve MOJZSIS	Cates et al 2006
Ouest Groenland	Isua (Amitsoq)	030013	3701	Roche + zircons	Tomas Naeraa (Minik)	Tomas Naeraa com perso
Ouest Groenland	Isua (Amitsoq)	030015	3704	Roche + zircons	Tomas Naeraa (Minik)	Tomas Naeraa com perso
Ouest Groenland	Isua (Amitsoq)	060009	3792	Roche + zircons	Tomas Naeraa (Minik)	Tomas Naeraa com perso
Ouest Groenland	Isua (Amitsoq)	060010	3778	Roche + zircons	Tomas Naeraa (Minik)	Tomas Naeraa com perso
Ouest Groenland	Isua (Amitsoq)	060011	3/8/	Roche + zircons	Tomas Naeraa (Minik)	Tomas Naeraa com perso
Ouest Groenland	Innersuartuut Island	GR0082	3629	Roche	Steve MOJZSIS	Cates and Mojzsis 2006
Ouest Groenland	Innersuartuut Island	GR0083	3629	Rocne	Steve MOJZSIS	Cates and Mojzsis 2006
Ouest Groenland	Island West from Innersuartuut	GR04037	3632	Rocne (≠IIG)	Steve MOJZSIS	Cates and Mojzsis 2006
Ouest Groenland	Island West from Innersuartuut	GR04040	3560	Roche (≠11G)	Steve MOJZSIS	Cates and Mojzsis 2006
Ouest Groenland	Island west from innersuartuut	GR04000	3670	Roche	Steve MOJZSIS	
Ouest Groenland	Island West from Innersuartuut	GR9/1 (GGU110999)	3822	Rocne Decha de sincere	Steve MOJZSIS	Kinny 1980
Ouest Groenland	Island West from Innersuartuut	GR04002	2701	Rocne + zircons	Steve MOJZSIS	Steve Mojzsis com perso
Ouest Groenland	Island West from Innersuartuut	GR04035	3/01	Roche + zircons	Steve MOJZSIS	Cates and Mojzsis 2006
Ouest Groenland	Island West from Innersuaftuut	CR04038	3042	Roche + zircons	Sleve MOJZSIS	Cates and Mojzsis 2006
Ouest Groenland	Island West from Innersuaftuut	CR04059	208/	Roche + zircons	Sleve MOJZSIS	Cates and Mojzsis 2006
Ouest Groenland	Island West from Innersuartuut	GR04057	3648	Roche + zircons	Steve MOJZSIS	Cates and Mojzsis 2006
Ouest Groenland	isiand west from innersuaftuut	GKU405/	3092	Roche + zircons	SIEVE MIOJZ515	Cates and Mojzsis 2006

Chine (Anchan)Baijafon90ASD13800Rock = rarconsMinggao ZHAIWu st al 2008Chine (Anchan)Dorgshn90ASD12700Rock = rarconsMinggao ZHAIWu st al 2008Chine (Anchan)Xixongshn68X W3O1250Rock = rarconsMinggao ZHAI com persoRussie (Koh)Vezha Tunda3.852850Rock = rarconsValery VETRINValery VETRIN com persoSibérieSharyzhalgay uplit (Dout terrate)4.0-03336Rock = rarconsOlga TURKINAOhga TURKINAOhga TURKINASibérieSharyzhalgay uplit (Dout terrate)2.2433300Rock = rarconsOlga TURKINAOlga TURKINAOlga TURKINAOlga TURKINAOlga TURKINAAcatery StressSibérieSharyzhalgay uplit (Dout terrate)2.5433300Rock = rarconsOlga TURKINAOlga TURKINARoen et al 2007SibérieSharyzhalgay uplit (Dout terrate)2.6443300Rock = rarconsOlga TURKINARoen et al 2007SibérieSharyzhalgay uplit (Dout terrate)6.5443300Rock = rarconsOlga TURKINARoen et al 2007SibérieSharyzhalgay uplit (Duut terrate)6.5443300Rock = rarconsOlga TURKINARoen et al 2007Norvège (bouclier Fennoscandin)Varanger complex7.4-22813Rock = rarconsOlga TURKINARoen et al 2007Norvège (bouclier Fennoscandin)Varanger complex7.4-22813Rock = rarconsValery VETRINapprox. Agas Verin 2003 modifNorvège (bou	Tableau A-1 (suite): détail des échanti	illons analysés dans cette thèse					
Chine (Anshan)Dongshan09A503300Roche - zircomsMmaguo ZHAIWer el a'2008Chine (Anshan)Guzziai065XWS01250Roche - zircomsMmaguo ZHAIMmaguo ZHAI com persoRussic (Kola)Verha Tundra38K380Roche - zircomsVallery VETRINVerlery VETRI	Chine (Anshan)	Baijafen	09AS01	3800	Roche + zircons	Mingguo ZHAI	Wu et al 2008
Chine (Aushan)Guziai06GZZ012700Rote + zincomMmagao ZHA1Mmagao ZHA1 com persoChine (Aushan)Xivangshan06GZZ01Rote + zincomMmagao ZHA1Mmagao ZHA1 com persoRussie (Kohn)Verha Tundra48-V280Roche + zincomValery VETRINValery VETRIN com persoShibrireSharyzhalgay uplit (Don terrame)40-03338Roche + zincomOglar TURKINAOglar TURKINACom ersoShibrireSharyzhalgay uplit (Don terrame)52-033300Roche + zincomOglar TURKINATurkina et al 2007ShibrireSharyzhalgay uplit (Bulu terrame)64-04320Roche + zincomOglar TURKINATurkina et al 2007ShibrireSharyzhalgay uplit (Bulu terrame)64-04320Roche + zincomOglar TURKINATurkina et al 2007ShibrireSharyzhalgay uplit (Bulu terrame)64-04320Roche + zincomOglar TURKINACusture at 2007ShibrireSharyzhalgay uplit (Bulu terrame)64-04320Roche + zincomOglar TURKINACusture at 2007ShibrireSharyzhalgay uplit (Bulu terrame)64-04320Roche + zincomOglar TURKINACusture at 2007Norrize (Boucier Fennoscandin)Varrage complex74-12318Roche	Chine (Anshan)	Dongshan	09AS03	3800	Roche + zircons	Mingguo ZHAI	Wu et al 2008
Chine (Aushan)Xivangshan08XWS012500Roche + zizconsMingsuo ZHA1Mingsuo ZHA1 com persoRussic (Koh)Vzzha Tundra48.5V2850Roche + zizconsValery VETRINValery VETRIN com persoShörieShuryzhlagy uplit (Chot terrane)44.0433300Roche + zizconsOlga TURKINAOlga TURKINAOlga TURKINA com persoShörieShuryzhlagy uplit (Chot terrane)28.433300Roche + zizconsOlga TURKINAOlga TURKINAOlga TURKINA com persoShörieShuryzhlagy uplit (Chot terrane)78.433300Roche + zizconsOlga TURKINAOlga TURKINA com persoShörieShuryzhlagy uplit (Chot terrane)67.443300Roche + zizconsOlga TURKINARosen et al 2007ShörieShuryzhlagy uplit (Bulun terrane)66.443300Roche + zizconsOlga TURKINATurkina et al 2009ShörieShuryzhlagy uplit (Bulun terrane)66.443300Roche + zizconsOlga TURKINATurkina et al 2009Norvege (boucier Fennoscandina)Varanget complex74.22813Roche + zizconsValery VETRINapprox. Age Vetrin 2003 modifNorvege (boucier Fennoscandina)Varanget complex74.22813Roche + zizconsValery VETRINapprox. Age Vetrin 2003 modifNorvege (boucier Fennoscandina)Varanget complex74.22813Roche + zizconsValery VETRINapprox. Age Vetrin 2003 modifNorvege (boucier Fennoscandina)Varanget complex74.22813Roche + zizconsValery VETRI	Chine (Anshan)	Guzuizi	08GZZ01	2700	Roche + zircons	Mingguo ZHAI	Mingguo ZHAI com perso
Russic (Kohn)Vezha Tundra37852850Roche + zircomsValery VETRINValery VETRIN com persoRussic (Kohn)Vezha Tundra44-043336Roche + zircomsOlga TURKINAObjitivors et al 2006SibérieSharyzhalgay uplit (Onot terrane)28-033308Roche + zircomsOlga TURKINAOlga TURKINA com persoSibérieSharyzhalgay uplit (Onot terrane)58-033308Roche + zircomsOlga TURKINAOlga TURKINA com persoSibérieSharyzhalgay uplit (Onot terrane)58-033308Roche + zircomsOlga TURKINAOlga TURKINA com persoSibérieSharyzhalgay uplit (Bulun terrane)66-043208Roche + zircomsOlga TURKINARosen et al 2007SibérieSharyzhalgay uplit (Bulun terrane)66-043208Roche + zircomsOlga TURKINATurkina et al 2009SibérieSharyzhalgay uplit (Bulun terrane)66-043208Roche + zircomsOlga TURKINATurkina et al 2007Norvège (boncier fennoscandia)Varanger complex96-12818Roche + zircomsOlga TURKINATurkina et al 2009Norvège (boncier fennoscandia)Varanger complex74-12813Roche + zircomsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (boncier fennoscandia)Varanger complex65-102843Roche + zircomsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (boncier fennoscandia)Varanger complex65-102843Roche + zircomsValery VETRINapprox. Ages Vetrin 2003 modif <th>Chine (Anshan)</th> <th>Xiwangshan</th> <th>08XWS01</th> <th>2500</th> <th>Roche + zircons</th> <th>Mingguo ZHAI</th> <th>Mingguo ZHAI com perso</th>	Chine (Anshan)	Xiwangshan	08XWS01	2500	Roche + zircons	Mingguo ZHAI	Mingguo ZHAI com perso
Russie (Kola)Vecha Tundra48-V2850Roche + zirconsValery VETRINValery VETRINValery VETRINValery VETRINValery VETRINNoresSibérieSharzhalgay uplit (Doot terrare)28-033306Roche + zirconsOlga TURKINAOlga TURKINA com persoSibérieSharzhalgay uplit (Doot terrare)58-033306Roche + zirconsOlga TURKINAOlga TURKINA com persoSibérieSharzhalgay uplit (Doot terrare)173-953308Roche + zirconsOlga TURKINAOlga TURKINARosen et alSibérieSharzhalgay uplit (Bulu terrare)26-043308Roche + zirconsOlga TURKINARosen et al2007SibérieSharzhalgay uplit (Bulu terrare)66-043308Roche + zirconsOlga TURKINATurkina et al 2009SibérieSharzhalgay uplit (Bulu terrare)67-043308Roche + zirconsOlga TURKINATurkina 2009 and pers. conNorvège (boucier fennoscandin)Varanger complex74-12813Roche + zirconsValery VETRINapprox. Age Vetrin 2008 modifNorvège (boucier fennoscandin)Varanger complex74-22813Roche + zirconsValery VETRINapprox. Age Vetrin 2008 modifNorvège (boucier fennoscandin)Garage complex74-22813Roche + zirconsValery VETRINapprox. Age Vetrin 2008 modifNorvège (boucier fennoscandin)Garage complex74-22813Roche + zirconsValery VETRINapprox. Age Vetrin 2008 modifNorvège (boucier fennoscandin)Garage com	Russie (Kola)	Vezha Tundra	3/85	2850	Roche + zircons	Valery VETRIN	Valery VETRIN com perso
ShérieSharyahagy uplif (Dont terrane)40-033368Roche + zirconsOlga TURKINAUbikAva et al 2006ShérieSharyahagy uplif (Dont terrane)52-033300Roche + zirconsOlga TURKINAOlga TURKINA com persoShérieSharyahagy uplif (Dont terrane)52-033300Roche + zirconsOlga TURKINAOlga TURKINA com persoShérieSharyahagy uplif (Dont terrane)173-953300Roche + zirconsOlga TURKINARosen et al 2007ShérieSharyahagy uplif (Bulu terrane)66-04320Roche + zirconsOlga TURKINATurkina et al 2009ShérieSharyahagy uplif (Bulu terrane)66-043300Roche + zirconsOlga TURKINATurkina et al 2009ShérieSharyahagy uplif (Bulu terrane)67-043300Roche + zirconsOlga TURKINAdrutane ta 2009Norrège (bouclier Feanoscandia)Varanger complex67-043301Roche + zirconsValery VFIRINapprox. Ages Vetri 2003 modriNorrège (bouclier Feanoscandia)Varanger complex67-142813Roche + zirconsValery VFIRINapprox. Ages Vetri 2003 modriNorrège (bouclier Feanoscandia)Varanger complex65-10240Roche + zirconsValery VFIRINapprox. Ages Vetri 2003 modriNorrège (bouclier Feanoscandia)Garsio complex18-1292Roche + zirconsValery VFIRINapprox. Ages Vetri 2003 modriNorrège (bouclier Feanoscandia)Hompen Gneiss Complex18-1292Roche + zirconsSampled by Marin GUTREAU <td< th=""><th>Russie (Kola)</th><th>Vezha Tundra</th><th>48-V</th><th>2850</th><th>Roche + zircons</th><th>Valery VETRIN</th><th>Valery VETRIN com perso</th></td<>	Russie (Kola)	Vezha Tundra	48-V	2850	Roche + zircons	Valery VETRIN	Valery VETRIN com perso
ShbérieSharyhalgay upihí (Onot terrane)28-03300Roche + żrconsOlga TURKINAOlga TURKINA com persoShbérieSharyhalgay upihí (Onot terrane)58-03300Roche + żrconsOlga TURKINAOlga TURKINA com persoShbérieSharyhalgay upihí (Onot terrane)73-95300Roche + żrconsOlga TURKINAMarsonShbérieSharyhalgay upihí (Dalum terrane)26-04300Roche + żrconsOlga TURKINAMarsonShbérieSharyhalgay upihí (Bulum terrane)66-04320Roche + żrconsOlga TURKINATurkina et al 2009SibérieSharyhalgay upihí (Bulum terrane)66-74300Roche + żrconsOlga TURKINAdeduced from Turkina 2009 and pers. comNorżęg (bouclier Fennoscania)Varager complex96-12813Roche + żrconsValery VETRINapprox. Ages Verin 2003 modifNorżęg (bouclier Fennoscania)Varager complex96-12813Roche + żrconsValery VETRINapprox. Ages Verin 2003 modifNorżęg (bouclier Fennoscania)Varager complex65-102803Roche + żrconsValery VETRINapprox. Ages Verin 2003 modifNorżęg (bouclier Fennoscania)Marager complex65-102804Roche + żrconsNalery VETRINapprox. Ages Verin 2003 modifNorżęg (bouclier Fennoscania)Hompen Gneis Complex18-1292Roche + żrconsNalery VETRINapprox. Ages Verin 2003 modifNorżęg (bouclier Fennoscania)Hompen Gneis ComplexAG-09-000800Roche + żrconsSampled by Marin G	Sibérie	Sharyzhalgay uplift (Onot terrane)	40-03	3386	Roche + zircons	Olga TURKINA	bibikova et al 2006
ShörieSharyzhalgay upfil (Dott terrate)52-033300Roche + zirconsOlga TURKINAOlga TURKINA com persoShörieSharyzhalgay upfil (Dott terrate)173-953300Roche + zirconsOlga TURKINARosen et al 2007ShörieSharyzhalgay upfil (Bulun terrate)26-043300Roche + zirconsOlga TURKINATurkina et al 2009ShörieSharyzhalgay upfil (Bulun terrate)66-043300Roche + zirconsOlga TURKINATurkina et al 2009ShörieSharyzhalgay upfil (Bulun terrate)67-043300Roche + zirconsOlga TURKINAdeduced from Turkina et al 2009Norrège (boacher Fennoscandian)Varanger complex96-1281Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorrège (boacher Fennoscandian)Varanger complex74-1281Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorrège (boacher Fennoscandian)Garsjo complex74-2281Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorrège (boacher Fennoscandian)Hompen Gneiss Complex74-2281Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorrège (boacher Fennoscandian)Hompen Gneiss Complex18-1202Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorrège (boacher Fennoscandian)Hompen Gneiss Complex16-10280Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorrège (boacher Fennoscandian)Hompen Gneiss Complex <t< th=""><th>Sibérie</th><th>Sharyzhalgay uplift (Onot terrane)</th><th>28-03</th><th>3300</th><th>Roche + zircons</th><th>Olga TURKINA</th><th>Olga TURKINA com perso</th></t<>	Sibérie	Sharyzhalgay uplift (Onot terrane)	28-03	3300	Roche + zircons	Olga TURKINA	Olga TURKINA com perso
SibérieSharyhalgay upfil (Note terrane)58-03300Roche + zirconsOlga TURKINAOlga TURKINA com persoSibérieSharyhalgay upfil (Bulun terrane)26-04300Roche + zirconsOlga TURKINATurkina et al 2009SibérieSharyhalgay upfil (Bulun terrane)66-04320Roche + zirconsOlga TURKINATurkina et al 2009SibérieSharyhalgay upfil (Bulun terrane)66-04320Roche + zirconsOlga TURKINAdeduced from Turkina et al 2009Norżeg (boucier Fennoscandia)Naranger complex96-12810Roche + zirconsOlga TURKINAdeduced from Turkina et al 2009Norżeg (boucier Fennoscandia)Varanger complex96-12813Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorżeg (boucier Fennoscandia)Varanger complex74-12813Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorżeg (boucier Fennoscandia)Garajo complex74-22813Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorżeg (boucier Fennoscandia)Hompen Gneiss Complex109-1292Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorżeg (boucier Fennoscandia)Hompen Gneiss Complex162-09-008370Roche + zirconsSampled by Marin GUTREAUCette theseCanada (Slavo)Acasa gneiss complexAG-09-008370Roche + zirconsSampled by Marin GUTREAUCette theseCanada (Slavo)Acasa gneiss complexAG-09-016370R	Sibérie	Sharyzhalgay uplift (Onot terrane)	52-03	3300	Roche + zircons	Olga TURKINA	Olga TURKINA com perso
SibérieSibérieSinzyzhalgay uplif (lbulu terrane)17.3-95300Roche + zirconsOlga TURKINARosen et al 2007SibérieSinzyzhalgay uplif (lbulu terrane)66-04330Roche + zirconsOlga TURKINATurkina et al 2009SibérieSinzyzhalgay uplif (lbulu terrane)65-043300Roche + zirconsOlga TURKINAdeduced from Turkina 2009Norvège (bouclier Fennoscandian)Varanger complex96-12813Roche + zirconsOlga TURKINAdeduced from Turkina 2009Norvège (bouclier Fennoscandian)Varanger complex74-12813Roche + zirconsValery VETRINapprox. Ages Verin 2003 modifNorvège (bouclier Fennoscandian)Varanger complex74-22813Roche + zirconsValery VETRINapprox. Ages Verin 2003 modifNorvège (bouclier Fennoscandian)Varanger complex65-102840Roche + zirconsValery VETRINapprox. Ages Verin 2003 modifNorvège (bouclier Fennoscandian)Svansik complex109-12823Roche + zirconsValery VETRINapprox. Ages Verin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex16-09-0083703Roche + zirconsValery VETRINapprox. Ages Verin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss ComplexAG-09-0093703Roche + zirconsSampled by Marin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0093703Roche + zirconsSampled by Marin GUITREAUCette thèseCanada (Slave)Acasta gn	Sibérie	Sharyzhalgay uplift (Onot terrane)	58-03	3300	Roche + zircons	Olga TURKINA	Olga TURKINA com perso
SibérieSibérieSharyzhalgay uplif (Bulun terrane)26-043300Roche + zirconsOlga TURKINATurkina et al 2009SibérieSharyzhalgay uplif (Bulun terrane)66-043300Roche + zirconsOlga TURKINAdeduced from Turkina 209 and pers. comSibérieSharyzhalgay uplif (Bulun terrane)67-04300Roche + zirconsOlga TURKINAdeduced from Turkina 209 and pers. comNorvège (bouciler Fennoscandia)Varanger complex96-12813Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouciler Fennoscandia)Varanger complex74-22813Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouciler Fennoscandia)Garsjo complex65-10282Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouciler Fennoscandia)Hompen Cneiss Complex18-1292Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouciler Fennoscandia)Hompen Cneiss Complex18-1292Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouciler Fennoscandia)Hompen Cneiss Complex18-1292Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (SlavyAcasta gneiss complexAG-09-008370Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slavy)Acasta gneiss complexAG-09-008370Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slavy)	Sibérie	Sharyzhalgay uplift (Onot terrane)	173-95	3300	Roche + zircons	Olga TURKINA	Rosen et al 2007
SibérieSibérieSibaryzhalgay uplif (Bulun terrane)60-043200Roche + zirconsOlga TURKINATurkina et al 2009Norvège (bouclier Fennoscantian)Varanger complex96-12813Roche + zirconsOlga TURKINAdeduced from Turkina et al 2009Norvège (bouclier Fennoscantian)Varanger complex96-12813Roche + zirconsVaranger Complexapprox. Ages Vertin 2003 modifNorvège (bouclier Fennoscantian)Varanger complex74-12813Roche + zirconsVaranger Complex.approx. Ages Vertin 2003 modifNorvège (bouclier Fennoscantian)Varanger complex74-2283Roche + zirconsValery VETRINapprox. Ages Vertin 2003 modifNorvège (bouclier Fennoscantian)Svansik complex65-102840Roche + zirconsValery VETRINapprox. Ages Vertin 2003 modifNorvège (bouclier Fennoscantian)Morpen Gneiss Complex18-1292Roche + zirconsValery VETRINapprox. Ages Vertin 2003 modifNorvège (bouclier Fennoscantian)Hompen Gneiss Complex12-2-9292Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slavy)Acata gneiss complexAG-09-0018370Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slavy)Acata gneiss complexAG-09-008370Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slavy)Acata gneiss complexAG-09-016360Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slavy)	Sibérie	Sharyzhalgay uplift (Bulun terrane)	26-04	3300	Roche + zircons	Olga TURKINA	Turkina et al 2009
SibérieSharyzhalgay uplif (Bulun terrane)65-043300Roche + zircomsOlga TURKINAdeduced from Turkina 2009 and pers. com9Norvège (bouclier Fennoscandian)Varanger complex96-12813Roche + zircomsOlga TURKINAapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Varanger complex74-12813Roche + zircomsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Varanger complex74-22813Roche + zircomsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Garsja complex65-102840Roche + zircomsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex109-1282Roche + zircomsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex12-2292Roche + zircomsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex12-2292Roche + zircomsValery VETRINapprox. Ages Vetrin 2003 modifCanada (Slave)Acasta gneiss complexAG-09-0013763Roche + zircomsSampled by Marin GUTREAUCette theseCanada (Slave)Acasta gneiss complexAG-09-0063763Roche + zircomsSampled by Marin GUTREAUCette theseCanada (Slave)Acasta gneiss complexAG-09-016375Roche + zircomsSampled by Marin GUTREAUCette theseCanada (Slave)	Sibérie	Sharyzhalgay uplift (Bulun terrane)	60-04	3250	Roche + zircons	Olga TURKINA	Turkina et al 2009
SibérieSharyzhalgay uplift (Bulun ternar)67-043300Roche + zircomsOlga TURKINATurkina et al 2009Norvège (bouclier Fennoscandian)Varanger complex96-12813Roche + zircomsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Varanger complex74-12813Roche + zircomsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Garsjo complex65-10280Roche + zircomsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Morpen Gneiss Complex180-1292Roche + zircomsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex180-1292Roche + zircomsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex122-92902Roche + zircomsSampled by Martin GUTREAUCette théseCanada (Slave)Acasta gneiss complexAG-09-008370Roche + zircomsSampled by Martin GUTREAUCette théseCanada (Slave)Acasta gneiss complexAG-09-014300Roche + zircomsSampled by Martin GUTREAUCette théseCanada (Slave)Acasta gneiss complexAG-09-016375Roche + zircomsSampled by Martin GUTREAUCette théseCanada (Slave)Acasta gneiss complexAG-09-016375Roche + zircomsSampled by Martin GUTREAUCette théseCanada (Slave)Acasta gneiss complexAG-09-0	Sibérie	Sharyzhalgay uplift (Bulun terrane)	65-04	3300	Roche + zircons	Olga TURKINA	deduced from Turkina 2009 and pers. com
Norvège (bouclier Fennoscandian)Varanger complex96-12813Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Varanger complex74-12813Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Garsjo complex65-10240Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Svansik complex109-1225Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex18-12902Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex122-92902Roche + zirconsSampled by Martin GUTREAUCette théseCanada (Slave)Acasta gneiss complexAG-09-0013763Roche + zirconsSampled by Martin GUTREAUCette théseCanada (Slave)Acasta gneiss complexAG-09-008g370Roche + zirconsSampled by Martin GUTREAUCette théseCanada (Slave)Acasta gneiss complexAG-09-0153600Roche + zirconsSampled by Martin GUTREAUCette théseCanada (Slave)Acasta gneiss complexAG-09-0153600Roche + zirconsSampled by Martin GUTREAUCette théseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUTREAUCette théseCanada (Slave)Acasta gneiss complexAG-09	Sibérie	Sharyzhalgay uplift (Bulun terrane)	67-04	3300	Roche + zircons	Olga TURKINA	Turkina et al 2009
Norvège (bouclier Fennoscandian)Varanger complex74-12813Roche + zirconsValery VETRINapprox. Ages Verin 2003 modifNorvège (bouclier Fennoscandian)Garsjo complex65-102840Roche + zirconsValery VETRINapprox. Ages Verin 2003 modifNorvège (bouclier Fennoscandian)Svansik complex109-12825Roche + zirconsValery VETRINapprox. Ages Verin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex109-12825Roche + zirconsValery VETRINapprox. Ages Verin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex122-92902Roche + zirconsValery VETRINapprox. Ages Verin 2003 modifCanada (Slave)Acasta gneiss complexAG-09-0013763Roche + zirconsSampled by Martin GUITREAUCette theseCanada (Slave)Acasta gneiss complexAG-09-008g3707Roche + zirconsSampled by Martin GUITREAUCette theseCanada (Slave)Acasta gneiss complexAG-09-0143600Roche + zirconsSampled by Martin GUITREAUCette theseCanada (Slave)Acasta gneiss complexAG-09-017374Roche + zirconsSampled by Martin GUITREAUCette theseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUITREAUCette theseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUITREAUCette theseCanada (Slave)Acasta gneiss complexAG-09-017	Norvège (bouclier Fennoscandian)	Varanger complex	96-1	2813	Roche + zircons	Valery VETRIN	approx. Ages Vetrin 2003 modif
Norvège (bouclier Fennoscandian)Varanger complex74-228.13Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Svansik complex65-102840Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex18-12902Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex18-12902Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifCanada (Slave)Acasta gneiss complexAG-09-0083703Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0083703Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0143600Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0153600Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0133784 <th>Norvège (bouclier Fennoscandian)</th> <th>Varanger complex</th> <th>74-1</th> <th>2813</th> <th>Roche + zircons</th> <th>Valery VETRIN</th> <th>approx. Ages Vetrin 2003 modif</th>	Norvège (bouclier Fennoscandian)	Varanger complex	74-1	2813	Roche + zircons	Valery VETRIN	approx. Ages Vetrin 2003 modif
Norvège (bouclier Fennoscandian)Garsjo complex65-102840Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex109-12825Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex18-12902Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifCanada (Slave)Acasta gneiss complexAG-09-0013763Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-008370Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0093600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0143600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0153600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0163974Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0163975Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0163974Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0133618Roc	Norvège (bouclier Fennoscandian)	Varanger complex	74-2	2813	Roche + zircons	Valery VETRIN	approx. Ages Vetrin 2003 modif
Norvège (bouclier Fennoscandian)Svansik complex109-12825Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex18-12902Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss ComplexAG-09-0013763Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-008gt370Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-009gt3802Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0193600Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0113600Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0163975Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0133618Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0133618Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0133618Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0133618Roche + z	Norvège (bouclier Fennoscandian)	Garsjo complex	65-10	2840	Roche + zircons	Valery VETRIN	approx. Ages Vetrin 2003 modif
Norvège (bouclier Fennoscandian)Hompen Gneiss Complex18-12902Roche + zirconsVallery VETRINapprox. Ages Vetrin 2003 modifNorvège (bouclier Fennoscandian)Hompen Gneiss Complex122-92902Roche + zirconsVallery VETRINapprox. Ages Vetrin 2003 modifCanada (Slave)Acasta gneiss complexAG-09-001373Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0083770Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0083700Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0143600Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0153600Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0133600Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUTREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0133600Roche + zircons <th< th=""><th>Norvège (bouclier Fennoscandian)</th><th>Svansik complex</th><th>109-1</th><th>2825</th><th>Roche + zircons</th><th>Valery VETRIN</th><th>approx. Ages Vetrin 2003 modif</th></th<>	Norvège (bouclier Fennoscandian)	Svansik complex	109-1	2825	Roche + zircons	Valery VETRIN	approx. Ages Vetrin 2003 modif
Norvège (bouclier Fennoscandian)Hompen Gneiss Complex122-92902Roche + zirconsValery VETRINapprox. Ages Vetrin 2003 modifCanada (Slave)Acasta gneiss complexAG-09-0013763Roch + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0083770Roch + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-008gt3982Roch + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0143600Roch + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0153600Roch + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0163975Roch + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0133974Roch + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0323618Roch + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0323618Roch + zirconsSampled by Martin GUITREAUCette thèseCanada (Slaveireire)NuvvuagituqINO50013650Roch + zirconsSteve MOIZSISCates and Mojzis 2009Canada (Supérieure)NuvvuagituqINO50123818Roch + zirconsSteve MOIZSISCates and Moj	Norvège (bouclier Fennoscandian)	Hompen Gneiss Complex	18-1	2902	Roche + zircons	Valery VETRIN	approx. Ages Vetrin 2003 modif
Canada (Slave)Acasta gneiss complexAG-09-0013763Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-008gt3982Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-008gt3982Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0093600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0143600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0153600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0163975Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-01323618Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0323618Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0123818Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slaveiriere)NuvvuagittuqINO50013650Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Supérieure)NuvvuagittuqINO50033784Roche + zirconsSateve MOIZSISCates and Moj	Norvège (bouclier Fennoscandian)	Hompen Gneiss Complex	122-9	2902	Roche + zircons	Valery VETRIN	approx. Ages Vetrin 2003 modif
Canada (Slave)Acasta gneiss complexAG-09-008370Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0093600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0143600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0153600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0163975Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0323618Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0323618Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0323618Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Supérieure)NuvvuagittuqINO5001350Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123818Roche + zirconsSteve MOIZSISCates and Mojzsis 2009 </th <th>Canada (Slave)</th> <th>Acasta gneiss complex</th> <th>AG-09-001</th> <th>3763</th> <th>Roche + zircons</th> <th>Sampled by Martin GUITREAU</th> <th>Cette thèse</th>	Canada (Slave)	Acasta gneiss complex	AG-09-001	3763	Roche + zircons	Sampled by Martin GUITREAU	Cette thèse
Canada (Slave)Acasta gneiss complexAG-09-008gt3982Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0093600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0143600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0153600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0163975Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0323618Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Supérieure)NuvvuagittuqINO5001350Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Supérieure)NuvvuagittuqINO5001354Roche + zirconsSteve MOIZSISSteve Mojzsis com persoCanada (Supérieure)NuvvuagittuqINO50123818Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO5022378Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO5023374Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canad	Canada (Slave)	Acasta gneiss complex	AG-09-008	3770	Roche + zircons	Sampled by Martin GUITREAU	Cette thèse
Canada (Slave)Acasta gneiss complexAG-09-0093600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0143600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0153600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0163975Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0323618Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Supérieure)NuvvuagittuqINO50013650Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Supérieure)NuvvuagittuqINO50013650Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123818Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50183800Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50183800Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50223758Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supé	Canada (Slave)	Acasta gneiss complex	AG-09-008gt	3982	Roche + zircons	Sampled by Martin GUITREAU	Cette thèse
Canada (Slave)Acasta gneiss complexAG-09-0143600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0153600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0163975Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0323618Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Supérieure)NuvvuagittuqINO50013650Roche + zirconsSteve MOIZSISSteve Mojzsis com persoCanada (Supérieure)NuvvuagittuqINO50033784Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50183800Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50183800Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50223758Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50283744Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50283744Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure) </th <th>Canada (Slave)</th> <th>Acasta gneiss complex</th> <th>AG-09-009</th> <th>3600</th> <th>Roche + zircons</th> <th>Sampled by Martin GUITREAU</th> <th>Cette thèse</th>	Canada (Slave)	Acasta gneiss complex	AG-09-009	3600	Roche + zircons	Sampled by Martin GUITREAU	Cette thèse
Canada (Slave)Acasta gneiss complexAG-09-0153600Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0163975Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0323618Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Supérieure)NuvvuagittuqINO50013650Roche + zirconsSteve MOIZSISSteve Mojzsis com persoCanada (Supérieure)NuvvuagittuqINO50033784Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123818Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50133758Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123818Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50223758Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50283744Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50283927Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)N	Canada (Slave)	Acasta gneiss complex	AG-09-014	3600	Roche + zircons	Sampled by Martin GUITREAU	Cette thèse
Canada (Slave)Acasta gneiss complexAG-09-0163975Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0323618Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Supérieure)NuvvuagittuqINO50013650Roche + zirconsSteve MOJZSISSteve Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123818Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123818Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123784Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO5012378Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50223758Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50283744Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50283744Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50283744Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)Nuvvuagittuq <th>Canada (Slave)</th> <th>Acasta gneiss complex</th> <th>AG-09-015</th> <th>3600</th> <th>Roche + zircons</th> <th>Sampled by Martin GUITREAU</th> <th>Cette thèse</th>	Canada (Slave)	Acasta gneiss complex	AG-09-015	3600	Roche + zircons	Sampled by Martin GUITREAU	Cette thèse
Canada (Slave)Acasta gneiss complexAG-09-0173974Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Slave)Acasta gneiss complexAG-09-0323618Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Supérieure)NuvvuagittuqINO50013650Roche + zirconsSteve MOJZSISSteve Mojzsis compersoCanada (Supérieure)NuvvuagittuqINO50033784Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123818Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123818Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123784Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123788Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50223758Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50283744Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqTNO50283744Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagituqTNO50283744Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)Nuvvuagituq <th< th=""><th>Canada (Slave)</th><th>Acasta gneiss complex</th><th>AG-09-016</th><th>3975</th><th>Roche + zircons</th><th>Sampled by Martin GUITREAU</th><th>Cette thèse</th></th<>	Canada (Slave)	Acasta gneiss complex	AG-09-016	3975	Roche + zircons	Sampled by Martin GUITREAU	Cette thèse
Canada (Slave)Acasta gneiss complexAG-09-0323618Roche + zirconsSampled by Martin GUITREAUCette thèseCanada (Supérieure)NuvvuagittuqINO50013650Roche + zirconsSteve MOIZSISSteve Mojzsis com persoCanada (Supérieure)NuvvuagittuqINO50033784Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123818Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123818Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123784Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50223758Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50283744Roche + zirconsSteve MOIZSISCates and Mojzsis 2009Antarctique (Napier)Enderby Land78285007(Mount Sones)3927Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Black et al Black 1997 <th< th=""><th>Canada (Slave)</th><th>Acasta gneiss complex</th><th>AG-09-017</th><th>3974</th><th>Roche + zircons</th><th>Sampled by Martin GUITREAU</th><th>Cette thèse</th></th<>	Canada (Slave)	Acasta gneiss complex	AG-09-017	3974	Roche + zircons	Sampled by Martin GUITREAU	Cette thèse
Canada (Supérieure)NuvvuagittuqINO50013650Roche + zirconsSteve MOJZSISSteve Mojzsis com persoCanada (Supérieure)NuvvuagittuqINO50033784Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123818Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123818Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123758Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50223758Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50283744Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Antarctique (Napier)Enderby Land78285007(Mount Sones)3927Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Black et al. 1986Antarctique (Napier)Enderby Land78285003 (Gage Ridge)3932Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Harley and Black 1997Antarctique (Napier)Enderby Land78285005 (Dallwitz Nunatak)2747Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Harley and Black 1997	Canada (Slave)	Acasta gneiss complex	AG-09-032	3618	Roche + zircons	Sampled by Martin GUITREAU	Cette thèse
Canada (Supérieure)NuvvuagittuqINO50033784Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50123818Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50183800Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50223758Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50223758Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50283744Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Antarctique (Napier)Enderby Land78285007(Mount Sones)3927Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Black et al. 1986Antarctique (Napier)Enderby Land78285003 (Gage Ridge)3932Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Harley and Black 1997Antarctique (Napier)Enderby Land78285005 (Dallwitz Nunatak)2747Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Harley and Black 1997	Canada (Supérieure)	Nuvvuagittuq	INO5001	3650	Roche + zircons	Steve MOJZSIS	Steve Mojzsis com perso
Canada (Supérieure)NuvvuagittuqINO50123818Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50183800Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50223758Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50283744Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50283744Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Antarctique (Napier)Enderby Land78285007(Mount Sones)3927Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Black et al. 1986Antarctique (Napier)Enderby Land78285013 (Gage Ridge)3932Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Harley and Black 1997Antarctique (Napier)Enderby Land7828505 (Dallwitz Nunatak)2747Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Harley and Black 1997	Canada (Supérieure)	Nuvvuagittuq	INO5003	3784	Roche + zircons	Steve MOJZSIS	Cates and Mojzsis 2009
Canada (Supérieure)NuvvuagittuqINO50183800Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50223758Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagittuqINO50283744Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Antarctique (Napier)Enderby Land78285007(Mount Sones)3927Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Black et al. 1986Antarctique (Napier)Enderby Land7828503 (Gage Ridge)3932Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Harley and Black 1997Antarctique (Napier)Enderby Land7828505 (Dallwitz Nunatak)2747Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Harley and Black 1997	Canada (Supérieure)	Nuvvuagittuq	INO5012	3818	Roche + zircons	Steve MOJZSIS	Cates and Mojzsis 2009
Canada (Supérieure)NuvvuagituqINO50223758Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Canada (Supérieure)NuvvuagituqINO50283744Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Antarctique (Napier)Enderby Land78285007(Mount Sones)3927Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Black et al. 186Antarctique (Napier)Enderby Land78285003 (Gage Ridge)3923Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Harley and Black 1997Antarctique (Napier)Enderby Land78285005 (Dallwitz Nunatak)2747Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Harley and Black 1997	Canada (Supérieure)	Nuvvuagittuq	INO5018	3800	Roche + zircons	Steve MOJZSIS	Cates and Mojzsis 2009
Canada (Supérieure)NuvvuagituqINO50283744Roche + zirconsSteve MOJZSISCates and Mojzsis 2009Antarctique (Napier)Enderby Land78285007(Mount Sones)3927Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Black et al. 1986Antarctique (Napier)Enderby Land78285003 (Gage Ridge)3932Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Black et al. 1986Antarctique (Napier)Enderby Land78285005 (Dallwitz Nunatak)2747Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Harley and Black 1997Antarctique (Napier)Enderby Land78285005 (Dallwitz Nunatak)2747Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Harley and Black 1997	Canada (Supérieure)	Nuvvuagittuq	INO5022	3758	Roche + zircons	Steve MOJZSIS	Cates and Mojzsis 2009
Antarctique (Napier)Enderby Land78285007(Mount Sones)3927Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Black et al. 1986Antarctique (Napier)Enderby Land78285003 (Gage Ridge)3932Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Black et al. 1986Antarctique (Napier)Enderby Land78285005 (Dallwitz Nunatak)2747Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Harley and Black 1997Antarctique (Napier)Enderby Land78285005 (Dallwitz Nunatak)2747Roche + zirconsChris Carson and Phil O'Brien (Geoscience Australia)Harley and Black 1997	Canada (Supérieure)	Nuvvuagittuq	INO5028	3744	Roche + zircons	Steve MOJZSIS	Cates and Mojzsis 2009
Antarctique (Napier) Enderby Land 78285013 (Gage Ridge) 3932 Roche + zircons Chris Carson and Phil O'Brien (Geoscience Australia) Harley and Black 1997 Antarctique (Napier) Enderby Land 78285005 (Dallwitz Nunatak) 2747 Roche + zircons Chris Carson and Phil O'Brien (Geoscience Australia) Harley and Black 1997	Antarctique (Napier)	Enderby Land	78285007(Mount Sones)	3927	Roche + zircons	Chris Carson and Phil O'Brien (Geoscience Australia)	Black et al. 1986
Antarctique (Napier) Enderby Land 78285005 (Dallwitz Nunatak) 2747 Roche + zircons Chris Carson and Phil O'Brien (Geoscience Australia) Harley and Black 1997	Antarctique (Napier)	Enderby Land	78285013 (Gage Ridge)	3932	Roche + zircons	Chris Carson and Phil O'Brien (Geoscience Australia)	Harley and Black 1997
	Antarctique (Napier)	Enderby Land	78285005 (Dallwitz Nunatak)	2747	Roche + zircons	Chris Carson and Phil O'Brien (Geoscience Australia)	Harley and Black 1997

Annexe B

Résultats des analyses des roches-totales et des zircons avec leurs standards

Tableau B-1: Données isotopiques Lu-Hf des tonalites, trondhjémites et granodiorites (TTG)
--

Localisation	Craton/Complex/Zone	Echantillon	Age (Ma)	[Hf] (ppm)	[Lu] (ppm)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf _{in}	$\epsilon_{\rm Hf}$	$\epsilon_{\rm Hfin}$	2 σ	TDM (Ma)	Référence des âges	Références des descriptions pétrographiques
Antarctique	Napier Complex	78285005	2747	3.02	0.017	0.280931	0.000004	0.0008	0.280889	-65.6	-4.6	0.3	3045	Harley and Black, 1997	Harley and Black, 1997
Antarctique	Napier Complex	78285007	3927	3.47	0.052	0.280525	0.000003	0.0021	0.280363	-79.9	4.8	0.2	3765	Black et al., 1986	Harley and Black, 1997
Antarctique	Napier Complex	78285013	3932	2.25	0.025	0.280624	0.000004	0.0016	0.280504	-76.4	9.9	0.3	3562	Harley and Black, 1997	Harley and Black, 1997
Australie	Muccan	142828	3471	5.50	0.11	0.280713	0.000003	0.0027	0.28053	-73.3	-0.2	0.2	3547	Martin Van Kranendonk personnal communication	Martin Van Kranendonk personnal communication
Australie	Shaw batholith	153188	3480	4.06	0.10	0.280807	0.000004	0.0036	0.280562	-70	1.2	0.3	3498	Martin Van Kranendonk personnal communication	Martin Van Kranendonk personnal communication
Australie	Shaw batholith	178044	3470	4.00	0.13	0.280859	0.000003	0.0046	0.280551	-68.1	0.5	0.2	3518	Martin Van Kranendonk personnal communication	Martin Van Kranendonk personnal communication
Australie	Yilgarn	92969073	2680	4.07	0.044	0.281217	0.000003	0.0015	0.281138	-55.5	2.8	0.2	2685	Champion and Sheraton, 1997	Champion and Sheraton, 1997
Australie	Yilgarn	92969125	2680	3.67	0.036	0.281175	0.000003	0.0014	0.281103	-56.9	1.5	0.2	2737	Dave Champion personnal communication	Champion and Sheraton, 1997
Australie	Yilgarn	94969222	2680	2.30	0.038	0.281201	0.000004	0.0023	0.281081	-56	0.7	0.3	2772	Dave Champion personnal communication	Champion and Sheraton, 1997
Australie	Yilgarn	97969137	2840	3.44	0.14	0.281298	0.000004	0.0058	0.280981	-52.6	0.9	0.3	2921	Dave Champion personnal communication	Dave Champion personnal communication
Australie	Yilgarn	97969248	2840	3.14	0.070	0.281149	0.000004	0.0032	0.280977	-57.9	0.8	0.2	2921	Dave Champion personnal communication	Champion and Sheraton, 1997
Australie	Pilbara	98047020	3300	3.66	0.22	0.281202	0.000003	0.0084	0.280671	-56	0.8	0.2	3358	Dave Champion personnal communication	Champion and Smithies, 2007
Australie	Pilbara	98047052	3300	3.43	0.066	0.280837	0.000003	0.0027	0.280665	-68.9	0.5	0.2	3358	Dave Champion personnal communication	Champion and Smithies, 2007
Australie	Pilbara	98047062	3450	6.57	0.48	0.281295	0.000004	0.0103	0.280609	-52.7	2.1	0.3	3424	Dave Champion personnal communication	Champion and Smithies, 2007
Australie	Pilbara	98047071	3300	4.00	0.15	0.280893	0.000003	0.0052	0.280561	-66.9	-3.2	0.2	3532	Dave Champion personnal communication	Champion and Smithies, 2007
Australie	Pilbara	98047082	3300	3.00	0.092	0.280922	0.000004	0.0045	0.280646	-03.9	-0.1	0.3	2291	Dave Champion personnal communication	Champion and Smithies, 2007
Australie	Pilbara	08047118	3300	3.00	0.10	0.280907	0.000003	0.0049	0.280035	-04.5	0.1	0.2	2252	Dave Champion personnal communication	Champion and Smithies, 2007
Australia	Pilbara	08047110	3300	2.96	0.082	0.280903	0.000003	0.0037	0.280003	-67.6	0.7	0.2	3352	Dave Champion personnal communication	Champion and Smithies, 2007
Australia	Pilbara	98047119	3450	2.90	0.000	0.280845	0.000003	0.0031	0.280639	-68.6	3.2	0.2	3384	Dave Champion personnal communication	Champion and Smithies, 2007
Australia	Pilbara	98047247	3450	2.50	0.050	0.280885	0.000004	0.0043	0.280599	-67.2	18	0.3	3444	Dave Champion personnal communication	Champion and Smithies, 2007
Australie	Vilgarn	98969143	2600	3 35	0.025	0.281087	0.000004	0.0011	0.281034	-60.1	-2.8	0.3	2840	Dave Champion personnal communication	Dave Champion personnal communication
Australie	Vilgarn	97969043A	2840	3 53	0.057	0.281138	0.000004	0.0023	0.281014	-58.2	2.1	0.3	2863	Dave Champion personnal communication	Dave Champion personnal communication
Australie	Vilgarn	97969067A	2840	3.04	0.047	0 28098	0.000003	0.0022	0.280861	-63.8	-3.4	0.2	3093	Dave Champion personnal communication	Dave Champion personnal communication
Australie	Yilgarn	97969099B	2840	3.96	0.035	0.280968	0.000003	0.0013	0.280899	-64.2	-2	0.2	3030	Dave Champion personnal communication	Dave Champion personnal communication
Brésil	Sete Voltas	SV1	3140	4.64	0.058	0.280692	0.000003	0.0018	0.280585	-74	-6.1	0.2	3482	Martin et al., 1997	Martin et al., 1997
Brésil	Sete Voltas	SV10	3140	3.21	0.067	0.280753	0.000003	0.0029	0.280576	-71.8	-6.4	0.2	3507	Martin et al., 1997	Martin et al., 1997
Brésil	Sete Voltas	SV11	3423	6.78	0.13	0.280722	0.000003	0.0028	0.280538	-73	-1.1	0.2	3540	Martin et al., 1997	Martin et al., 1997
Brésil	Sete Voltas	SV2	3420	5.41	0.17	0.280821	0.000005	0.0045	0.280522	-69.4	-1.7	0.3	3572	Martin et al., 1997	Martin et al., 1997
Brésil	Sete Voltas	SV24	3140	5.23	0.16	0.280831	0.000003	0.0043	0.280571	-69.1	-6.6	0.2	3531	Martin et al., 1997	Martin et al., 1997
Brésil	Sete Voltas	SV25	3140	3.55	0.063	0.280699	0.000003	0.0025	0.280547	-73.8	-7.5	0.2	3546	Martin et al., 1997	Martin et al., 1997
Brésil	Sete Voltas	SV27	3140	4.20	0.049	0.28067	0.000003	0.0017	0.280569	-74.8	-6.7	0.2	3505	Martin et al., 1997	Martin et al., 1997
Brésil	Sete Voltas	SV28	3420	5.05	0.29	0.281054	0.000003	0.0082	0.280515	-61.2	-1.9	0.2	3604	Martin et al., 1997	Martin et al., 1997
Brésil	Sete Voltas	SV4	3420	5.10	0.11	0.28070	0.000005	0.0030	0.280499	-73.7	-2.5	0.3	3601	Martin et al., 1997	Martin et al., 1997
Brésil	Sete Voltas	SV6	3140	4.99	0.16	0.280854	0.000003	0.0046	0.280575	-68.3	-6.5	0.2	3529	Martin et al., 1997	Martin et al., 1997
Brésil	Sete Voltas	SV7	3420	3.87	0.13	0.280835	0.000003	0.0047	0.280525	-69	-1.6	0.2	3568	Martin et al., 1997	Martin et al., 1997
Brésil	Sete Voltas	SV9	3420	4.64	0.12	0.280748	0.000003	0.0038	0.280497	-72	-2.6	0.2	3607	Martin et al., 1997	Martin et al., 1997
Canada	Acasta	AG-09-001	3763	6.30	0.14	0.280485	0.000005	0.0032	0.280251	-81.3	-3.1	0.4	3946	This study	See text SI
Canada	Acasta	AG-09-008	3770	0.11	0.69	0.281298	0.000003	0.016	0.280177	-50.7	-5.0	0.2	4092	This study	See text SI
Canada	Acasta	AG-09-008	3982	5 45	0.005	0.280072	0.000003	0.0075	0.280090	-/4./	-3.4	0.2	418/	This study	See text SI
Canada	Acasta	AG-09-009	3600	5.45	0.095	0.280506	0.000004	0.0023	0.280307	-80.6	-2.9	0.3	3748	This study	See text SI
Canada	Acasta	AG-09-015	3600	7.10	0.13	0.280549	0.000004	0.0026	0.280369	-79.1	-2.2	0.3	3779	This study	See text SI
Canada	Acasta	AG-09-015	3975	5 30	0.13	0 280417	0.000000	0.0020	0.280139	-83 7	-2.	0.4	4141	This study	See text SI
Canada	Acasta	AG-09-017	3974	4 29	1.028	0 282653	0.000004	0.034	0.280035	-47	-5.8	03	8571	This study	See text SI
Canada	Acasta	AG-09-032	3618	4.15	0.10	0.280622	0.000004	0.0034	0.280382	-76.5	-1.9	0.3	3761	This study	See text SI
Canada	Inukjuak	INO5001	3800	7.18	0.35	0.280901	0.000004	0.0068	0.280399	-66.6	3	0.3	3707	Mojzsis personal com.	Mojzsis personal com.
Canada	Inukjuak	INO5003	3784	3.70	0.13	0.280712	0.000008	0.0049	0.28035	-73.3	0.9	0.6	3794	Cates and Mojzsis, 2007	Cates and Mojzsis, 2007
Canada	Inukjuak	INO5012	3818	3.55	0.068	0.280568	0.000004	0.0027	0.280368	-78.4	2.3	0.3	3763	Cates and Mojzsis, 2007	Cates and Mojzsis, 2007
Canada	Inukjuak	INO5018	3800	3.20	0.044	0.280485	0.000003	0.0019	0.280343	-81.3	1	0.2	3803	Cates and Mojzsis, 2007	Cates and Mojzsis, 2007
Canada	Inukjuak	INO5022	3758	3.64	0.047	0.280474	0.000004	0.0018	0.280341	-81.7	-0.1	0.3	3807	Cates and Mojzsis, 2007	Cates and Mojzsis, 2007
Canada	Inukjuak	INO5028	3744	2.99	0.19	0.280708	0.000006	0.0045	0.280382	-73.4	1.1	0.4	3748	Cates and Mojzsis, 2007	Cates and Mojzsis, 2007
Chine	Guzuizi	08GZZ01	2509	6.38	0.36	0.281655	0.000003	0.0080	0.28127	-40	3.4	0.2	2494	Miao et al., 2002	Miao et al., 2002
Chine	Xiwangshan	08XWS01	2543	7.68	0.29	0.281553	0.000004	0.0054	0.281289	-43.6	4.9	0.3	2458	Jiang and Guo, 2010	Jiang and Guo, 2010
Chine	Baijafen	09AS01	3330	3.38	0.060	0.280917	0.000003	0.0025	0.280755	-66.1	4.5	0.2	3219	This study	See text SI
Chine	Dongshan	09AS03	3330	4.65	0.28	0.280955	0.000003	0.0085	0.28041	-64.7	-7.8	0.2	3826	This study	See text SI
Finlande	Karelia	H391	2700	3.26	0.055	0.281195	0.000003	0.0024	0.28107	-56.2	0.8	0.2	2787	Martin, 1987	Martin, 1987
Finlande	Karelia	H392	2809	3.17	0.072	0.281243	0.000003	0.0032	0.281069	-54.5	3.3	0.2	2781	Martin, 1987	Martin, 1987
Finlande	Karelia	H395	2792	5.8/	0.091	0.281246	0.000004	0.0033	0.281068	-54.4	2.9	0.3	2785	Martin, 1987	Martin, 1987
Finlande	Karelia	H405	2700	3.00	0.000	0.281205	0.000004	0.0026	0.2810/2	-33.9	0.9	0.3	2/85	Martin, 1987	Martin, 1987
Finlande	Kuusamonkyla	H406	2800	5.39	0.13	0.281206	0.000003	0.0053	0.280919	-55.8	-2.2	0.2	5029	iviarum, 1987	iviaitiii, 1987

Tableau B-1 (suite) : Données isotopiques Lu-Hf des tonalites, trondhjémites et granodiorites (TTG)

Localisation	Craton/Complex/Zone	Echantillon	Age (Ma)	[Hf] (nnm)	[Lu] (ppm)	¹⁷⁶ Hf/ ¹⁷⁷ H f	2 σ	¹⁷⁶ Lu/ ¹⁷⁷ H f	¹⁷⁶ Hf/ ¹⁷⁷ Hf _i	ε _{Hf}	٤ _{Hfin}	2 σ	TDM (Ma)	Référence des âges	Références des descriptions pétrographiques
Finlande	Karelia	H412	2797	5 39	0.085	0 281195	0.000004	0.0022	0.281075	-56.2	3.2	0.3	2774	Martin 1987	Martin 1987
Finlande	Naavala	H471	2830	5.08	0.32	0.281113	0.000003	0.0091	0.280622	-59.1	-12.1	0.2	3609	Martin 1987	Martin 1987
Finlande	Naavala	H472	2700	3.25	0.027	0.281112	0.000003	0.0012	0.281051	-59.2	0.1	0.2	2812	Martin, 1987	Martin, 1987
Finlande	Naavala	H473	2700	3.31	0.024	0.281103	0.000004	0.0010	0.281051	-59.5	0.1	0.3	2813	Martin, 1987	Martin, 1987
Finlande	Kivijärvi	H53	2928	3.78	0.060	0.281094	0.000003	0.0022	0.280967	-59.8	2.5	0.2	2927	Martin, 1987	Martin, 1987
Finlande	Kivijärvi	H54	2900	2.78	0.049	0.281178	0.000005	0.0025	0.28104	-56.8	4.4	0.3	2819	Martin, 1987	Martin, 1987
Finlande	Kivijärvi	H70	2800	2.31	0.30	0.282043	0.000004	0.018	0.281058	-26.2	2.7	0.3	2799	Martin, 1987	Martin, 1987
Groenland	Isua	030013	3706	4.62	0.26	0.280944	0.000003	0.0080	0.280369	-65.1	-0.3	0.2	3782	Minik Rosing personnal communication	Minik Rosing personnal communication
Groenland	Isua	030015	3713	4.55	0.30	0.281075	0.000003	0.0094	0.280403	-60.5	1.1	0.2	3721	Minik Rosing personnal communication	Minik Rosing personnal communication
Groenland	Isua	060009	3792	4.02	0.14	0.280684	0.000004	0.0051	0.280313	-74.3	-0.3	0.3	3853	Minik Rosing personnal communication	Minik Rosing personnal communication
Groenland	Isua	060010	3802	3.79	0.14	0.280702	0.000003	0.0053	0.280316	-73.7	0.1	0.2	3847	Minik Rosing personnal communication	Minik Rosing personnal communication
Groenland	Isua	060011	3787	3.67	0.13	0.280872	0.000003	0.0051	0.280497	-67.6	6.2	0.2	3555	Minik Rosing personnal communication	Minik Rosing personnal communication
Groenland	Akilia	GR0012	3736	3.18	0.18	0.280521	0.000004	0.0079	0.279948	-80.1	-14.6	0.3	4521	Manning et al., 2006	Manning et al., 2006
Groenland	Akılıa	GR0050	3744	3.71	0.049	0.280516	0.000003	0.0019	0.280381	-80.2	1	0.2	3750	Cates and Mojzsis, 2006	Cates and Mojzsis, 2006
Groenland	Akilia	GR00/1	3830	5.92	0.092	0.2803/2	0.000003	0.0022	0.280209	-85.3	-3	0.2	3998	Steve Mojzsis personal communication	Steve Mojzsis personal communication
Groenland	Innersuartuut	GR0082	3629	1.54	0.035	0.280765	0.000005	0.0032	0.280537	-/1.4	3.8	0.5	3522	Cates and Mojzsis, 2006	Cates and Mojzsis, 2006
Groenland	Wast innersuartuut	GR0085	3629	3.25	0.000	0.280001	0.000004	0.0010	0.200400	-//.2	2 0.0	0.5	2708	Cates and Mojzsis, 2006	Cates and Mojzsis, 2006
Greenland	Oilonngoorguit	CP04066	3670	11.58	0.47	0.280820	0.000004	0.0058	0.280425	-09.3	-0.9	0.3	3750	Cates and Mojzsis, 2000	Cates and Moizsis, 2000
Groenland	Akilia	GR9802	3728	4.25	0.096	0.280602	0.000003	0.0032	0.280371	-77.2	0.3	0.2	3767	Steve Moizsis personal communication	Steve Moizsis personal communication
Groenland	Innersuartuut	GRO4002	3700	2.24	0.055	0.28061	0.000004	0.0035	0.280362	-76.9	-0.7	0.3	3784	Steve Mojzsis personal communication	Steve Mojzsis personal communication
Groenland	Innersuartuut	GRO4035	3701	3.38	0.19	0.280838	0.000004	0.0078	0.28028	-68.9	-3.6	0.3	3942	Cates and Moizsis 2006	Cates and Moizsis 2006
Groenland	Innersuartuut	GRO4039	3687	12.56	0.40	0.280717	0.000004	0.0045	0.280394	-73.1	0.1	0.3	3738	Cates and Mojzsis, 2006	Cates and Moizsis, 2006
Groenland	Innersuartuut	GRO4050	3648	3.51	0.084	0.280665	0.000005	0.0034	0.280425	-75	0.3	0.4	3692	Cates and Mojzsis, 2006	Cates and Mojzsis, 2006
Groenland	qilanngaarsuit	GRO4057	3692	3.63	0.030	0.280504	0.000005	0.0012	0.28042	-80.7	1.2	0.3	3695	Cates and Mojzsis, 2006	Cates and Mojzsis, 2006
Inde	Closepet	BH 145A	2550	3.02	0.13	0.281576	0.000003	0.0062	0.281276	-42.8	4.6	0.2	2477	Hervé Martin personal communication	Hervé Martin personal communication
Inde	Closepet	CG24	3304	3.04	0.27	0.281642	0.000003	0.012	0.280847	-40.4	7.1	0.2	2985	Hervé Martin personal communication	Hervé Martin personal communication
Inde	Dharwar	Ind 218	2508	3.34	0.077	0.281415	0.000004	0.0033	0.281259	-48.4	3	0.3	2515	Hervé Martin personal communication	Hervé Martin personal communication
Inde	Dharwar	Ind 433	3151	7.73	0.14	0.280955	0.000003	0.0025	0.280804	-64.7	2	0.2	3158	Hervé Martin personal communication	Hervé Martin personal communication
Inde	Dharwar	Ind 449	3218	3.18	0.10	0.281106	0.000004	0.0045	0.280827	-59.4	4.4	0.3	3112	Hervé Martin personal communication	Hervé Martin personal communication
Inde	Dharwar	Ind 54A	3340	1.56	0.067	0.280926	0.000004	0.0061	0.280531	-65.7	-3.3	0.3	3582	Hervé Martin personal communication	Hervé Martin personal communication
Inde	Dharwar	OEA 13	3270	4.04	0.19	0.281157	0.000003	0.0066	0.280742	-57.6	2.6	0.2	3240	Hervé Martin personal communication	Hervé Martin personal communication
Inde	Dharwar	PGI	2750	4.14	0.14	0.281349	0.000004	0.0050	0.281088	-50.8	2.6	0.3	2758	Herve Martin personal communication	Herve Martin personal communication
Inde	Dharwar	PG14 PC14a	2550	5.34	0.16	0.281407	0.000003	0.0042	0.281204	-48./	2	0.2	2598	Herve Martin personal communication	Herve Martin personal communication
Inde	Dharwar	PG14a	2330	3.00	0.14	0.281412	0.000004	0.0040	0.201215	-48.0	2.4	0.5	2579	Herve Martin personal communication	Herve Martin personal communication
Inde	Dharwar	PG15	2330	10.15	0.13	0.281408	0.000003	0.0059	0.281210	-40.7	-0.7	0.3	3250	Hervé Martin personal communication	Hervé Martin personal communication
Inde	Dharwar	PG20	2750	6.24	0.29	0.281407	0.000004	0.0065	0.281057	-48 7	15	0.5	2812	Hervé Martin personal communication	Hervé Martin personal communication
Inde	Dharwar	PG21	2750	6.24	0.22	0.281303	0.000003	0.0050	0.281038	-52.4	0.8	0.2	2840	Hervé Martin personal communication	Hervé Martin personal communication
Inde	Dharwar	PG24	3276	10.33	0.31	0 28110	0.000004	0.0043	0.28083	-59.6	5.8	0.3	3101	Hervé Martin personal communication	Hervé Martin personal communication
Inde	Dharwar	PG25	2600	5.92	0.18	0.281348	0.000003	0.0042	0.281139	-50.8	0.9	0.2	2695	Hervé Martin personal communication	Hervé Martin personal communication
Inde	Dharwar	PG9	2800	6.39	0.096	0.281194	0.000004	0.0021	0.28108	-56.3	3.5	0.3	2766	Hervé Martin personal communication	Hervé Martin personal communication
Norvège	Svansik complex	109-1	2825	2.55	0.12	0.281173	0.000003	0.0067	0.280809	-57	-5.6	0.2	3226	Valery Vetrin personal communication	Valery Vetrin personal communication
Norvège	Varanger complex	96-1	2813	3.91	0.095	0.281193	0.000004	0.0034	0.281007	-56.3	1.2	0.3	2877	Valery Vetrin personal communication	Valery Vetrin personal communication
Russie	Vezha Tundra	3/85	2850	3.64	0.044	0.281115	0.000003	0.0017	0.281023	-59.1	2	0.2	2850	Valery Vetrin personal communication	Valery Vetrin personal communication
Russie	Hompen Gneiss Complex	18-1-B-92	2900	3.12	0.11	0.281265	0.000004	0.0048	0.280996	-53.7	3.6	0.3	2880	Valery Vetrin personal communication	Valery Vetrin personal communication
Russie	Hompen Gneiss Complex	122-9	2900	4.73	0.15	0.281192	0.000004	0.0045	0.280941	-56.3	1.1	0.3	2973	Valery Vetrin personal communication	Valery Vetrin personal communication
Russie	Garsjo complex	65-10	2840	3.66	0.025	0.281125	0.000004	0.0010	0.281075	-58.7	1.6	0.3	2776	Valery Vetrin personal communication	Valery Vetrin personal communication
Russie	Varanger complex	74-1	2813	2.77	0.020	0.28105	0.000005	0.0010	0.280995	-61.3	0.8	0.3	2890	Valery Vetrin personal communication	Valery Vetrin personal communication
Russie	Varanger complex	74-2	2813	4.74	0.21	0.281387	0.000004	0.0062	0.281052	-49.4	2.5	0.3	2809	Valery Vetrin personal communication	Valery Vetrin personal communication
Sibérie	Onot terrane	28-03	3300	2.92	0.19	0.280935	0.000004	0.0042	0.280668	-65.4	0.7	0.3	3354	Olga Turkina personal communication	Olga Turkina personal communication
Sibérie	Bulun terrane	26-04	3276	6.76	0.27	0.281058	0.000004	0.0056	0.280703	-61.1	1.3	0.3	3304	Olga Turkina personal communication	Turkina et al., 2009
Sibèrie	Onot terrane	1/3-95	3300	4.41	0.13	0.280925	0.000011	0.0042	0.280657	-05.8	0.3	0.8	35/2	Diga Turkina personal communication	Rosen and Turkina, 2007
Siberie	Onot terrane	40-03	3302	5.40	0.12	0.260903	0.000003	0.0049	0.280642	-04.4	2.1	0.2	3383	Olgo Turking personal communication	Olgo Turking percent communication
Sibérie	Onot terrane	58.03	3307	4.34	0.11	0.280842	0.000004	0.0034	0.280645	-00.7	2	0.5	3380	Olga Turkina personal communication	Olga Turkina personal communication
Sibérie	Bulun terrane	60-04	3231	5 94	0.10	0 281054	0.0000003	0.0049	0.280747	-61.2	1.8	0.2	3238	Olga Turkina personal communication	Turkina et al. 2009
Sibérie	Bulun terrane	65-04	3300	3 18	0.049	0 280898	0.000003	0.0022	0.28076	-66.7	3.9	0.2	3214	Olga Turkina personal communication	Olga Turkina personal communication
Sibérie	Bulun terrane	67-04	3300	4.95	0.089	0.280927	0.0000004	0.0026	0.280764	-65.7	4.1	0.3	3207	Olga Turkina personal communication	Turkina et al 2009
Afrique du Sud	kaap vallev	KV 1.1/08	3227	2.80	0.11	0.28111	0.000004	0.0056	0.280763	-59.2	2.3	0.3	3214	Moven et al., 2007	Moven et al., 2007
Afrique du Sud	kaap valley	KV 2.1/08	3220	2.79	0.097	0.281069	0.000002	0.0050	0.280762	-60.7	2.1	0.2	3216	Moyen et al., 2007	Moyen et al., 2007

Tableau B-1 (suite) : Données isotopiques Lu-Hf des tonalites, trondhjémites et granodiorites (TTG)

ruoreau D I (suite)	. Bonnees isotopiques Eu III u	es tonances, d'onan	gennes et grun			176177		176- 177	176						
Localisation	Craton/Complex/Zone	Echantillon	Age (Ma)	[Hf]	[Lu]	""Hf/""H	2 σ	""Lu/"/H	^{1/0} Hf/ ^{1//} Hf _i	٤ _{Hf}	8 _{Hfin}	2 σ	TDM	Référence des âges	Références des descriptions pétrographiques
	*		,	(ppm)	(ppm)	I		I	n				(Ma)	ÿ	
Afrique du Sud	kaap valley	KV 3.1/08	3229	3.01	0.11	0.281108	0.000004	0.0053	0.280778	-59.3	2.9	0.2	3189	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	kaap valley	KV 4.1/08	3227	2.77	0.12	0.281163	0.000004	0.0063	0.280771	-57.4	2.6	0.3	3199	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	Nelshoogte	NLS 2.2/08	3220	3.10	0.036	0.28085	0.000003	0.0016	0.280749	-68.4	1.6	0.2	3236	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	Nelshoogte	NLS 5.1/08	3236	3.05	0.14	0.28116	0.000004	0.0065	0.280755	-57.4	2.2	0.3	3225	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	Nelshoogte	NLS 5.3/08	3236	3.05	0.050	0.280903	0.000004	0.0023	0.280758	-66.5	2.3	0.3	3221	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	Nelshoogte	NLS 7.2/08	3245	3.29	0.066	0.280929	0.000005	0.0028	0.280752	-65.6	2.4	0.3	3229	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	Nelshoogte	NLS 8.1/08	3236	2.77	0.11	0.281085	0.000004	0.0054	0.280745	-60.1	1.9	0.3	3241	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	steynsdorp	STEY 1.4/08	3523	4.09	0.12	0.280819	0.000004	0.0043	0.280525	-69.5	0.9	0.3	3552	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	steynsdorp	STEY 1.5/08	3510	4.74	0.23	0.28105	0.000003	0.0070	0.280576	-61.3	2.4	0.2	3469	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	steynsdorp	STEY 1.7/08	3510	6.27	0.53	0.281267	0.000004	0.012	0.280451	-53.7	-2.1	0.3	3723	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	steynsdorp	STEY 2.2/08	3510	4.07	0.26	0.281229	0.000003	0.0090	0.280623	-55	4	0.2	3379	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	Stolzburg	ST-J19	3437	2.99	0.071	0.280792	0.000003	0.0034	0.280569	-70.5	0.4	0.2	3492	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	Stolzburg	ST-J23	3437	2.82	0.037	0.280694	0.000004	0.0019	0.28057	-73.9	0.4	0.3	3488	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	Stolzburg	ST-J33	3437	3.18	0.079	0.280797	0.000004	0.0035	0.280563	-70.3	0.2	0.3	3501	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	Stolzburg	ST-J6	3429	2.50	0.032	0.280675	0.000004	0.0018	0.280555	-74.6	-0.3	0.2	3510	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	Stolzburg	ST-J7	3437	2.88	0.037	0.280676	0.000003	0.0018	0.280555	-74.6	-0.1	0.2	3511	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	TTG Steynsdorp	Stp	3518	5.05	0.25	0.280986	0.000004	0.0070	0.280511	-63.6	0.2	0.3	3581	Moyen et al., 2007	Moyen et al., 2007
Afrique du Sud	Vlakplaats	VLK 2/08	3450	3.64	0.072	0.280865	0.000004	0.0028	0.280678	-67.9	4.6	0.3	3325	Moyen et al., 2007	Moyen et al., 2007
Swaziland	Ancient Gneiss complex	AGC	3644	5.78	0.18	0.280834	0.000003	0.0044	0.280528	-69	2.8	0.2	3537	Compston and Kröner, 1988	Kröner, 2007

Std JMC 475	Date	Jour	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 σ	¹⁷⁸ Hf/ ¹⁷⁷ Hf	2 σ	¹⁸⁰ Hf/ ¹⁷⁷ H f	2 σ
	03/02/2009	09:13:00	0.282169	2.0E-06	1.46730	4.5E-06	1.88675	1.0E-05
	03/02/2009	09:36:00	0.282170	1.8E-06	1.46729	3.7E-06	1.88675	7.9E-06
	03/02/2009	11:40:00	0.282172	2.0E-06	1.46728	4.2E-06	1.88672	9.4E-06
	03/02/2009	12:59:00	0.282178	3.8E-06	1.46729	4.9E-06	1.88674	1.2E-05
	03/02/2009	13:10:00	0.282164	3.8E-06	1.46731	6.9E-06	1.88683	1.7E-05
	03/02/2009	13:17:00	0.282182	3.1E-06	1.46730	5.9E-06	1.88677	1.2E-05
	03/02/2009	13:36:00	0.282172	2.8E-06	1.46732	7.4E-06	1.88684	1.5E-05
	03/02/2009	14:50:00	0.282168	1.6E-06	1.46730	4.0E-06	1.88685	1.0E-05
	03/02/2009	17:05:00	0.282167	1.7E-06	1.46730	3.5E-06	1.88682	6.5E-06
	03/02/2009	18:56:00	0.282176	3.2E-06	1.46732	6.8E-06	1.88683	2.0E-05
	03/02/2009	19:04:00	0.282167	2.7E-06	1.46729	7.2E-06	1.88679	1.8E-05
	22/04/2009	11:30:00	0.282159	2.3E-06	1.46721	5.7E-06	1.88666	1.3E-05
	22/04/2009	13:27:00	0.282165	2.2E-06	1.46725	4.6E-06	1.88678	9.8E-06
	22/04/2009	15:00:00	0.282173	2.8E-06	1.46728	4.1E-06	1.88678	1.4E-05
	22/04/2009	15:06:00	0.282173	1.9E-06	1.46727	5.4E-06	1.88678	1.5E-05
	22/04/2009	16:09:00	0.282178	2.5E-06	1.46728	6.3E-06	1.88680	1.3E-05
	22/04/2009	16:15:00	0.282170	3.1E-06	1.46728	4.1E-06	1.88680	1.3E-05
	22/04/2009	16:21:00	0.282169	2.4E-06	1.46728	5.6E-06	1.88681	1.2E-05
	22/04/2009	17:26:00	0.282176	3.0E-06	1.46728	5.8E-06	1.88681	8.9E-06
	22/04/2009	17:51:00	0.282161	2.6E-06	1.46727	6.2E-06	1.88675	1.8E-05
	22/04/2009	17:57:00	0.282172	2.8E-06	1.46726	8.2E-06	1.88668	1.3E-05
	22/04/2009	18:03:00	0.282165	3.9E-06	1.46727	9.2E-06	1.88677	2.1E-05
	22/04/2009	18:24:00	0.282169	2.8E-06	1.46728	1.5E-05	1.88673	3.6E-05
	22/04/2009	18:28:00	0.282167	2.6E-06	1.46729	6.3E-06	1.88676	1.5E-05
	22/04/2009	19:28:00	0.282167	2.0E-06	1.46727	8.0E-06	1.88673	1.1E-05
	22/04/2009	20:25:00	0.282165	2.8E-06	1.46729	7.4E-06	1.88677	1.2E-05
	23/04/2009	07:24:00	0.282166	2.0E-06	1.46726	4.8E-06	1.88675	8.2E-06
	23/04/2009	07:45:00	0.282166	2.8E-06	1.46726	6.4E-06	1.88676	1.6E-05
	23/04/2009	09:08:00	0.282166	2.9E-06	1.46725	5.3E-06	1.88674	9.2E-06
	23/04/2009	10:09:00	0.282170	2.5E-06	1.46726	5.9E-06	1.88679	1.5E-05
	23/04/2009	11:20:00	0.282164	2.8E-06	1.46725	6.3E-06	1.88677	1.3E-05
	23/04/2009	12:28:00	0.282171	3.5E-06	1.46726	6.4E-06	1.88677	1.8E-05
	23/04/2009	13:37:00	0.282168	3.0E-06	1.46726	7.7E-06	1.88675	1.4E-05
	23/04/2009	15:17:00	0.282167	2.8E-06	1.46726	6.3E-06	1.88677	1.5E-05
	23/04/2009	16:50:00	0.282165	2.3E-06	1.46725	4.8E-06	1.88674	1.3E-05
	23/04/2009	18:19:00	0.282168	2.5E-06	1.46725	7.0E-06	1.88675	1.5E-05
	23/04/2009	19:45:00	0.282170	2.5E-06	1.46727	7.7E-06	1.88676	1.1E-05
	23/04/2009	20:52:00	0.282169	2.0E-06	1.46725	4.9E-06	1.88676	9.2E-06

Std JMC 475	Date	Jour	¹⁷⁶ Hf/ ¹⁷⁷ H f	2 σ	¹⁷⁸ Hf/ ¹⁷⁷ Hf	2 σ	¹⁸⁰ Hf/ ¹⁷⁷ H f	2 σ
	23/04/2009	21:06:00	0.282164	3.7E-06	1.46727	8.4E-06	1.88682	1.8E-05
	11/06/2009	09:26:00	0.282155	2.6E-06	1.46727	5.2E-06	1.88674	1.1E-05
	11/06/2009	09:41:00	0.282161	2.0E-06	1.46727	4.2E-06	1.88676	1.1E-05
	11/06/2009	11:22:00	0.282163	3.3E-06	1.46728	5.3E-06	1.88678	1.6E-05
	11/06/2009	12:36:00	0.282161	2.5E-06	1.46728	6.2E-06	1.88681	1.4E-05
	11/06/2009	13:40:00	0.282171	3.6E-06	1.46728	6.9E-06	1.88676	1.6E-05
	11/06/2009	13:46:00	0.282165	2.9E-06	1.46726	7.7E-06	1.88675	1.3E-05
	11/06/2009	14:36:00	0.282162	2.3E-06	1.46728	4.7E-06	1.88676	1.2E-05
	11/06/2009	16:06:00	0.282154	2.3E-06	1.46727	4.4E-06	1.88677	8.8E-06
	11/06/2009	17:44:00	0.282166	2.5E-06	1.46727	6.0E-06	1.88677	1.6E-05
	11/06/2009	19:07:00	0.282158	2.9E-06	1.46728	7.1E-06	1.88675	1.9E-05
	11/06/2009	20:34:00	0.282166	3.9E-06	1.46728	6.9E-06	1.88679	1.6E-05
	12/06/2009	07:58:00	0.282160	2.2E-06	1.46728	4.2E-06	1.88679	9.8E-06
	12/06/2009	09:16:00	0.282166	4.8E-06	1.46729	6.4E-06	1.88676	1.5E-05
	12/06/2009	10:19:00	0.282166	2.8E-06	1.46728	6.5E-06	1.88678	1.1E-05
	12/06/2009	11:19:00	0.282173	2.3E-06	1.46729	4.5E-06	1.88675	1.0E-05
	12/06/2009	11:34:00	0.282166	2.8E-06	1.46729	7.5E-06	1.88675	1.3E-05
	05/10/2009	08:51:00	0.282161	2.3E-06	1.46725	5.2E-06	1.88674	1.1E-05
	05/10/2009	09:12:00	0.282158	4.6E-06	1.46726	7.0E-06	1.88678	2.1E-05
	05/10/2009	10:03:00	0.282147	4.2E-06	1.46725	6.9E-06	1.88679	1.6E-05
	05/10/2009	10:09:00	0.282155	3.9E-06	1.46723	7.5E-06	1.88676	1.9E-05
	05/10/2009	11:23:00	0.282163	3.9E-06	1.46728	6.6E-06	1.88681	1.6E-05
	05/10/2009	12:23:00	0.282162	4.2E-06	1.46728	1.1E-05	1.88678	2.1E-05
	05/10/2009	13:30:00	0.282149	3.2E-06	1.46728	7.8E-06	1.88683	2.6E-05
	05/10/2009	13:38:00	0.282158	5.3E-06	1.46728	8.6E-06	1.88678	2.0E-05
	05/10/2009	14:46:00	0.282164	3.1E-06	1.46730	5.5E-06	1.88680	1.4E-05
	05/10/2009	15:55:00	0.282162	3.8E-06	1.46730	1.2E-05	1.88690	1.7E-05
	05/10/2009	16:00:00	0.282147	4.3E-06	1.46728	6.5E-06	1.88687	1.8E-05
	05/10/2009	16:07:00	0.282165	5.1E-06	1.46730	1.0E-05	1.88686	2.3E-05
	05/10/2009	16:44:00	0.282157	2.6E-06	1.46729	4.8E-06	1.88687	1.1E-05
	05/10/2009	17:02:00	0.282156	3.4E-06	1.46730	1.1E-05	1.88687	1.5E-05
	25/10/2009	08:42:00	0.282164	2.7E-06	1.46727	6.6E-06	1.88690	1.6E-06
	25/10/2009	10:04:00	0.282173	3.0E-06	1.46728	6.9E-06	1.88695	1.7E-05
	25/10/2009	10:11:00	0.282162	3.1E-06	1.46729	7.9E-06	1.88696	1.6E-06
	25/10/2009	11:24:00	0.282165	4.2E-06	1.46729	5.9E-06	1.88694	1.4E-05
	25/10/2009	12:31:00	0.282168	3.7E-06	1.46727	7.1E-06	1.88692	1.8E-05
	25/10/2009	13:47:00	0.282161	3.3E-06	1.46729	6.9E-06	1.88692	1.6E-05
	25/10/2009	14:45:00	0.282169	4.8E-06	1.46727	8.0E-06	1.88698	1.8E-05
	25/10/2009	15:49:00	0.282156	3.7E-06	1.46729	6.2E-06	1.88695	1.7E-05
	25/10/2009	15:55:00	0.282154	3.0E-06	1.46727	6.2E-06	1.88690	1.2E-05
	12/01/2010	20:07:00	0.282155	3.8E-06	1.46730	6.9E-06	1.88700	2.2E-05
	12/01/2010	20:12:00	0.282160	4.5E-06	1.46728	9.6E-06	1.88700	1.3E-05
	12/01/2010	21:47:00	0.282154	1.9E-06	1.46728	4.8E-06	1.88697	9.3E-06
	12/01/2010	22:06:00	0.282154	3.7E-06	1.46728	6.9E-06	1.88700	1.3E-05
	12/01/2010	10:41:00	0.282145	4.6E-06	1.46729	9.3E-06	1.88694	2.1E-05
	12/01/2010	10:44:00	0.282163	3.6E-06	1.46728	4.6E-06	1.88695	1.5E-05
	12/01/2010	12:01:00	0.282142	4.1E-06	1.46728	9.4E-06	1.88696	2.2E-06
	12/01/2010	12:05:00	0.282164	2.4E-06	1.46730	8.1E-06	1.88696	1.2E-05
	12/01/2010	12:09:00	0.282150	2.8E-06	1.46726	8.1E-06	1.88693	1.6E-05
	12/01/2010	13:23:00	0.282163	2.5E-06	1.46727	7.9E-06	1.88695	1.5E-05
	12/01/2010	14:33:00	0.282160	3.9E-06	1.46730	9.9E-06	1.88698	2.3E-05
	12/01/2010	15:40:00	0.282169	2.8E-06	1.46730	5.0E-06	1.88696	1.3E-05
	12/01/2010	16:59:00	0.282172	4.2E-06	1.46728	7.6E-06	1.88697	2.0E-05
	12/01/2010	17:03:00	0.282157	3.8E-06	1.46727	8.3E-06	1.88698	2.2E-05
	12/01/2010	18.18.00	0.282167	5.4E-06	1.46726	9.8E-06	1.88697	2.6E-05
	26/01/2010	10:55:00	0.282175	5.3E-06	1.46734	6.9E-06	1.88695	2.8E-05
	26/01/2010	12:25:00	0 282160	3 2E-06	1 46734	9 7E-06	1 88698	1.6E-05
	26/01/2010	13:25:00	0 282178	3 3E-06	1 46735	7 7E-06	1 88694	1.5E-05
	26/01/2010	13:31:00	0.282169	3.2E-06	1 46737	9.4F-06	1 88695	1.7E-05
	26/01/2010	14.34.00	0.282179	2.9E-06	1 46734	7.7E-06	1.88695	1.7E-05
	26/01/2010	14.38.00	0.202175	2.7E-06	1.46736	6.5E-06	1 88604	1.7E-05
	20/01/2010	14.36.00	0.2021/3	J./L-00	1.40/30	0.512-00	1.00094	1.3E-03

Tableau B-1 (suite	 Données isotopiques 	Lu-Hf des tonalites.	trondhiemites et	granodiorites (TTG

Tubleau D T (Suite) : D	sinces isotopiques Eu in	ii des tonantes, iron	176116/17711	unourontes (110)		180116/17711	
Std JMC 475	Date	Jour	f	2 σ	¹⁷⁸ Hf/ ¹⁷⁷ Hf	2 σ	f f	2 σ
	26/01/2010	14:44:00	0.282172	4.7E-06	1.46736	1.1E-05	1.88695	1.9E-05
	15/03/2010	09:14:00	0.282161	2.7E-06	1.46719	6.9E-06	1.88676	1.4E-05
	15/03/2010	10:26:00	0.282163	2.9E-06	1.46717	5.1E-06	1.88671	1.1E-05
	15/03/2010	11:49:00	0.282173	3.0E-06	1.46717	6.3E-06	1.88669	1.4E-05
	15/03/2010	13:05:00	0.282168	2.4E-06	1.46715	6.9E-06	1.88668	1.1E-05
	15/03/2010	14:30:00	0.282166	2.9E-06	1.46714	1.1E-05	1.88667	1.7E-05
	15/03/2010	15:47:00	0.282173	2.8E-06	1.46714	5.8E-06	1.88669	1.0E-05
	15/03/2010	15:58:00	0.282173	3.7E-06	1.46714	6.4E-06	1.88668	1.6E-05
	15/03/2010	17:07:00	0.282174	2.6E-06	1.46714	6.9E-06	1.88667	1.3E-05
	15/03/2010	18:15:00	0.282174	2.0E-06	1.46715	4.1E-06	1.88666	8.6E-06
	16/03/2010	08:44:00	0.282156	2.6E-06	1.46715	5.4E-06	1.88672	1.3E-05
	16/03/2010	08:55:00	0.282151	3.3E-06	1.46716	5.1E-06	1.88670	1.4E-05
	16/03/2010	10:38:00	0.282159	3.8E-06	1.46716	8.3E-06	1.88667	2.1E-05
	16/03/2010	12:16:00	0.282171	2.7E-06	1.46715	6.1E-06	1.88662	1.4E-05
	16/03/2010	12:21:00	0.282170	2.0E-06	1.46716	6.4E-06	1.88664	1.2E-05
	16/03/2010	13:30:00	0.282169	2.9E-06	1.46715	5.3E-06	1.88667	1.4E-05
	16/03/2010	14:42:00	0.282166	2.5E-06	1.46715	5.7E-06	1.88666	1.5E-05
	16/03/2010	15:51:00	0.282169	5.2E-06	1.46715	7.2E-06	1.88664	1.9E-05
	16/03/2010	17:16:00	0.282159	2.9E-06	1.46713	5.9E-06	1.88668	1.2E-05
	20/04/2010	09:23:00	0.282168	1.8E-06	1.46715	3.6E-06	1.88673	8.2E-06
	20/04/2010	11:29:00	0.282168	2.6E-06	1.46713	7.9E-06	1.88666	1.3E-05
	20/04/2010	13:07:00	0.282155	2.4E-06	1.46710	4.9E-06	1.88669	1.0E-05
	20/04/2010	14:30:00	0.282168	2.2E-06	1.46712	5.6E-06	1.88664	1.6E-05
	20/04/2010	16:35:00	0.282174	2.7E-06	1.46709	5.7E-06	1.88660	9.5E-06
	20/04/2010	16:44:00	0.282168	3.1E-06	1.46711	8.6E-06	1.88659	1.9E-05
	20/04/2010	18:22:00	0.282168	2.9E-06	1.46709	4.8E-06	1.88657	1.2E-05
	20/04/2010	18:28:00	0.282168	3.3E-06	1.46709	6.0E-06	1.88660	1.5E-05
	21/04/2010	08:36:00	0.282160	2.6E-06	1.46716	4.7E-06	1.88668	1.2E-05
	21/04/2010	10:28:00	0.282162	3.1E-06	1.46714	6.2E-06	1.88655	1.6E-05
	21/04/2010	10:33:00	0.282161	3.2E-06	1.46715	6.0E-06	1.88660	1.4E-05
	21/04/2010	12:10:00	0.282165	1.9E-06	1.46714	5.1E-06	1.88658	1.2E-05
	21/04/2010	13:53:00	0.282164	2.7E-06	1.46715	5.9E-06	1.88653	1.1E-05
	21/04/2010	14:04:00	0.282164	3.1E-06	1.46714	7.6E-06	1.88648	1.7E-05
	25/05/2010	09:40:00	0.282169	2.7E-06	1.46715	6.0E-06	1.88666	1.7E-05
	25/05/2010	09:48:00	0.282163	3.3E-06	1.46715	4.3E-06	1.88667	1.2E-05
	25/05/2010	11:11:00	0.282165	2.9E-06	1.46712	4.8E-06	1.88664	1.4E-05
	25/05/2010	12:16:00	0.282158	3.3E-06	1.46710	5.8E-06	1.88668	1.2E-05
	25/05/2010	15:34:00	0.282170	2.6E-06	1.46709	4.4E-06	1.88655	1.1E-05
	26/05/2010	09:35:00	0.282152	4.9E-06	1.46709	9.7E-06	1.88663	2.0E-05
	26/05/2010	10:53:00	0.282147	6.1E-06	1.46709	7.3E-06	1.88665	1.4E-05
	26/05/2010	11:50:00	0.282156	3.1E-06	1.46708	4.6E-06	1.88653	1.4E-05
	26/05/2010	12:57:00	0.282150	2.5E-06	1.46707	5.7E-06	1.88656	1.2E-05
	26/05/2010	14:09:00	0.282152	2.1E-06	1.46707	6.5E-06	1.88655	1.1E-05
	26/05/2010	15:19:00	0.282162	3.7E-06	1.46706	8.1E-06	1.88658	1.9E-05

Tableau B-1 (suite)	· Données isotonia	ues Lu-Hf des tonalites	trondhiemites et	granodiorites ((TTG)
ruorouu D r ()	ource,	. Donneed hootopiq		a choman joinneos et	L'uno aron 100 1	
Tableau B-2 : Données isotopiques Lu-Hf des zircons individuels analysés par solution MC-ICP-MS

Localisation	Craton/Complex/Zone	Echantillon	Age mesuré (Ma)	2 σ (Ma)	Hf (ng)	Lu (ng)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf _{in}	ε _{Hf}	٤ _{Hfin}	2σ
Antarctique	Mount Sones	7825007-1	3557	14.6	581.51	1.34	0.280393	6.04E-06	0.0003	1.6E-05	0.28037	-84.6	-3.8	0.2
Antarctique	Mount Sones	7825007-2	3544	14.5	407.85	0.62	0.280329	4.82E-06	0.0002	1.1E-05	0.280315	-86.8	-6.1	0.2
Antarctique	Mount Sones	7825007-3	3019	10.8	236.18	0.30	0.280739	8.88E-06	0.0002	9.1E-06	0.280728	-72.4	-3.9	0.3
Antarctique	Mount Sones	7825007-4	2806	9.7	77.09	0.24	0.280647	6.96E-06	0.0004	2.2E-05	0.280623	-75.6	-12.6	0.2
Antarctique	Mount Sones	7825007-5	3326	12.8	376.97	0.50	0.280341	2.64E-06	0.0002	9.4E-06	0.280329	-86.4	-10.8	0.1
Antarctique	Mount Sones	7825007-6	2663	9	665.23	0.34	0.280415	3.86E-06	0.0001	3.7E-06	0.280411	-83.8	-23.5	0.1
Antarctique	Dalwitz Nunatak	78285005-3	2509	8.3	64.11	0.26	0.280871	1.60E-05	0.0006	2.9E-05	0.280843	-67.7	-11.8	0.6
Antarctique	Dalwitz Nunatak	78285005-4	2494	8.3	34.86	0.14	0.280821	2.28E-05	0.0006	2.8E-05	0.280794	-69.5	-13.9	0.8
Antarctique	Dalwitz Nunatak	78285005-5	2758	57.8	10.04	0.02	0.281055	6.46E-05	0.0003	1.7E-05	0.281036	-61.2	1	2.3
Antarctique	Mount Sones	78285007-1	3492	14.1	218.64	0.79	0.280312	8.56E-06	0.0005	2.5E-05	0.280278	-87.4	-8.7	0.3
Antarctique	Mount Sones	78285007-10	3805	16.9	523.97	0.68	0.28040	4.62E-06	0.0002	9.2E-06	0.280386	-84.4	2.7	0.2
Antarctique	Mount Sones	78285007-11	3063	11.1	260.98	0.65	0.280323	5.42E-06	0.0004	1.8E-05	0.280302	-87	-18	0.2
Antarctique	Mount Sones	78285007-12	2950	10.4	321.50	0.31	0.280693	4.82E-06	0.0001	6.8E-06	0.280685	-74	-7	0.2
Antarctique	Mount Sones	78285007-13	3280	12.5	105.69	0.26	0.280546	1.20E-05	0.0003	1.7E-05	0.280524	-79.2	-4.9	0.4
Antarctique	Mount Sones	78285007-7	3315	12.8	464.88	0.51	0.280506	5.08E-06	0.0002	7.8E-06	0.280496	-80.6	-5.1	0.2
Antarctique	Mount Sones	78285007-8	3202	12	1445.29	2.88	0.280338	3.68E-06	0.0003	1.4E-05	0.28032	-86.5	-14.1	0.1
Antarctique	Mount Sones	78285007-9	3094	11.3	1104.92	0.57	0.280606	4.92E-06	0.0001	3.7E-06	0.280601	-77.1	-6.6	0.2
Antarctique	Gage Ridge	78285013-1	3143	8.2	1327.10	1.64	0.280267	4.78E-06	0.0002	8.8E-06	0.280257	-89	-17.7	0.2
Antarctique	Gage Ridge	78285013-1	2479	11.6	42.22	0.19	0.280598	1.60E-05	0.0007	3.3E-05	0.280567	-77.3	-22.3	0.6
Antarctique	Gage Ridge	78285013-2	2689	9.1	430.65	0.76	0.280556	5.58E-06	0.0002	1.2E-05	0.280543	-78.8	-18.2	0.2
Antarctique	Gage Ridge	78285013-3	2522	8.4	256.03	0.40	0.280685	5.98E-06	0.0002	1.1E-05	0.280674	-74.3	-17.5	0.2
Antarctique	Gage Ridge	78285013-4	3095	12.2	517.55	0.84	0.28048	4.60E-06	0.0002	1.1E-05	0.280466	-81.5	-11.4	0.2
Antarctique	Gage Ridge	78285013-4	3238	11.3	147.97	0.39	0.280534	1.21E-05	0.0004	1.9E-05	0.280511	-79.6	-6.4	0.4
Antarctique	Gage Ridge	78285013-5	2519	8.4	411.86	0.62	0.280681	4.52E-06	0.0002	1.1E-05	0.280671	-74.4	-17.6	0.2
Australie	Shaw	142828-4	3066	11.1	72.82	0.72	0.280642	1.26E-05	0.0014	7.0E-05	0.280559	-75.8	-8.8	0.4
Brésil	Sete Voltas	SV11-4	3322	12.8	117.00	0.20	0.280589	7.48E-06	0.0002	1.2E-05	0.280573	-77.7	-2.2	0.3
Brésil	Sete Voltas	SV11-7	3408	13.4	158.22	0.20	0.280555	5.72E-06	0.0002	9.1E-06	0.280543	-78.9	-1.2	0.2
Brésil	Sete Voltas	SV2-1	3335	12.9	39.23	0.12	0.280541	1.59E-05	0.0004	2.1E-05	0.280513	-79.4	-4	0.6
Brésil	Sete Voltas	SV2-2	3290	12.6	46.03	0.10	0.280478	1.24E-05	0.0005	2.3E-05	0.280448	-81.6	-7.4	0.4
Brésil	Sete Voltas	SV2-3	3354	22.4	71.33	0.23	0.280513	1.61E-05	0.0003	1.5E-05	0.280493	-80.3	-4.3	0.6
Brésil	Sete Voltas	SV2-4	3149	11.6	37.45	0.08	0.28052	2.90E-05	0.0003	1.5E-05	0.280501	-80.1	-8.9	1
Brésil	Sete Voltas	SV2-5	3308	12.7	26.06	0.11	0.280698	4.88E-05	0.0006	2.9E-05	0.280661	-73.8	0.6	1.7
Brésil	Sete Voltas	SV9-4	3300	12.6	141.54	0.37	0.280591	1.62E-05	0.0004	1.8E-05	0.280567	-77.6	-2.9	0.6
Brésil	Sete Voltas	SV9-5	2995	10.7	149.37	0.45	0.280579	1.23E-05	0.0004	2.2E-05	0.280555	-78	-10.6	0.4
Canada	Acasta	1-12 BIG	3658	15.5	247.18	0.84	0.280229	5.14E-06	0.0005	2.4E-05	0.280195	-90.4	-7.7	0.2
Canada	Acasta	2-14 BIG	3/38	16.3	284.85	1.11	0.280167	8.66E-06	0.0006	2.8E-05	0.280127	-92.6	-8.2	0.3
Canada	Acasta	2-15<75	3773	16.6	79.26	0.33	0.280235	7.96E-06	0.0006	2.9E-05	0.280192	-90.2	-5	0.3
Canada	Acasta	2-17 BIG	3439	13.7	179.69	0.56	0.280407	7.84E-06	0.0004	2.2E-05	0.280377	-84.1	-6.4	0.3
Canada	Acasta	2-3 5</th <th>3888</th> <th>17.8</th> <th>97.34</th> <th>0.65</th> <th>0.280252</th> <th>1.13E-05</th> <th>0.0009</th> <th>4.0E-05</th> <th>0.280183</th> <th>-89.0</th> <th>-2.6</th> <th>0.4</th>	3888	17.8	97.34	0.65	0.280252	1.13E-05	0.0009	4.0E-05	0.280183	-89.0	-2.6	0.4
Canada	Acasta	3-32/3	3802	17.5	39.05	0.11	0.28025	1.80E-05	0.0004	1.9E-05	0.280222	-89./	-1.8	0.0
Canada	Acasta	4-10 5</th <th>3229</th> <th>12.2</th> <th>47.40</th> <th>0.22</th> <th>0.280329</th> <th>1.95E-05</th> <th>0.0007</th> <th>3.3E-05</th> <th>0.280287</th> <th>-80.9</th> <th>-14.0</th> <th>0.7</th>	3229	12.2	47.40	0.22	0.280329	1.95E-05	0.0007	3.3E-05	0.280287	-80.9	-14.0	0.7
Canada	Acasta	4-4 5</th <th>34/3</th> <th>13.9</th> <th>39.70</th> <th>0.12</th> <th>0.280310</th> <th>1.80E-05</th> <th>0.0004</th> <th>2.1E-05</th> <th>0.280288</th> <th>-8/.3</th> <th>-8.8</th> <th>0.0</th>	34/3	13.9	39.70	0.12	0.280310	1.80E-05	0.0004	2.1E-05	0.280288	-8/.3	-8.8	0.0
Canada	Acasta	Acasta 1-1	3932	10.2	402.41	1.69	0.280247	1.60E-06	0.0007	5.3E-03	0.260190	-09.0	-1.1	0.2
Canada	Acasta	AG09001-1	3208	12.4	45.22	0.54	0.280374	1.00E-03	0.0011	3./E-03 2.0E-05	0.280303	-63.5	-15.1	0.0
Canada	Acasta	AG09-008-1	3385	14.0	151.09	0.77	0.280392	0.02E-00	0.0000	2.6E 05	0.20033	-04.0 02.0	-3.9	0.5
Canada	Acasta	AG09-008-2	3706	14.1	150.46	0.07	0.280410	7.44E.06	0.0007	4 1E 05	0.280308	-05.0	-3.4	0.4
Canada	Acasta	AC00.008.5	3643	15.9	310.82	1.76	0.280314	7.12E.06	0.0008	4.1E-05	0.200433	-80.5 84.5	2.7	0.3
Canada	Acasta	AG09-008-5	3362	69.2	5.62	0.07	0.280590	1.00E.04	0.0018	9.0E-05	0.280555	76.6	-2.9	3.5
Canada	Acasta	AC00.008.7	2825	58.6	63.66	0.07	0.28002	2.26E.05	0.0016	2.2E-05	0.28030	-70.0	25.1	0.8
Canada	Acasta	AG09-008-7	3786	59.6	52 12	0.25	0.28029	2.20L-05	0.0000	4 2E 05	0.20020	_80	-43.1	0.0
Canada	Acasta	AC00008at 7	3691	15.8	149.00	0.91	0.280215	1.00E_05	0.0008	4.5E-05	0.200217	-00 0	85	0.7
Canada	Acasta	AG-09-009 1	3560	23.9	78.68	0.39	0.280215	1.00L-05	0.0007	3.5E-05	0.20013	-20.9	-0.5	0.4
Canada	Acasta	AG-09-009-1	3524	143 7	62.85	0.12	0.280395	1.20E-05	0.0003	1 4E-05	0.2803376	-84 5	-3.1	0.7
Canada	Acasta	AG09009-5	3481	60.4	23.98	0.10	0 280479	2.00E-05	0.0006	2.9E-05	0.280441	-81.5	-31	07
			2.01		-2.70	0.10	5.200117	VJ	0.0000			· · · · ·	~	···/

Tableau B-2 (suit	e) : Données isotopiques Lu Craton/Complex/Zone	1-Hf des zircons Echantillon	individuels analysés j Age mesuré (Ma)	$\frac{1}{2} \sigma (Ma)$	MC-ICP-MS	5 Lu (ng)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf.	Ene	£116-	2 σ
Canada	Acasta	AG09-015-1	3442	13.7	164.24	0.40	0 280486	8 76E-06	0.0003	1 7E-05	0.280463	-81.3	-3.3	03
Canada	Acasta	AG09016-4	3750	16.4	8 48	0.06	0.28001	1.00E-04	0.0009	4.7E-05	0.27994	-98	-14.4	3.5
Canada	Acasta	AG09-016-4	3235	12.2	71.24	0.17	0.280386	2.42E-05	0.0003	1.7E-05	0.280365	-84.8	-11.7	0.9
Canada	Acasta	AG09-016-5	3564	14.7	205.45	0.36	0.280298	1.29E-05	0.0002	1.2E-05	0.28028	-88	-6.9	0.5
Canada	Acasta	AG09016-6	3648	18	45.34	0.12	0.280203	1.60E-05	0.0004	1.9E-05	0.280177	-91.3	-8.6	0.6
Canada	Acasta	AG09-016-6	3331	12.9	135.96	0.30	0.280279	1.43E-05	0.0003	1.6E-05	0.280259	-88.6	-13.2	0.5
Canada	Acasta	AG09017-1	3620	15.2	178.32	1.76	0.280228	1.04E-05	0.0014	7.0E-05	0.28013	-90.4	-10.9	0.4
Canada	Acasta	AG09032-2	3330	12.8	20.29	0.09	0.280405	2.00E-05	0.0006	3.1E-05	0.280365	-84.2	-9.4	0.7
Canada	Inukjuak	INO5003-20	3842	62.5	12.14	0.02	0.280629	6.94E-05	0.0003	1.3E-05	0.280609	-76.3	11.5	2.5
Canada	Inukjuak	INO5022-26	3617	15.1	68.82	0.14	0.280348	1.77E-05	0.0003	1.4E-05	0.280328	-86.2	-3.9	0.6
Canada	Inukjuak	INO5028-7	3558	14.6	240.18	0.35	0.280399	9.68E-06	0.0002	1.0E-05	0.280384	-84.4	-3.3	0.3
Canada	Inukjuak	NUV5001-19	3567	60.8	11.83	0.07	0.279916	8.88E-05	0.0009	4.3E-05	0.279857	-101.5	-21.9	3.1
Canada	Inukjuak	NUV5001-3	3526	14.3	293.50	0.21	0.280434	6.32E-06	0.0001	5.1E-06	0.280427	-83.2	-2.6	0.2
Chine	Guzuizi	08GZZ01-2	2455	8.1	230.74	0.33	0.281323	8.94E-06	0.0002	1.0E-05	0.281314	-51.7	3.7	0.3
Chine	Xiwanshan	08XWS01-2	2430	8	160.07	0.29	0.281358	8.00E-06	0.0003	1.3E-05	0.281346	-50.5	4.3	0.3
Chine	Dongshan	09AS03-1	2936	10.4	228.97	0.69	0.280682	4.64E-06	0.0004	2.1E-05	0.280657	-74.4	-8.3	0.2
Chine	Dongshan	09AS03-2	3197	11.9	126.63	0.33	0.280672	8.96E-06	0.0004	1.9E-05	0.280649	-74.7	-2.5	0.3
Chine	Dongshan	09AS03-3	3249	12.3	198.97	0.48	0.280642	8.44E-06	0.0003	1.7E-05	0.28062	-75.8	-2.3	0.3
Chine	Dongshan	09AS03-4	3265	12.4	164.90	0.40	0.280642	8.78E-06	0.0003	1.7E-05	0.28062	-75.8	-1.9	0.3
Chine	Dongshan	09AS03-5	2734	9.3	37.88	0.10	0.280684	1.99E-05	0.0004	1.8E-05	0.280665	-74.3	-12.8	0.7
Finlande	Naavala	H412-1	2790	9.6	122.04	0.22	0.281121	1.14E-05	0.0003	1.3E-05	0.281107	-58.9	4.2	0.4
Finlande	Naavala	H412-2	2756	9.4	116.31	0.19	0.281088	8.46E-06	0.0002	1.2E-05	0.281075	-60	2.3	0.3
Finlande	Naavala	H412-3	2888	10.1	90.33	0.15	0.281113	1.40E-05	0.0002	1.2E-05	0.28110	-59.1	6.3	0.5
Finlande	Naavala	H412-4	2800	37.6	10/.01	0.22	0.281106	1.67E-05	0.0003	1.4E-05	0.28109	-59.4	3.8	0.6
Finlande	Naavala	H412-5	2///	52.7	05.23	0.15	0.281064	1.49E-05	0.0003	1.6E-05	0.281046	-60.9	1.8	0.5
Finlande	Naavala	H4/1-1 H471 2	2/88	48.8	29.80	0.00	0.281009	2.24E-05	0.0003	1.4E-05	0.280994	-02.8	0.2	0.8
Finlande	Indavala	II52 1	3320	12.8	47.12	0.20	0.280093	1.78E-05	0.0010	4.6E-05	0.200032	-/4	20	0.0
Finlande	Kivijarvi	П55-1 Ц53-2	2697	87	47.12	0.21	0.281055	1.37E-03	0.0008	3.2E-03	0.200999	-01.9	2.9	0.0
Finlande	Kivijärvi	H53 A	3127	11.5	79.81	0.19	0.280907	1.62E-05	0.0004	1.9E-05	0.280807	-66	-0.5	0.6
Finlande	Kivijärvi	H53-5	2361	15.5	91.25	0.25	0.280992	1.52E-05	0.0004	1.9E-05	0.280974	-63.4	-10.5	0.5
Finlande	Karélie	H53-5	2794	77	35.50	0.12	0.280939	2.00E-05	0.0005	2.4E-05	0.280913	-65.3	-2.6	0.5
Finlande	Kivijärvi	H54-1	2841	99	332.57	0.79	0.281015	5.82E-06	0.0003	1.7E-05	0.280996	-62.6	1.5	0.2
Finlande	Karélie	H54-2	2877	10	337.05	0.77	0.280999	4.46E-06	0.0003	1.6E-05	0.280981	-63.1	1.8	0.2
Finlande	Kivijärvi	H54-3	2898	10.2	155.89	0.32	0.281081	8.10E-06	0.0003	1.4E-05	0.281065	-60.3	5.3	0.3
Finlande	Kivijärvi	H54-4	2819	9.7	64.99	0.20	0.281059	1.03E-05	0.0004	2.2E-05	0.281035	-61	2.3	0.4
Finlande	Kivijärvi	H54-5	2843	9.9	56.43	0.06	0.281109	1.17E-05	0.0002	7.6E-06	0.281101	-59.3	5.2	0.4
Finlande	Kivijärvi	H70-1	2718	88.5	111.22	0.21	0.281092	1.76E-05	0.0003	1.4E-05	0.281078	-59.9	1.5	0.6
Finlande	Karélie	H70-1	2629	13.4	27.36	0.12	0.281099	1.90E-05	0.0006	3.2E-05	0.281066	-59.6	-1	0.7
Finlande	Kivijärvi	H70-2	2620	87.8	28.03	0.07	0.281126	3.62E-05	0.0004	1.8E-05	0.281108	-58.7	0.3	1.3
Finlande	Kivijärvi	H70-3	2700	91.8	13.32	0.01	0.281108	7.62E-05	0.0001	4.9E-06	0.281103	-59.3	1.9	2.7
Groenland	Isua (Amitsoq)	030013-1	3743	16.3	334.40	0.84	0.280415	6.46E-06	0.00036	1.8E-05	0.28039	-83.8	1.3	0.2
Groenland	Isua (Amitsoq)	030013-2	3731	16.2	132.10	0.40	0.280405	7.40E-06	0.0004	2.1E-05	0.280374	-84.2	0.5	0.3
Groenland	Isua (Amitsoq)	030013-3	3749	16.4	85.19	0.21	0.280412	1.08E-05	0.0003	1.7E-05	0.280388	-83.9	1.4	0.4
Groenland	Isua (Amitsoq)	030013-4	3751	15.7	75.09	0.17	0.280413	1.06E-05	0.0003	1.6E-05	0.28039	-83.9	1.5	0.4
Groenland	Isua (Amitsoq)	030013-4	3676	16.4	102.11	0.38	0.280392	1.40E-05	0.0005	2.6E-05	0.280354	-84.6	-1.5	0.5
Groenland	Isua (Amitsoq)	030015-1	3670	15.6	201.44	0.35	0.28043	1.55E-05	0.0002	1.2E-05	0.280412	-83.3	0.4	0.5
Groenland	Isua (Amitsoq)	030015-2	3771	16.6	168.56	0.29	0.280422	1.54E-05	0.0002	1.2E-05	0.280404	-85.6	2.5	0.5
Groenland	Isua (Amitsoq)	030015-4	3/13	24.5	80.79	0.15	0.280492	4.02E-05	0.0002	1.2E-05	0.280475	-81.1	3.6	1.0
Groenland	Isua (Amitsoq)	060010-1	3800	16.9	11/.30	0.40	0.280368	8.34E-06	0.0005	2.4E-05	0.280333	-85.5	0.7	0.5
Groenland	Isua (Amitsoq)	060010-2	3/04	15.9	99.00 110 74	0.37	0.200399	1.2/E-03	0.0005	2./E-03	0.28030	-04.4	0.7	0.4
Groenland	Isua (Amitsoq)	060010-2	3092	10.5	72.46	0.25	0.280333	1.00E-05	0.0005	1.3E-03 2.7E-05	0.200312	-00./	-2.1	0.4
Groenland	Isua (Amitsoq)	060010-3	3764	16.5	72.40 57.31	0.20	0.20042/	1.63E-05	0.0003	2.7E-05	0.200300	-03.4 84.4	4.5	0.0
Groenland	Isua (Amitsoq)	060010-4	3842	17.3	188.60	0.81	0.280398	9.24E-06	0.0006	3.1E-05	0.280338	-84.9	1.8	0.3

Tableau B-2 (suite) : Données isotopiques Lu-Hf des zircons individuels analysés par solution MC-ICP-MS

Localisation	Craton/Complex/Zone	Echantillon	Age mesuré (Ma)	2 σ (Ma)	Hf (ng)	Lu (ng)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf _{in}	٤ _{Hf}	٤ _{Hfin}	2 σ
Groenland	Akilia	GRO012-4	3564	14.7	224.81	0.36	0.280426	5.36E-06	0.0002	1.1E-05	0.28041	-83.4	-2.2	0.2
Groenland	Akilia	GRO071-32	3578	33.2	20.04	0.04	0.280366	4.62E-06	0.0003	1.3E-05	0.280347	-85.6	-4.2	0.2
Groenland	Akilia	GRO071-39	3783	17.6	24.07	0.04	0.280354	3.28E-05	0.0002	1.2E-05	0.280337	-86	0.4	1.2
Groenland	Innersuartuut	GR0082-20	3395	13.3	74.59	0.40	0.280503	2.64E-05	0.0008	3.9E-05	0.280452	-80.7	-4.8	0.9
Groenland	Innersuartuut	GR0082-8	3531	14.4	270.68	0.88	0.280457	6.16E-06	0.0005	2.3E-05	0.280426	-82.3	-2.5	0.2
Groenland	Innersuartuut	GR0082-9	3607	15.1	642.55	1.40	0.280433	5.00E-06	0.0003	1.5E-05	0.280412	-83.2	-1.2	0.2
Groenland	Innersuartuut	GR0083-12	3587	14.9	161.73	0.38	0.280444	9.82E-06	0.0003	1.7E-05	0.280421	-82.8	-1.3	0.3
Groenland	Innersuartut	GR0083-33	3461	13.8	131.13	0.22	0.280665	9.22E-06	0.0002	1.2E-05	0.280649	-75	3.8	0.3
Groenland	Qilanngaarsuit	GRO4057-11	2820	9.7	125.37	0.13	0.280648	9.42E-06	0.0001	7.3E-06	0.28064	-75.6	-11.7	0.3
Groenland	Qilanngaarsuit	GRO4057-13	2757	9.4	140.70	0.16	0.280649	8.30E-06	0.0002	8.2E-06	0.28064	-75.5	-13.2	0.3
Groenland	Qilanngaarsuit	GRO4057-9	3256	40.6	69.60	0.04	0.280377	7.70E-06	0.0001	4.1E-06	0.280372	-85.2	-11	0.3
Groenland	Innersuartuut	GRO4058-3	3469	13.9	316.08	0.18	0.280525	4.44E-06	0.0001	4.1E-06	0.280519	-79.9	-0.6	0.2
Groenland	Qilanngaarsuit	GRO4058-4	2888	10.1	382.46	0.14	0.280653	4.66E-06	0.0001	2.7E-06	0.28065	-75.4	-9.7	0.2
Groenland	Qilanngaarsuit	GRO4058-7	3461	13.8	349.93	0.28	0.280495	5.10E-06	0.0001	5.7E-06	0.280487	-81	-2	0.2
Groenland	Qilanngaarsuit	GRO4066-10	3618	15.2	129.72	0.02	0.280421	7.24E-06	0.0000	8.4E-07	0.28042	-83.6	-0.6	0.3
Groenland	Qilanngaarsuit	GRO4066-14	2700	9.2	309.98	0.05	0.280578	5.40E-06	0.0000	1.1E-06	0.280577	-78	-16.8	0.2
Inde	Closepet	CG24-1	3008	18.9	194.18	0.49	0.280744	9.46E-06	0.0004	1.8E-05	0.280723	-72.2	-4.3	0.3
Inde	Closepet	CG24-1	2897	14.6	29.92	0.21	0.280849	1.70E-05	0.0010	5.1E-05	0.280792	-68.5	-4.5	0.6
Inde	Closepet	CG24-2	3089	18.9	146.51	0.44	0.280769	9.56E-06	0.0004	2.1E-05	0.280744	-71.3	-1.7	0.3
Inde	Closepet	CG24-3	3052	153.6	35.80	0.15	0.280756	4.32E-05	0.0006	3.1E-05	0.28072	-71.8	-3.4	1.5
Inde	Closepet	CG24-4	2990	145	14.44	0.07	0.281082	6.84E-05	0.0007	3.6E-05	0.281041	-60.2	6.6	2.4
Inde	Closepet	CG24-5	3026	147	12.20	0.05	0.280753	7.72E-05	0.0006	2.8E-05	0.280721	-71.8	-4	2.7
Inde	Kolar	PG24-5	2501	82.8	6.33	0.04	0.281064	7.70E-05	0.0008	4.1E-05	0.281025	-60.8	-5.5	2.7
Inde	Kolar	PG25-1	2635	58.6	392.42	1.03	0.280963	8.24E-06	0.0004	1.9E-05	0.280944	-64.4	-5.2	0.3
Inde	Kolar	PG25-1	2652	8.9	15.76	0.21	0.281011	4.98E-05	0.0019	9.4E-05	0.280916	-62.7	-5.8	1.8
Inde	Kolar	PG25-2	2618	18.8	182.72	0.45	0.280943	1.04E-05	0.0003	1.7E-05	0.280925	-65.1	-6.3	0.4
Inde	Kolar	PG25-4	2626	8.8	96.48	0.43	0.281002	9.52E-06	0.0006	3.1E-05	0.280971	-63	-4.5	0.3
Inde	Kolar	PG25-5	2556	10.6	247.81	0.46	0.280934	9.80E-06	0.0003	1.3E-05	0.280921	-65.5	-7.9	0.3
Inde	Kolar	PG25-5	2970	38.6	74.15	0.25	0.280912	7.58E-06	0.0005	2.4E-05	0.280884	-66.2	0.5	0.3
Inde	Kolar	PG9-1	2492	8.2	2662.75	5.89	0.281194	3.36E-06	0.0003	1.6E-05	0.281179	-56.3	-0.2	0.1
Inde	Kolar	PG9-2	2613	8.8	521.64	1.56	0.281273	1.02E-05	0.0004	2.1E-05	0.281252	-53.5	5.2	0.4
Inde	Kolar	PG9-3	2766	8.6	348.65	1.09	0.281251	1.26E-05	0.0004	2.2E-05	0.281227	-54.3	7.9	0.4
Inde	Kolar	PG9-3	2584	9.5	170.04	0.36	0.281135	8.38E-06	0.0003	1.5E-05	0.28112	-58.4	-0.2	0.3
Inde	Kolar	PG9-4	2536	8.4	116.09	0.44	0.281238	1.58E-05	0.0005	2.7E-05	0.281212	-54.7	2	0.6
Inde	Kolar	PG9-5	2660	9	370.64	0.79	0.281158	1.04E-05	0.0003	1.5E-05	0.281143	-57.5	2.4	0.4
Russie	Karelia	1161-1-2	3099	113.5	10.22	0.06	0.28067	7.78E-05	0.0008	4.0E-05	0.280622	-74.8	-5.7	2.8
Russie	Karelia	18B92-2	2660	18.9	29.05	0.17	0.281002	1.80E-05	0.0008	4.0E-05	0.280961	-63	-4	0.6
Russie	Karelia	42/3-04-1	3114	40	35.33	0.10	0.280777	2.66E-05	0.0004	2.0E-05	0.280752	-71	-0.7	0.9
Russie	Karelia	42-3/04-1	3102	40	28.51	0.12	0.280725	2.80E-05	0.0006	3.0E-05	0.280689	-72.9	-3.3	1
Russie	Karelia	42-3/04-2	3144	11.6	19.45	0.17	0.280856	4.28E-05	0.0012	6.2E-05	0.28078	-68.2	1	1.5
Russie	Karelia	742-2	2626	8.8	78.60	0.23	0.281123	1.40E-05	0.0004	2.0E-05	0.281103	-58.8	0.2	0.5
Sibérie	Onot terrane	4003-1	3258	12.3	132.26	0.30	0.28068	9.38E-06	0.0003	1.6E-05	0.28066	-74.4	-0.6	0.3
Sibérie	Onot terrane	40-03-1	3160	11.7	539.26	0.78	0.280683	8.90E-06	0.0002	1.0E-05	0.28067	-74.3	-2.6	0.3
Sibérie	Onot terrane	40-03-2	3583	14.8	261.98	0.37	0.280698	8.18E-06	0.0002	1.0E-05	0.280684	-73.8	8	0.3
Sibérie	Onot terrane	40-03-3	3269	12.4	288.02	0.36	0.28069	1.17E-05	0.0002	8.8E-06	0.280679	-74.1	0.3	0.4
Sibérie	Onot terrane	40-03-4	3135	11.5	110.57	0.23	0.280685	1.51E-05	0.0003	1.5E-05	0.280667	-74.3	-3.3	0.5
Sibérie	Onot terrane	4003-5	3154	11.7	63.59	0.23	0.280678	1.32E-05	0.0005	2.6E-05	0.280647	-74.5	-3.6	0.5
Sibérie	Onot terrane	40-03-5	3303	22.1	85.30	0.15	0.28066	1.17E-05	0.0003	1.3E-05	0.280643	-75.2	-0.2	0.4
Sibérie	Onot terrane	5203-2	3250	31.1	38.79	0.13	0.280678	1.60E-05	0.0005	2.4E-05	0.280648	-74.5	-1.3	0.6
Afrique du Sud	Ancient Gneiss complex	AGC-R-1	3268	11	136.53	0.34	0.280595	1.48E-05	0.0004	1.8E-05	0.280572	-77.4	-3.5	0.5
Afrique du Sud	Ancient Gneiss complex	AGC-R-1	3042	12.4	44.16	0.23	0.28061	1.68E-05	0.0007	3.7E-05	0.280567	-76.9	-9.1	0.6
Afrique du Sud	Ancient Gneiss complex	AGC-R-2	3462	13.9	763.22	0.96	0.280581	3.56E-06	0.0002	8.9E-06	0.280569	-77.9	1	0.1
Afrique du Sud	Ancient Gneiss complex	AGC-R-3	2748	9.4	329.98	1.77	0.280962	5.38E-06	0.0008	3.8E-05	0.280921	-64.5	-3.4	0.2
Afrique du Sud	Ancient Gneiss complex	AGC-R-4	3486	14	85.38	0.13	0.280671	2.30E-05	0.0002	1.1E-05	0.280656	-74.7	4.7	0.8
Afrique du Sud	Kaap Valley	KV2.1-08-3	3060	111	5.76	0.02	0.280811	8.64E-05	0.0005	2.3E-05	0.280784	-69.8	-0.9	3.1

Tableau B-2 (suite	e) : Données isotopiques Lu	u-Hf des zircons	individuels analysés	par solution	MC-ICP-MS	5									
Localisation	Craton/Complex/Zone	Echantillon	Age mesuré (Ma)	2 σ (Ma)	Hf (ng)	Lu (ng)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf _{in}	٤ _{Hf}	٤ _{Hfin}	2σ	
Afrique du Sud	Kaap Valley	KV3.1-08-3	3130	115	21.55	0.07	0.280769	3.78E-05	0.0005	2.5E-05	0.280739	-71.3	-0.8	1.3	
Afrique du Sud	Nelshoogte	NLS2.2-08-3	3127	87.7	38.35	0.14	0.280859	1.60E-05	0.0005	2.5E-05	0.280828	-68.1	2.2	0.6	
Afrique du Sud	Stolzburg	ST-J23-1	3387	22.6	72.25	0.15	0.280633	9.56E-06	0.0003	1.5E-05	0.280613	-76.1	0.8	0.3	
Afrique du Sud	Stolzburg	ST-J23-2	3276	12.5	155.59	0.58	0.280621	8.68E-06	0.0005	2.6E-05	0.280588	-76.5	-2.8	0.3	
Afrique du Sud	Stolzburg	ST-J23-3	3359	27.1	21.34	0.16	0.28058	1.24E-05	0.0010	5.2E-05	0.280512	-78	-3.5	0.4	
Afrique du Sud	Stolzburg	STJ-6-2	3373	131.7	5.59	0.01	0.28063	1.23E-04	0.0003	1.7E-05	0.28061	-76.3	0.2	4.3	
Afrique du Sud	Steynsdorp	Stp-1	3402	13.4	190.28	0.78	0.280581	9.24E-06	0.0006	2.9E-05	0.280543	-77.9	-1.4	0.3	
Afrique du Sud	Steynsdorp	Stp-2	3229	12.1	220.61	1.37	0.280596	7.28E-06	0.0009	4.4E-05	0.280541	-77.4	-5.6	0.3	
Afrique du Sud	Steynsdorp	Stp-3	3129	11.5	412.77	1.31	0.28060	4.02E-06	0.0005	2.3E-05	0.280573	-77.3	-6.8	0.1	
Afrique du Sud	Steynsdorp	Stp-4	3469	13.9	121.29	0.74	0.280585	9.06E-06	0.0009	4.3E-05	0.280527	-//.8	-0.3	0.3	
Afrique du Sud	Steynsdorp	Stp-5	2814	9.7	160.96	0.78	0.280602	8.82E-06	0.0007	3.5E-05	0.280565	-77.2	-14.5	0.3	
Airique du Sud	Steynsdorp	Stp-9	3393	132.8	14.35	0.07	0.280578	4.00E-05	0.0007	3.5E-05	0.280532	-/8.1	-2	1.4	
Swaziland	Ancient Gneiss complex	AGC-J-I	3142	11.6	187.10	0.58	0.280547	9.52E-06	0.0004	2.2E-05	0.28052	-/9.1	-8.4	0.3	
Swaziland	Ancient Gneiss complex	AGC-J-2	3027	10.9	188.43	0.65	0.280673	0.04E-00	0.0005	2.5E-05	0.280645	-/4./	-0.0	0.2	
Swaziland	Ancient Gneiss complex	AGC-J-3	2959	10.5	155.25	0.08	0.280628	1.01E-05	0.0006	3.2E-05	0.280592	-/0.3	-10.1	0.4	
Swaziland	Ancient Gneiss complex	AGC-J-4	3211	12	254.40	0.95	0.280600	6.84E-06	0.0005	2./E-05	0.280567	-//.3	-5.1	0.2	
Swaziland	Ancient Gneiss complex	AGC-J-5	3133	11./	/0.40	0.39	0.280587	1.39E-05	0.0008	4.0E-05	0.280539	-//./	-/.4	0.5	Catal and Maineir 2006
Groenland	Innersuartuut	GR04058-08	3043	17	43.33	0.004	0.280494	2.28E-05	0.00001	/.1E-0/	0.280493	-81	2.0	0.8	Cates and Mojzsis, 2006
Groenland	Innersuartuut	GR04050-26	3090	11	38.33	0.040	0.280430	1.14E-05	0.0001	4.9E-00	0.280423	-83.3	1.2	0.4	Cates and Mojzsis, 2006
Groenland	Innersuartuut	GR04038-04	3092	0/	29.28	0.024	0.280578	3.94E-05	0.0001	5.8E-00	0.280509	-/8.1	0.5	1.4	Cates and Mojzsis, 2006
Groenland	Innersuartuut	GR04050-05	3070	15	19.94	0.030	0.280441	1.14E-05	0.0001	0.4E-00 7.7E-06	0.280432	-62.9	1.1	0.4	Cates and Mojzsis, 2006
Groenland	Innersuartuut	GR04057-07 CD04058 10	36/9	23	18.40	0.020	0.280371	1.30E-03	0.0002	1.0E.05	0.28030	-63.4	-1.5	0.5	Cates and Mojzsis, 2006
Greenland	Akilio	CD0802 24	2757	19	50.17	0.004	0.280479	0.44E.06	0.0002	1.0E-05	0.280403	-01.5	1.7	0.0	Manning at al 2006
Greenland	Akilia	CD0802-24	3708	5	103.76	0.080	0.280410	9.44E-00	0.0002	1.1E-05 1.5E-05	0.280333	-05.0	<u>^</u>	0.5	Manning et al. 2006
Groenland	Innersuartuut	GR9602-111 GR04051 14	3731	16	21.60	0.22	0.280424	4.24E.05	0.0003	1.5E-05	0.280402	70.0	5	1.5	Cates and Moizsis 2006
Groenland	Akilia	GR04002_08	3778	16	10.33	0.048	0.280323	7.60E-05	0.0003	1.0E-05	0.280302	-89.2	_33	27	Moizsis unpublished
Groenland	Innersuartuut	GR04051-29	3730	13	45.60	0.024	0.280262	8.68E-06	0.0003	1.0E-05	0.280230	-82	28	0.3	Cates and Moizsis 2006
Groenland	Innersuartuut	GR04057-08	3648	18	87.62	0.12	0.280478	7.36E-06	0.0004	1.0E-05	0 28045	-81.6	12	0.3	Cates and Mojzsis, 2000
Groenland	Akilia	GR9802-11	3744	9	250.66	0.68	0.280420	2.62E-06	0.0004	1.9E-05	0 280393	-83.6	14	0.1	Manning et al 2006
Groenland	Innersuartuut	GR04051-10	3728	8	34 90	0.00	0 280489	2.06E-05	0.0004	2.0E-05	0.280459	-81.2	3.4	0.7	Cates and Moizsis 2006
Groenland	Akilia	GR9802-16	3760	18	196.24	0.56	0.280417	3.54E-06	0.0004	2.0E-05	0.280387	-83.7	1.6	0.1	Manning et al., 2006
Groenland	Akilia	GR0071-22	3824	10	10.45	0.032	0.280387	3.44E-05	0.0004	2.2E-05	0.280355	-84.8	2	1.2	Manning et al., 2006
Groenland	Innersuartuut	GR04039-24	3642	15	224.68	0.76	0.280467	3.36E-06	0.0005	2.4E-05	0.280433	-82	0.4	0.1	Cates and Mojzsis, 2006
Groenland	Akilia	GR9802-26	3722	8	608.49	2.08	0.280403	3.42E-06	0.0005	2.4E-05	0.280368	-84.2	0	0.1	Manning et al., 2006
Groenland	Akilia	GR9802-18	3706	10	260.75	0.904	0.280405	3.98E-06	0.0005	2.5E-05	0.280369	-84.2	-0.3	0.1	Manning et al., 2006
Groenland	Innersuartuut	GR04051-15	3733	15	25.31	0.088	0.280458	2.26E-05	0.0005	2.5E-05	0.280423	-82.3	2.3	0.8	Cates and Mojzsis, 2006
Groenland	Akilia	GR9802-23	3712	7	865.81	3.16	0.280406	3.12E-06	0.0005	2.6E-05	0.280368	-84.1	-0.2	0.1	Manning et al., 2006
Groenland	Akilia	GR9802-13	3685	16	168.84	0.63	0.280385	9.40E-06	0.0005	2.6E-05	0.280347	-84.9	-1.6	0.3	Manning et al., 2006
Groenland	Akilia	GR9802-34	3689	12	354.14	1.35	0.280403	3.50E-06	0.0005	2.7E-05	0.280364	-84.2	-0.9	0.1	Manning et al., 2006
Groenland	Akilia	GR9802-14	3714	9	139.98	0.62	0.280431	9.20E-06	0.0006	3.1E-05	0.280386	-83.3	0.5	0.3	Manning et al., 2006
Groenland	Akilia	GR9802-212	3761	10	200.15	0.90	0.280387	2.48E-06	0.0006	3.2E-05	0.280341	-84.8	0	0.1	Manning et al., 2006
Groenland	Innersuartuut	GR04036-11	3695	17	109.57	0.51	0.280466	5.50E-06	0.0007	3.3E-05	0.280419	-82	1.2	0.2	Cates and Mojzsis, 2006
Groenland	Akilia	GR0050-2	3744	7	66.13	0.30	0.28046	1.12E-05	0.0007	3.3E-05	0.280412	-82.2	2.1	0.4	Manning et al., 2006
Groenland	Akilia	GR9802-15	3744	6	131.46	0.62	0.280452	7.10E-06	0.0007	3.4E-05	0.280403	-82.5	1.8	0.3	Manning et al., 2006
Groenland	Akilia	GR9802-211	3741	10	77.01	0.38	0.28043	1.05E-05	0.0007	3.5E-05	0.28038	-83.3	0.9	0.4	Manning et al., 2006
Groenland	Akilia	GR0012-3	3743	6	79.02	0.55	0.280446	1.48E-05	0.0010	4.9E-05	0.280375	-82.7	0.8	0.5	Manning et al., 2006
Groenland	Akilia	GR0050-1	3695	19	25.20	0.98	0.280441	1.86E-05	0.0055	2.8E-04	0.280045	-82.9	-12.1	0.7	Manning et al., 2006
Groenland	Akilia	GR0012-2	3706	19	77.77	5.96	0.280424	5.62E-06	0.0109	5.4E-04	0.279645	-83.5	-26.1	0.2	Manning et al., 2006
Nord Québec	Nuvvuagittuq	IN05003-06	3771	13	12.10	0.032	0.28060	1.30E-04	0.0004	1.9E-05	0.28058	-77.2	8.6	4.6	Cates and Mojzsis, 2007
Nord Québec	Nuvvuagittuq	IN05022-16	3773	10	35.06	0.10	0.280371	1.71E-05	0.0004	2.1E-05	0.28034	-85.4	0.3	0.6	Cates and Mojzsis, 2007
Nord Québec	Nuvvuagittuq	IN05022-18	3722	7	27.08	0.084	0.280312	3.18E-05	0.0004	2.2E-05	0.28028	-87.5	-3.1	1.1	Cates and Mojzsis, 2007
Nord Québec	Nuvvuagittuq	IN05028-19	3755	18	55.33	0.18	0.280396	1.68E-05	0.0005	2.3E-05	0.280363	-84.5	0.6	0.6	Cates and Mojzsis, 2007
Nord Québec	Nuvvuagittuq	IN05003-24	3740	6	27.92	0.096	0.280431	1.95E-05	0.0005	2.4E-05	0.280395	-83.3	1.4	0.7	Cates and Mojzsis, 2007
Nora Quebec	Nuvvuagittuq	IN05022-12	5765	10	32.44	0.12	0.280414	1.23E-05	0.0005	2.3E-05	0.280377	-83.8	1.4	0.4	Cates and MojZSIS, 2007

Tableau B-2 (suite) : Données isotopiques Lu-Hf des zircons individuels analysés par solution MC-ICP-MS Hf (ng) Lu (ng) ¹⁷⁶Lu/¹⁷⁷Hf ¹⁷⁶Hf/¹⁷⁷Hf_{in} 2 σ Références des âges SIMS Localisation Craton/Complex/Zone Echantillon Age mesuré (Ma) 2 σ (Ma) ¹⁷⁶Hf/¹⁷⁷Hf 2σ 2σ ε_{Hf} ϵ_{Hfin} Nord Québec Nuvvuagittuq IN05003-04 3745 12 19.09 0.092 0.280414 2.28E-05 0.0007 3.4E-05 0.280365 -83.8 0.5 0.8 Cates and Moizsis, 2007 Nord Québec IN05003-15 3718 8 3.83 0.024 0.280516 3.82E-05 0.0009 4.4E-05 0.280452 -80.2 2.9 1.4 Cates and Mojzsis, 2007 Nuvvuagittuq IN05018-26 3748 7 9.79 0.280422 4.66E-05 0.0010 4.9E-05 0.28035 -83.6 1.6 Cates and Mojzsis, 2007 Nord Québec Nuvvuagittuq 0.068 0 Analyses de standard de zircon Age mesuré (Ma) 2 σ (Ma) Hf (ng) Lu (ng) ¹⁷⁶Hf/¹⁷⁷Hf 2σ ¹⁷⁶Lu/¹⁷⁷Hf 2 σ ¹⁷⁶Hf/¹⁷⁷Hf_{in} 2σ ε_{Hf} ε_{Hfin} Standard AS3 1092 59.8 614.14 0.89 0.282191 4.68E-06 0.00020 1.0E-05 0.282187 -21 3.3 0.2 0.2 Standard AS3 1092 59.6 412.37 1.81 0.282199 4.92E-06 0.00062 3.1E-05 0.282187 -20.7 3.3 Standard FC1 1086 59.3 306.55 0.82 0.282194 7.98E-06 0.00038 1.9E-05 0.282186 -20.9 3 0.3 Standard FC-1 1095 60.1 519.10 0.91 0.28214 3.92E-06 0.00025 1.3E-05 0.282135 -22.8 1.6 0.1

0.10

0.53

0.78

1.14

0.83

0.282527

0.282553

0.281613

0.282749

0.282745

5.88E-06

7.24E-06

1.17E-05

6.96E-06

7.12E-06

0.00002

0.00004

0.00051

0.00088

0.00057

8.6E-07

1.8E-06

2.5E-05

4.4E-05

2.8E-05

0.282527

0.282553

0.281595

0.282746

0.282741

-9.1

-8.2

-41.4

-1.3

-1.4

8.8 0.2

-0.9 0.3

0 0.4

6.8 0.3

3.4 0.2

842.56

2077.20

217.70

185.25

206.24

Std JMC 475	Date	Jour	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 σ	¹⁷⁸ Hf/ ¹⁷⁷ Hf	2 σ	¹⁸⁰ Hf/ ¹⁷⁷ Hf	2 σ
	11/01/2010	08:54:00	0.282160	4.5E-06	1.46739	9.0E-06	1.88699	1.4E-05
	11/01/2010	09:47:00	0.282163	3.1E-06	1.46738	6.0E-06	1.88697	1.5E-05
	11/01/2010	10:28:00	0.282165	2.9E-06	1.46739	6.3E-06	1.88698	1.6E-05
	11/01/2010	10:44:00	0.282166	3.3E-06	1.46738	7.0E-06	1.88698	2.0E-05
	11/01/2010	11:42:00	0.282164	2.5E-06	1.46740	6.2E-06	1.88694	1.3E-05
	11/01/2010	12:46:00	0.282167	2.5E-06	1.46739	6.3E-06	1.88696	1.3E-05
	11/01/2010	13:59:00	0.282170	3.9E-06	1.46739	6.5E-06	1.88691	2.4E-05
	11/01/2010	14:36:00	0.282176	3.5E-06	1.46740	8.3E-06	1.88695	1.9E-05
	11/01/2010	14:48:00	0.282173	3.6E-06	1.46739	8.5E-06	1.88691	1.6E-05
	24/01/2011	09:59:00	0.282157	4.0E-06	1.46718	9.3E-06	1.88668	1.8E-05
	24/01/2011	11:15:00	0.282158	2.0E-06	1.46717	6.0E-06	1.88662	1.4E-05
	24/01/2011	12:16:00	0.282147	3.5E-06	1.46719	9.2E-06	1.88662	1.8E-05
	24/01/2011	13:27:00	0.282149	4.3E-06	1.46720	7.0E-06	1.88663	2.0E-05
	24/01/2011	14:24:00	0.282145	3.0E-06	1.46716	6.1E-06	1.88662	1.1E-05
	24/01/2011	15:15:00	0.282155	3.9E-06	1.46717	9.6E-06	1.88657	1.5E-05
	24/01/2011	15:21:00	0.282142	3.3E-06	1.46718	7.9E-06	1.88662	1.7E-05
	24/01/2011	16:24:00	0.282160	3.8E-06	1.46718	7.4E-06	1.88663	1.9E-05
	24/01/2011	17:15:00	0.282162	3.6E-06	1.46718	6.3E-06	1.88661	1.5E-05
	24/01/2011	18:02:00	0.282152	4.3E-06	1.46717	7.5E-06	1.88666	4.6E-05
	24/01/2011	18:46:00	0.282150	2.8E-06	1.46718	4.8E-06	1.88665	1.1E-05
	16/05/2011	10:05:00	0.282163	2.6E-06	1.46719	5.6E-06	1.88660	1.2E-05
	16/05/2011	10:54:00	0.282153	3.3E-06	1.46717	7.9E-06	1.88654	1.4E-05
	16/05/2011	11:55:00	0.282168	3.3E-06	1.46717	6.9E-06	1.88653	1.4E-05
	16/05/2011	13:34:00	0.282160	3.7E-06	1.46716	8.4E-06	1.88665	1.6E-05
	16/05/2011	14:51:00	0.282156	3.5E-06	1.46715	5.3E-06	1.88664	1.2E-05
	16/05/2011	16:05:00	0.282155	2.9E-06	1.46713	5.7E-06	1.88673	1.4E-05
	16/05/2011	16:52:00	0.282166	4.4E-06	1.46716	5.9E-06	1.88674	1.5E-05
	16/05/2011	17:40:00	0.282159	3.2E-06	1.46714	5.5E-06	1.88676	1.2E-05
	16/05/2011	18:43:00	0.282166	3.7E-06	1.46716	9.8E-06	1.88675	2.6E-05
	16/05/2011	19:17:00	0.282175	2.4E-06	1.46714	3.4E-06	1.88669	7.9E-06
	17/05/2011	09:52:00	0.282162	3.2E-06	1.46717	6.2E-06	1.88666	1.2E-05
	17/05/2011	12:24:00	0.282154	3.9E-06	1.46716	6.5E-06	1.88658	1.4E-05
	17/05/2011	13:09:00	0.282159	3.2E-06	1.46716	8.2E-06	1.88671	1.3E-05
	17/05/2011	13:50:00	0.282157	2.8E-06	1.46718	5.5E-06	1.88668	9.4E-06
	17/05/2011	14:35:00	0.282156	3.3E-06	1.46718	5.1E-06	1.88664	1.3E-05
	17/05/2011	15:27:00	0.282145	1.5E-06	1.46717	3.6E-06	1.88664	8.1E-06

261

328

1863

217

360

94.3

41.9

90.1

46.9

15.7

MudTank

Plesovicé

QGNG

R33

R33

Standard

Standard

Standard

Standard

Standard

ruoreau B 2 (buile)	: Bonnees isotopiques	Eu III des Encons in	ai viddeis dildi joe	o pai bolation		•		
Std JMC 475	Date	Jour	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 σ	¹⁷⁸ Hf/ ¹⁷⁷ Hf	2σ	¹⁸⁰ Hf/ ¹⁷⁷ Hf	2σ
	06/06/2011	11:34:00	0.282160	3.0E-06	1.46713	7.7E-06	1.88661	1.8E-05
	06/06/2011	12:55:00	0.282147	2.6E-06	1.46714	5.7E-06	1.88668	1.0E-05
	06/06/2011	14:53:00	0.282161	4.5E-06	1.46716	9.4E-06	1.88660	2.3E-05
	06/06/2011	16:29:00	0.282160	3.6E-06	1.46716	6.4E-06	1.88659	1.5E-05
	06/06/2011	18:19:00	0.282146	3.7E-06	1.46717	6.1E-06	1.88659	1.8E-05
	06/06/2011	19:22:00	0.282148	2.2E-06	1.46717	5.7E-06	1.88666	1.1E-05
	26/01/2010	16:00:00	0.282181	3.3E-06	1.46734	5.9E-06	1.88694	2.7E-05
	26/01/2010	16:04:00	0.282174	2.3E-06	1.46734	8.2E-06	1.88691	1.8E-05
	26/01/2010	16:10:00	0.282165	5.8E-06	1.46734	9.6E-06	1.88692	2.3E-05
	26/01/2010	17:07:00	0.282160	4.5E-06	1.46733	8.2E-06	1.88695	1.9E-05
	26/01/2010	17:54:00	0.282174	5.1E-06	1 46733	1.1E-05	1.88690	2.5E-05
	26/01/2010	17:58:00	0.282175	6.4E-06	1.46736	1.2E-06	1.88691	2.4E-05
	26/01/2010	18:06:00	0.282163	3.6E-06	1 46734	6 2E-06	1 88691	2.1E-05
	26/01/2010	18:55:00	0.282179	3.5E-06	1 46735	8.4E-06	1 88694	1.6E-05
	26/01/2010	19:01:00	0.282169	3 3E-06	1 46733	8.7E-06	1 88691	2 0E-05
	04/03/2010	13:03:00	0.282162	2.5E-06	1.46725	8.5E-06	1 88685	1.2E-05
	04/03/2010	13:53:00	0.282159	3.5E-06	1.46724	7.2E-06	1 88684	1.2E-05
	04/03/2010	14:52:00	0.202157	2 2E 06	1 46724	1.2E-00	1 88682	1.1E-05
	04/03/2010	14.32.00	0.282154	2.5E-00	1.40724	4.5E-00	1.00005	1.1E-05 1.2E-05
	04/03/2010	15:45:00	0.282100	2.61-00	1.40725	7.0E-00	1.00001	1.3E-05
	04/03/2010	15.45.00	0.282139	3.1E-00	1.40/23	3.0E-00	1.00004	1.2E-03
	04/05/2010	10.46.00	0.282100	2.3E-00	1.40/25	7.0E-00	1.00005	1.3E-03
	21/04/2010	15:07:00	0.282161	4.3E-06	1.40/15	8.8E-00	1.88054	1.4E-05
	21/04/2010	15:57:00	0.282157	3.5E-06	1.40/13	0.8E-00	1.88052	1.3E-05
	21/04/2010	17:01:00	0.282175	3.0E-06	1.46/12	7.7E-06	1.88644	1.2E-05
	21/04/2010	1/:08:00	0.282168	3.1E-06	1.46/13	7.7E-06	1.88653	1.8E-05
	21/04/2010	18:56:00	0.282156	3.6E-06	1.46/15	7.3E-06	1.88662	1.9E-05
	21/04/2010	20:02:00	0.282153	3.0E-06	1.46/15	8.2E-06	1.88656	1./E-05
	23/04/2010	09:30:00	0.282167	2.0E-06	1.46718	3.8E-06	1.88670	7.9E-05
	23/04/2010	10:52:00	0.282160	1.6E-06	1.46717	3.8E-06	1.88663	8.1E-06
	23/04/2010	12:11:00	0.282167	2.2E-06	1.46716	3.6E-06	1.88654	1.1E-05
	23/04/2010	13:16:00	0.282167	3.7E-06	1.46712	7.2E-06	1.88658	1.9E-05
	25/05/2010	16:42:00	0.282170	2.0E-06	1.46709	4.3E-06	1.88655	1.0E-05
	25/05/2010	18:10:00	0.282173	3.6E-06	1.46708	6.4E-06	1.88652	1.2E-05
	25/05/2010	19:35:00	0.282163	3.3E-06	1.46712	4.8E-06	1.88656	1.7E-05
	25/05/2010	20:39:00	0.282162	3.9E-06	1.46713	1.3E-05	1.88643	3.9E-05
	25/05/2010	21:33:00	0.282156	3.9E-06	1.46715	5.4E-06	1.88646	1.3E-05
	26/05/2010	16:24:00	0.282152	2.2E-06	1.46707	4.9E-06	1.88656	1.0E-05
	26/05/2010	17:37:00	0.282158	3.0E-06	1.46710	7.1E-06	1.88650	1.5E-05
	26/05/2010	19:03:00	0.282155	2.8E-06	1.46709	8.9E-06	1.88640	1.3E-05
	26/05/2010	20:05:00	0.282167	2.5E-06	1.46710	7.8E-06	1.88645	1.4E-05
	26/05/2010	21:03:00	0.282164	4.5E-06	1.46710	1.6E-05	1.88641	3.2E-05
	10/06/2010	10:52:00	0.282167	1.4E-06	1.46733	3.4E-06	1.88695	8.4E-06
	10/06/2010	12:06:00	0.282165	2.4E-06	1.46732	5.4E-06	1.88691	9.6E-06
	10/06/2010	13:17:00	0.282167	4.0E-06	1.46732	1.1E-05	1.88690	1.2E-05
	10/06/2010	14:11:00	0.282171	2.3E-06	1.46733	6.0E-06	1.88692	8.5E-06
	10/06/2010	15:32:00	0.282164	2.0E-06	1.46732	8.4E-06	1.88698	1.8E-05
	10/06/2010	16:51:00	0.282170	2.8E-06	1.46731	6.0E-06	1.88695	1.4E-05
	10/06/2010	17:43:00	0.282178	1.9E-06	1.46733	5.8E-06	1.88696	1.2E-05
	10/06/2010	17:50:00	0.282174	2.2E-06	1.46733	7.0E-06	1.88695	1.3E-05
	10/06/2010	18:59:00	0 282171	2.7E-06	1 46735	7 5E-06	1 88690	1.6E-05
	10/06/2010	20:17:00	0.282167	2.2E-06	1.46736	5.7E-06	1.88693	9.2E-06
	10/00/4010		0.20210/	L 00		2., 200	1.000/0	/. . 00

Tableau B-2 (suite) : Données isotopiques Lu-Hf des zircons individuels analysés par solution MC-ICP-MS.

Localisation	Craton/Complex/Zone	Echantillon	Pb (ng)	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age mesuré (Ma)	2 σ	²⁰⁸ Pb*/ ²⁰⁶ Pb*	Th/U	f	²⁰⁴ Pb com (ng)	Pb com (ng)
Antarctique	Mount Sones	7825007-1	15.82	4403.7	1404.6	527.4	0.3168	0.0095	3557	14.6	0.111	0.43	0.26	0.002	0.18
Antarctique	Mount Sones	7825007-2	10.90	1942.1	620.9	210.1	0.3147	0.0094	3544	14.5	0.089	0.34	0.26	0.004	0.29
Antarctique	Mount Sones	7825007-3	7.31	4418.8	1006.4	446.5	0.2252	0.0068	3019	10.8	0.093	0.34	0.27	0.001	0.09
Antarctique	Mount Sones	7825007-4	5.78	2081.9	422.8	250.8	0.1973	0.0059	2806	9.7	0.103	0.38	0.27	0.002	0.16
Antarctique	Mount Sones	7825007-5	10.01	3302.7	911	503.7	0.2726	0.0082	3322	12.8	0.142	0.53	0.27	0.002	0.16
Antarctique	Mount Sones	7825007-6	3.79	1515.2	286.3	591.9	0.1809	0.0054	2663	9	0.37	1.34	0.28	0.002	0.12
Antarctique	Dalwitz Nunatak	78285005-3	2.49	910	162.6	469.3	0.1649	0.0049	2509	8.3	0.483	1.74	0.28	0.002	0.12
Antarctique	Dalwitz Nunatak	78285005-4	0.97	1179.1	205.5	164.4	0.1636	0.0049	2494	8.3	0.108	0.39	0.28	0.001	0.05
Antarctique	Dalwitz Nunatak	78285005-5	0.27	49.2	21.5	39	0.1918	0.035	2758	57.8	0.012	0.05	0.27	0.002	0.18
Antarctique	Mount Sones	78285007-1	7.23	6456.7	1972.3	562.7	0.3039	0.0091	3492	14.1	0.081	0.31	0.26	0.001	0.06
Antarctique	Mount Sones	78285007-10	8.41	10318.9	3859.7	872.2	0.3732	0.011	3805	16.9	0.081	0.31	0.26	0.001	0.04
Antarctique	Mount Sones	78285007-11	3.90	3253.5	763.8	259.1	0.2313	0.0069	3063	11.1	0.068	0.25	0.27	0.001	0.07
Antarctique	Mount Sones	78285007-12	4.37	6018.6	1310.5	473.5	0.2158	0.0065	2950	10.4	0.072	0.27	0.27	0.001	0.04
Antarctique	Mount Sones	78285007-13	4.86	4814	1287.5	490.3	0.2652	0.008	3280	12.5	0.094	0.35	0.27	0.001	0.05
Antarctique	Mount Sones	78285007-7	5.49	6559	1793.3	456.2	0.2718	0.0082	3315	12.8	0.064	0.24	0.27	0.001	0.05
Antarctique	Mount Sones	78285007-8	27.14	20037.9	5076.9	1423.3	0.2528	0.0076	3202	12	0.069	0.26	0.27	0.001	0.08
Antarctique	Mount Sones	78285007-9	9.72	13593.4	3219.8	2067.1	0.236	0.0071	3095	11.3	0.149	0.56	0.27	0.001	0.04
Antarctique	Gage Ridge	78285013-1	1.32	1384.4	237	98.4	0.1621	0.0049	2479	8.2	0.044	0.16	0.27	0.001	0.06
Antarctique	Gage Ridge	78285013-1	65.13	20360.1	4980.6	444.6	0.2441	0.0073	3149	11.6	0.02	0.07	0.28	0.003	0.19
Antarctique	Gage Ridge	78285013-2	18.39	10346.8	1914.2	467.1	0.1838	0.0055	2689	9.1	0.041	0.15	0.28	0.001	0.11
Antarctique	Gage Ridge	78285013-3	8.61	6223.1	1046.9	330.4	0.1662	0.005	2522	8.4	0.047	0.17	0.28	0.001	0.08
Antarctique	Gage Ridge	78285013-4	13.38	10487	2721.7	766.6	0.2585	0.0078	3238	12.2	0.07	0.26	0.27	0.001	0.07
Antarctique	Gage Ridge	78285013-4	20.89	12933.8	3063.2	351.7	0.236	0.0071	3094	11.3	0.024	0.09	0.27	0.001	0.09
Antarctique	Gage Ridge	78285013-5	13.13	7935.5	1330.9	444.2	0.1661	0.005	2519	8.4	0.051	0.18	0.28	0.001	0.10
Australie	Shaw	142828-4	2.88	801.9	197.2	59.7	0.2318	0.007	3066	11.1	0.027	0.10	0.27	0.003	0.20
Brésil	Sete Voltas	SV11-4	1.04	1340.1	376.8	143.5	0.2734	0.0082	3326	12.8	0.079	0.30	0.27	0.001	0.04
Brésil	Sete Voltas	SV11-7	0.65	359.2	113.5	104	0.2874	0.0086	3408	13.4	0.192	0.73	0.26	0.001	0.08
Brésil	Sete Voltas	SV2-1	0.65	340.6	104.1	68.6	0.2749	0.0082	3335	12.9	0.093	0.35	0.27	0.001	0.09
Brésil	Sete Voltas	SV2-2	1.10	475.3	137.7	68.2	0.2674	0.008	3290	12.6	0.065	0.24	0.27	0.002	0.12
Brésil	Sete Voltas	SV2-3	0.35	170.9	58	56.5	0.2785	0.014	3354	22.4	0.117	0.44	0.26	0.001	0.09
Brésil	Sete Voltas	SV2-4	0.60	353.8	97.3	66.2	0.2439	0.0073	3143	11.6	0.082	0.31	0.27	0.001	0.09
Brésil	Sete Voltas	SV2-5	0.68	241.9	75.9	68.7	0.2702	0.0081	3308	12.7	0.135	0.51	0.27	0.002	0.13
Brésil	Sete Voltas	SV9-4	2.14	1010.8	282.5	103.5	0.269	0.0081	3300	12.6	0.065	0.25	0.27	0.002	0.11
Brésil	Sete Voltas	SV9-5	1.71	577.3	139.6	68.4	0.2219	0.0067	2995	10.7	0.053	0.20	0.27	0.002	0.16
Canada	Acasta	1-12 BIG	2.68	759.4	266.7	144.4	0.3389	0.010	3658	15.5	0.143	0.55	0.26	0.002	0.17
Canada	Acasta	2-14 BIG	8.67	461.2	173.7	67.3	0.3573	0.011	3738	16.3	0.065	0.25	0.26	0.012	0.91
Canada	Acasta	2-15 5</th <th>1.93</th> <th>423.2</th> <th>163.5</th> <th>/0.8</th> <th>0.3657</th> <th>0.011</th> <th>3773</th> <th>16.6</th> <th>0.08</th> <th>0.31</th> <th>0.26</th> <th>0.003</th> <th>0.22</th>	1.93	423.2	163.5	/0.8	0.3657	0.011	3773	16.6	0.08	0.31	0.26	0.003	0.22
Canada	Acasta	2-17 BIG	3.72	356.3	115.2	100	0.295	0.0088	3442	13./	0.182	0.69	0.26	0.006	0.48
Canada	Acasta	2-3 5</th <th>2.54</th> <th>436.7</th> <th>180.4</th> <th>100.1</th> <th>0.3943</th> <th>0.012</th> <th>3888</th> <th>17.8</th> <th>0.14/</th> <th>0.57</th> <th>0.26</th> <th>0.004</th> <th>0.26</th>	2.54	436.7	180.4	100.1	0.3943	0.012	3888	17.8	0.14/	0.57	0.26	0.004	0.26
Canada	Acasta	3-5>75	1.15	306.5	127	50	0.3869	0.012	3862	17.5	0.06	0.23	0.26	0.002	0.17
Canada	Acasta	4-10 5</th <th>1.95</th> <th>259.9</th> <th>//.0</th> <th>4/./</th> <th>0.2572</th> <th>0.0077</th> <th>3229</th> <th>12.2</th> <th>0.037</th> <th>0.14</th> <th>0.27</th> <th>0.005</th> <th>0.37</th>	1.95	259.9	//.0	4/./	0.2572	0.0077	3229	12.2	0.037	0.14	0.27	0.005	0.37
Canada	Acasta	4-4 5</th <th>0.80</th> <th>256.2</th> <th>87</th> <th>52.5</th> <th>0.3006</th> <th>0.009</th> <th>34/3</th> <th>13.9</th> <th>0.057</th> <th>0.22</th> <th>0.26</th> <th>0.002</th> <th>0.16</th>	0.80	256.2	87	52.5	0.3006	0.009	34/3	13.9	0.057	0.22	0.26	0.002	0.16
Canada	Acasta	Acasta 1-1	12.30	61/9.1	2517.0	1155.2	0.4061	0.012	3932	18.2	0.181	0.71	0.20	0.001	0.09
Canada	Acasta	AG09001-1	1.04	11121	195	00./ 206.0	0.2035	0.0079	3208	12.4	0.0/1	0.27	0.27	0.001	0.08
Canada	Acasta	AG09-008-1	13.32	1112.1	308.1 667.5	200.9	0.3224	0.009/	3383	14.8	0.134	0.39	0.20	0.008	0.38
Canada	Acasta	AG09-008-2	5.50 8.70	2137.0	412.1	204.9 261.7	0.3048	0.0091	3490	14.1	0.124	0.47	0.20	0.002	0.15
Canada	Acasta	AG09-008-4	0.70	1135.7	412.1	201.7	0.3493	0.010	3/00	15.9	0.197	0.70	0.20	0.005	0.55
Canada	Acasta	AG09-008-5	0.26	110/.9	408.0	42.5	0.3301	0.010	3043	60.2	0.192	0.74	0.20	0.008	0.01
Canada	Acasta	AG09008-0	0.20	08	29.4	43.3	0.2/92	0.044	3302	09.2	0.098	0.37	0.20	0.002	0.15

Tableau B-3 : Données isotopiques Pb-Pb pour les zircons individuels analysés par solution MC-ICP-MS

Localisation	Craton/Complex/Zone	Echantillon	Pb (ng)	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age mesuré (Ma)	2 σ	²⁰⁸ Pb*/ ²⁰⁶ Pb*	Th/U	f	²⁰⁴ Pb com (ng)	Pb com (ng)
Canada	Acasta	AG09-008-7	0.31	185.3	48.9	49.7	0.1998	0.036	2825	58.6	0.067	0.24	0.27	0.001	0.08
Canada	Acasta	AG09-008-9	0.34	286.6	87	73.6	0.2666	0.038	3286	59.6	0.131	0.49	0.27	0.001	0.06
Canada	Acasta	AG09008gt-7	6.11	6510.9	2261.4	871.1	0.3459	0.010	3691	15.8	0.128	0.49	0.26	0.001	0.05
Canada	Acasta	AG-09-009-1	0.65	708.6	235.2	111.9	0.3182	0.016	3560	23.9	0.106	0.41	0.26	0.001	0.05
Canada	Acasta	AG-09-009-2	0.18	219.1	78	72	0.311	0.093	3526	143.7	0.167	0.64	0.26	0.000	0.04
Canada	Acasta	AG09009-5	0.31	194.3	68.7	60.1	0.302	0.039	3481	60.4	0.122	0.47	0.26	0.001	0.07
Canada	Acasta	AG09-015-1	0.98	145.3	52.9	57.2	0.2946	0.0088	3439	13.7	0.146	0.56	0.26	0.004	0.28
Canada	Acasta	AG09016-4	1.79	21.5	16.6	39.2	0.3602	0.011	3750	16.4	0.188	0.73	0.26	0.023	1.69
Canada	Acasta	AG09-016-4	1.03	77.3	30.8	40.1	0.2581	0.0077	3235	12.2	0.025	0.09	0.27	0.007	0.51
Canada	Acasta	AG09-016-5	3.63	361.2	124.8	48.9	0.3189	0.0096	3564	14.7	0.03	0.12	0.26	0.007	0.50
Canada	Acasta	AG09016-6	0.67	676.3	236.8	89.4	0.3363	0.012	3648	18	0.077	0.30	0.26	0.001	0.05
Canada	Acasta	AG09-016-6	1.54	133	47	42.9	0.2747	0.0082	3331	12.9	0.038	0.14	0.27	0.007	0.51
Canada	Acasta	AG09017-1	4.65	163.6	63.5	55.1	0.3304	0.0099	3620	15.2	0.113	0.44	0.26	0.016	1.22
Canada	Acasta	AG09032-2	0.66	45.4	22.9	41.3	0.2738	0.0082	3330	12.8	0.101	0.38	0.27	0.006	0.44
Canada	Inukjuak	INO5003-20	0.34	32.5	20.9	41.5	0.3816	0.041	3842	62.5	0.21	0.82	0.26	0.004	0.27
Canada	Inukjuak	INO5022-26	0.78	380	134.8	80.2	0.3298	0.0099	3617	15.1	0.115	0.44	0.26	0.001	0.10
Canada	Inukjuak	NUV5001-19	0.39	142.3	55.1	74.2	0.319	0.040	3567	60.8	0.288	1.10	0.26	0.001	0.10
Canada	Inukjuak	NUV5001-3	2.11	1119	357.2	92.1	0.3105	0.0093	3524	14.3	0.049	0.19	0.26	0.001	0.10
Chine	Guzuizi	08GZZ01-2	0.97	848.7	148	157.6	0.1595	0.0048	2455	8.1	0.143	0.51	0.28	0.001	0.06
Chine	Xiwanshan	08XWS01-2	1.17	789.2	137	146.5	0.1575	0.0047	2430	8	0.14	0.50	0.28	0.001	0.08
Chine	Dongshan	09AS03-1	2.50	258.1	66.9	60.8	0.2143	0.0064	2936	10.4	0.092	0.34	0.27	0.006	0.48
Chine	Dongshan	09AS03-2	1.02	1039.1	272.4	164.8	0.2516	0.0075	3197	11.9	0.124	0.46	0.27	0.001	0.05
Chine	Dongshan	09AS03-3	0.98	901.7	245.2	132.9	0.260	0.0078	3250	12.3	0.107	0.40	0.27	0.001	0.06
Chine	Dongshan	09AS03-4	1.80	134.1	46	53.2	0.2631	0.0079	3265	12.4	0.126	0.47	0.27	0.008	0.57
Chine	Dongshan	09AS03-5	1.07	86.3	28.4	45.4	0.1887	0.0057	2734	9.3	0.10	0.37	0.27	0.007	0.49
Finlande	Naavala	H412-1	0.54	392.1	88.6	76.5	0.1956	0.0059	2790	9.6	0.102	0.37	0.27	0.001	0.07
Finlande	Naavala	H412-2	4.16	28.4	17.5	39.3	0.1911	0.0057	2756	9.4	0.069	0.25	0.27	0.048	3.57
Finlande	Naavala	H412-3	0.76	70.9	26.5	43	0.2072	0.0062	2888	10.1	0.084	0.31	0.27	0.005	0.40
Finlande	Naavala	H412-4	0.56	256.6	62.4	59.3	0.1967	0.023	2800	37.6	0.087	0.32	0.27	0.001	0.11
Finlande	Naavala	H412-5	0.38	203.3	51.4	57.1	0.1941	0.032	2777	52.7	0.10	0.37	0.27	0.001	0.09
Finlande	Naavala	H471-1	0.42	78.7	27.3	42.9	0.1951	0.030	2788	48.8	0.072	0.26	0.27	0.003	0.21
Finlande	Naavala	H471-2	0.98	63.5	27.9	42.7	0.2735	0.0082	3326	12.8	0.09	0.34	0.27	0.007	0.53
Finlande	Kivijärvi	H53-1	1.32	115	35.8	47.4	0.2091	0.0063	2897	10.2	0.091	0.34	0.27	0.007	0.49
Finlande	Kivijärvi	H53-2	2.36	256.9	56.9	45.6	0.1732	0.0052	2590	8.7	0.029	0.11	0.28	0.007	0.48
Finlande	Kivijärvi	H53-4	1.18	85.9	31.8	52.5	0.2412	0.0072	3130	11.5	0.207	0.77	0.27	0.007	0.51
Finlande	Karélie	H53-5	0.62	586.9	127.1	97.5	0.1962	0.0095	2794	15.5	0.104	0.37	0.28	0.001	0.06
Finlande	Kivijärvi	H53-5	1.27	152.4	35.9	45.2	0.1513	0.0045	2361	7.7	0.049	0.18	0.27	0.005	0.40
Finlande	Kivijärvi	H54-1	4.05	459	104.5	51.7	0.2019	0.0061	2841	9.9	0.03	0.11	0.27	0.007	0.49
Finlande	Karélie	H54-2	8.19	374.7	89.1	48.9	0.2065	0.0062	2877	10	0.029	0.11	0.27	0.016	1.18
Finlande	Kıvıjärvi	H54-3	1.80	192	51.9	53.1	0.2093	0.0063	2898	10.2	0.083	0.31	0.27	0.006	0.45
Finlande	Kıvıjärvi	H54-4	2.35	243.9	60.5	41.9	0.1992	0.006	2820	9.7	0.014	0.05	0.27	0.007	0.50
Finlande	Kivijärvi	H54-5	0.94	64.7	24.9	40.8	0.2022	0.0061	2843	9.9	0.046	0.17	0.27	0.007	0.53
Finlande	Karélie	H70-1	0.20	249.6	56.7	65.1	0.1777	0.053	2629	88.5	0.115	0.42	0.27	0.001	0.04
Finlande	Kıvıjärvi	H70-1	0.54	231.9	55.5	67.6	0.1871	0.0081	2718	13.4	0.136	0.49	0.28	0.002	0.11
Finlande	Kıvıjärvı	H70-2	0.12	74.2	25.4	47.6	0.1761	0.053	2618	87.8	0.162	0.59	0.28	0.001	0.06
Finlande	Kıvıjärvı	H70-3	0.10	61.9	23.7	39.4	0.1856	0.056	2700	91.8	0.018	0.07	0.28	0.001	0.06
Groenland	Isua (Amitsoq)	030013-1	2.86	288.7	112.4	81.4	0.3584	0.011	3743	16.3	0.159	0.61	0.26	0.006	0.44
Groenland	Isua (Amitsoq)	030013-2	1.49	110.2	48.2	52.6	0.3559	0.011	3731	16.2	0.152	0.59	0.26	0.007	0.52
Groenland	Isua (Amitsoq)	030013-3	0.95	76.9	36.6	47	0.3599	0.011	3749	16.4	0.144	0.56	0.26	0.006	0.43

Tableau B-3 (suite) : Données isotopiques Pb-Pb pour les zircons individuels analysés par solution MC-ICP-MS

Localisation	Craton/Complex/Zone	Echantillon	Pb (ng)	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age mesuré (Ma)	2 σ	²⁰⁸ Pb*/ ²⁰⁶ Pb*	Th/U	f	²⁰⁴ Pb com (ng)	Pb com (ng)
Groenland	Isua (Amitsoq)	030013-4	1.04	595.8	214	123.9	0.3438	0.010	3676	15.7	0.148	0.57	0.26	0.001	0.08
Groenland	Isua (Amitsoq)	030013-4	1.05	64.5	32.1	46	0.3605	0.011	3751	16.4	0.16	0.62	0.26	0.007	0.54
Groenland	Isua (Amitsoq)	030015-1	1.47	131.5	54.1	52.7	0.3411	0.010	3670	15.6	0.125	0.48	0.26	0.006	0.46
Groenland	Isua (Amitsoq)	030015-2	0.97	90.3	41.8	48.9	0.3653	0.011	3771	16.6	0.143	0.55	0.26	0.005	0.39
Groenland	Isua (Amitsoq)	030015-4	1.02	36.6	25.2	44.8	0.3514	0.016	3713	24.5	0.346	1.34	0.26	0.010	0.70
Groenland	Isua (Amitsoq)	060010-1	1.71	167.6	71	57.4	0.3721	0.011	3800	16.9	0.126	0.49	0.26	0.006	0.43
Groenland	Isua (Amitsoq)	060010-2	1.32	529.5	193	93.1	0.3472	0.010	3692	15.9	0.107	0.41	0.26	0.002	0.12
Groenland	Isua (Amitsoq)	060010-2	1.86	186.2	76.5	56.9	0.3633	0.011	3764	16.5	0.109	0.42	0.26	0.006	0.43
Groenland	Isua (Amitsoq)	060010-3	1.43	135.5	61.2	55.2	0.3903	0.012	3872	17.6	0.142	0.55	0.26	0.006	0.42
Groenland	Isua (Amitsoq)	060010-4	2.19	77.2	36.9	47.5	0.363	0.011	3764	16.5	0.152	0.59	0.26	0.013	1.00
Groenland	Isua (Amitsoq)	060010-5	5.64	49.7	27.5	42.7	0.3824	0.011	3842	17.3	0.131	0.51	0.26	0.047	3.45
Groenland	Akilia	GR0012-4	1.99	328.9	114.4	70.3	0.3184	0.0096	3564	14.7	0.102	0.39	0.26	0.004	0.29
Groenland	Akilia	GR0071-32	0.37	100.4	41.9	41.6	0.3213	0.022	3578	33.2	0.037	0.14	0.26	0.002	0.15
Groenland	Akilia	GRO071-39	0.46	49.8	27.1	42.4	0.3687	0.012	3783	17.6	0.123	0.47	0.26	0.004	0.28
Groenland	Innersuartuut	GR0082-20	1.88	308.2	98.3	54.3	0.2857	0.0086	3395	13.3	0.054	0.21	0.26	0.004	0.30
Groenland	Innersuartuut	GR0082-8	4.54	739.6	240.5	108.8	0.312	0.0094	3531	14.4	0.097	0.37	0.26	0.004	0.31
Groenland	Innersuartuut	GR0082-9	7.52	3198.2	1058.1	314.9	0.3279	0.0098	3607	15.1	0.087	0.33	0.26	0.002	0.12
Groenland	Innersuartuut	GR0083-12	2.22	879.8	294.1	107.6	0.3234	0.0097	3587	14.9	0.08	0.31	0.26	0.002	0.13
Groenland	Innersuartut	GR0083-33	2.40	387.1	125.2	136	0.2973	0.0089	3461	13.8	0.264	1.00	0.26	0.004	0.27
Groenland	Oilanngaarsuit	GRO4057-11	1.14	89.3	29.7	44.3	0.1989	0.006	2819	9.7	0.08	0.29	0.27	0.007	0.51
Groenland	Qilanngaarsuit	GRO4057-13	1.71	274.3	64.6	52.6	0.1917	0.0058	2757	9.4	0.055	0.20	0.27	0.004	0.32
Groenland	Qilanngaarsuit	GRO4057-9	0.31	95.4	35.7	42.5	0.2616	0.026	3256	40.6	0.051	0.19	0.27	0.002	0.13
Groenland	Innersuartuut	GRO4058-3	1.61	263.5	89.1	58.9	0.30	0.009	3469	13.9	0.083	0.32	0.26	0.004	0.29
Groenland	Qilanngaarsuit	GRO4058-4	1.58	725.5	162.3	89.9	0.2075	0.0062	2888	10.1	0.073	0.27	0.27	0.002	0.12
Groenland	Qilanngaarsuit	GRO4058-7	1.20	564.1	177.9	110.5	0.2975	0.0089	3461	13.8	0.132	0.50	0.26	0.001	0.10
Groenland	Qilanngaarsuit	GRO4066-10	0.83	109.6	45.7	46.4	0.3302	0.0099	3618	15.2	0.086	0.33	0.26	0.004	0.30
Groenland	Qilanngaarsuit	GRO4066-14	0.77	440.1	93.7	47	0.1853	0.0056	2700	9.2	0.02	0.07	0.28	0.001	0.10
Groenland	Inukjuak	INO5028-7	1.09	171.5	64.2	55.6	0.3175	0.0095	3558	14.6	0.111	0.42	0.26	0.004	0.28
Inde	Closepet	CG24-1	0.54	600.6	137.3	108.3	0.2091	0.012	2897	18.9	0.12	0.44	0.27	0.001	0.05
Inde	Closepet	CG24-1	0.69	721.2	172.9	111.9	0.2238	0.0091	3008	14.6	0.104	0.38	0.27	0.001	0.05
Inde	Closepet	CG24-2	0.52	527.2	135.2	110.5	0.2352	0.012	3089	18.9	0.141	0.53	0.27	0.001	0.05
Inde	Closepet	CG24-3	0.16	174.1	51.4	54.3	0.230	0.096	3052	153.6	0.101	0.37	0.27	0.001	0.04
Inde	Closepet	CG24-4	0.19	49.9	22.5	41.7	0.221	0.090	2990	145	0.097	0.36	0.27	0.002	0.12
Inde	Closepet	CG24-5	0.17	38.8	20.2	40.2	0.2261	0.092	3026	147	0.076	0.28	0.27	0.002	0.12
Inde	Dharwar	PG24-5	0.21	96.6	28.4	51.9	0.1643	0.049	2501	82.8	0.171	0.61	0.28	0.001	0.09
Inde	Dharwar	PG25-1	0.28	196.8	47.5	64.7	0.179	0.035	2652	58.6	0.146	0.53	0.28	0.001	0.07
Inde	Dharwar	PG25-1	1.47	661	130	213.4	0.178	0.0053	2635	8.9	0.272	0.99	0.28	0.001	0.11
Inde	Dharwar	PG25-2	0.69	302.4	65.7	123.6	0.1765	0.011	2625	18.8	0.30	1.08	0.28	0.001	0.10
Inde	Dharwar	PG25-4	0.82	538.7	107.3	135.6	0.1763	0.0053	2620	8.8	0.187	0.68	0.28	0.001	0.08
Inde	Dharwar	PG25-5	0.93	1186.6	271.4	201.4	0.219	0.0066	2970	10.6	0.139	0.50	0.28	0.001	0.04
Inde	Dharwar	PG25-5	0.36	293.5	62.2	97.6	0.1695	0.023	2556	38.6	0.215	0.79	0.27	0.001	0.06
Inde	Dharwar	PG9-1	25.49	2249.2	378.8	350.5	0.1628	0.0049	2492	8.2	0.14	0.50	0.28	0.009	0.63
Inde	Dharwar	PG9-2	3.33	352.1	74.2	67.6	0.1755	0.0053	2613	8.8	0.087	0.31	0.28	0.007	0.50
Inde	Dharwar	PG9-3	2.08	2435.1	432.8	499	0.1727	0.0052	2584	8.6	0.191	0.70	0.27	0.001	0.05
Inde	Dharwar	PG9-3	3.77	116.3	34.4	45.4	0.1927	0.0058	2766	9.5	0.07	0.25	0.28	0.019	1.42
Inde	Dharwar	PG9-4	1.50	158.6	39	58.4	0.1672	0.005	2536	8.4	0.141	0.51	0.28	0.006	0.43
Inde	Dharwar	PG9-5	2.88	332.1	72.3	72.1	0.1809	0.0054	2660	9	0.107	0.39	0.28	0.006	0.45
Russie	Karelia	1161-1-2	0.20	175.9	53	68	0.2376	0.071	3099	113.5	0.187	0.69	0.27	0.001	0.05
Russie	Karelia	18B92-2	0.43	281.8	63	54.3	0.1802	0.011	2660	18.9	0.06	0.22	0.28	0.001	0.08

Tableau B-3 (suite) : Données isotopiques Pb-Pb pour les zircons individuels analysés par solution MC-ICP-MS

Localisation	Craton/Complex/Zone	Echantillon	Pb (ng)	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age mesuré (Ma)	2 σ	²⁰⁸ Pb*/ ²⁰⁶ Pb*	Th/U	f	²⁰⁴ Pb com (ng)	Pb com (ng)
Russie	Karelia	42/3-04-1	0.33	121.1	40.1	50.8	0.2386	0.025	3114	40	0.119	0.44	0.27	0.002	0.12
Russie	Karelia	42-3/04-1	0.36	360.3	96.8	81.3	0.2377	0.025	3102	40	0.125	0.47	0.27	0.001	0.05
Russie	Karelia	42-3/04-2	0.84	34.7	19.5	41.3	0.244	0.0073	3144	11.6	0.168	0.63	0.27	0.009	0.64
Russie	Karelia	742-2	0.78	422.1	87	63.7	0.1768	0.0053	2626	8.8	0.062	0.22	0.28	0.001	0.10
Sibérie	Onot terrane	4003-1	1.35	1581.8	424.6	141.9	0.2616	0.0078	3258	12.3	0.066	0.25	0.27	0.001	0.05
Sibérie	Onot terrane	40-03-1	2.61	250.9	72.8	57	0.2462	0.0074	3160	11.7	0.079	0.30	0.27	0.007	0.51
Sibérie	Onot terrane	40-03-2	1.55	120.3	48.4	46.7	0.3227	0.0097	3585	14.8	0.079	0.30	0.26	0.007	0.53
Sibérie	Onot terrane	40-03-3	1.63	147.5	49.6	47.8	0.2636	0.0079	3269	12.4	0.071	0.27	0.27	0.007	0.49
Sibérie	Onot terrane	40-03-4	1.07	291.6	81.8	55.2	0.2426	0.0073	3135	11.5	0.061	0.23	0.27	0.002	0.18
Sibérie	Onot terrane	4003-5	1.03	745.7	194.1	78.2	0.2455	0.0074	3155	11.7	0.054	0.20	0.27	0.001	0.08
Sibérie	Onot terrane	40-03-5	0.64	406.1	120	77.9	0.2694	0.014	3303	22.1	0.101	0.38	0.27	0.001	0.08
Sibérie	Onot terrane	5203-2	0.55	365.9	105.9	68.8	0.2599	0.020	3249	31.1	0.087	0.33	0.27	0.001	0.07
Afrique du Sud	Ancient Gneiss complex	AGC-R-1	1.67	1823 7	428.2	83.4	0 2286	0.0069	3042	11	0.025	0.09	0.27	0.001	0.05
Afrique du Sud	Ancient Gneiss complex	AGC-R-1	3 30	106.2	38.7	43.3	0 2635	0.0079	3268	12.4	0.053	0.20	0.27	0.017	1 29
Afrique du Sud	Ancient Gneiss complex	AGC-R-2	4.03	549	174.2	175.8	0.2000	0.009	3462	13.9	0.259	0.98	0.26	0.004	0.33
Afrique du Sud	Ancient Gneiss complex	AGC-R-3	4 73	412	90.6	220.7	0 1907	0.0057	2748	94	0.463	1.69	0.20	0.007	0.48
Afrique du Sud	Ancient Gneiss complex	AGC-R-4	0.96	75.9	33	51.9	0.3032	0.0091	3486	14	0.233	0.89	0.27	0.006	0.44
Afrique du Sud	Kaan Valley	KV2 1_08_3	0.90	59.6	25.1	39.6	0.3032	0.069	3060	111	0.023	0.09	0.20	0.000	0.09
Afrique du Sud	Kaap Valley	KV3 1_08_3	0.17	123.1	40.8	52.5	0.2313	0.002	3127	115	0.133	0.00	0.27	0.001	0.05
Afrique du Sud	Nelshoogte	NI \$2.2 08.3	0.21	144.6	40.0	16	0.2409	0.072	3120	877	0.058	0.20	0.27	0.001	0.06
Afrique du Sud	Stolzburg	ST 123 1	0.21	275.0	117.2	70.4	0.2403	0.055	3387	22.6	0.038	0.22	0.27	0.001	0.00
Afrique du Sud	Stolzburg	ST-J23-1 ST 123-2	1.17	405.4	117.2	82.8	0.2645	0.015	3276	12.5	0.089	0.34	0.20	0.001	0.00
Afrique du Sud	Stolzburg	ST-J23-2 ST 122-2	1.17	403.4	72.9	62.0	0.2031	0.008	3270	27.1	0.114	0.45	0.27	0.002	0.14
Afrique du Sud	Stolzburg	ST-J23-3	0.42	102.6	75.8	40.9	0.2700	0.017	2272	27.1	0.14	0.33	0.20	0.001	0.08
Afrique du Sud	Storzburg	S1-J0-2	0.17	103.0	39.0	40.8	0.2819	0.085	33/3	131./	0.023	0.09	0.26	0.001	0.07
Afrique du Sud	Steynsdorp	Stp-1	2.59	227.2	/5.5	4/./	0.287	0.0086	3402	13.4	0.043	0.16	0.26	0.007	0.55
Afrique du Sud	Steynsdorp	Stp-2	3.69	699.5	190.2	85.3	0.2564	0.0077	3229	12.1	0.068	0.26	0.27	0.004	0.28
Afrique du Sud	Steynsdorp	Stp-3	11.51	164.5	50.7	58.2	0.2404	0.0072	3127	11.5	0.134	0.50	0.27	0.042	3.10
Afrique du Sud	Steynsdorp	Stp-4	1.02	656.9	206.9	107.4	0.2996	0.009	3469	13.9	0.108	0.41	0.26	0.001	0.08
Afrique du Sud	Steynsdorp	Stp-5	1.09	740.4	158.7	78.2	0.1983	0.0059	2814	9.7	0.055	0.20	0.27	0.001	0.08
Afrique du Sud	Steynsdorp	Stp-9	0.16	214.4	71.3	47.4	0.2846	0.085	3393	132.8	0.045	0.17	0.26	0.000	0.04
Swaziland	Ancient Gneiss complex	AGC-J-1	3.60	411	111.1	39.5	0.2433	0.0073	3142	11.6	0.002	0.01	0.27	0.006	0.47
Swaziland	Ancient Gneiss complex	AGC-J-2	5.38	431.4	109	53.6	0.2263	0.0068	3027	10.9	0.036	0.13	0.27	0.009	0.67
Swaziland	Ancient Gneiss complex	AGC-J-3	3.50	805.7	186.3	56.3	0.2169	0.0065	2959	10.5	0.023	0.08	0.27	0.003	0.25
Swaziland	Ancient Gneiss complex	AGC-J-4	4.94	500.4	138.3	41.6	0.2546	0.0076	3211	12	0.006	0.02	0.27	0.007	0.54
Swaziland	Ancient Gneiss complex	AGC-J-5	1.24	187	56.9	38.9	0.2453	0.0074	3154	11.7	0.002	0.01	0.27	0.004	0.32
Δn	alvse de standard de zircon		Ph (ng)	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 6	Ago mosurá (Mo)	2 σ abs	²⁰⁸ Pb*/ ²⁰⁶ Pb*	Th/II	f	²⁰⁴ Ph.com	Ph com
	aryse de standard de zireon	4.62	1 b (lig)	520.4	54.2	10/ 10	10710	20		error	0.1/2	0.54	1	10 com	0.26
Standard		AS3	5.42	530.4	54.2 82.6	121.5	0.0753	0.0023	1092	59.8	0.162	0.54	0.30	0.005	0.36
Standard		ASS	1.62	909.5	82.0	198	0.0751	0.0023	1092	59.0	0.179	0.59	0.30	0.001	0.10
Standard		FCI	1.0/	1525.0	128.4	510.1	0.0748	0.0022	1080	59.5 (0.1	0.18	0.60	0.30	0.001	0.06
Standard		FC-I	2.28	431/.0	341.1	5/1.6	0.0757	0.0023	1095	00.1	0.124	0.41	0.30	0.000	0.03
Standard		Mudlank	0.10	//.5	18.6	46.4	0.0505	0.032	261	94.5	0.133	0.5/	0.31	0.001	0.05
Standard		Plesovicé	/.19	5150.6	28/	198.4	0.0529	0.0016	360	41.9	0.031	0.10	0.31	0.001	0.09
Standard		QGNG	1.90	820.6	106.7	268.9	0.1136	0.0034	1863	90.1	0.287	1.00	0.29	0.002	0.12
Standard		R33	0.38	324.9	30.9	124.4	0.0498	0.015	217	46.9	0.28	0.89	0.32	0.001	0.06
Standard		R33	0.73	153.8	22.8	69.4	0.0528	0.0056	328	15.7	0.227	0.74	0.31	0.003	0.22

Tableau B-3 (suite) : Données isotopiques Pb-Pb pour les zircons individuels analysés par solution MC-ICP-MS

Tableau B-4 : Données isoto	piques Lu-Hf r	pour les zircons anal	vsés par ablation-laser	MC-ICP-MS
ruoreud B 1. Bornieeb iboro	iques Lu in	pour res En como una	goes par acration haber	me rer me

Tableau B-4 : Donnees isot	opiques Lu-HI pour les zircon	is analyses par ablation	-laser MC-ICP-MIS		176770177770		176x (177xxe		1765 72 /17755.0	176 *** 0/177 *** 0			
Localisation	Craton/Complex/Zone	Echantillon	Age mesure (Ma)	2 σ (Ma)	Ht///Ht	2σ	Lu/MH	2σ	Yb/Ht	Ht/ Ht _{in}	E _{Hf}	8 _{Hfin}	2σ
Antarctique	Mount Sones	78285007_1	3730	11.4	0.280298	5.1E-05	0.00083	4.4E-05	0.039	0.280238	-87.9	-4.4	1.8
Antarctique	Mount Sones	78285007_1	2458	6.9	0.280409	5.7E-05	0.00010	3.1E-07	0.004	0.280404	-84	-28.6	2
Antarctique	Mount Sones	78285007_11	3396	15.5	0.280171	3.6E-05	0.00033	1.7E-05	0.013	0.28015	-92.4	-15.5	1.3
Antarctique	Mount Sones	78285007_13	3552	14.5	0.280393	4.4E-05	0.00075	2.7E-05	0.030	0.280341	-84.6	-5	1.6
Antarctique	Mount Sones	78285007_15	3628	14.2	0.280321	7.7E-05	0.0012	7.4E-06	0.051	0.280234	-87.1	-7	2.7
Antarctique	Mount Sones	78285007_2	2473	13.4	0.28036	6.3E-05	0.00013	1.7E-06	0.007	0.280354	-85.7	-30	2.2
Antarctique	Mount Sones	78285007_2	3373	5.2	0.280329	3.9E-05	0.00068	1.7E-05	0.029	0.280285	-86.9	-11.3	1.4
Antarctique	Mount Sones	78285007_3	2793	4.5	0.280795	4.1E-05	0.00038	1.6E-05	0.016	0.280774	-70.4	-7.6	1.4
Antarctique	Mount Sones	78285007_4	3688	11.6	0.280786	8.3E-05	0.00036	2.1E-05	0.019	0.28076	-70.7	13.2	3
Antarctique	Mount Sones	78285007_4	2593	6.2	0.280769	4.0E-05	0.00019	4.4E-06	0.008	0.28076	-71.3	-12.8	1.4
Antarctique	Mount Sones	78285007_5	2826	12.1	0.280719	5.6E-05	0.00017	7.8E-06	0.010	0.28071	-73.1	-9.1	2
Antarctique	Mount Sones	78285007_6a	2528	7.5	0.28032	3.1E-05	0.00008	4.5E-06	0.004	0.280316	-87.2	-30.1	1.1
Antarctique	Mount Sones	78285007_6b	3244	5.3	0.28032	3.9E-05	0.0014	8.5E-06	0.059	0.280235	-87.2	-16.1	1.4
Antarctique	Mount Sones	78285007_7	3460	14.7	0.280339	3.2E-05	0.00076	1.2E-05	0.031	0.280288	-86.5	-9.1	1.1
Antarctique	Mount Sones	78285007_8	3787	14.1	0.280355	4.2E-05	0.0012	4.3E-05	0.049	0.280266	-85.9	-2.1	1.5
Antarctique	Gage Ridge	78285013_1	2490	14.6	0.280327	4.0E-05	0.00099	4.1E-05	0.034	0.28028	-86.9	-32.2	1.4
Antarctique	Gage Ridge	78285013_1	2490	14.6	0.280637	4.8E-05	0.0015	1.5E-04	0.062	0.280566	-76	-22.1	1.7
Antarctique	Gage Ridge	78285013_10	2918	9.2	0.280282	3.1E-05	0.00066	9.6E-06	0.029	0.280245	-88.5	-23.4	1.1
Antarctique	Gage Ridge	78285013_2	2506	14.4	0.28078	4.6E-05	0.00068	2.4E-05	0.028	0.280747	-70.9	-15.2	1.6
Antarctique	Gage Ridge	78285013_3	3310	8	0.280317	6.2E-05	0.00097	2.5E-05	0.037	0.280255	-87.3	-13.8	2.2
Antarctique	Gage Ridge	78285013_4	3627	8.5	0.280367	4.7E-05	0.0018	1.0E-04	0.075	0.280239	-85.5	-6.8	1.7
Antarctique	Gage Ridge	78285013_5	3939	12.7	0.280191	4.9E-05	0.0011	1.9E-04	0.053	0.280107	-91.7	-4.1	1.7
Antarctique	Gage Ridge	78285013_5	3416	8.2	0.280336	4.7E-05	0.00092	2.4E-05	0.039	0.280275	-86.6	-10.6	1.7
Antarctique	Gage Ridge	78285013_6	2551	10.4	0.280223	5.4E-05	0.00086	4.1E-05	0.037	0.280181	-90.6	-34.3	1.9
Australie	Muccan	142828_1	3442	10.2	0.28068	4.5E-05	0.0018	7.2E-05	0.083	0.280564	-74.4	0.3	1.6
Australie	Muccan	142828_2	3343	10.7	0.280648	7.8E-05	0.0013	3.9E-05	0.060	0.280564	-75.6	-2	2.8
Australie	Muccan	142828_3	3438	11.2	0.280577	8.1E-05	0.00081	1.0E-04	0.037	0.280523	-78.1	-1.2	2.9
Australie	Muccan	142828_4	3095	11.5	0.280589	5.3E-05	0.0016	6.8E-05	0.065	0.280493	-77.6	-10.4	1.9
Australie	Muccan	142828_5	2918	13.6	0.280614	6.5E-05	0.0012	3.3E-05	0.050	0.280546	-76.8	-12.8	2.3
Brésil	Sete Voltas	SV11_1	3370	16	0.280574	5.3E-05	0.00052	1.7E-05	0.021	0.280541	-78.2	-2.2	1.9
Brésil	Sete Voltas	SV11_1	3372	7.8	0.280595	4.8E-05	0.00072	1.5E-05	0.029	0.280548	-77.4	-1.9	1.7
Brésil	Sete Voltas	SV11_2	3437	8.7	0.280511	6.4E-05	0.00045	1.0E-05	0.021	0.280482	-80.4	-2.7	2.3
Brésil	Sete Voltas	SV11_2	3296	15.9	0.280543	6.1E-05	0.00068	6.6E-05	0.029	0.28050	-79.3	-5.4	2.2
Brésil	Sete Voltas	SV11_3	3261	15.9	0.280607	5.4E-05	0.00072	1.7E-05	0.028	0.280561	-77	-4.1	1.9
Brésil	Sete Voltas	SV11_4	3421	17.6	0.280573	5.5E-05	0.00036	4.8E-06	0.016	0.280549	-78.2	-0.7	2
Brésil	Sete Voltas	SV11_4	3417	11.2	0.280631	3.6E-05	0.0013	4.9E-05	0.053	0.280544	-76.2	-1	1.3
Brésil	Sete Voltas	SV11_5	3397	15.9	0.280532	6.7E-05	0.00043	2.0E-05	0.019	0.280503	-79.7	-2.9	2.4
Brésil	Sete Voltas	SV11_5	3398	8.1	0.28063	4.4E-05	0.00064	3.1E-05	0.028	0.280588	-76.2	0.1	1.6
Brésil	Sete Voltas	SV11_6	3381	8.2	0.280576	5.9E-05	0.00052	4.7E-05	0.022	0.280542	-78.1	-1.9	2.1
Brésil	Sete Voltas	SV11_7	3430	9.9	0.280518	4.0E-05	0.00036	5.1E-06	0.018	0.280494	-80.2	-2.5	1.4
Brésil	Sete Voltas	SV2_1	3302	10.2	0.280572	5.8E-05	0.00053	6.1E-06	0.022	0.280539	-78.2	-3.9	2.1
Brésil	Sete Voltas	SV2_1	3395	16.5	0.280582	7.0E-05	0.00045	2.7E-05	0.022	0.280553	-77.9	-1.2	2.5
Brésil	Sete Voltas	SV2_2	3382	9.9	0.280586	6.7E-05	0.0011	2.3E-05	0.049	0.280517	-77.8	-2.8	2.4
Brésil	Sete Voltas	SV2_2	3310	16.3	0.280642	7.6E-05	0.00070	4.5E-05	0.033	0.280597	-75.8	-1.6	2.7
Brésil	Sete Voltas	SV2_3	3318	10.1	0.280573	6.3E-05	0.00097	3.5E-05	0.046	0.280511	-78.2	-4.5	2.2
Brésil	Sete Voltas	SV2_4	3350	10.8	0.280486	7.0E-05	0.00034	6.6E-06	0.015	0.280465	-81.3	-5.4	2.5
Brésil	Sete Voltas	SV2_4	3230	18.2	0.28061	1.0E-04	0.00099	2.0E-04	0.046	0.28055	-76.9	-5.3	3.5
Brésil	Sete Voltas	SV2_5	3424	16.2	0.280606	7.6E-05	0.00032	3.7E-05	0.016	0.280585	-77.1	0.7	2.7
Brésil	Sete Voltas	SV2 5	3809	10.5	0.280623	9.5E-05	0.00091	2.9E-05	0.042	0.280556	-76.4	8.8	3.4
Brésil	Sete Voltas	SV2_7	3440	8.6	0.28076	1.0E-04	0.0023	8.1E-05	0.12	0.28061	-71.5	2.0	3.6
Brésil	Sete Voltas	SV9 1	2923	17.7	0.28051	7.4E-05	0.00077	8.5E-06	0.028	0.280467	-80.4	-15.4	2.6
Brésil	Sete Voltas	SV9 1	3264	15.9	0.280549	4.7E-05	0.0015	1.9E-05	0.061	0.280456	-79.1	-7.8	1.7
Brésil	Sete Voltas	SV9_2	3410	16.2	0.28051	1.0E-04	0.0010	4.1E-05	0.045	0.28044	-80.5	-4.8	3.7

Lassisation	Craten/Complex/Zone	Eshantillan	Ago mosunó (Mo)	$2 = (M_{e})$	176116/177116	2 -	1761/177116	2 -	176 V.L./177 TTC	176116/177116			2 -
	Craton/Complex/Zone	Echantilion	Age mesure (Ma)	2 6 (Ma)	HI/ HI	2σ	LU/ HI	2 G	YD/ HI	HI/ HI _{in}	E _{Hf}	E _{Hfin}	2 σ
Bresh	Sete Voltas	SV9_2	3301	15.0	0.280588	5.0E-05	0.0012	4./E-05	0.048	0.28051	-//./	-3.5	1.8
Bresil	Sete Voltas	SV9_3	3472	15.6	0.280499	5./E-05	0.00063	1.1E-05	0.028	0.280457	-80.8	-2.8	2
Bresil	Sete Voltas	SV9_3	3451	16.1	0.28062	6.6E-05	0.00049	2.0E-05	0.022	0.280588	-/0.0	1.4	2.3
Bresil	Sete Voltas	SV9_4	3382	15.9	0.280533	5.6E-05	0.00037	6.1E-06	0.015	0.280509	-79.6	-3.1	2
Brésil	Sete Voltas	SV9_4	3405	16.5	0.280541	3.4E-05	0.00046	2.3E-05	0.017	0.280511	-79.4	-2.5	1.2
Brésil	Sete Voltas	SV9_5	3404	16.9	0.280588	2.9E-05	0.00082	1.2E-05	0.035	0.280534	-77.7	-1.6	1
Brésil	Sete Voltas	SV9_5	3335	16.2	0.280535	6.8E-05	0.00043	2.0E-05	0.019	0.280508	-79.6	-4.2	2.4
Brésil	Sete Voltas	SV9_7	3420	15.2	0.280483	4.7E-05	0.00045	2.4E-06	0.019	0.280454	-81.4	-4.1	1.6
Brésil	Sete Voltas	SV9_8	3438	15.3	0.28052	6.8E-05	0.00049	1.4E-05	0.022	0.280488	-80.1	-2.5	2.4
Brésil	Sete Voltas	SV9_9	3403	15.2	0.280511	5.2E-05	0.00036	8.5E-06	0.016	0.280488	-80.4	-3.3	1.8
Canada	Acasta	Acasta Big	3997	15.4	0.28025	5.0E-05	0.0018	7.3E-06	0.074	0.280107	-89.7	-2.7	1.8
Canada	Acasta	AG09001_1	3763	13.1	0.280332	4.8E-05	0.0014	3.0E-05	0.060	0.280228	-86.7	-4	1.7
Canada	Acasta	AG09001_2	3592	12.7	0.280407	6.4E-05	0.0010	2.8E-05	0.048	0.280337	-84.1	-4.2	2.2
Canada	Acasta	AG09001_2	3414	4.8	0.280263	4.9E-05	0.0014	3.7E-05	0.054	0.280173	-89.2	-14.3	1.7
Canada	Acasta	AG09001_5	3642	13.2	0.280167	3.7E-05	0.00094	2.0E-05	0.043	0.280101	-92.6	-11.4	1.3
Canada	Acasta	AG09001_6	3444	6.4	0.280206	9.0E-05	0.0011	2.6E-05	0.048	0.280133	-91.2	-15	3.2
Canada	Acasta	AG09001_8	3439	5.6	0.28045	1.1E-04	0.0015	6.2E-05	0.057	0.28036	-82.4	-7.2	3.9
Canada	Acasta	AG09001_9	3499	6.6	0.280263	4.9E-05	0.0014	3.7E-05	0.054	0.280171	-89.2	-12.3	1.7
Canada	Acasta	AG09008_1	3736	5.8	0.280654	7.6E-05	0.0045	9.8E-05	0.19	0.280329	-75.3	-1	2.7
Canada	Acasta	AG09008_1	3555	12.9	0.28033	3.7E-05	0.0014	1.2E-04	0.069	0.280235	-86.8	-8.7	1.3
Canada	Acasta	AG09008_2	3526	13.2	0.28043	6.6E-05	0.0032	2.1E-04	0.15	0.280214	-83.3	-10.1	2.3
Canada	Acasta	AG09008_3	3517	13.5	0.280428	6.4E-05	0.0026	4.2E-05	0.12	0.280253	-83.4	-9	2.2
Canada	Acasta	AG09008_3	3458	6.7	0.280394	6.2E-05	0.0013	8.5E-05	0.055	0.280305	-84.5	-8.5	2.2
Canada	Acasta	AG09008_4	3659	17.9	0.280459	7.4E-05	0.0030	5.4E-05	0.12	0.280247	-82.3	-5.8	2.6
Canada	Acasta	AG09008_5	3635	18.4	0.28031	1.0E-04	0.0024	1.1E-04	0.084	0.28014	-87.7	-10.2	3.7
Canada	Acasta	AG09008_6	3683	18.1	0.280334	7.0E-05	0.0015	2.0E-04	0.060	0.280231	-86.7	-5.8	2.5
Canada	Acasta	AG09008gt_1	3430	21.3	0.280223	6.0E-05	0.00099	1.7E-05	0.041	0.280158	-90.6	-14.4	2.1
Canada	Acasta	AG09008gt_1	3757	13.6	0.280201	4.4E-05	0.0011	2.5E-05	0.058	0.280122	-91.4	-7.9	1.5
Canada	Acasta	AG09008gt 1	3690	8	0.280238	4.0E-05	0.00088	3.0E-05	0.040	0.280175	-90.1	-7.6	1.4
Canada	Acasta	AG09008gt 11	3906	20	0.280262	8.1E-05	0.0013	5.7E-05	0.054	0.280165	-89.2	-2.8	2.9
Canada	Acasta	AG09008gt_12	3812	8.8	0.28020	4.1E-05	0.00092	4.4E-05	0.045	0.280132	-91.4	-6.2	1.4
Canada	Acasta	AG09008gt_13	3551	20.4	0.280226	6.6E-05	0.0012	7.0E-05	0.053	0.280141	-90.5	-12.1	2.3
Canada	Acasta	AG09008gt 13	3757	20.6	0.280226	6.6E-05	0.0012	7.0E-05	0.053	0.280136	-90.5	-7.4	2.3
Canada	Acasta	AG09008gt 15	3899	7.8	0.280238	4.3E-05	0.0016	1.2E-04	0.076	0.280119	-90.1	-4.6	1.5
Canada	Acasta	AG09008gt 2	3906	7.8	0.28015	4.1E-05	0.00040	8.5E-06	0.018	0.28012	-93.2	-4.4	1.4
Canada	Acasta	AG09008gt_2	3668	20.9	0.28022	3.9E-05	0.0013	1.3E-05	0.050	0.280129	-90.7	-9.8	1.4
Canada	Acasta	AG09008gt_2	3257	13.9	0.280249	4.3E-05	0.0013	1.9E-05	0.072	0.280165	-89.7	-18.3	1.5
Canada	Acasta	AG09008gt 3	3374	14.2	0.280312	5.0E-05	0.0018	5.6E-05	0.088	0.280193	-87.5	-14.5	1.8
Canada	Acasta	AG09008gt 4	3776	20.6	0.28026	1.2E-04	0.0014	8.2E-06	0.054	0.28016	-89.4	-6.3	4.1
Canada	Acasta	AG09008gt 4	3107	14.7	0.280204	5.0E-05	0.00094	7.5E-05	0.046	0.280148	-91.3	-22.5	1.8
Canada	Acasta	AG09008gt_5	3712	20.6	0.280176	6.5E-05	0.0011	6.1E-05	0.043	0.28010	-92.3	-9.8	2.3
Canada	Acasta	AG09008gt 5	3330	13.2	0.280221	7.0E-05	0.0010	8.3E-05	0.051	0.280155	-90.7	-16.9	2.5
Canada	Acasta	AG09008gt 6	3896	13.2	0.280204	3.4E-05	0.0010	2.8E-05	0.055	0.280126	-91.3	-4.4	1.2
Canada	Acasta	AG09008gt 6	2795	22.5	0.280229	6.3E-05	0.0013	5.0E-06	0.055	0.280162	-90.4	-29.3	2.2
Canada	Acasta	AG09008gt 7	3982	19.7	0.28014	1.1E-04	0.00078	3.8E-05	0.031	0.28008	-93.7	-4.2	4
Canada	Acasta	AG09008gt 7	3677	8.4	0.280252	5.1E-05	0.00087	1.7E-05	0.042	0.28019	-89.6	-7.4	1.8
Canada	Acasta	AG09008gt 8	3920	20	0.280259	6.1E-05	0.0015	2.1E-05	0.060	0.280149	-89.3	-3	2.2
Canada	Acasta	AG09008gt 8	3739	7.8	0.280193	4.2E-05	0.00094	1.9E-05	0.046	0.280124	-91.7	-8.3	1.5
Canada	Acasta	AG09009 1	3604	8.6	0.280394	8.2E-05	0.00080	3.5E-05	0.032	0.280339	-84.5	-3.8	2.9
Canada	Acasta	AG09009 3	3512	8.6	0.28035	1.0E-04	0.00089	2.1E-05	0.035	0.28029	-86	-7.7	3.7
Canada	Acasta	AG09009 4	3602	8.6	0.280331	7.1E-05	0.00078	2.6E-05	0.029	0.280277	-86.8	-6.1	2.5
Canada	Acasta	AG09009 5	3583	8.4	0.280451	7.6E-05	0.0010	2.3E-05	0.044	0.280379	-82.5	-2.9	2.7
Canada	Acasta	AG09014 1	3840	5.1	0.280281	3.9E-05	0.0011	2.9E-05	0.044	0.280202	-88.6	-3.1	1.4

Tableau B-4 (suite) : Données isotopiques Lu-Hf pour les zircons analysés par ablation-laser MC-ICP-MS

Localisation	Creton/Complex/Zone	E chantillon	Ago mosuró (Mo)	$\frac{1}{2} = (M_{0})$	176116/177116	2 -	1761/17711f	2 -	176Vb/177Uf	176 116 /177 116			2 -
Canada	A sosts		Age mesure (Ma)	20 (Ma)	0.280405	5 2E 05	0.0015	5 2E 05	0.059	0.280206	6Hf	E _{Hfin}	1.0
Canada	Acasta	AG07014_2	4205	5.5	0.280493	7.9E-05	0.0013	3.2E-05	0.058	0.280390	-01 92 /	+	1.9
Canada	Acasta	AG09014_5 AC00014_4	4203	0.2	0.280427	7.8E-05	0.0014	2.5E-05	0.001	0.280314	-03.4 92.0	9.0	2.7
Canada	Acasta	AG05014_4	2814	4.4	0.280412	7.4E-05	0.00033	2.5E-05	0.023	0.280373	-05.9	-4	2.0
Canada	Acasta	AG07014_0 AC00016_1	3688	16.6	0.280332	7.0E-05 3.7E.05	0.00044	6.9E-05	0.019	0.28030	-80.7	-0.2	2.7
Canada	Acasta	AG09010_1	2847	26.0	0.280299	3.7E-05	0.0010	0.9E-05	0.000	0.280187	-07.9	-7.2	1.3
Canada	Acasta	AG09010_1	2800	20.9	0.280177	3.4E-03	0.00037	4.3E-05	0.025	0.280133	-92.2	-3.5	1.2
Canada	Acasta	AG07010_1	2020	16	0.28023	3.0E-03	0.0010	1.5E.05	0.040	0.280172	-09.7	-2.9	1.5
Canada	Acasta	AG09010_12 AC00016_12	2259	22.7	0.28015	4.5E-05	0.00045	7.5E-05	0.021	0.280090	-93.9	-4.4	1.0
Canada	Acasta	AG09010_13	2071	22.7	0.280103	9.7E-05	0.00070	7.5E-00 2.1E-05	0.033	0.28012	-92.7	-17.5	2.0
Canada	Acasta	AG09010_13	2677	21.9	0.280218	8.5E-05	0.00060	5.1E-05	0.027	0.280175	-90.8	-3.5	2.9
Canada	Acasta	AG09010_14	301/	16.4	0.280187	2.7E-05	0.00063	0.0E-00	0.023	0.280144	-91.9	-9	0.9
Canada	Acasta	AG09010_14	2042	10.4	0.280103	3.8E-05	0.00005	2.2E-05	0.033	0.280033	-94.0	-0.5	1.3
Canada	Acasta	AG09010_15	2075	4.5	0.280203	4.9E-05	0.00031	1.4E-00	0.023	0.280100	-91.2	-1.9	1.7
Canada	Acasta	AG09010_15	3973	21	0.280164	3.2E-03 2.7E-05	0.00030	1.7E-05	0.017	0.280137	-92.7	-2.1	1.1
Canada	Acasta	AG09010_10 AC00016_19	2040	4	0.280103	3.7E-05	0.00029	1.2E-05	0.013	0.280145	-92.7	-0.1	1.5
Canada	Acasta	AG09010_10 AC00016_2	2024	4.2	0.280255	4.5E-05	0.00003	1.5E-05	0.031	0.280185	-90.2	-1.2	1.0
Canada	Acasta	AG09010_2	2062	20.7	0.26014	5.0E-05	0.00041	1.8E-05	0.020	0.280109	-95.5	-4.1	1.5
Canada	Acasta	AG09010_2	3702	J.1 16	0.280234	9.1E-05	0.00031	2.1E.05	0.013	0.26021	-90.2	0.2	3.2
Canada	Acasta	AG09010_2	2020	10	0.280183	3.4E-03	0.00077	2.2E.05	0.032	0.280128	-92	-0.4	1.2
Canada	Acasta	AG09010_21	3929	4.0	0.280192	5.9E-05	0.00084	3.2E-03	0.040	0.280128	-91./	-3.5	1.4
Canada	Acasta	AG09010_3	2142	13.2	0.280129	4.5E-05	0.00047	4.0E-05	0.019	0.280093	-93.9	-4.1	1.3
Canada	Acasta	AG09010_5	2064	4.0	0.280182	3.9E-03	0.00077	1.7E-05	0.039	0.280133	-92.1	-22	1.4
Canada	Acasta	AG09010_4	2407	4.0	0.280138	3.4E-03	0.00058	5.7E-05	0.020	0.280129	-92.9	-2.7	1.2
Canada	Acasta	AG09010_4	2476	28.2	0.280113	3.6E-05	0.00004	1.0E-05	0.023	0.280072	-74.4	-15.9	1.5
Canada	Acasta	AG07010_5	2065	20.2	0.280207	2.0E-05	0.00070	9.3E-00	0.039	0.280130	-91.2	-13.4	0.9
Canada	Acasta	AG07010_5	2049	0.2	0.280120	4.5E-05	0.00082	4.7E-05	0.040	0.280078	-24	-23.9	1.3
Canada	Acasta	AG09010_0 AC00016_7	2610	27.4	0.280142	4.8E-05	0.00025	1.2E-05	0.010	0.280125	-95.4	-3.5	1.7
Canada	Acasta	AC00016 8	2052	27.4	0.28021	2.9E-05	0.00070	2.8E-05	0.032	0.280101	02.2	-10	12
Canada	Acasta	AC09016_0	3867	14.6	0.280177	5.0E-05	0.00032	2.8E-05 8.9E-06	0.032	0.280125	-92.2	-3.2	1.2
Canada	Acasta	AG09017_1	3801	14.0	0.280266	4 2E-05	0.0015	3.2E-05	0.013	0.280155	-92.5	-5.7	1.5
Canada	Acasta	AG09017_1	3729	7.2	0.280200	9.7E-05	0.0015	1.1E-04	0.13	0.280255	-82.8	-3.8	3.4
Canada	Acasta	AG09017_1	3493	14.1	0.280406	5.0E-05	0.0034	5 3E-05	0.18	0.280175	-84.1	-12.3	1.8
Canada	Acasta	AG09017_1	3842	73	0.280283	4.9E-05	0.0022	1.8E-05	0.099	0.280121	-88.5	-12.5	1.0
Canada	Acasta	AG09017_10	3888	13	0.280224	8 0E-05	0.0014	2 3E-05	0.064	0.280118	-90.6	-49	2.8
Canada	Acasta	AG09017_10	3687	82	0.280461	9.7E-05	0.0030	6 3E-05	0.17	0 280248	-82.2	-51	3.4
Canada	Acasta	AG09017_11	3850	7	0.280367	4 3E-05	0.0029	2.0E-04	0.13	0.280152	-85.5	-4.6	1.5
Canada	Acasta	AG09017_12	3152	19	0.28055	6 1E-05	0.00013	9 2E-07	0.006	0 280542	-79	-7.3	2.2
Canada	Acasta	AG09017_14	3535	10.3	0.280307	6.5E-05	0.0022	3.5E-05	0.10	0.280159	-87.6	-11.9	2.3
Canada	Acasta	AG09017_14	3655	9.2	0.280279	7.5E-05	0.00083	5.2E-05	0.042	0.28022	-88.6	-6.9	2.7
Canada	Acasta	AG09017_15	3408	14.3	0.280363	7.4E-05	0.0019	6.9E-05	0.108	0.280237	-85.6	-12.1	2.6
Canada	Acasta	AG09017_16	3963	7.6	0.280324	7.3E-05	0.0021	2.2E-05	0.12	0.280159	-87	-1.6	2.6
Canada	Acasta	AG09017 2	3919	14	0.280381	8.8E-05	0.0025	5.0E-05	0.11	0.280191	-85	-1.5	3.1
Canada	Acasta	AG09017 2	3887	4.7	0.280312	6.4E-05	0.0016	1.9E-05	0.078	0.280191	-87.5	-2.3	2.3
Canada	Acasta	AG09017_3	3900	5.2	0.280193	6.7E-05	0.00067	8.4E-05	0.027	0.280142	-91.7	-3.8	2.4
Canada	Acasta	AG09017_3	3264	14.6	0.280232	4.5E-05	0.0014	2.1E-05	0.074	0.280145	-90.3	-18.8	1.6
Canada	Acasta	AG09017_3	3763	12.1	0.280159	8.1E-05	0.0015	3.5E-05	0.079	0.280048	-92.9	-10.4	2.9
Canada	Acasta	AG09017_4	3885	4.2	0.28022	4.8E-05	0.00075	5.5E-05	0.031	0.280164	-90.7	-3.3	1.7
Canada	Acasta	AG09017 4	3766	12.7	0.28027	1.0E-04	0.00070	3.9E-05	0.036	0.28021	-89.1	-4.4	3.6
Canada	Acasta	AG09017 5	3974	11.8	0.280358	4.7E-05	0.0015	1.1E-04	0.081	0.280243	-85.8	1.6	1.7
Canada	Acasta	AG09017 8	3253	8	0.28022	1.1E-04	0.00054	1.7E-05	0.028	0.28018	-90.7	-17.7	3.8
Canada	Acasta	AG09017 8a	3910	8.2	0.28031	9.2E-05	0.0023	4.3E-05	0.12	0.280135	-87.5	-3.8	3.3
Canada	Acasta	AG09017_8b	3504	7.6	0.280391	7.0E-05	0.0020	6.1E-05	0.094	0.280259	-84.6	-9.1	2.5

Tableau D-4 (suite). Donnees isotopiques Lu-in pour les zneons analyses par ablandi-laser MC-ICI-N	Tableau B-4 (suite) : Données isotopiques	s Lu-Hf pour les zircons	analysés par ablatio	n-laser MC-ICP-MS
--	--------------------	-------------------------	--------------------------	----------------------	-------------------

Tableau B-4 (suite) : Donn	ees isotopiques Lu-Hi pour les	s zircons analyses par a	ablation-laser MC-ICP	-MS	176110/177110	2	1761 /177116	2	1765 /1 /177110	176110/177110			
Localisation	Craton/Complex/Zone	Echantillon	Age mesure (Ma)	2 σ (Ma)		2 σ	Lu/THI	2 σ	Y D/ HI		E _{Hf}	ε _{Hfin}	2 σ
Canada	Acasta	AG09032_1	3596	9.5	0.280436	4.0E-05	0.0011	6.8E-05	0.043	0.280361	-83.1	-3.2	1.4
Canada	Acasta	AG09032_2	3618	10.6	0.280431	3.9E-05	0.00078	8.3E-05	0.031	0.280377	-83.2	-2.1	1.4
Canada	Acasta	AG09032_2	3961	11	0.280508	9.2E-05	0.0023	1.7E-05	0.13	0.28033	-80.5	4.4	3.2
Canada	Acasta	AG09032_3	3593	6	0.280368	4.9E-05	0.00055	1.3E-05	0.022	0.28033	-85.5	-4.4	1.7
Canada	Acasta	AG09032_4	3594	5.3	0.280444	3.0E-05	0.00081	4.3E-05	0.034	0.280387	-82.8	-2.3	1.1
Canada	Acasta	AG09032_5	3594	5.2	0.280412	5.1E-05	0.0013	5.9E-05	0.051	0.280325	-83.9	-4.6	1.8
Chine	Guzuizi	08GZZ01_1	2390	11.3	0.28137	2.8E-05	0.00087	7.3E-05	0.042	0.28133	-50	2.8	1
Chine	Guzuizi	08GZZ01_2	2514	11.1	0.28126	3.9E-05	0.00036	2.7E-06	0.017	0.281243	-53.9	2.6	1.4
Chine	Guzuizi	08GZZ01_3	2474	11.2	0.281352	4.1E-05	0.00065	8.8E-06	0.032	0.281321	-50.7	4.4	1.5
Chine	Guzuizi	08GZZ01_4	2436	11.7	0.281318	3.7E-05	0.00041	1.4E-05	0.021	0.281299	-51.9	2.8	1.3
Chine	Guzuizi	08GZZ01_5	2356	15.1	0.281347	4.4E-05	0.00031	7.1E-06	0.016	0.281333	-50.8	2.1	1.6
Chine	Xiwangshan	08XWS01_1	2494	21.7	0.281355	4.4E-05	0.00063	4.5E-06	0.029	0.281325	-50.6	5	1.6
Chine	Xiwangshan	08XWS01_2	2501	21.6	0.281379	4.3E-05	0.00053	5.1E-06	0.024	0.281353	-49.7	6.2	1.5
Chine	Xiwangshan	08XWS01_3	2266	22.2	0.28140	5.8E-05	0.00055	6.6E-06	0.025	0.281376	-49	1.5	2
Chine	Xiwangshan	08XWS01_5	2418	22.3	0.281296	5.9E-05	0.00057	3.5E-06	0.025	0.28127	-52.7	1.3	2.1
Chine	Dongshan	09AS03_1	3336	10.3	0.28061	6.1E-05	0.00074	3.8E-05	0.035	0.280563	-76.9	-2.2	2.2
Chine	Dongshan	09AS03_4	3334	10.4	0.280753	6.5E-05	0.00081	5.7E-05	0.032	0.280701	-71.9	2.6	2.3
Finlande	Karelia	H391_2	2804	12.5	0.281124	3.5E-05	0.00066	8.6E-06	0.028	0.281089	-58.7	3.9	1.2
Finlande	Karelia	H391_4	2864	12.7	0.281098	3.4E-05	0.00076	1.1E-05	0.034	0.281056	-59.7	4.2	1.2
Finlande	Karelia	H391_5	2830	12.6	0.281076	4.5E-05	0.00056	1.6E-05	0.024	0.281045	-60.5	3	1.6
Finlande	Karelia	H391_6	2908	13.2	0.28113	3.6E-05	0.00064	2.1E-05	0.027	0.281095	-58.5	6.6	1.3
Finlande	Karelia	H391_7	2771	13.6	0.281068	3.6E-05	0.00094	3.3E-05	0.041	0.281018	-60.7	0.6	1.3
Finlande	Karelia	H392_1	2747	8.6	0.281118	2.9E-05	0.00056	1.2E-05	0.023	0.281088	-59	2.6	1
Finlande	Karelia	H392_2	2787	5.6	0.281113	4.1E-05	0.00056	1.3E-05	0.023	0.281083	-59.1	3.3	1.4
Finlande	Karelia	H392_3	2937	6.9	0.281092	3.9E-05	0.00074	2.3E-05	0.032	0.281051	-59.9	5.7	1.4
Finlande	Karelia	H392_4	2787	5.2	0.28111	4.4E-05	0.00080	5.3E-05	0.033	0.281068	-59.2	2.7	1.6
Finlande	Karelia	H392_6	2806	5.1	0.281097	4.2E-05	0.00068	1.6E-05	0.029	0.28106	-59.7	2.9	1.5
Finlande	Karelia	H395_2	2792	9.7	0.281082	4.0E-05	0.00072	1.8E-05	0.030	0.281044	-60.2	2	1.4
Finlande	Karelia	H395_4	2803	8.2	0.281012	5.1E-05	0.00065	2.0E-05	0.027	0.280977	-62.7	-0.1	1.8
Finlande	Karelia	H395_6	2793	7.9	0.281149	4.5E-05	0.00090	1.2E-05	0.038	0.281101	-57.9	4.1	1.6
Finlande	Karelia	H395_7	2818	8.5	0.28109	4.8E-05	0.00064	3.9E-05	0.027	0.281056	-59.9	3	1.7
Finlande	Kuusamonkyla	H406_2	2759	10.9	0.281086	7.8E-05	0.00050	8.6E-06	0.023	0.28106	-60.1	1.8	2.8
Finlande	Kuusamonkyla	H406_3	2765	11.1	0.28113	6.8E-05	0.00072	3.3E-06	0.032	0.281092	-58.5	3.1	2.4
Finlande	Kuusamonkyla	H406_6	2785	11.1	0.281085	5.3E-05	0.00066	3.7E-05	0.028	0.28105	-60.1	2.1	1.9
Finlande	Kuusamonkyla	H406_7	2806	12.7	0.281166	3.2E-05	0.00077	4.7E-05	0.035	0.281124	-57.3	5.2	1.1
Finlande	Kuusamonkyla	H406_8	2972	13	0.281172	4.5E-05	0.00067	6.1E-06	0.030	0.281134	-57.1	9.5	1.6
Finlande	Karelia	H412_1	2788	16.9	0.281113	4.8E-05	0.00084	1.3E-05	0.040	0.281068	-59.1	2.8	1.7
Finlande	Karelia	H412_1	2793	16.4	0.28111	6.3E-05	0.00061	2.1E-05	0.028	0.281078	-59.2	3.3	2.2
Finlande	Karelia	H412_2	2798	16.6	0.281101	4.7E-05	0.00081	1.0E-05	0.038	0.281058	-59.5	2.7	1.7
Finlande	Karelia	H412_2	2772	16.5	0.281092	5.3E-05	0.00046	2.1E-05	0.022	0.281067	-59.9	2.4	1.9
Finlande	Karelia	H412_3	2790	16.6	0.281195	5.2E-05	0.00066	3.8E-05	0.033	0.28116	-56.2	6.1	1.8
Finlande	Karelia	H412_3	2823	16.8	0.281117	5.4E-05	0.00070	3.6E-05	0.034	0.281079	-59	4	1.9
Finlande	Karelia	H412_4	2767	16.4	0.281052	3.9E-05	0.00045	1.7E-05	0.020	0.281029	-61.3	0.9	1.4
Finlande	Karelia	H412_4	2839	17.2	0.281128	5.6E-05	0.00053	2.1E-05	0.024	0.28110	-58.6	5.1	2
Finlande	Karelia	H412_5	2757	16.7	0.281133	5.4E-05	0.00086	2.2E-05	0.041	0.281088	-58.4	2.8	1.9
Finlande	Karelia	H412_5	2807	16.9	0.281086	4.2E-05	0.00061	1.4E-05	0.027	0.281053	-60.1	2.7	1.5
Finlande	Karelia	H412_6	2679	17	0.281123	5.8E-05	0.00080	1.7E-05	0.036	0.281083	-58.8	0.7	2.1
Finlande	Karelia	H412_7	2779	16.7	0.281133	3.9E-05	0.00075	1.7E-05	0.031	0.281093	-58.4	3.5	1.4
Finlande	Naavala	H471_1	3659	16.1	0.281071	9.2E-05	0.00038	3.9E-05	0.015	0.281044	-60.6	22.6	3.2
Finlande	Naavala	H471_1b	2848	16.3	0.281047	6.5E-05	0.00051	5.3E-05	0.022	0.281019	-61.5	2.4	2.3
Finlande	Kivijärvi	H53 1	2718	10.7	0.280984	8.4E-05	0.0011	2.3E-05	0.051	0.280929	-63.7	-3.8	3
Finlande	Kivijärvi	H53 1	2839	16.8	0.280982	4.8E-05	0.00068	4.8E-05	0.030	0.280945	-63.8	-0.4	1.7
Finlande	Kivijärvi	H53 2	2942	16.3	0.280951	5.0E-05	0.00043	2.0E-05	0.019	0.280927	-64.9	1.4	1.8

Localisation	Craton/Complex/Zone	Echantillon	Age mesuré (Ma)	2 m (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 6	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2 5	¹⁷⁶ Vb/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf.	e		2 6
Finlande	Kivijärvi	H53 2	2609	12.5	0.280996	8 0E-05	0.0010	1 3E-05	0.042	0 280945	-63 3	-5.8	28
Finlande	Kivijärvi	H53_3	2986	17.5	0.280917	6.1E-05	0.00073	1.5E-05	0.038	0.280875	-66.1	-5.6	2.0
Finlande	Kivijärvi	H53_3	2500	13.3	0.280977	9.9E-05	0.0011	7.0E-05	0.051	0.280921	-63.9	-5.9	3.5
Finlande	Kivijärvi	H53_4	2037	10.9	0.280946	6.6E-05	0.00040	9.0E-05	0.017	0.280925	-65	-23	23
Finlande	Kivijärvi	H53_4	2862	17.2	0.281048	7.8E-05	0.00032	1.6E-05	0.015	0.28103	-61.4	3.2	2.5
Finlande	Kivijärvi	H53_5	2002	16.8	0.280905	5.9E-05	0.00045	3.7E-05	0.018	0.28088	-66.5	-0.5	2.0
Finlande	Kivijärvi	H53_5	2963	10.0	0.280955	6.6E-05	0.00015	1 1E-05	0.011	0.280941	-64.7	24	2.1
Finlande	Kivijärvi	H53_6	2703	10.4	0.281005	7.7E-05	0.00042	2 3E-05	0.022	0.280982	-63	-17	2.5
Finlande	Kivijärvi	H53 7	2599	12.5	0.280975	9.1E-05	0.00041	2.5E 05	0.017	0.280955	-64	-5.7	3.2
Finlande	Kivijärvi	H53_8	2759	11.6	0.280879	9.7E-05	0.00047	1.9E-05	0.024	0.280854	-67.4	-5.5	3.4
Finlande	Kivijärvi	H53 9	2693	14.8	0.280893	9.1E-05	0.00029	5.9E-06	0.014	0.280879	-66.9	-6.2	3.2
Finlande	Kivijärvi	H54_1	2838	16.7	0.281108	4 2E-05	0.00083	9.6E-06	0.035	0.281062	-59.3	3.8	15
Finlande	Kivijärvi	H54_1	2865	16	0.281097	7.2E-05	0.00067	4 5E-06	0.028	0.28106	-59.7	4.3	2.5
Finlande	Kivijärvi	H54_2	4013	15.6	0.280811	5.6E-05	0.00058	3.8E-05	0.025	0.280766	-69.8	21.3	2
Finlande	Kivijärvi	H54 2a	2989	17.5	0.280922	4.9E-05	0.00025	5.3E-06	0.010	0.280908	-65.9	1.8	1.7
Finlande	Kivijärvi	H54_2b	2941	16.1	0.280887	5.3E-05	0.00053	1.7E-05	0.022	0.280857	-67.1	-1.1	1.9
Finlande	Kivijärvi	H54_3	2859	16.2	0.28112	6.5E-05	0.00030	1.1E-05	0.013	0.281104	-58.9	5.7	2.3
Finlande	Kivijärvi	H54_3	2771	16.9	0.280996	4.8E-05	0.00094	4.4E-05	0.037	0.280946	-63.3	-2	1.7
Finlande	Kivijärvi	H54_4	2862	16.6	0.281069	5.7E-05	0.00039	2.4E-05	0.016	0.281047	-60.7	3.8	2
Finlande	Kivijärvi	H54_4	2792	16.1	0.280954	6.9E-05	0.00031	9.1E-06	0.012	0.280938	-64.7	-1.8	2.4
Finlande	Kivijärvi	H54_5	2814	16.2	0.281009	6.2E-05	0.00023	1.5E-05	0.008	0.280997	-62.8	0.9	2.2
Finlande	Kivijärvi	H54 5	3144	24.7	0.281042	4.6E-05	0.00031	1.2E-05	0.012	0.281023	-61.7	9.6	1.6
Finlande	Kivijärvi	H54 6	2850	6.6	0.280974	8.1E-05	0.0014	8.8E-05	0.063	0.28090	-64	-1.7	2.9
Finlande	Kivijärvi	H70 1	2719	10.7	0.281106	5.1E-05	0.00064	1.7E-05	0.027	0.281073	-59.4	1.4	1.8
Finlande	Kivijärvi	H70 1	2739	16.7	0.281127	5.1E-05	0.00073	3.4E-05	0.032	0.281088	-58.6	2.4	1.8
Finlande	Kivijärvi	H70 10	2679	12.6	0.281114	7.8E-05	0.00048	8.9E-06	0.020	0.281089	-59.1	1	2.8
Finlande	Kivijärvi	H70 2	2771	12.2	0.281168	6.3E-05	0.0015	5.3E-05	0.067	0.281086	-57.2	3	2.2
Finlande	Kivijärvi	H70_3	2731	17.8	0.281141	6.1E-05	0.00086	6.0E-05	0.040	0.281096	-58.1	2.5	2.2
Finlande	Kivijärvi	H70_3	2722	11.9	0.281114	6.1E-05	0.00073	2.7E-05	0.031	0.281076	-59.1	1.5	2.2
Finlande	Kivijärvi	H70 4	2778	17.1	0.281143	6.3E-05	0.00081	7.0E-05	0.035	0.28110	-58.1	3.7	2.2
Finlande	Kivijärvi	H70_4	2766	10.5	0.281117	6.8E-05	0.00084	6.0E-05	0.036	0.281073	-59	2.5	2.4
Finlande	Kivijärvi	H70_5	2737	10.7	0.281078	8.3E-05	0.00090	2.7E-05	0.039	0.281031	-60.4	0.3	2.9
Finlande	Kivijärvi	H70_6	2732	12.5	0.281167	9.4E-05	0.00085	2.1E-05	0.044	0.281122	-57.2	3.4	3.3
Finlande	Kivijärvi	H70_7	2753	10.9	0.28114	6.9E-05	0.00091	4.5E-05	0.038	0.281092	-58.2	2.8	2.4
Finlande	Kivijärvi	H70_8	2725	11.2	0.28109	1.1E-04	0.00069	6.6E-05	0.031	0.28105	-60	0.7	3.8
Finlande	Kivijärvi	H70_9	2733	13.2	0.281101	8.2E-05	0.00063	1.1E-05	0.030	0.281068	-59.5	1.5	2.9
Groenland	Isua	030013_1	3693	9.4	0.28044	4.8E-05	0.00086	4.6E-05	0.038	0.280379	-82.9	-0.3	1.7
Groenland	Isua	030013_2	3697	10.5	0.280416	6.1E-05	0.00068	2.2E-05	0.032	0.280368	-83.8	-0.6	2.1
Groenland	Isua	030013_3	3680	10.8	0.28041	4.1E-05	0.00030	6.3E-06	0.013	0.280389	-84	-0.2	1.5
Groenland	Isua	030013_4	3700	10.4	0.280466	4.6E-05	0.00087	5.8E-05	0.043	0.280404	-82	0.8	1.6
Groenland	Isua	030013_5	3710	10.8	0.280501	8.6E-05	0.00028	1.5E-05	0.012	0.280481	-80.8	3.8	3
Groenland	Isua	030015_1	3709	14.1	0.280399	6.1E-05	0.00051	1.2E-05	0.022	0.280362	-84.4	-0.5	2.2
Groenland	Isua	030015_2	3712	13.7	0.280446	4.4E-05	0.00081	2.3E-05	0.033	0.280388	-82.7	0.5	1.6
Groenland	Isua	030015_3	3713	13.8	0.280428	4.3E-05	0.00074	7.7E-06	0.030	0.280375	-83.4	0.1	1.5
Groenland	Isua	030015_4	3718	13.7	0.280424	6.9E-05	0.00062	1.5E-05	0.024	0.28038	-83.5	0.3	2.4
Groenland	Isua	030015_5	3713	13.7	0.28043	9.2E-05	0.00066	1.6E-05	0.028	0.280383	-83.3	0.3	3.2
Groenland	Isua	060010_2	3797	12.2	0.280488	7.7E-05	0.0015	1.8E-04	0.067	0.280379	-81.2	2.2	2.7
Groenland	Isua	060010_4	3812	12.1	0.280674	9.8E-05	0.0027	4.6E-04	0.13	0.280472	-74.6	5.9	3.5
Groenland	Isua	060010_5	3797	12	0.280477	7.7E-05	0.0014	1.3E-04	0.067	0.280371	-81.6	1.9	2.7
Inde	Closepet	CG24_1	3281	19.9	0.280857	4.4E-05	0.0015	2.5E-05	0.065	0.280762	-68.2	3.6	1.6
Inde	Closepet	CG24_2	3361	19.7	0.280838	6.0E-05	0.0018	6.8E-05	0.080	0.280723	-68.9	4.1	2.1
Inde	Closepet	CG24_3	3251	20.1	0.280849	7.0E-05	0.0013	1.2E-04	0.062	0.280770	-68.5	3.1	2.5
Inde	Closepet	CG24_4	3304	19.7	0.28087	4.9E-05	0.0014	9.1E-05	0.069	0.280778	-67.7	4.6	1.7

Tableau B-4 (suite) : Données isotopiques Lu-Hf pour les zircons analysés par ablation-laser MC-ICP-MS

Localisation	Craton/Complex/Zone	Echantillon	Age mesuré (Ma)	2 c (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 5	¹⁷⁶ Lu/ ¹⁷⁷ Hf	26	¹⁷⁶ Vb/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf.	e	e	2 6
Indo	Classpot	CC24 5	2284	10.6	0.280841	5 2E 05	0.0015	2 5E 05	0.060	0.280745	69.9	CHfin 2	1.0
Indo	Dharwar	PC24_3	3052	17.6	0.28064	1.2E-04	0.0013	2.5E-05 8.6E-05	0.009	0.280745	-06.8	77	43
Inde	Dharwar	PG24_1	2632	79	0.280876	2.9E-05	0.00073	2.8E-05	0.030	0.28084	-67.5	-7.7	1
Inde	Dharwar	PG24_2	2677	16.9	0.28097	1.2E-03	0.00073	2.0E-05 8.1E-05	0.050	0.28090	-64.3	-5.8	4.1
Inde	Dharwar	PG24_5	2879	18.7	0.28086	6.8E-05	0.0013	1.6E-04	0.051	0.280786	-68.1	-5.0	24
Indo	Dharwar	PC24_5	2634	79	0.28087	1.0E-04	0.0013	7.8E-05	0.065	0.28081	-67.7	-3.1	37
Inde	Dharwar	PG24_7	3439	5.5	0.280885	5.8E-05	0.0015	9.0E-05	0.13	0.280716	-67.2	57	2.7
Inde	Dharwar	PG25_1	2609	10.3	0.281053	3.7E-05	0.0023	3.1E-05	0.10	0.280938	-61.3	-6	13
Inde	Dharwar	PG25_1	3323	93	0.280788	3 3E-05	0.0019	3.9E-05	0.083	0.280669	-70.6	12	1.5
Inde	Dharwar	PG25_10	2637	5.9	0.280995	4 0E-05	0.0017	1 4E-05	0.082	0.28091	-63.3	-6.4	1.2
Inde	Dharwar	PG25 2	2612	10.6	0.28114	4 8E-05	0.0024	1.8E-04	0.11	0.28102	-58.2	-3	17
Inde	Dharwar	PG25_2	2645	11.6	0.280928	2.9E-05	0.00071	3.0E-06	0.031	0 280892	-65.7	-6.8	1
Inde	Dharwar	PG25_3	3209	91	0 280744	4 1E-05	0.0020	7 5E-05	0.093	0.280617	-72.2	-3.3	1.5
Inde	Dharwar	PG25_4	2635	12.5	0.281065	8.8E-05	0.0014	1.8E-04	0.065	0.280993	-60.8	-3.5	31
Inde	Dharwar	PG25_4	3383	8.3	0.280536	3.1E-05	0.0013	1.8E-05	0.053	0.280451	-79.5	-5.1	1.1
Inde	Dharwar	PG25_5	3126	10.1	0.280846	4.7E-05	0.0011	1.0E-05	0.047	0.280778	-68.6	0.4	1.7
Inde	Dharwar	PG25 9	3399	4.6	0.281032	5.9E-05	0.0039	3.3E-05	0.20	0.28078	-62	7	2.1
Inde	Dharwar	PG9 1	2559	13.3	0.281216	6.8E-05	0.00093	3.8E-05	0.049	0.281171	-55.5	1.1	2.4
Inde	Dharwar	PG9 2	2634	13.2	0.28127	6.2E-05	0.0015	2.8E-05	0.070	0.281197	-53.6	3.8	2.2
Inde	Dharwar	PG9 3	2717	13.3	0.281143	4.8E-05	0.00021	3.7E-06	0.009	0.281132	-58.1	3.4	1.7
Inde	Dharwar	PG9_4	2613	13	0.281255	4.8E-05	0.00077	2.2E-05	0.034	0.281216	-54.1	3.9	1.7
Inde	Dharwar	PG9 5	2756	12.9	0.28113	7.4E-05	0.00070	2.7E-05	0.031	0.281093	-58.5	2.9	2.6
Russie	Hompen Gneiss Complex	1229 1	2773	15.8	0.280989	8.5E-05	0.0012	6.9E-05	0.052	0.280928	-63.5	-2.6	3
Russie	Hompen Gneiss Complex	1229 2	2816	15.8	0.281146	9.8E-05	0.0024	2.4E-04	0.11	0.281019	-58	1.7	3.5
Russie	Hompen Gneiss Complex	1229_2b	2906	15.8	0.280946	8.9E-05	0.00048	3.6E-06	0.021	0.280919	-65	0.3	3.1
Russie	Hompen Gneiss Complex	1229_5	2610	11.9	0.280941	8.4E-05	0.00083	4.4E-05	0.038	0.280899	-65.2	-7.4	3
Russie	Hompen Gneiss Complex	181B92_1	2973	15.5	0.280977	3.1E-05	0.0010	7.9E-05	0.045	0.28092	-63.9	1.9	1.1
Russie	Hompen Gneiss Complex	181B92_2	2876	13.5	0.28083	1.0E-04	0.00043	8.1E-06	0.021	0.28080	-69.2	-4.5	3.6
Russie	Hompen Gneiss Complex	181B92_2	2909	16	0.280915	4.8E-05	0.00055	6.6E-05	0.024	0.280884	-66.1	-0.9	1.7
Russie	Hompen Gneiss Complex	181B92_3	2852	15.9	0.2810	5.2E-05	0.0014	1.6E-05	0.053	0.280924	-63.1	-0.8	1.8
Russie	Hompen Gneiss Complex	181B92_5	2846	14.3	0.281023	4.5E-05	0.00066	2.8E-05	0.024	0.280987	-62.3	1.3	1.6
Russie	Hompen Gneiss Complex	181B92_5	2924	16.2	0.280851	8.7E-05	0.00036	3.0E-06	0.016	0.280831	-68.4	-2.5	3.1
Russie	Vezha Tundra	385_1	2850	15.8	0.28111	1.0E-04	0.00054	2.9E-05	0.022	0.28108	-59.2	4.7	3.5
Russie	Vezha Tundra	385_2	2817	14.8	0.281132	7.0E-05	0.00035	4.9E-05	0.012	0.281113	-58.4	5.1	2.5
Russie	Vezha Tundra	385_4	2764	20.4	0.280895	9.7E-05	0.0015	7.7E-05	0.061	0.280814	-66.8	-6.8	3.4
Russie	Vezha Tundra	385_5	2783	15.4	0.281028	9.1E-05	0.00022	2.3E-05	0.009	0.281016	-62.1	0.8	3.2
Russie	Karelia	42308_1	3083	14.3	0.281134	4.2E-05	0.0024	6.5E-05	0.13	0.280993	-58.4	7.1	1.5
Russie	Karelia	42308_2	3163	13.7	0.280988	4.3E-05	0.0017	3.5E-05	0.089	0.280885	-63.5	5.1	1.5
Russie	Karelia	42308_3	3101	14.6	0.280836	7.7E-05	0.00066	2.6E-05	0.030	0.280796	-68.9	0.5	2.7
Russie	Karelia	43104_1	3132	13.8	0.280821	3.9E-05	0.0011	8.8E-05	0.053	0.280756	-69.5	-0.2	1.4
Russie	Karelia	43104_2	3167	15.5	0.28080	3.8E-05	0.00092	5.0E-05	0.043	0.280744	-70.2	0.2	1.3
Russie	Karelia	43104_4	3125	14	0.28084	4.5E-05	0.0012	9.8E-05	0.062	0.280//1	-68.8	0.2	1.6
Russie	Karelia	43104_7	3181	13.6	0.2810//	6.7E-05	0.0028	2.8E-04	0.19	0.280903	-60.4	6.2	2.4
Russie	Karelia	43104_8	3163	13.8	0.280/94	3.2E-05	0.0012	8.7E-05	0.056	0.280723	-/0.4	-0.6	1.1
Russie	Garsjo complex	6510_10	2866	14.7	0.281047	3.6E-05	0.00037	2.6E-05	0.021	0.281026	-61.5	3.1	1.5
Russie	Garsjo complex	6510_2	2687	13.2	0.281098	4.4E-05	0.00039	1.2E-05	0.018	0.281078	-59.7	0.8	1.0
Russie	Garsjo complex	0510_3 (510_4	2514	15.4	0.281245	5.5E-05	0.00032	2.3E-06	0.013	0.281227	-54.5	4	1.2
KUSSIE Danai	Garsio complex	0510_4	2099	13.0	0.20111	4.4E-03	0.00022	7.0E-00	0.011	0.201098	-39.2	1.8	1.3
Russie	Varangar complex	742 1	2744	13.4 9.2	0.20109	J.2E-03	0.00042	7.0E-00	0.021	0.201000	-39.9	1./	1.0
Russie	Varanger complex	742_1	2729	0.3 0.1	0.201103	4.2E-03	0.0017	3.5E-05 4.8E-05	0.078	0.2010/5	-57.5	1./	2.5
Russie	Varanger complex	742_2	2704	9.1 8.8	0.20112	8 1E 05	0.0012	6 3E 05	0.032	0.281030	-50.7	2.3 0.0	2.5
Russie	Varanger complex	742_3	2770	0.0 6 2	0.201009	0.1E-05	0.00091	0.5E-05	0.055	0.201021	-00.7	0.9 5.4	2.9 1.7
Kussie	varanger complex	742_3	2091	0.2	0.201143	4.9E-03	0.0015	1.3E-05	0.054	0.2010/3	-38	5.4	1./

Tableau B-4 (suite) : Données isotopiques Lu-Hf pour les zircons analysés par ablation-laser MC-ICP-MS

	Craton/Compley/Zone	Echantillon	Age mesuré (Ma)	2 σ (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 6	¹⁷⁶ Lu/ ¹⁷⁷ Hf	26	¹⁷⁶ Vb/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf.	e		2 5
Russie	Varanger complex	742 4	3330	<u>63</u>	0.280651	5 1E-05	0.00067	3 5E-05	0.028	0.280608	-75.5	-0.8	1.8
Russie	Varanger complex	742_4	2445	7.6	0.280051	5.8E-05	0.00007	9.6E-05	0.023	0.2800008	-56.5	-0.0	2
Russie	Varanger complex	742_7	2785	7.8	0.281173	6.9E-05	0.0014	9.0E-05 8.7E-05	0.058	0.281101	-50.5	3.9	24
Russie	Varanger complex	742_5	2788	6	0.281113	6.0E-05	0.0013	2.9E-05	0.052	0.281044	-59.1	2.2	2.4
Russie	Varanger complex	742_0	3407	59	0.280655	8.7E-05	0.0015	1.2E-05	0.032	0.281044	-753	12	3.1
Sibária	Bulun terrane	2604 1	3276	7.0	0.280841	0.7E-05	0.00087	3 3E 05	0.027	0.280786	68.7	1.2	3.1
Sibérie	Bulun terrane	2004_1	3265	7.9	0.280041	5.6E-05	0.00037	3.8E 04	0.17	0.280710	-00.7	1.5	2.2
Sibérie	Bulun terrane	2604_10	3094	8.6	0.280766	4 4E-05	0.00055	2.6E-04	0.035	0.280719	-03.2	2.4	16
Sibério	Bulun terrane	2604_2	3280	7.0	0.280871	5 3E 05	0.00078	1.2E-05	0.055	0.280748	67.7	-2.4	1.0
Sibérie	Bulun terrane	2604_4	3230	7.5	0.280014	6.0E.05	0.0019	2.1E.04	0.10	0.280764	-07.7	24	2.1
Sibérie	Bulun terrane	2604_3	3305	8.1	0.280891	4 5E-05	0.0024	2.1E-04 3.6E-05	0.12	0.280733	-00.2	3.1	1.6
Sibério	Bulun terrane	2604_0	3157	0.1	0.280833	5.4E.05	0.0023	8 1E 05	0.044	0.280762	-07	0.6	1.0
Sibérie	Onot terrane	2004_9	3375	9.5 4.8	0.280682	3.4E-05	0.0012	5.8E.06	0.044	0.280702	74.4	1.5	1.9
Sibério	Onot terrane	4003_1	2280	4.8	0.280668	4.1E.05	0.00005	1.1E.05	0.020	0.28060	74.9	0.3	1.2
Sibério	Onot terrane	4003_1	3386	6.3	0.280608	4.1E-05 4.3E-05	0.0010	1.1E-05 1.2E-06	0.038	0.28060	-/4.9	0.5	1.5
Sibérie	Onot terrane	4003_10	3402	5.6	0.280653	4.5E-05	0.00013	3 OF 05	0.000	0.280601	-70.5	0.0	1.0
Sibério	Onot terrane	4003_2	2241	5.0	0.280635	5.0E.05	0.00031	5.9E-05	0.033	0.280502	76.2	3.4	1.9
Sibério	Onot terrane	4003_3	3241	J.9 4.8	0.280628	4.8E.05	0.00037	2.6E-00	0.024	0.280592	-70.5	-5.4	1.0
Sibérie	Onot terrane	4003_4	3304	4.0	0.280671	4.3E-05	0.00049	2.0E-05	0.020	0.2800505	74.9	-0.9	1.7
Sibérie	Onot terrane	4003_3	3334	71	0.280655	4.5E-05	0.0012	4.2E.05	0.034	0.280595	-74.0	0.5	1.5
Sibérie	Onot terrane	4003_7	3395	6.4	0.280634	4.4E-05	0.00000	9.2E-05	0.024	0.280602	-76.1	-0.5	1.0
Sibérie	Onot terrane	4005_8	3401	7.6	0.280637	5.4E-05	0.00049	7.6E.05	0.037	0.280575	-76.1	0.0	1.0
Sibérie	Onot terrane	5203 1	3402	5.6	0.280697	4.9E.05	0.00054	7.0E-05	0.026	0.280575	73.8	28	1.9
Sibérie	Onot terrane	5205_1 5203_1	3403	6.8	0.280666	9.3E-05	0.00050	1.1E-05	0.020	0.280626	-74.9	1.6	33
Sibérie	Onot terrane	5203_1	3383	7.5	0.280702	7.9E-05	0.00048	2.1E-05	0.020	0.280671	-73.7	27	2.8
Sibérie	Onot terrane	5203_2	3381	5	0.28073	4.9E-05	0.00048	2.1E-05	0.020	0.280607	727	3.6	17
Sibérie	Onot terrane	5203_2	3405	61	0.280665	5.2E-05	0.00063	8.2E-05	0.031	0.280624	-75	1.6	1.7
Sibérie	Onot terrane	5205_5 5203_4	3398	5.2	0.280668	4.5E-05	0.00056	3.3E-05	0.028	0.280631	-74.9	1.0	1.6
Sibérie	Onot terrane	5203_4	3388	7.9	0.280695	7.6E-05	0.00050	2.5E-05	0.025	0.280653	-73.9	2.2	27
Sibérie	Onot terrane	5203_5	3395	61	0.280698	8.7E-05	0.00069	4.1E-05	0.023	0.280652	-73.8	2.2	3.1
Sibérie	Onot terrane	5803_1	3369	9.5	0.280663	3.7E-05	0.00068	6.9E-05	0.034	0.280619	-75	0.5	13
Sibérie	Onot terrane	5803 3	3388	9.4	0.280675	5.7E-05	0.00058	2.0E-05	0.025	0.280637	-74.6	1.6	1.9
Sibérie	Onot terrane	5803 4	3347	9.4	0.280703	4 5E-05	0.00068	1.9E-05	0.023	0.280658	-73.6	1.0	1.5
Sibérie	Onot terrane	5803 5	3352	9.4	0.280689	3 2E-05	0.00070	1.2E-05	0.032	0 280644	-74 1	1	11
Sibérie	Onot terrane	5803_8	3328	10.2	0.280662	4 1E-05	0.00067	2.7E-05	0.029	0 280619	-751	-0.4	14
Sibérie	Onot terrane	6004_1	3092	11.9	0.280831	4.7E-05	0.00095	5.1E-05	0.041	0.280774	-69.1	-0.5	1.7
Sibérie	Onot terrane	6004 10	3134	11.4	0.280805	4.0E-05	0.00064	3.8E-05	0.029	0.280766	-70	0.2	1.4
Sibérie	Onot terrane	6004 2	3258	10.1	0.280822	3.3E-05	0.0010	2.6E-05	0.044	0.280757	-69.4	2.8	1.2
Sibérie	Onot terrane	6004 6	3256	10	0.280905	4.1E-05	0.0011	9.9E-05	0.053	0.280835	-66.5	5.6	1.5
Sibérie	Onot terrane	6004 7	3247	10.7	0.280796	4.4E-05	0.00081	5.7E-05	0.038	0.280745	-70.3	2.1	1.5
Afrique du Sud	Kaap Valley	KV2108 1	3232	17.1	0.280847	6.6E-05	0.00060	2.2E-05	0.022	0.28081	-68.5	4.1	2.3
Afrique du Sud	Kaap Valley	KV2108 2	3238	16.7	0.280827	7.4E-05	0.00075	5.4E-05	0.033	0.28078	-69.3	3.1	2.6
Afrique du Sud	Kaap Valley	KV2108_3	3227	16.1	0.280824	6.0E-05	0.00065	2.5E-05	0.028	0.280784	-69.3	3	2.1
Afrique du Sud	Kaap Valley	KV2108 4	3245	16.2	0.280832	5.7E-05	0.00070	2.4E-05	0.029	0.280788	-69.1	3.6	2
Afrique du Sud	Kaap Valley	KV3108 1	3234	17	0.280843	5.7E-05	0.00062	3.5E-05	0.028	0.280805	-68.7	4	2
Afrique du Sud	Kaap Valley	KV3108 2	3224	17.4	0.280791	5.7E-05	0.00071	1.4E-05	0.032	0.280747	-70.5	1.7	2
Afrique du Sud	Kaap Valley	KV3108 3	3234	17.5	0.28083	5.5E-05	0.00062	4.6E-06	0.029	0.280791	-69.2	3.5	1.9
Afrique du Sud	Nelshoogte	NLS2208 1	3477	16.2	0.28065	5.8E-05	0.00042	2.4E-05	0.022	0.280622	-75.5	3.2	2.1
Afrique du Sud	Nelshoogte	NLS2208 3	3234	18.5	0.280864	5.3E-05	0.00081	3.0E-05	0.039	0.280814	-67.9	4.3	1.9
Afrique du Sud	Nelshoogte	NLS2208 4	3224	16.3	0.280823	7.1E-05	0.00049	2.0E-05	0.022	0.280793	-69.4	3.3	2.5
Afrique du Sud	Nelshoogte	NLS2208 5	3226	16.1	0.280853	5.9E-05	0.00061	5.5E-05	0.029	0.280815	-68.3	4.1	2.1
Afrique du Sud	Steynsdorp	Stey1408 1	3519	15.9	0.280578	5.6E-05	0.0010	6.4E-05	0.045	0.280509	-78.1	0.2	2
Afrique du Sud	Steynsdorp	Stey1408_2	3515	15.7	0.280575	5.9E-05	0.00072	1.4E-05	0.030	0.280526	-78.2	0.7	2.1

Tableau B-4 (suite) : Données isotopiques Lu-Hf pour les zircons analysés par ablation-laser MC-ICP-MS

Localisation	Craton/Complex/Zone	Echantillon	Age mesuré (Ma)	2 σ (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Yb/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf _{in}	Енг	Eufin	2 σ
Afrique du Sud	Steynsdorp	Stev1408 3	3280	16.7	0.280652	6.6E-05	0.0020	2.0E-04	0.089	0.280528	-75.4	-4.8	2.3
Afrique du Sud	Steynsdorp	Stey1408 4	3521	16.1	0.280639	8.1E-05	0.00088	3.2E-05	0.038	0.28058	-75.9	2.8	2.9
Afrique du Sud	Stolzburg	STJ6_1	3407	15.5	0.280628	5.3E-05	0.00041	9.5E-06	0.018	0.280602	-76.3	0.8	1.9
Afrique du Sud	Stolzburg	STJ6 ²	3342	15.4	0.280648	5.1E-05	0.00058	2.7E-05	0.026	0.28061	-75.6	-0.4	1.8
Afrique du Sud	Stolzburg	STJ6_3	3416	15.5	0.280623	8.4E-05	0.00071	5.8E-05	0.032	0.280577	-76.4	0.2	3
Afrique du Sud	Stolzburg	STJ6_4	3463	15.6	0.280633	9.3E-05	0.00050	2.7E-05	0.022	0.280599	-76.1	2.1	3.3
Afrique du Sud	Steynsdorp	Stp_1	3443	11.5	0.280548	4.2E-05	0.0011	1.7E-05	0.044	0.280476	-79.1	-2.8	1.5
Afrique du Sud	Steynsdorp	Stp_1	3466	16.8	0.280633	5.0E-05	0.0011	2.7E-05	0.056	0.280558	-76.1	0.7	1.8
Afrique du Sud	Steynsdorp	Stp_3	2962	16.3	0.281163	7.6E-05	0.00071	3.0E-05	0.035	0.281123	-57.4	8.8	2.7
Afrique du Sud	Steynsdorp	Stp_3	3510	10.1	0.280571	7.3E-05	0.0025	1.3E-04	0.10	0.280401	-78.3	-3.9	2.6
Afrique du Sud	Steynsdorp	Stp_4	3505	9.8	0.28051	6.5E-05	0.0011	4.1E-05	0.036	0.280438	-80.5	-2.7	2.3
Afrique du Sud	Steynsdorp	Stp_5	3503	16.5	0.280586	5.6E-05	0.0011	1.8E-05	0.055	0.280513	-77.8	0	2
Afrique du Sud	Steynsdorp	Stp_8	3508	9.9	0.280535	8.3E-05	0.0011	1.9E-04	0.042	0.280461	-79.6	-1.8	2.9
Afrique du Sud	Steynsdorp	Stp_9	3520	9.9	0.28066	6.3E-05	0.00077	6.9E-05	0.032	0.280608	-75.2	3.7	2.2
Swaziland	Ancient gneiss complex	AGCR_4	3044	16	0.280614	6.3E-05	0.0019	7.1E-05	0.074	0.280501	-76.8	-11.4	2.2

Standards									
Technique	Standard	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Yb/ ¹⁷⁷ Hf	٤ _{Hf}	2 σ	Référence
Solution	91500	0.282311							Vervoort, 2010
Laser	91500_2	0.282328	0.000036	0.00026	4.1E-07	0.01246	-16.2	1.2	
Laser	91500_1	0.282244	0.000047	0.00026	5.0E-07	0.01267	-19.1	1.6	
Laser	91500_16	0.282286	0.000044	0.00025	4.4E-07	0.01220	-17.6	1.5	
Laser	91500_15	0.282297	0.000037	0.00026	5.6E-07	0.01224	-17.3	1.3	
Laser	91500_14	0.282356	0.000046	0.00027	6.8E-07	0.01375	-15.2	1.6	
Laser	91500_13	0.282325	0.000036	0.00028	5.9E-07	0.01418	-16.3	1.2	
Laser	91500_11	0.282355	0.000047	0.00028	6.1E-07	0.01434	-15.2	1.6	
Laser	91500_10	0.282332	0.000052	0.00027	5.8E-07	0.01318	-16.0	1.8	
Laser	91500_9	0.282337	0.000043	0.00027	6.0E-07	0.01338	-15.8	1.5	
Laser	91500_8	0.282311	0.000048	0.00027	6.2E-07	0.01324	-16.8	1.7	
Laser	91500_7	0.282296	0.000052	0.00027	4.8E-07	0.01322	-17.3	1.8	
Laser	91500_6	0.282424	0.000036	0.00029	5.1E-07	0.01464	-12.8	1.2	
Laser	91500_5	0.282388	0.000040	0.00029	7.2E-07	0.01436	-14.0	1.5	
Laser	91500_4	0.282323	0.000031	0.00027	6.0E-07	0.01335	-16.3	1.1	
Laser	91500_3	0.282331	0.000039	0.00027	4.9E-07	0.01324	-16.0	1.4	
Laser	91500_2	0.282279	0.000040	0.00028	4.5E-07	0.01310	-17.9	1.4	
Laser	91500_1	0.282340	0.000039	0.00028	6.0E-07	0.01327	-15.7	1.3	
Laser	91500_9	0.282301	0.000059	0.00031	6.7E-07	0.01479	-17.1	2.0	
Laser	91500_8	0.282291	0.000057	0.00031	8.1E-07	0.01513	-17.5	1.9	
Laser	91500_7	0.282261	0.000052	0.00031	5.0E-07	0.01482	-18.5	1.8	
Laser	91500_6	0.282221	0.000066	0.00031	6.3E-07	0.01482	-20.0	2.3	
Laser	91500_4	0.282281	0.000052	0.00032	4.7E-07	0.01506	-17.8	1.8	
Laser	91500_3	0.282321	0.000057	0.00031	4.6E-07	0.01505	-16.4	2.0	
Laser	91500_2	0.282318	0.000052	0.00032	5.0E-07	0.01490	-16.5	1.8	
Laser	91500_1	0.282372	0.000079	0.00032	7.1E-07	0.01508	-14.6	2.7	
Solution	FC1	0.282182							Vervoort, 2010
Laser	FCI_2	0.282283	0.000034	0.00169	5.4E-06	0.08164	-17.8	1.0	

Tableau B-4 (suite) : Données isotopiques Lu-Hf pour les zircons analysés par ablation-laser MC-ICP-MS

Tableau B-4 (suite) : Données isotopiques Lu-Hf pour les zircons analysés par ablation laser MC-ICP-MS

Tableau D-4 (Suite) . Dollin	ces isotopiques Lu-III pour les s	zireons anaryses par a	blation laser wie-ie.	1-1013		18/ 188			
Technique	Standard Name	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 σ	^{1/6} Lu/ ^{1//} Hf	2 σ	¹⁷⁶ Yb/ ¹⁷⁷ Hf	٤ _{Hf}	2 σ	Reference
Laser	FCI_1	0.282152	0.000039	0.00097	1.0E-05	0.05196	-22.4	1.3	
Laser	FCI_9	0.282202	0.000041	0.00112	3.7E-06	0.05412	-20.6	1.3	
Laser	FCI_8	0.282177	0.000045	0.00138	3.4E-05	0.05003	-21.5	1.3	
Laser	FCI_7	0.282248	0.000043	0.00118	2.4E-06	0.05856	-19.0	1.4	
Laser	FCI_6	0.282134	0.000036	0.00104	1.1E-06	0.04856	-23.0	1.2	
Laser	FCI 5	0.282220	0.000038	0.00100	2.5E-06	0.04964	-20.0	1.2	
Laser	FCI_4	0.282217	0.000035	0.00115	1.9E-06	0.05551	-20.1	1.0	
Laser	FCI 3	0.282190	0.000028	0.00115	5.0E-06	0.05824	-21.0	0.9	
Laser	FCI 2	0.282150	0.000043	0.00119	2.4E-06	0.06093	-22.4	1.4	
Laser	FCI 1	0.282214	0.000049	0.00122	1.6E-06	0.06390	-20.2	1.5	
Laser	FC1 15	0.282169	0.000041	0.00118	2.0E-06	0.06173	-21.8	1.2	
Laser	FC1 14	0.282212	0.000053	0.00112	4.5E-06	0.05912	-20.3	1.7	
Laser	FC1 13	0.282172	0.000053	0.00110	4.8E-06	0.05998	-21.7	1.6	
Laser	FC1 12	0.282163	0.000055	0.00122	2.3E-06	0.06346	-22.0	1.7	
Laser	FC1 11	0.282169	0.000045	0.00117	5.2E-06	0.06314	-21.8	1.5	
Laser	FC1 10	0.282147	0.000041	0.00097	2.7E-06	0.05120	-22.6	1.3	
Laser	FC1 9	0.282145	0.000039	0.00117	2.3E-06	0.06179	-22.6	1.2	
Laser	FC1_8	0.282169	0.000050	0.00134	4.8E-06	0.07113	-21.8	1.6	
Laser	FC1 7	0.282190	0.000057	0.00129	9.2E-06	0.06863	-21.1	1.7	
Laser	FC1_6	0.282127	0.000040	0.00112	2.0E-06	0.05899	-23.3	1.3	
Laser	FC1_5	0.282198	0.000047	0.00111	5.8E-06	0.05785	-20.8	1.4	
Laser	FC1 4	0.282192	0.000047	0.00112	2.4E-06	0.05957	-21.0	1.5	
Laser	FC1_3	0.282118	0.000076	0.00098	3 3E-06	0.05044	-23.6	2.4	
Laser	FC1_2	0.282157	0.000050	0.00083	2.6E-05	0.04327	-22.2	1.6	
Solution	GII	0.282000	0.000000	0.00000	2.02.00	0.01527		1.0	Morel et al. 2008
Laser	GJ1 5	0.282012	0.000090	0.00023	2.6E-07	0.01039	-27.4	3.1	
Laser	GII 4	0 281987	0.000042	0.00022	4 2E-07	0.00994	-28.2	15	
Laser	GII 3	0.281999	0.000047	0.00023	4 1E-07	0.01023	-27.8	1.6	
Laser	GII 2	0 281987	0.000076	0.00023	7.2E-06	0.01047	-28.2	2.6	
Laser	GJI 1	0.281999	0.000047	0.00023	4 1E-07	0.01053	-27.8	1.6	
Laser	GJI 7	0.282045	0.000039	0.00023	4 1E-07	0.01002	-26.2	1.0	
Laser	GIL 6	0 282064	0.000037	0.00023	3.6E-07	0.00992	-25.5	13	
Laser	G11 5	0.282062	0.000050	0.00023	4 1E-07	0.00994	-25.6	1.5	
Laser	GJ1_3	0.282002	0.000038	0.00023	3.6E-07	0.01000	-27.0	1.3	
Laser	GII 1	0.281995	0.000110	0.00023	3.0E-05	0.01197	_27.9	3.9	
Solution	Mud Tank	0.282507	0.000110	0.00055	5.01 05	0.011)/	27.9	5.9	Woodhead and Hergt 2005
Laser	MudTank 10	0.282555	0.000035	0.00002	3 2E-07	0.00097	-8.1	12	woodhoud und Horge., 2005
Laser	MudTank 9	0.282523	0.000033	0.00002	2.6E-07	0.00098	-0.1	1.2	
Laser	MudTank 8	0.202525	0.000042	0.00002	2.0E-07	0.00096	-9.8	1.5	
Laser	MudTank 7	0 282495	0.000056	0.00002	3.2E-07	0.00096	-10.3	2.0	
Laser	MudTank 6	0 282518	0.000030	0.00002	2 5E-07	0.00090	-94	1.0	
Laser	MudTank 5	0.282533	0.000040	0.00002	2.5E-07	0.00101	-2.4	1.4	
Laser	MudTank 4	0 282492	0.000030	0.00002	2.5E-07	0.00099	-10.4	1.2	
Laser	MudTank 3	0.202492	0.000030	0.00002	2.0E-07	0.00095	10.2	1.1	
Laser	MudTonk 2	0.202470	0.000040	0.00002	2.7E-07	0.00095	-10.2	1.4	
Laser	MudTank 1	0.282539	0.000033	0.00002	2.0E-07	0.00093	-8.7	1.2	
Luser	MudTank 25	0.202330	0.000041	0.00002	2.7 <u>E</u> -07	0.00094	-10.2	1.5	
Laser	MudTank 23	0.202490	0.000049	0.00001	2.4E-07	0.00000	-10.2	1.5	
Laser	MudTank_24	0.202477	0.000029	0.00002	2.4E-07	0.00090	-10.2	1.0	
Lasti	MudTank 23	0.202342	0.000039	0.00002	2.5E-07	0.00112	-0.0	1.4	
Laser	MudTank_22	0.202317	0.000040	0.00002	2.5E-07	0.00111	-9.5	1.0	
Laser	MudTank_21	0.202330	0.000040	0.00002	2.5E-07	0.00107	-10.5	1.4	
Laser	MudTank_20	0.202489	0.000030	0.00002	2.4D-07	0.00121	-10.5	1.5	
Lasel	wind Lauk_15	0.2024//	0.000040	0.00002	2.3E-0/	0.00101	-10.9	1.4	

Tableau B-4 (suite) : Données isotopiques Lu-Hf pour les zircons analysés par ablation laser MC-ICP-MS

rueleuu B (suite) : Be	initees isotopiques Bu ini pour ie	5 Encons analyses par	uolution luber life re	17(177		17(177			
Technique	Standard Name	^{1/6} Hf/ ^{1//} Hf	2 σ	^{1/6} Lu/ ^{1/7} Hf	2 σ	^{1/6} Yb/ ^{1/7} Hf	٤ _{Hf}	2 σ	Reference
Laser	MudTank_18	0.282534	0.000032	0.00002	2.6E-07	0.00098	-8.9	1.1	
Laser	MudTank_17	0.282578	0.000036	0.00002	2.6E-07	0.00098	-7.3	1.3	
Laser	MudTank_16	0.282528	0.000040	0.00002	2.9E-07	0.00109	-9.1	1.4	
Laser	MudTank_15	0.282515	0.000059	0.00002	4.8E-07	0.00116	-9.6	2.1	
Laser	MudTank_14	0.282573	0.000034	0.00002	3.0E-07	0.00117	-7.5	1.2	
Laser	MudTank_12	0.282583	0.000047	0.00002	4.3E-07	0.00122	-7.2	1.7	
Laser	MudTank_11	0.282511	0.000050	0.00002	2.5E-07	0.00105	-9.7	1.8	
Laser	MudTank_8	0.282500	0.000035	0.00002	2.5E-07	0.00103	-10.1	1.2	
Laser	MudTank_7	0.282519	0.000027	0.00002	1.6E-07	0.00105	-9.4	1.0	
Laser	MudTank_6	0.282514	0.000033	0.00002	1.5E-07	0.00106	-9.6	1.2	
Laser	MudTank_5	0.282565	0.000036	0.00002	2.6E-07	0.00110	-7.8	1.3	
Laser	MudTank_4	0.282512	0.000027	0.00002	1.7E-07	0.00104	-9.7	0.9	
Laser	MudTank_3	0.282539	0.000037	0.00002	3.0E-07	0.00112	-8.7	1.3	
Laser	MudTank_2	0.282508	0.000026	0.00002	2.1E-07	0.00111	-9.8	0.9	
Laser	MudTank_1	0.282514	0.000028	0.00002	2.0E-07	0.00109	-9.6	1.0	
Laser	MudTank_	0.282464	0.000054	0.00013	1.1E-06	0.00868	-11.3	1.9	
Laser	MudTank_33	0.282515	0.000053	0.00002	3.1E-07	0.00119	-9.5	1.9	
Laser	MudTank_32	0.282503	0.000028	0.00002	2.8E-07	0.00120	-10.0	1.0	
Laser	MudTank_31	0.282487	0.000038	0.00002	2.3E-07	0.00123	-10.5	1.3	
Laser	MudTank_30	0.282521	0.000042	0.00002	2.6E-07	0.00118	-9.3	1.5	
Laser	MudTank_29	0.282541	0.000028	0.00002	2.5E-07	0.00126	-8.6	1.0	
Laser	MudTank_28	0.282521	0.000050	0.00002	3.5E-07	0.00126	-9.3	1.8	
Laser	MudTank_27	0.282469	0.000047	0.00002	2.6E-07	0.00107	-11.2	1.6	
Laser	MudTank_26	0.282442	0.000064	0.00002	2.9E-07	0.00103	-12.1	2.2	
Laser	MudTank_25	0.282465	0.000060	0.00002	5.4E-07	0.00105	-11.3	2.1	
Laser	MudTank_24	0.282426	0.000061	0.00002	1.3E-06	0.00092	-12.7	2.2	
Laser	MudTank_23	0.282483	0.000032	0.00002	2.2E-07	0.00086	-10.7	1.0	
Laser	MudTank_22	0.282421	0.000028	0.00002	2.5E-07	0.00083	-12.9	1.0	
Laser	MudTank_21	0.282454	0.000031	0.00002	2.7E-07	0.00083	-11.7	1.1	
Laser	MudTank_20	0.282448	0.000035	0.00002	2.4E-07	0.00083	-11.9	1.1	
Laser	MudTank_19	0.282460	0.000030	0.00002	2.4E-07	0.00087	-11.5	1.0	
Laser	MudTank_18	0.282499	0.000031	0.00002	1.9E-07	0.00086	-10.1	1.1	
Laser	MudTank_17	0.282700	0.000035	0.00117	4.0E-05	0.04595	-3.0	1.2	
Laser	MudTank_16	0.282472	0.000055	0.00002	3.0E-07	0.00093	-11.1	1.9	
Laser	MudTank_15	0.282497	0.000030	0.00002	2.4E-07	0.00085	-10.2	1.1	
Laser	MudTank_14	0.282531	0.000029	0.00002	2.6E-07	0.00084	-9.0	1.0	
Laser	MudTank_13	0.282485	0.000053	0.00005	2.6E-07	0.00271	-10.6	1.9	
Laser	MudTank_12	0.282483	0.000043	0.00005	2.2E-07	0.00269	-10.7	1.5	
Laser	MudTank_11	0.282443	0.000039	0.00005	2.6E-07	0.00266	-12.1	1.4	
Laser	MudTank_10	0.282516	0.000052	0.00005	2.8E-07	0.00273	-9.5	1.8	
Laser	MudTank_9	0.282520	0.000053	0.00002	2.7E-07	0.00099	-9.4	1.9	
Laser	MudTank_8	0.282515	0.000045	0.00002	2.5E-07	0.00106	-9.5	1.6	
Laser	MudTank_7	0.282469	0.000042	0.00002	2.1E-07	0.00101	-11.2	1.5	
Laser	MudTank_6	0.282466	0.000058	0.00005	3.2E-07	0.00247	-11.3	2.0	
Laser	MudTank_5	0.282531	0.000059	0.00005	2.6E-07	0.00245	-9.0	2.1	
Laser	MudTank_4	0.282533	0.000059	0.00005	2.4E-07	0.00246	-8.9	2.1	
Laser	MudTank_3	0.282425	0.000064	0.00005	2.7E-07	0.00247	-12.7	2.3	
Laser	MudTank_2	0.282495	0.000055	0.00005	2.7E-07	0.00249	-10.3	2.0	
Laser	MudTank_1	0.282460	0.000035	0.00005	3.1E-07	0.00250	-11.5	1.2	
Solution	Plesovice	0.282484							Slama et al., 2008
Laser	Plesovice_20	0.282472	0.000043	0.00013	1.6E-06	0.00868	-11.1	1.5	
Laser	Plesovice_19	0.282492	0.000042	0.00014	9.5E-07	0.00882	-10.4	1.4	
Laser	Plesovice_18	0.282466	0.000033	0.00013	9.8E-07	0.00863	-11.3	1.2	

Tableau B-4 (suite) : Données isotopiques Lu-Hf pour les zircons analysés par ablation laser MC-ICP-MS

Tableau D=4 (Suite) . Dollin	ees isotopiques Eu-III pour les	zireons anaryses par a	biation laser MC-IC	1-1413					
Technique	Standard Name	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Yb/ ¹⁷⁷ Hf	ε _{Hf}	2 σ	Reference
Laser	Plesovice_17	0.282496	0.000034	0.00013	1.4E-06	0.00883	-10.2	1.2	
Laser	Plesovice_16	0.282450	0.000033	0.00013	1.2E-06	0.00861	-11.9	1.1	
Laser	Plesovice_15	0.282500	0.000040	0.00013	1.1E-06	0.00853	-10.1	1.4	
Laser	Plesovice_14	0.282468	0.000040	0.00013	1.3E-06	0.00867	-11.2	1.4	
Laser	Plesovice 13	0.282485	0.000042	0.00013	1.3E-06	0.00876	-10.6	1.5	
Laser	Plesovice.12	0.282500	0.000029	0.00013	1.1E-06	0.00852	-10.1	1.0	
Laser	Plesovice.11	0.282518	0.000041	0.00014	1.7E-06	0.00887	-9.5	1.4	
Laser	Plesovice.10	0.282462	0.000031	0.00014	1.6E-06	0.00876	-11.4	1.1	
Laser	Plesovice.9	0.282459	0.000034	0.00014	1.5E-06	0.00885	-11.5	1.2	
Laser	Plesovice.8	0.282433	0.000028	0.00013	1.1E-06	0.00865	-12.4	1.0	
Laser	Plesovice.7	0.282494	0.000041	0.00013	1.3E-06	0.00867	-10.3	1.4	
Laser	Plesovice.6	0.282485	0.000037	0.00013	1.0E-06	0.00855	-10.6	1.3	
Laser	Plesovice.5	0.282475	0.000032	0.00013	1.2E-06	0.00863	-10.9	1.1	
Laser	Plesovice.4	0.282467	0.000036	0.00013	1.1E-06	0.00853	-11.2	1.2	
Laser	Plesovice.3	0.282453	0.000039	0.00013	1.3E-06	0.00848	-11.7	1.1	
Laser	Plesovice.2	0.282467	0.000054	0.00013	1.1E-06	0.00871	-11.2	1.9	
Laser	Plesovice.1	0.282490	0.000029	0.00013	1.2E-06	0.00857	-10.4	1.0	
Solution	R33	0.282767	0.0002/	0.00015		0.00007	10.1	1.0	Vervoort, 2010
Laser	R338	0.282814	0.000037	0.00062	6.1E-06	0.02919	1.0	1.2	
Laser	R337	0.282796	0.000039	0.00227	4 7E-05	0 11830	0.4	1.2	
Laser	R336	0.282781	0.000052	0.00210	2.6E-05	0.10551	-0.1	1.2	
Laser	R335	0.282768	0.000030	0.00089	1.9E-05	0.04252	-0.6	1.0	
Laser	R333	0.202700	0.000030	0.00072	3.6E-05	0.03416	-0.0	1.0	
Laser	D333	0.202721	0.000034	0.00265	1.2E-03	0.13597	1.0	1.2	
Laser	R333	0.282846	0.000036	0.00245	1.2E-04	0.13237	2.2	0.7	
Laser	P331	0.202040	0.000020	0.00075	3 1E 05	0.03478	1.4	1.4	
Laser	R3310	0.202020	0.000041	0.00104	1.8E-05	0.05470	0.6	1.4	
Laser	D3318	0.282748	0.000030	0.00004	1.0E-05	0.04779	13	1.5	
Laser	D3317	0.202740	0.000034	0.00094	1.0E-05	0.04779	-1.5	1.5	
Laser	D3316	0.202703	0.000037	0.00108	1.1E-05	0.05400	-0.8	1.2	
Laser	R3310 R3315	0.282741	0.000052	0.00103	1.9E-05	0.05400	-1.5	1.1	
Laser	D2214	0.202012	0.000002	0.00123	6.4E.06	0.00220	1.0	1.9	
Laser	D2212	0.282737	0.000057	0.00173	0.4E-00	0.07708	-1.7	1.7	
Laser	R5512 D3311	0.262779	0.000007	0.00202	1.2E-05	0.09298	-0.2	1.9	
Laser	R3311 D3310	0.262731	0.000032	0.00185	1.1E-05	0.07922	-1.2	1.0	
Lasti	R3310 D220	0.202/34	0.000047	0.00210	4.40-05 5.7E 05	0.08/3/	-1.8	1.5	
Laser	K339 D229	0.262705	0.000040	0.00182	5.7E-05	0.07353	-0.7	1.5	
Laser	NJJ0 D227	0.202770	0.000033	0.00323	9.6E-05	0.14471	0.4	1.1	
Laser	R337	0.262770	0.000040	0.00308	6.0E-05	0.15597	-0.5	1.2	
Laser	K330 D325	0.202/00	0.000040	0.00133	0.5E-05	0.00334	0.1	1.2	
Laser	K335 D224	0.202009	0.000028	0.00431	0.0E-05	0.19150	0.8	1.0	
Laser	K334 D222	0.282/80	0.000028	0.00326	8.0E-05	0.14250	-0.2	1.0	
Laser	K333 D222	0.282/51	0.000048	0.00144	1.5E-05	0.0///2	-1.2	1.5	
Laser	K332	0.282/13	0.000078	0.00378	4.9E-05	0.15110	-2.0	2.1	
Laser	K331	0.282808	0.000043	0.00348	8.9E-US	0.16559	2.9	1.2	
Laser	K35_1/	0.282778	0.000046	0.00318	8.3E-03	0.15155	-0.5	1.1	
Laser	K35_10	0.282879	0.000034	0.00383	3./E-05	0.18206	3.5	1.0	
Laser	K35_15	0.282663	0.000065	0.00038	2.2E-06	0.01653	-4.5	2.2	
Laser	R33_14	0.282687	0.000059	0.00038	1.3E-06	0.01700	-3.5	2.0	
Laser	R33_13	0.282640	0.000055	0.00118	9.0E-05	0.04480	-5.1	2.0	
Laser	R33_12	0.282758	0.000065	0.00297	1.0E-04	0.16828	-1.0	1.7	
Laser	R33_11	0.282758	0.000055	0.00333	6.6E-05	0.18800	-0.9	1.3	
Laser	R33_10	0.282772	0.000051	0.00400	3.9E-05	0.23313	-0.5	1.4	
Laser	R33_9	0.282795	0.000038	0.00329	6.1E-05	0.15273	0.4	1.0	

Tableau B-4 (suite) : Données isotopiques Lu-Hf pour les zircons analysés par ablation laser MC-ICP-MS

Technique	Standard Name	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Yb/ ¹⁷⁷ Hf	٤ _{Hf}	2 σ	Reference
Laser	R33_8	0.282808	0.000048	0.00304	4.3E-05	0.14080	0.8	1.3	
Laser	R33_7	0.282825	0.000038	0.00353	6.4E-05	0.15743	1.4	1.0	
Laser	R33_5	0.282737	0.000030	0.00173	2.6E-05	0.08370	-1.7	0.9	
Laser	R33_4	0.282744	0.000033	0.00140	3.0E-05	0.06620	-1.5	1.1	
Laser	R33_3	0.282783	0.000028	0.00110	4.7E-05	0.05138	-0.1	1.0	
Laser	R33_2	0.282765	0.000038	0.00145	2.0E-05	0.07265	-0.7	1.1	
Laser	R33_1	0.282788	0.000026	0.00159	1.7E-05	0.07551	0.1	0.8	

Tableau B-5 : Données isotopiques U-Pb pour les zircons individuels analysés par ablation-laser ICP-MS

Localisation	Craton/Complex/Zone	Echantillon	²³⁸ U/ ²⁰⁶ Pb*	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	²³⁸ U/ ²⁰⁶ Pb* age (Ma)	2 σ	Discordance (%)	²⁰⁷ Pb*/ ²⁰⁶ Pb* age (Ma)	2 σ (Ma)
Antarctique	Mount Sones	78285007 1	1.347	0.013	0.3553	0.0075	3579	35	4	3730	11
Antarctique	Mount Sones	78285007 1	2.33	0.009	0.1602	0.0041	2302	18	6	2458	7
Antarctique	Mount Sones	78285007_11	1.596	0.016	0.2859	0.010	3135	40	8	3396	15
Antarctique	Mount Sones	78285007 13	1.434	0.015	0.3163	0.0095	3411	41	4	3552	15
Antarctique	Mount Sones	78285007 15	1.388	0.018	0.3324	0.0093	3499	49	4	3628	14
Antarctique	Mount Sones	78285007 2	2.274	0.013	0.1616	0.0080	2349	25	5	2473	13
Antarctique	Mount Sones	78285007 2	1.733	0.008	0.2818	0.0033	2937	19	13	3373	5
Antarctique	Mount Sones	78285007_3	2.023	0.008	0.1959	0.0027	2590	18	7	2793	4
Antarctique	Mount Sones	78285007 4	1.343	0.012	0.3457	0.0076	3588	33	3	3688	12
Antarctique	Mount Sones	78285007 4	2.151	0.009	0.1736	0.0037	2461	19	5	2593	6
Antarctique	Mount Sones	78285007_5	1.853	0.012	0.200	0.0074	2782	27	2	2826	12
Antarctique	Mount Sones	78285007 6a	2.321	0.009	0.167	0.0045	2309	17	9	2528	7
Antarctique	Mount Sones	78285007_6b	1.845	0.008	0.2596	0.0034	2792	19	14	3244	5
Antarctique	Mount Sones	78285007 7	1.617	0.016	0.2981	0.0096	3103	39	10	3460	15
Antarctique	Mount Sones	78285007_8	1.294	0.016	0.3688	0.0094	3690	45	3	3787	14
Antarctique	Gage Ridge	78285013_1	2.244	0.018	0 1633	0.0087	2376	36	5	2490	15
Antarctique	Gage Ridge	78285013_1	2 244	0.018	0.1633	0.0087	2376	36	6	2490	15
Antarctique	Gage Ridge	78285013 10	1 902	0.022	0.2116	0.0057	2723	49	7	2918	9
Antarctique	Gage Ridge	78285013_10	2 163	0.030	0.1648	0.0086	2449	60	2	2506	14
Antarctique	Gage Ridge	78285013_3	1 736	0.024	0.2707	0.0051	2932	56	11	3310	8
Antarctique	Gage Ridge	78285013_4	1.533	0.024	0.3322	0.0055	3237	62	11	3627	8
Antarctique	Gage Ridge	78285013_4	1.333	0.023	0.3322	0.0035	3804	59	3	3027	13
Antarctique	Gage Ridge	78285013_5	1.244	0.020	0.408	0.0085	3031	54	11	3416	8
Antarctique	Gage Ridge	78285013_5	2 257	0.022	0.2697	0.0055	2364	47	7	2551	10
Antarctique	Mussen	142929 1	2.237	0.024	0.1095	0.0002	2304	4/	20	2551	10
Australie	Muccan	142020_1	2.101	0.016	0.2940	0.0060	2455	22	29	3442	10
Australie	Muccan	142828_2	2.490	0.013	0.2704	0.0009	21/1	20	33 7	3343	11
Australie	Muccan	142020_3	2.004	0.010	0.2939	0.0073	3193	25	16	3430	11
Australie	Muccan	142828_4	2.004	0.017	0.2362	0.0073	2009	33	10	3095	12
Australie	Muccan	142828_5	5.190	0.015	0.2110	0.0084	1/55	23	40	2918	14
Bresil	Sete Voltas	SV11_1	1.64 /	0.020	0.2812	0.010	3058	4/	9	3370	16
Bresil	Sete Voltas	SV11_1	1.6/2	0.013	0.2817	0.0050	3023	32	10	3372	8
Bresil	Sete Voltas	SV11_2	1.558	0.013	0.2936	0.0056	3196	33	/	3437	9
Brésil	Sete Voltas	SV11_2	2.223	0.018	0.2683	0.010	2395	37	27	3296	16
Bresil	Sete Voltas	SV11_3	2.427	0.019	0.2623	0.010	2225	35	32	3261	16
Brésil	Sete Voltas	SV11_4	1.516	0.023	0.2907	0.011	3265	58	5	3421	18
Brésil	Sete Voltas	SV11_4	1.598	0.018	0.2898	0.0072	3132	44	8	3417	
Brésil	Sete Voltas	SV11_5	1.528	0.019	0.2863	0.010	3245	47	4	3397	16
Brésil	Sete Voltas	SV11_5	1.613	0.013	0.2863	0.0052	3110	31	8	3398	8
Brésil	Sete Voltas	SV11_6	1.573	0.013	0.2832	0.0053	3172	32	6	3381	8
Brésil	Sete Voltas	SV11_7	1.515	0.016	0.2923	0.0064	3268	41	5	3430	10
Brésil	Sete Voltas	SV2_1	1.935	0.006	0.2692	0.0065	2685	14	19	3302	10
Brésil	Sete Voltas	SV2_1	2.054	0.021	0.2858	0.011	2557	45	25	3395	17
Brésil	Sete Voltas	SV2_2	1.735	0.006	0.2835	0.0064	2934	15	13	3382	10
Brésil	Sete Voltas	SV2_2	2.312	0.031	0.2707	0.010	2317	61	30	3310	16
Brésil	Sete Voltas	SV2_3	2.251	0.008	0.2721	0.0065	2370	15	29	3318	10
Brésil	Sete Voltas	SV2_4	2.044	0.009	0.2777	0.0069	2568	20	23	3350	11
Brésil	Sete Voltas	SV2_4	2.921	0.073	0.2572	0.012	1898	119	41	3230	18
Brésil	Sete Voltas	SV2_5	1.41	0.022	0.2912	0.010	3455	59	-1	3424	16

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation-laser ICP-MS

Localisation	Craton/Complex/Zone	Echantillon	²³⁸ U/ ²⁰⁶ Pb*	<u>2</u> σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	²³⁸ U/ ²⁰⁶ Pb* age (Ma)	2 σ	Discordance (%)	²⁰⁷ Pb*/ ²⁰⁶ Pb* age (Ma)	2 σ (Ma)
Brésil	Sete Voltas	SV2 5	3.155	0.015	0.3744	0.0070	1775	23	53	3809	10
Brésil	Sete Voltas	SV2 7	2.431	0.009	0.2942	0.0056	2221	17	35	3440	9
Brésil	Sete Voltas	SV9_1	5.819	0.028	0.2122	0.011	1022	26	65	2923	18
Brésil	Sete Voltas	SV9_1	5.514	0.023	0.2628	0.010	1074	22	67	3264	16
Brésil	Sete Voltas	SV9 ²	1.548	0.018	0.2887	0.010	3212	45	6	3410	16
Brésil	Sete Voltas	SV9 ²	27.892	0.026	0.2797	0.010	227	6	93	3361	16
Brésil	Sete Voltas	SV9_3	2.459	0.020	0.3004	0.010	2200	37	37	3472	16
Brésil	Sete Voltas	SV9_3	3.319	0.022	0.2962	0.010	1698	33	51	3451	16
Brésil	Sete Voltas	SV9_4	1.589	0.019	0.2835	0.010	3146	48	7	3382	16
Brésil	Sete Voltas	SV9 ⁻ 4	1.633	0.018	0.2876	0.011	3080	43	10	3405	17
Brésil	Sete Voltas	SV9 ⁻ 5	1.348	0.026	0.2874	0.011	3578	70	-5	3404	17
Brésil	Sete Voltas	SV9 ⁵	4.057	0.023	0.2751	0.010	1420	29	57	3335	16
Brésil	Sete Voltas	SV9 ⁻ 7	1.534	0.017	0.2904	0.0098	3236	44	5	3420	15
Brésil	Sete Voltas	SV9 ⁻ 8	1.575	0.017	0.2939	0.0099	3168	42	8	3438	15
Brésil	Sete Voltas	SV9 ⁻ 9	1.467	0.017	0.2874	0.0098	3350	44	2	3403	15
Canada	Acasta	Acasta Big	1.034	0.022	0.4242	0.010	4361	68	-9	3997	15
Canada	Acasta	AG09001 1	1.361	0.030	0.3631	0.0087	3551	81	6	3763	13
Canada	Acasta	AG09001 2	1.327	0.017	0.3246	0.0083	3621	46	-1	3592	13
Canada	Acasta	AG09001 ²	1.692	0.013	0.2893	0.0031	2993	32	12	3414	5
Canada	Acasta	AG09001 5	1.694	0.017	0.3355	0.0086	2991	41	18	3642	13
Canada	Acasta	AG09001_6	1.783	0.013	0.2949	0.0041	2870	30	17	3444	6
Canada	Acasta	AG09001 8	1.528	0.014	0.2941	0.0036	3245	34	6	3439	6
Canada	Acasta	AG09001 9	1.785	0.014	0.3056	0.0043	2868	33	18	3499	7
Canada	Acasta	AG09008_1	1.296	0.013	0.3566	0.0038	3686	37	1	3736	6
Canada	Acasta	AG09008 1	1.471	0.016	0.3169	0.0084	3343	42	6	3555	13
Canada	Acasta	AG09008 2	1.407	0.016	0.3110	0.0086	3460	44	2	3526	13
Canada	Acasta	AG09008 3	1.497	0.017	0.3093	0.0088	3298	44	6	3517	14
Canada	Acasta	AG09008_3	1.617	0.014	0.2977	0.0043	3104	34	10	3458	7
Canada	Acasta	AG09008_4	1.345	0.014	0.3391	0.012	3583	38	2	3659	18
Canada	Acasta	AG09008 5	1.176	0.014	0.3339	0.012	3967	42	-9	3635	18
Canada	Acasta	AG09008_6	1.377	0.015	0.3445	0.012	3519	42	4	3683	18
Canada	Acasta	AG09008gt 1	1.647	0.015	0.2923	0.014	3058	35	11	3430	21
Canada	Acasta	AG09008gt 1	1.483	0.022	0.3617	0.0090	3323	56	12	3757	14
Canada	Acasta	AG09008gt 1	1.679	0.013	0.3461	0.0053	3011	31	18	3690	8
Canada	Acasta	AG09008gt 11	1.318	0.021	0.3993	0.013	3639	58	7	3906	20
Canada	Acasta	AG09008gt 12	1.419	0.049	0.375	0.0058	3438	130	10	3812	9
Canada	Acasta	AG09008gt 13	1.481	0.021	0.3161	0.013	3326	54	6	3551	20
Canada	Acasta	AG09008gt 13	1.577	0.022	0.3618	0.014	3166	55	16	3757	21
Canada	Acasta	AG09008gt 15	1.341	0.045	0.3973	0.0052	3592	122	8	3899	8
Canada	Acasta	AG09008gt 2	1.469	0.011	0.3992	0.0052	3347	28	14	3906	8
Canada	Acasta	AG09008gt 2	1.708	0.013	0.3412	0.014	2971	31	19	3668	21
Canada	Acasta	AG09008gt 2	2.65	0.017	0.2618	0.0089	2064	30	37	3257	14
Canada	Acasta	AG09008gt 3	2.221	0.027	0.2819	0.0091	2396	53	29	3374	14
Canada	Acasta	AG09008gt 4	1.827	0.016	0.3664	0.014	2814	37	25	3776	21
Canada	Acasta	AG09008gt 4	2,499	0.020	0.238	0.0092	2170	36	30	3107	15
Canada	Acasta	AG09008gt_5	1.533	0.008	0.3512	0.014	3237	22	13	3712	21
Canada	Acasta	AG09008gt 5	2.094	0.016	0.2742	0.0085	2517	34	24	3330	13
Canada	Acasta	AG09008gt_6	1.49	0.018	0.3966	0.0088	3311	47	15	3896	13

Tubleau D 5 (Suite)). Donnees isotopiques o 10	pour les zireons marvieu		fution fuser ic	205 20C		²³⁸ U/ ²⁰⁶ Ph* age		Discordance	²⁰⁷ Ph*/ ²⁰⁶ Ph* age	
Localisation	Craton/Complex/Zone	Echantillon	²³⁸ U/ ²⁰⁶ Pb*	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	(Ma)	2 σ	(%)	(Ma)	2 σ (Ma)
Canada	Acasta	AG090089t 6	2.645	0.011	0 1963	0.014	2067	19	2.6	2795	23
Canada	Acasta	AG09008gt 7	1.16	0.023	0.4199	0.013	4007	69	-1	3982	20
Canada	Acasta	AG09008gt 7	1.48	0.013	0.3433	0.0055	3328	33	9	3677	8
Canada	Acasta	AG09008gt 8	1.24	0.023	0.4029	0.013	3812	65	3	3920	20
Canada	Acasta	AG09008gt_8	1.533	0.044	0.3574	0.0051	3237	112	13	3739	8
Canada	Acasta	AG09009 1	1.424	0.010	0.3273	0.0056	3429	25	5	3604	9
Canada	Acasta	AG09009_3	1.427	0.017	0.3083	0.0056	3423	45	3	3512	9
Canada	Acasta	AG09009_4	1.419	0.010	0.3267	0.0056	3439	28	5	3602	9
Canada	Acasta	AG09009_5	1.415	0.011	0.3228	0.0055	3445	28	4	3583	8
Canada	Acasta	AG09014_1	1.435	0.017	0.3821	0.0034	3408	45	11	3840	5
Canada	Acasta	AG09014_2	1.321	0.019	0.3084	0.0036	3634	52	-3	3513	6
Canada	Acasta	AG09014_3	1.802	0.031	0.4878	0.0042	2845	71	32	4205	6
Canada	Acasta	AG09014_4	1.404	0.017	0.3149	0.0029	3467	45	2	3545	4
Canada	Acasta	AG09014_8	1.13	0.014	0.3754	0.0044	4087	43	-7	3814	7
Canada	Acasta	AG09016_1	1.195	0.027	0.3458	0.011	3921	80	-6	3688	17
Canada	Acasta	AG09016 1	1.51	0.011	0.3839	0.018	3276	28	15	3847	27
Canada	Acasta	AG09016_1	1.498	0.015	0.3949	0.0036	3296	38	15	3890	5
Canada	Acasta	AG09016_12	1.541	0.019	0.4081	0.011	3224	47	18	3939	16
Canada	Acasta	AG09016_12	1.596	0.054	0.279	0.015	3136	132	7	3358	23
Canada	Acasta	AG09016_13	1.377	0.013	0.3901	0.015	3520	36	9	3871	22
Canada	Acasta	AG09016_14	1.483	0.009	0.3432	0.015	3322	23	10	3677	22
Canada	Acasta	AG09016_14	1.631	0.021	0.4013	0.011	3083	50	21	3914	16
Canada	Acasta	AG09016_15	1.189	0.007	0.409	0.0030	3933	21	0	3943	4
Canada	Acasta	AG09016_15	1.275	0.012	0.4181	0.014	3733	34	6	3975	21
Canada	Acasta	AG09016_16	1.403	0.008	0.3718	0.0026	3469	22	9	3799	4
Canada	Acasta	AG09016_18	1.31	0.009	0.4083	0.0028	3656	25	7	3940	4
Canada	Acasta	AG09016_2	1.133	0.009	0.4067	0.018	4079	28	-4	3934	27
Canada	Acasta	AG09016_2	1.237	0.015	0.4142	0.0034	3819	43	4	3962	5
Canada	Acasta	AG09016_2	1.449	0.028	0.3548	0.011	3383	73	9	3728	16
Canada	Acasta	AG09016 21	1.801	0.009	0.4054	0.0032	2847	22	28	3929	5
Canada	Acasta	AG09016 3	1.318	0.015	0.4134	0.010	3639	40	8	3959	15
Canada	Acasta	AG09016_3	3.308	0.015	0.2436	0.0031	1703	23	46	3143	5
Canada	Acasta	AG09016_4	1.438	0.015	0.4149	0.0031	3404	39	14	3964	5
Canada	Acasta	AG09016_4	1.875	0.017	0.3052	0.011	2755	37	21	3497	17
Canada	Acasta	AG09016 5	2.226	0.016	0.3012	0.018	2392	31	31	3476	28
Canada	Acasta	AG09016 5	3.64	0.016	0.2319	0.0039	1565	22	49	3065	6
Canada	Acasta	AG09016_6	1.254	0.014	0.4106	0.010	3781	41	4	3948	15
Canada	Acasta	AG09016 7	1.488	0.029	0.3284	0.018	3314	75	8	3610	27
Canada	Acasta	AG09016_8	1.205	0.017	0.4116	0.019	3894	50	1	3952	28
Canada	Acasta	AG09016_9	1.548	0.015	0.3891	0.0097	3212	37	17	3867	15
Canada	Acasta	AG09017_1	1.235	0.007	0.3724	0.0093	3825	19	-1	3801	14
Canada	Acasta	AG09017_1	1.863	0.019	0.355	0.0048	2770	43	26	3729	7
Canada	Acasta	AG09017_1	1.506	0.032	0.3045	0.0092	3282	82	29	3493	14
Canada	Acasta	AG09017 10	1.423	0.014	0.3827	0.0049	3431	38	11	3842	7
Canada	Acasta	AG09017 10	1.378	0.031	0.3945	0.0087	3517	83	21	3888	13
Canada	Acasta	AG09017 11	1.701	0.012	0.3455	0.0054	2980	28	6	3687	8
Canada	Acasta	AG09017 11	1.405	0.014	0.3846	0.0046	3465	37	10	3850	7
Canada	Acasta	AG09017 12	2.06	0.022	0.2449	0.012	2551	45	11	3152	19

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation-laser ICP-MS

Tubleau D 5 (Suite	j : Donnees isotopiques e 10	pour les zireons marviau	ns unuryses pur uo	lation laser i			238U/206ph* ago		Discordanco	²⁰⁷ Ph*/ ²⁰⁶ Ph* ago	
Localisation	Craton/Complex/Zone	Echantillon	²³⁸ U/ ²⁰⁶ Pb*	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	(Ma)	2 σ	(9/)	(Ma)	2 σ (Ma)
Canada	Acasta	AG09017 14	1 742	0.012	0.3128	0.0067	2924	28	17	3535	10
Canada	Acasta	AG09017_14	1.069	0.012	0.3382	0.0060	42.58	73	27	3655	9
Canada	Acasta	AG09017_15	1 827	0.032	0.2881	0.0092	2814	72	7	3408	14
Canada	Acasta	AG09017_16	1.027	0.010	0.4146	0.0051	3743	29	6	3963	8
Canada	Acasta	AG09017_10	1 225	0.008	0.4027	0.0094	3847	22	2	3919	14
Canada	Acasta	AG09017_2 AG09017_2	1 336	0.012	0 3942	0.0031	3602	33	27	3887	5
Canada	Acasta	AG09017_2	1.212	0.012	0.3976	0.0035	3878	47	1	3900	5
Canada	Acasta	AG09017_3	3 168	0.063	0.2628	0.0093	1769	96	11	3264	15
Canada	Acasta	AG09017_3	2 004	0.005	0.3631	0.0080	2609	29	31	3763	12
Canada	Acasta	AG09017_5 AG09017_4	1 295	0.010	0.3936	0.0028	3690	27	5	3885	4
Canada	Acasta	AG09017_4	1.695	0.022	0.3638	0.0020	2990	52	21	3766	13
Canada	Acasta	AG09017_1	1 208	0.013	0.4176	0.0079	3888	38	2	3974	12
Canada	Acasta	AG09017_8	2 302	0.011	0.261	0.0051	2325	21	5	3253	8
Canada	Acasta	AG09017_0 AG09017_89	1 197	0.023	0.4003	0.0051	3915	68	0	3910	8
Canada	Acasta	AG09017_0a	1.197	0.025	0.3067	0.0033	2900	34	17	3504	8
Canada	Acasta	AG09032 1	1 398	0.012	0.3255	0.0062	3477	38	3	3596	9
Canada	Acasta	AG09032_1	1 312	0.014	0.3202	0.0062	3651	45	-1	3618	11
Canada	Acasta	AC09032_2	1.205	0.010	0.4142	0.0003	3894	3/	2	3061	11
Canada	Acasta	AG09032_2 AG09032_3	1 30	0.012	0.325	0.0075	3/03	17	23	3593	6
Canada	Acasta	AG09032_5 AC00032_4	1.39	0.017	0.325	0.0039	3551	47	1	3593	5
Canada	Acasta	AG09032_4 AC09032_5	1 373	0.013	0.3251	0.0033	3527	40	2	3504	5
China	Guzuizi	AG09052_5	2 300	0.017	0.154	0.0054	2246	3/	6	2200	11
Chine	Guzuizi		2.339	0.013	0.154	0.0007	2240	25	1	2590	11
China	Guzuizi	00GZZ01_2	2.078	0.017	0.1050	0.0000	2333	22	-1	2314	11
Chine	Guzuizi	08GZZ01_5 08CZZ01_4	2.211	0.010	0.1017	0.0007	2403	24	3	2474	11
China	Guzuizi	06GZZ01_4	2.285	0.017	0.1582	0.0009	2340	26	4	2430	12
China	Vivvanashan	00GZZ01_5 09VWS01_1	2.309	0.019	0.1509	0.0089	2270	20	4	2350	13
Chine	Xiwangshan	00AWS01_1	2.107	0.011	0.1657	0.013	2440	22	2	2494	22
Chine	Xiwangshan Xiwangshan	08AWS01_2	2.156	0.010	0.1044	0.013	2474	21	I C	2501	22
Chine	Xiwangshan	08XWS01_5	2.302	0.010	0.1431	0.013	2124	18	0	2266	22
Chine	Alwangshan	U8AWSU1_5	2.285	0.011	0.1505	0.013	2340	21	3	2418	10
Chine	Dongsnan	09AS05_1	1.408	0.017	0.2752	0.0066	3349	45	0	3330	10
Chine	Dongsnan	09AS03_4	2.876	0.018	0.2748	0.0067	1923	30	42	3334	10
Finlande	Karelia	H391_2	1.922	0.011	0.1972	0.0077	2700	25	4	2804	13
Finlande	Karelia	H391_4	1.894	0.012	0.2047	0.0078	2732	26	5	2864	13
Finlande	Karelia	H391_5	1.905	0.014	0.2005	0.0078	2720	32	4	2830	13
Finlande	Karelia	H391_6	1.88/	0.020	0.2104	0.0082	2/41	45	6	2908	13
Finlande	Karelia	H391_7	1.838	0.012	0.1934	0.0083	2800	28	-1	2771	14
Finlande	Karelia	H392_1	2.004	0.034	0.1906	0.0053	2609	73	5	2747	9
Finlande	Karelia	H392_2	2.093	0.009	0.1952	0.0034	2518	20	10	2787	6
Finlande	Karelia	H392_3	2.246	0.01/	0.2141	0.0043	2374	35	19	2937	/
Finlande	Karelia	H392_4	1.863	0.014	0.1952	0.0032	2770	32	1	2787	5
Finlande	Karelia	H392_6	1.955	0.008	0.1975	0.0031	2663	18	5	2806	5
Finlande	Karelia	H395_2	2.342	0.041	0.1959	0.0059	2292	79	18	2792	10
Finlande	Karelia	H395_4	2.195	0.033	0.1972	0.0050	2420	66	14	2803	8
Finlande	Karelia	H395_6	1.947	0.034	0.196	0.0048	2672	74	4	2793	8
Finlande	Karelia	H395_7	1.967	0.033	0.199	0.0052	2650	72	6	2818	8
Finlande	Kuusamonkyla	H406_2	1.87	0.011	0.1919	0.0066	2762	24	0	2759	11
Finlande	Kuusamonkyla	H406_3	1.824	0.012	0.1927	0.0068	2818	27	-2	2765	11

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation-laser ICP-MS

Tubleau D 5 (Suite			238 206		307		²³⁸ U/ ²⁰⁶ Pb* age		Discordance	²⁰⁷ Pb*/ ²⁰⁶ Pb* age	
Localisation	Craton/Complex/Zone	Echantillon	²³⁸ U/ ²⁰⁶ Pb*	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	(Ma)	2 σ	(%)	(Ma)	2 σ (Ma)
Finlande	Kuusamonkyla	H406 6	1.876	0.011	0.1951	0.0068	2754	24	1	2785	11
Finlande	Kuusamonkyla	H406 ⁷	1.85	0.012	0.1976	0.0078	2786	27	1	2806	13
Finlande	Kuusamonkyla	H406_8	2.113	0.012	0.2188	0.0081	2497	24	16	2972	13
Finlande	Karelia	H412_1	1.89	0.012	0.1953	0.010	2738	27	2	2788	17
Finlande	Karelia	H412_1	1.912	0.014	0.196	0.010	2711	31	3	2793	16
Finlande	Karelia	H412_2	1.901	0.014	0.1966	0.010	2725	31	3	2798	17
Finlande	Karelia	H412_2	2.001	0.012	0.1935	0.010	2613	25	6	2772	17
Finlande	Karelia	H412_3	1.884	0.014	0.1956	0.010	2745	32	2	2790	17
Finlande	Karelia	H412_3	2.411	0.016	0.1996	0.010	2237	30	21	2823	17
Finlande	Karelia	H412_4	1.852	0.015	0.1929	0.010	2783	33	-1	2767	16
Finlande	Karelia	H412_4	2.194	0.025	0.2015	0.011	2421	50	15	2839	17
Finlande	Karelia	H412_5	2.106	0.016	0.1917	0.010	2505	33	9	2757	17
Finlande	Karelia	H412_5	2.267	0.014	0.1976	0.010	2356	28	16	2807	17
Finlande	Karelia	H412_6	2.20	0.016	0.1829	0.010	2416	32	10	2679	17
Finlande	Karelia	H412_7	1.843	0.015	0.1944	0.010	2795	35	-1	2779	17
Finlande	Naavala	H471_1	2.68	0.014	0.3392	0.011	2044	25	44	3659	16
Finlande	Naavala	H471_1b	1.867	0.012	0.2027	0.010	2765	26	3	2848	16
Finlande	Kivijärvi	H53_1	1.955	0.012	0.1872	0.0065	2663	27	2	2718	11
Finlande	Kivijärvi	H53_1	1.879	0.020	0.2015	0.010	2751	45	3	2839	17
Finlande	Kivijärvi	H53_2	1.704	0.020	0.2148	0.010	2976	48	-1	2942	16
Finlande	Kivijärvi	H53_2	2.333	0.018	0.1753	0.0075	2300	35	12	2609	12
Finlande	Kivijärvi	H53_3	1.72	0.022	0.2207	0.011	2954	52	1	2986	18
Finlande	Kivijärvi	H53_3	2.424	0.016	0.1785	0.0080	2227	31	16	2639	13
Finlande	Kivijärvi	H53_4	1.883	0.014	0.1955	0.0067	2746	30	2	2789	11
Finlande	Kivijärvi	H53_4	1.909	0.021	0.2045	0.011	2716	47	5	2862	17
Finlande	Kivijärvi	H53_5	1.812	0.020	0.2133	0.010	2833	46	3	2931	17
Finlande	Kivijärvi	H53_5	1.803	0.027	0.2176	0.0065	2844	62	4	2963	10
Finlande	Kivijärvi	H53_6	1.935	0.027	0.1882	0.0063	2686	58	1	2727	10
Finlande	Kivijärvi	H53_7	2.305	0.039	0.1743	0.0075	2323	76	11	2599	12
Finlande	Kivijärvi	H53_8	2.149	0.033	0.1919	0.0071	2463	68	11	2759	12
Finlande	Kivijärvi	H53_9	2.363	0.035	0.1844	0.0090	2275	67	16	2693	15
Finlande	Kivijärvi	H54_1	1.808	0.015	0.2014	0.010	2838	33	0	2838	17
Finlande	Kivijärvi	H54_1	1.97	0.017	0.2048	0.0099	2646	37	8	2865	16
Finlande	Kivijärvi	H54_2	1.699	0.020	0.4288	0.011	2983	47	26	4013	16
Finlande	Kivijärvi	H54_2a	1.907	0.014	0.2211	0.011	2717	31	9	2989	17
Finlande	Kivijärvi	H54_2b	1.672	0.012	0.2147	0.010	3022	28	-3	2941	16
Finlande	Kıvıjärvı	H54_3	1.875	0.018	0.2041	0.010	2756	41	4	2859	16
Finlande	Kıvıjärvı	H54_3	2.20	0.014	0.1934	0.010	2415	28	13	2771	17
Finlande	Kivijärvi	H54_4	1.839	0.012	0.2044	0.010	2799	28	2	2862	17
Finlande	Kivijärvi	H54_4	1.904	0.018	0.1958	0.0099	2722	41	3	2792	16
Finlande	Kivijärvi	H54_5	1.848	0.019	0.1985	0.010	2788	42	I	2814	16
Finlande	Kivijärvi	H54_5	1.97	0.026	0.2436	0.016	2646	57	16	3144	25
Finlande	Kıvıjärvı	H54_6	1.813	0.020	0.203	0.0041	2832	45	1	2850	7
Finlande	Kıvıjärvı	H70_1	1.955	0.026	0.1874	0.0065	2663	56	2	2719	11
Finlande	Kıvıjärvı	H70_1	2.108	0.020	0.1896	0.010	2502	41	9	2739	17
Finlande	Kivijarvi	H70_10	2.69	0.026	0.1829	0.0076	2038	45	24	2679	13
Finlande	Kıvıjärvı	H70_2	2.168	0.026	0.1934	0.0075	2445	53	12	2771	12
Finlande	K1V1järV1	H70_3	1./98	0.022	0.1887	0.011	2850	49	-4	2731	18

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation-laser ICP-MS

Localisation	Craton/Complex/Zone	Echantillon	²³⁸ U/ ²⁰⁶ Pb*	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	²³⁸ U/ ²⁰⁶ Pb* age (Ma)	2 σ	Discordance (%)	²⁰⁷ Pb*/ ²⁰⁶ Pb* age (Ma)	2 σ (Ma)
Finlande	Kivijärvi	H70 3	1.956	0.026	0.1876	0.0073	2662	57	2	2722	12
Finlande	Kivijärvi	H70 ⁴	1.665	0.025	0.1941	0.010	3032	59	-9	2778	17
Finlande	Kivijärvi	H70 ⁴	1.94	0.009	0.1928	0.0064	2680	19	3	2766	11
Finlande	Kivijärvi	H70 ⁵	2.004	0.010	0.1894	0.0065	2609	22	5	2737	11
Finlande	Kivijärvi	H70 ⁻ 6	1.949	0.011	0.1888	0.0076	2670	25	2	2732	12
Finlande	Kivijärvi	H70 ⁻ 7	1.97	0.008	0.1913	0.0066	2646	17	4	2753	11
Finlande	Kivijärvi	H70 ⁸	1.995	0.009	0.188	0.0068	2619	20	4	2725	11
Finlande	Kivijärvi	H70 9	1.791	0.020	0.1889	0.0081	2859	47	-5	2733	13
Groenland	Isua	030013 1	1.335	0.017	0.3468	0.0062	3605	47	2	3693	9
Groenland	Isua	030013 2	1.303	0.015	0.3477	0.0069	3672	43	1	3697	10
Groenland	Isua	030013 3	1.367	0.017	0.3439	0.0071	3540	46	4	3680	11
Groenland	Isua	030013 4	1.29	0.016	0.3484	0.0069	3700	44	0	3700	10
Groenland	Isua	030013 5	1.326	0.016	0.3506	0.0071	3622	46	2	3710	11
Groenland	Isua	030015_1	1.329	0.013	0.3506	0.0093	3616	36	3	3709	14
Groenland	Isua	030015_2	1.325	0.012	0.3511	0.0091	3625	34	2	3712	14
Groenland	Isua	030015_3	1 313	0.013	0 3515	0.0091	3651	35	2	3713	14
Groenland	Isua	030015_4	1 291	0.013	0.3525	0.0091	3696	36	-	3718	14
Groenland	Isua	030015_5	1 168	0.012	0.3514	0.0090	3987	36	-7	3713	14
Groenland	Isua	060010_2	1 333	0.012	0.3714	0.0081	3609	44	5	3797	12
Groenland	Isua	060010_4	1 317	0.010	0.3751	0.0081	3642	38	4	3812	12
Groenland	Isua	060010_4	1 359	0.014	0.3714	0.0079	3555	37	6	3797	12
Inde	Closenet	CG24_1	1.606	0.009	0.2658	0.0075	3121	23	5	3781	20
Inde	Closepet	CG24_1 CG24_2	1.581	0.001	0.2797	0.013	3159	26	6	3361	20
Inde	Closepet	CC24_2	1 717	0.011	0.2607	0.013	2958	20	9	3251	20
Inde	Closepet	CG24_5 CG24_4	1.717	0.009	0.2696	0.013	3063	27	7	3304	20
Inde	Closepet	CG24_4 CG24_5	7 785	0.001	0.2663	0.013	779	15	76	3284	20
Inde	Dharwar	PG24_3	1 503	0.021	0.22005	0.013	3288	101	-8	3052	18
Inde	Dharwar	PG24_1	2 023	0.037	0.1778	0.0048	2589	36	2	2632	8
Inde	Dharwar	PC24_2	2.025	0.014	0.1826	0.010	2507	30	2	2652	17
Inde	Dharwar	PG24_5	1 975	0.018	0.2066	0.012	2641	38	8	2879	19
Inde	Dharwar	PG24_3	2 142	0.010	0.178	0.0048	2470	21	6	2675	8
Inde	Dharwar	PG24_7	1 597	0.010	0.2939	0.0046	3135	25	9	3439	6
Inde	Dharwar	PG25_1	1.95	0.016	0.1753	0.0050	2669	34	-2	2609	10
Inde	Dharwar	PG25_1	1.55	0.016	0.273	0.0002	3111	30	6	3323	9
Inde	Dharwar	PC25_10	2.07	0.010	0.1783	0.0035	2541	39	4	2637	6
Inde	Dharwar	PG25_10	2.07	0.017	0.1756	0.0050	2474	34	5	2612	11
Inde	Dharwar	PG25_2	2.150	0.019	0.1792	0.0070	2474	39	7	2645	12
Inde	Dharwar	PC25_2 PC25_3	1 604	0.011	0.2539	0.0070	3124	27	3	32095	9
Inde	Dharwar	PC25_4	2 089	0.011	0.1781	0.0038	2522	38	4	2635	13
Inde	Dharwar	PC25_4	1.651	0.010	0.2836	0.0070	3052	28	10	3383	8
Indo	Dharwar	PC25_5	1.629	0.017	0.2408	0.0055	3085	42	10	3126	10
Inde	Dharwar	PC25_9	1.551	0.019	0.2865	0.0004	3207	42	6	3300	5
Inde	Dharwar	PC9 1	2 042	0.019	0.2803	0.0050	2569	3/	0	2559	13
Indo	Dharwar		2.042	0.010	0.1702	0.0080	2509	34	1	2339	13
Indo	Dharwar	PC0 3	1.058	0.014	0.170	0.0081	2005	28	2	2034	13
Inde	Dharwar	PC0 4	1.700	0.013	0.18/1	0.0081	2000	20 26	2	2/1/	13
Inde	Dharwar	PC0 5	2.100	0.013	0.1/3/	0.0078	2740	20	2	2013	13
Dugaio	Hompon Chaiss Complex	109_5	1.714	0.012	0.1910	0.00/9	2/10	27 40	∠ 12	2730	15
KUSSIE	Tompen Gneiss Complex	1229_1	2.213	0.024	0.1930	0.0097	2403	49	13	2113	10

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation-laser ICP-MS

Institution Crain Complex (Zone) Example Data Phys ⁻¹ Phys ¹ Phys ¹ Phys ⁻¹ Phys ⁻¹ Phys ¹ Phys ¹ Phys ¹ Phys ¹	Tubleau D 5 (build			238-x 206		207		²³⁸ U/ ²⁰⁶ Pb* age		Discordance	²⁰⁷ Pb*/ ²⁰⁶ Pb* age	
Rusic Itompen Greis Complex 1229 2 0.024 0.1988 0.0098 2328 57 4 2966 16 Rusic Hompen Greiss Complex 1229 5 5.014 0.019 0.01754 0.0077 2.966 55 2.610 12 Rusie Hompen Greiss Complex 181092 1 7.766 0.011 0.0021 0.0088 2.280 2.0 2.276 13 Busis Hompen Greiss Complex 181092 3 1.776 0.012 0.2024 0.0088 2.242 3 1 5 3.285 16 Rusis Userpen Greiss Complex 181092 5 1.405 0.012 0.2024 0.0088 2.242 3 0 2.846 14 Rusis Vacha Tundra 385 1 1.865 0.012 0.2024 0.0091 2.666 2.8 0 2.846 14 Rusis Vacha Tundra 385 1 1.833 0.012 0.01	Localisation	Craton/Complex/Zone	Echantillon	²⁵⁸ U/ ²⁰⁸ Pb*	2 σ	²⁰⁷ Pb*/ ²⁰⁰ Pb*	2 σ	(Ma)	2 σ	(%)	(Ma)	2 σ (Ma)
Nusie Hongen Gaeiss Complex 1229 5 5.034 0.019 0.174 0.0072 2168 5.7 4 2966 15 Rusie Hongen Gaeiss Complex 181192 1 1.776 0.014 0.0072 2860 5.5 4 2973 15 Rusie Hongen Gaeiss Complex 181192 1 1.776 0.014 0.0072 2864 5.8 2 2979 16 Rusie Hongen Gaeiss Complex 181192 3 1.776 0.012 0.0083 2854 5.8 2 2979 16 Rusie Hongen Gaeiss Complex 181192 3 1.785 0.012 0.0081 2842 5.8 13 2934 16 Rusie VedaTundra 385 1 1.835 0.014 0.2125 0.010 2842 13 4 2783 13 Rusie VedaTundra 385 4 2.433 0.014 0.1984 0.0097 2.018 31 4 2783 13 Rusie	Russie	Hompen Gneiss Complex	1229 2	2.02	0.024	0.1988	0.0097	2592	52	8	2816	16
Russie Hoopen Gneiss Complex 1229 5.04 0.09 0.1754 0.0097 1168 2.0 5.5 2.010 12 Russie Hompen Gneiss Complex 181192 2 1.776 0.011 0.2062 0.0093 2.866 5.5 4 2.207 15 Russie Hompen Gneiss Complex 181192 2 1.776 0.012 0.2024 0.0098 2.843 5.8 2 2.207 16 Russie Hompen Gneiss Complex 181192 5 1.785 0.012 0.2024 0.0018 2.841 5.8 6.6 2 2.204 16 Russie Veha Tundra 385 1 1.865 0.014 0.2029 0.0007 2.768 30 3 2.860 28 0 2.876 2.203 Russie Veha Tundra 385 1.935 0.012 0.918 0.0007 2.318 67 2.31 301 14 Russie Kareia 4.308.1<	Russie	Hompen Gneiss Complex	1229 2b	1.848	0.025	0.210	0.0098	2788	57	4	2906	16
Russie Hoopen Gneiss Complex 1811892 1.776 0.011 0.219 0.0083 2880 2.6 0 2776 15 Russie Hompen Gneiss Complex 1811892 2 1.776 0.025 0.2104 0.0083 2424 51 15 2860 26 0 2864 18 2 2009 16 Russie Hompen Gneiss Complex 181892 3 1.818 0.012 0.2024 0.0088 2424 51 15 2864 14 Russie Montinet 385 1 1.865 0.014 0.2024 0.0087 2768 30 2 2867 14 2783 15 Russie Vecha Tundra 385 1 2.483 0.0197 2000 32 31 43 4 2783 15 Russie Karclia 42308 2 2.443 0.0197 2000 32 31 3163 14 Russie Karclia	Russie	Hompen Gneiss Complex	1229_5	5.034	0.019	0.1754	0.0072	1168	20	55	2610	12
Russie Hompen Gneiss Complex 181892 2 1.76 0.012 0.2014 0.0093 288 26 0 2876 13 Russie Hompen Gneiss Complex 181892 3 2.19 0.025 0.2034 0.0098 2424 51 15 2852 16 Russie Hompen Gneiss Complex 181892 5 1.805 0.012 0.0239 0.007 2368 56 2 2924 16 Russie Vecht Inndra 385 1 1.863 0.014 0.1223 0.0073 2168 23 0 2376 15 Russie Vecht Inndra 385 5 1.935 0.014 0.1948 0.003 2181 26 0 2377 3163 14 Russie Karcha 43308 1 2.448 0.019 0.2471 0.0092 2373 37 23 3101 15 Russie Karcha 43304 1 2.438 0.019 0.24719 0.0097 3121 45 43 </th <th>Russie</th> <th>Hompen Gneiss Complex</th> <th>181B92 1</th> <th>1.786</th> <th>0.024</th> <th>0.219</th> <th>0.0097</th> <th>2866</th> <th>55</th> <th>4</th> <th>2973</th> <th>15</th>	Russie	Hompen Gneiss Complex	181B92 1	1.786	0.024	0.219	0.0097	2866	55	4	2973	15
Russie Hompen Gneises Complex 181892_2 1.76 0.025 0.2104 0.0099 2844 58 2 2909 16 Russie Hompen Gneises Complex 181892_5 1.805 0.012 0.2024 0.0088 2424 28 0 2846 14 Russie Verba Tundra 385_1 1.865 0.014 0.2225 0.0007 27.68 30 3 2850 16 Russie Verba Tundra 385_4 2.483 0.012 0.1988 0.0097 27.68 30 2.817 15 Russie Verba Tundra 385_5 1.938 0.014 0.1925 0.013 2.181 6.7 2.1 27.64 2.0 Russie Karcha 42306 3 2.247 0.019 0.2371 0.0087 3.212 45 0 3.101 15 Russie Karcha 43104 1 1.606 0.018 0.2473 0.0087 3.218 4.4 3.016 <th>Russie</th> <th>Hompen Gneiss Complex</th> <th>181B92²</th> <th>1.776</th> <th>0.011</th> <th>0.2062</th> <th>0.0083</th> <th>2880</th> <th>26</th> <th>0</th> <th>2876</th> <th>13</th>	Russie	Hompen Gneiss Complex	181B92 ²	1.776	0.011	0.2062	0.0083	2880	26	0	2876	13
Russie Itompen Cancias Complex 181892, 3 2.19 0.025 0.2024 0.0098 2424 51 15 2862 16 Russie Hompen Canciss Complex 181892, 5 1.785 0.024 0.2024 0.008 2424 28 0 2846 14 Russie Vacha Tundin 385, 1 1.865 0.014 0.212 0.0091 2866 28 0 2846 16 Russie Vacha Tundin 385, 2 1.833 0.012 0.1925 0.0091 2818 61 21 2764 20 28 0 2817 15 Russie Vacha Tundin 385, 4 2443 0.019 0.2345 0.0090 2313 48 4 2363 14 Russie Karchia 43104, 1 1.606 0.0087 2313 43 0.313 14 Russie Karchia 43104, 1 1.603 0.0217 0.0092 2373 37 23 3103	Russie	Hompen Gneiss Complex	181B92 ⁻ 2	1.796	0.025	0.2104	0.0099	2854	58	2	2909	16
Brossie Hompen Gneiss Complex 181892.5 1.805 0.012 0.2024 0.0088 242 2.8 0 2846 14 Russie Vorka Tundra 385.1 1.865 0.024 0.2125 0.010 2668 56 2 2924 16 Russie Vorka Tundra 385.4 2.833 0.012 0.0097 2768 30 3 2860 16 Russie Vorka Tundra 385.4 2.483 0.037 0.1284 0.0015 2181 67 21 2764 200 Russie Karclia 42308.2 2.748 0.019 0.2345 0.0090 2313 48 4 3063 141 Russie Karclia 43104.1 2.466 0.0087 2321 37 313 13 14 Russie Karclia 43104.4 2.448 0.023 0.2473 0.0087 3213 49 4 3163 14 Russie Karclia	Russie	Hompen Gneiss Complex	181B92 ⁻ 3	2.19	0.025	0.2032	0.0098	2424	51	15	2852	16
Browsie Hompen Gneiss Complex 18892 5 1.785 0.024 0.2129 0.0097 278 30 3 2850 16 Russie Vezha Tundra 385.2 1.833 0.012 0.1983 0.0091 2806 28 0 2817 155 Russie Vezha Tundra 385.5 1.935 0.014 0.1982 0.0091 2806 28 0 2817 155 Russie Karclia 4308 2 2748 0.018 0.2445 0.0090 213 48 4 3983 14 Russie Karclia 4308 2 2747 0.018 0.2447 0.0090 213 43 4 3983 14 Russie Karclia 43104 2.433 0.023 0.0247 0.0087 3121 45 0 3132 144 Russie Karclia 43104 2.433 0.023 0.0487 3073 36 3 3166	Russie	Hompen Gneiss Complex	181B92 ⁵	1.805	0.012	0.2024	0.0088	2842	28	0	2846	14
Russie Vezha Tundra 385_1 1.865 0.014 0.029 0.0091 2768 30 3 2850 16 Russie Vezha Tundra 385_4 2.483 0.017 0.1938 0.013 2181 67 21 2764 20 Russie Vezha Tundra 385_5 1.935 0.014 0.0090 2813 48 4 3083 14 Russie Karelia 43308_1 1.548 0.019 0.2466 0.0090 3213 48 4 3083 14 Russie Karelia 43104_1 1.666 0.018 0.2419 0.0092 2133 34 4 3063 14 Russie Karelia 43104_2 1.530 0.019 0.2473 0.0098 2216 42 29 3123 141 Russie Karelia 43104_7 2.107 0.017 0.2497 0.0086 2504 35 21 3163	Russie	Hompen Gneiss Complex	181B92 ⁵	1.785	0.024	0.2125	0.010	2868	56	2	2924	16
Russie Vezha Tundrn 385_1 1.833 0.012 0.1982 0.013 218 67 21 2763 15 Russie Vezha Tundrn 385.5 1.935 0.014 0.1982 0.0095 2685 31 4 2773 15 Russie Karclia 42308.2 2.748 0.018 0.2465 0.0097 232 37 3163 144 Russie Karclia 4308.3 2.47 0.018 0.2471 0.0097 2323 37 3163 144 Russie Karclia 43104 1 1.606 0.018 0.2473 0.0097 3121 45 0 3132 144 Russie Karclia 43104 7 2.438 0.023 0.2477 0.0087 3078 38 3 3163 144 Russie Karclia 43104 7 2.631 0.016 0.2477 0.0087 3078 38 3 3163 144 Russie	Russie	Vezha Tundra	385 1	1.865	0.014	0.2029	0.0097	2768	30	3	2850	16
Russie Vezha Tundra 385 4 2483 0.037 0.193 2181 67 21 2764 20 Russie Karelia 42308 1 548 0.019 0.235 0.0095 2685 31 4 2783 15 Russie Karelia 42308 2 2.748 0.019 0.2371 0.0095 2373 37 23 3101 155 Russie Karelia 43104 1 1606 0.018 0.0087 3121 45 0 3101 153 Russie Karelia 43104 2 153 0.019 0.2477 0.0089 3216 42 29 3125 14 Russie Karelia 43104 2 107 0.017 0.2497 0.0089 3216 42 29 312 14 Russie Garsjo complex 6510 0 0.017 0.2497 0.0089 2216 42 29 3	Russie	Vezha Tundra	385 2	1.833	0.012	0.1988	0.0091	2806	28	0	2817	15
Russie Værha Tundra 385 1 9.35 0.014 0.1948 0.0090 2.685 3.1 4 2783 15 Russie Karchia 42308 2 2.748 0.018 0.2456 0.0090 321 3.2 3.1 14 Russie Karchia 42308 2 2.748 0.018 0.2471 0.0090 321 45 0 3.132 14 Russie Karchia 43104 1 16.06 0.018 0.2473 0.0098 328 49 44 316.3 14 Russie Karchia 43104 2.438 0.023 0.2473 0.0098 2216 42 2.9 312.5 15 Russie Karchia 43104 1.634 0.016 0.2473 0.0086 2504 36 21 316.3 14 Russie Garsjo complex 6510 2 1.53 0.0086 2.650 33 1 2.687 1	Russie	Vezha Tundra	385 4	2.483	0.037	0.1925	0.013	2181	67	21	2764	20
Russie Karclia 42308 1 1.548 0.019 0.2455 0.0007 321 44 4 3083 14 Russie Karclia 42308,3 2.247 0.019 0.2371 0.0002 2373 37 23 3101 15 Russie Karclia 43104 2 1.503 0.019 0.2473 0.0088 3288 49 4 3167 153 Russie Karclia 43104 7 2.107 0.017 0.02473 0.0086 2216 42 29 3125 14 Russie Garsjo complex 6510 2 1.953 0.011 0.205 0.0091 3125 76 9 2666 15 Russie Garsjo complex 6510 2 1.958 0.015 0.1057 0.0092 2576 33 1 2687 131 Russie Garsjo complex 6510 4 1.966 0.016 0.1857 0.0082 2651 35 2 2674	Russie	Vezha Tundra	385 5	1.935	0.014	0.1948	0.0095	2685	31	4	2783	15
Russie Karclia 42306 2 2.748 0.018 0.2466 0.0087 2000 32 37 3163 14 Russie Karclia 43104 1 1.666 0.018 0.2419 0.0087 3121 45 0 3132 14 Russie Karclia 43104 1 2.633 0.019 0.2473 0.0087 3121 45 0 3132 14 Russie Karclia 43104 7 2.438 0.023 0.2407 0.0089 2216 42 2.9 3125 14 Russie Karclia 43104 7 2.148 0.023 0.2407 0.0087 3078 36 2.1 3181 14 Russie Garsjo complex 6510 1 1.643 0.016 0.2467 0.0087 3078 38 3 3163 14 Russie Garsjo complex 6510 2 1.643 0.016 0.1857 0.0082 2.631 33 4 2.	Russie	Karelia	42308 1	1.548	0.019	0.2345	0.0090	3213	48	-4	3083	14
Russie Karclia 42306_3 2.247 0.019 0.2371 0.0002 2373 37 23 3101 15 Russie Karclia 43104_2 1.606 0.018 0.2473 0.0098 3284 49 -4 3167 15 Russie Karclia 43104_7 2.107 0.017 0.0088 2504 36 21 3181 14 Russie Karclia 43104_7 2.107 0.016 0.247 0.0088 2504 36 21 3181 14 Russie Garsjo complex 6510_10 1.603 0.031 0.205 0.0091 3125 76 -9 2866 15 Russie Garsjo complex 6510_10 1.988 0.015 0.183 0.0082 2661 35 2 2699 14 Russie Garsjo complex 6510_4 1.966 0.016 0.1802 0.0082 2631 35 2 2699 14 136 <	Russie	Karelia	42308 2	2.748	0.018	0.2466	0.0087	2000	32	37	3163	14
Russie Karclia 43104_1 1.606 0.018 0.2419 0.0087 3121 45 0 3132 14 Russie Karclia 43104_4 2.438 0.019 0.2473 0.0089 2216 42 29 3125 14 Russie Karclia 43104_7 2.107 0.017 0.2494 0.0086 2506 35 3 3163 14 Russie Karclia 43104_8 1.634 0.016 0.2467 0.0087 3078 35 3 3163 14 Russie Garajo complex 6510_0 1.603 0.031 0.205 0.0091 3122 76 -9 2866 15 Russie Garajo complex 6510_3 2.036 0.016 0.1851 0.0082 2651 35 2 269 14 Russie Garajo complex 6510_5 1.984 0.015 0.1902 0.0052 2613 33 4 2774 132 <	Russie	Karelia	42308 3	2.247	0.019	0.2371	0.0092	2373	37	23	3101	15
Russie Karclia 43104 2 1.503 0.019 0.2473 0.0098 3288 49 44 3167 153 Russie Karclia 43104 7 2.438 0.023 0.2477 0.0098 2216 42 29 3151 14 Russie Karclia 43104 7 2.107 0.017 0.2494 0.0086 2504 36 21 3181 14 Russie Garigo complex 6510 1.033 0.031 0.2405 0.0087 3078 38 3 3163 14 Russie Garigo complex 6510 2 1.958 0.015 0.1838 0.0080 2660 33 1 2.667 13 Russie Garigo complex 6510 4 1.966 0.16 0.1851 0.0083 2651 35 2 2.609 14 Russie Varanger complex 742 1 2.631 0.003 0.1851 0.00050 2076 35	Russie	Karelia	43104 1	1.606	0.018	0.2419	0.0087	3121	45	0	3132	14
Russie Karclia 43104_4 2.438 0.023 0.2407 0.0089 2216 42 2.99 3125 14 Russie Karclia 43104_8 1.634 0.016 0.2467 0.0087 3073 38 3 3163 14 Russie Garsjo complex 6510_2 1.958 0.015 0.188 0.0080 2660 33 1 2666 15 Russie Garsjo complex 6510_3 2.036 0.016 0.1851 0.0092 2576 34 -2 2514 15 Russie Garsjo complex 6510_3 2.036 0.016 0.1851 0.0082 2631 33 4 2744 13 Russie Garsjo complex 6510_5 1.984 0.013 0.1851 0.0082 2631 33 4 2744 13 Russie Varanger complex 742_2 1.973 0.033 0.195 0.0056 2643 72 5 2778 <th< th=""><th>Russie</th><th>Karelia</th><th>43104 2</th><th>1.503</th><th>0.019</th><th>0.2473</th><th>0.0098</th><th>3288</th><th>49</th><th>-4</th><th>3167</th><th>15</th></th<>	Russie	Karelia	43104 2	1.503	0.019	0.2473	0.0098	3288	49	-4	3167	15
Russie Karclia 43104 7 2.107 0.016 0.2467 0.0086 2504 36 21 3181 14 Russie Garsjo complex 6510 10 1.603 0.016 0.2467 0.0087 3078 38 3 3161 14 Russie Garsjo complex 6510 2 1.958 0.015 0.1838 0.0080 2660 33 1 2866 15 Russie Garsjo complex 6510 3 2.036 0.016 0.1657 0.0092 2576 34 4-2 2814 15 Russie Garsjo complex 6510 4 1.966 0.016 0.1851 0.0082 2631 33 4 2744 133 Russie Varanger complex 742 1 2.631 0.033 0.1941 0.0056 2643 71 5 2778 9 Russie Varanger complex 742 3 1.968 0.033 0.1941 0.0054 2643 71 5 2778	Russie	Karelia	43104 4	2.438	0.023	0.2407	0.0089	2216	42	29	3125	14
Russie Karelia 43104 8 1.634 0.016 0.247 0.087 3078 38 3 3163 14 Russie Garsjo complex 6510 1.063 0.031 0.205 0.0091 3125 76 -9 2866 15 Russie Garsjo complex 6510 3 2.036 0.016 0.1657 0.0092 2576 34 -2 2514 15 Russie Garsjo complex 6510 5 1.984 0.015 0.1902 0.0082 2631 33 4 2744 13 Russie Varanger complex 742 1 2631 0.015 0.0056 2643 72 5 2784 9 Russie Varanger complex 742 3 1.895 0.019 0.0054 2648 71 5 2778 9 Russie Varanger complex 742 3 1.895 0.019 0.0241 0.0038 2732 42 <th>Russie</th> <th>Karelia</th> <th>43104 7</th> <th>2.107</th> <th>0.017</th> <th>0.2494</th> <th>0.0086</th> <th>2504</th> <th>36</th> <th>21</th> <th>3181</th> <th>14</th>	Russie	Karelia	43104 7	2.107	0.017	0.2494	0.0086	2504	36	21	3181	14
Russie Garsjo complex 6510 1 603 0.031 0.205 0.0091 3125 76 -9 2866 15 Russie Garsjo complex 6510 2 1958 0.015 0.1838 0.0080 2660 33 1 2687 13 Russie Garsjo complex 6510 4 1966 0.016 0.1851 0.0082 2576 34 -2 2574 15 Russie Garsjo complex 6510 5 1984 0.015 0.1902 0.0082 2631 33 4 2729 8 Russie Varanger complex 742 1 2631 0.033 0.195 0.0056 2643 71 5 2778 9 Russie Varanger complex 742 3 1.895 0.019 0.0281 0.0038 2732 42 5 2891 6 Russie Varanger complex 742 4 1.523 0.019 0.21742<	Russie	Karelia	43104 8	1.634	0.016	0.2467	0.0087	3078	38	3	3163	14
Russie Garsjo complex 6510 2 1 958 0.015 0.1838 0.0080 2660 33 1 2697 13 Russie Garsjo complex 6510 3 2.036 0.016 0.1657 0.0092 2576 34 -2 2514 15 Russie Garsjo complex 6510 5 1.984 0.015 0.1902 0.0082 2631 33 4 2744 13 Russie Garsjo complex 742 1 2.631 0.033 0.195 0.0056 2643 72 5 2784 9 Russie Varanger complex 742 2 1.973 0.033 0.195 0.0038 2732 42 5 2891 6 Russie Varanger complex 742 3 1.895 0.019 0.2081 0.0038 2732 42 5 2891 6 Russie Varanger complex 742 4 1.522 0.019 0.2081 0.0038 2732 42 5 2891	Russie	Garsio complex	6510 10	1.603	0.031	0.205	0.0091	3125	76	-9	2866	15
Russie Garsjo complex 6510_3 2.036 0.016 0.1657 0.0092 2576 34 -2 2514 15 Russie Garsjo complex 6510_5 1.966 0.016 0.1851 0.0082 2651 35 2 2099 14 Russie Garsjo complex 6510_5 1.984 0.015 0.1902 0.0082 2651 35 2 2099 14 Russie Varanger complex 742_1 2.631 0.033 0.1885 0.0050 2076 59 24 2729 8 Russie Varanger complex 742_3 1.968 0.033 0.1941 0.0054 2648 71 5 2778 9 Russie Varanger complex 742_4 1.523 0.019 0.2742 0.0040 3256 49 2 3330 6 Russie Varanger complex 742_4 5.233 0.013 0.199 0.0045 1127 34 54 2445	Russie	Garsio complex	6510 2	1.958	0.015	0.1838	0.0080	2660	33	1	2687	13
Russie Garsjo complex 6510_4 1.966 0.016 0.1851 0.0083 2651 35 2 2699 14 Russie Garsjo complex 6510_5 1.984 0.015 0.1902 0.0082 2651 35 2 2699 14 Russie Varanger complex 742_1 2.611 0.033 0.185 0.0050 2076 59 24 2724 18 Russie Varanger complex 742_3 1.968 0.033 0.195 0.0056 2648 71 5 2778 9 Russie Varanger complex 742_3 1.959 0.019 0.2742 0.0040 3256 49 2 3330 6 Russie Varanger complex 742_4 1.522 0.019 0.2742 0.0045 127 34 54 2445 8 Russie Varanger complex 742_6 1.908 0.019 0.184 0.0037 2716 41 3 2788	Russie	Garsio complex	6510_3	2.036	0.016	0.1657	0.0092	2576	34	-2	2514	15
Russie Garsjo complex 6510 5 1.984 0.015 0.1902 0.0082 2631 33 4 2744 13 Russie Varanger complex 742 1 2.631 0.033 0.1885 0.0050 2076 59 24 2729 8 Russie Varanger complex 742 3 1.968 0.033 0.1941 0.0056 2643 71 5 2778 9 Russie Varanger complex 742 3 1.968 0.033 0.1941 0.0054 2648 71 5 2778 9 Russie Varanger complex 742 4 1.522 0.019 0.2742 0.0040 3256 49 2 330 6 Russie Varanger complex 742 4 5233 0.033 0.195 0.0045 1127 34 54 2445 8 Russie Varanger complex 742 5 1.946 0.033 0.1954 0.0037 716 41 2778 6	Russie	Garsio complex	6510 4	1.966	0.016	0.1851	0.0083	2651	35	2	2699	14
Russie Varanger complex 742_1 2.631 0.033 0.1885 0.0050 2076 59 24 2729 8 Russie Varanger complex 742_2 1.973 0.033 0.195 0.0056 2643 72 5 2784 9 Russie Varanger complex 742_3 1.968 0.033 0.1941 0.0054 2643 72 5 2784 9 Russie Varanger complex 742_3 1.895 0.019 0.2081 0.0038 2732 42 5 2891 6 Russie Varanger complex 742_4 1.522 0.019 0.2742 0.0040 3125 49 2 3330 6 Russie Varanger complex 742_5 1.946 0.033 0.195 0.0048 2673 71 4 2785 8 Russie Varanger complex 742_6 1.935 0.019 0.281 0.0037 2716 41 3 2786	Russie	Garsio complex	6510 5	1.984	0.015	0.1902	0.0082	2631	33	4	2744	13
Russie Varanger complex 742 2 1.973 0.033 0.195 0.0056 2643 72 5 2784 9 Russie Varanger complex 742 3 1.968 0.033 0.1941 0.0054 2648 71 5 2778 9 Russie Varanger complex 742 3 1.895 0.019 0.2081 0.0033 256 49 2 3330 6 Russie Varanger complex 742 4 1.522 0.019 0.2742 0.0045 1127 34 54 2445 8 Russie Varanger complex 742 6 1.908 0.019 0.1954 0.0037 2716 41 3 2788 6 Russie Varanger complex 742 7 1.535 0.019 0.2881 0.0038 3234 49 5 3407 6 Sibérie Bulun terrane 2604 10 1.607 0.020 0.263 0.0050 3120 50 4 3265	Russie	Varanger complex	742 1	2.631	0.033	0.1885	0.0050	2076	59	24	2729	8
RussieVaranger complex742_31.9680.0330.19410.0054264871527789RussieVaranger complex742_31.8950.0190.20810.0038273242528916RussieVaranger complex742_41.5220.0190.27420.0040325649233306RussieVaranger complex742_41.5220.0190.27420.00451127345424458RussieVaranger complex742_51.9460.0330.1950.0048267371427858RussieVaranger complex742_61.9080.0190.19540.0037271641327858RussieVaranger complex742_71.5350.0190.28810.0038323449534076SibérieBulun terrane2604_11.640.0170.2650.0050306942632768SibérieBulun terrane2604_24.5920.0330.25740.00472553692132317SibérieBulun terrane2604_52.0580.0330.25740.00472553692132317SibérieBulun terrane2604_52.0580.0330.25740.00472553692133317SibérieBulun terrane2604_52.0580.033 <th>Russie</th> <th>Varanger complex</th> <th>742 2</th> <th>1.973</th> <th>0.033</th> <th>0.195</th> <th>0.0056</th> <th>2643</th> <th>72</th> <th>5</th> <th>2784</th> <th>9</th>	Russie	Varanger complex	742 2	1.973	0.033	0.195	0.0056	2643	72	5	2784	9
Russie Varanger complex 742_3 1.895 0.019 0.2081 0.0038 2732 42 5 2801 6 Russie Varanger complex 742_4 1.522 0.019 0.2081 0.0038 2732 42 5 2801 6 Russie Varanger complex 742_4 1.522 0.019 0.2742 0.0045 1127 34 54 2445 8 Russie Varanger complex 742_5 1.946 0.033 0.159 0.0045 1127 34 54 2445 8 Russie Varanger complex 742_6 1.908 0.019 0.1954 0.0037 2716 41 3 2788 6 Russie Varanger complex 742_6 1.908 0.017 0.265 0.0038 3234 49 5 3407 6 Sibérie Bulun terrane 2604_10 1.607 0.020 0.263 0.0050 3120 50 4 3265	Russie	Varanger complex	742 3	1.968	0.033	0.1941	0.0054	2648	71	5	2778	9
RussieVaranger complex742_41.5220.0190.27420.0040325649233306RussieVaranger complex742_45.2330.0330.1590.00451127345424458RussieVaranger complex742_51.9460.0330.1950.0048267371427858RussieVaranger complex742_61.9080.0190.19540.0037271641327886RussieVaranger complex742_71.5350.0190.28810.0038323449534076SibérieBulun terrane2604_11.640.0170.2650.0050312050432658SibérieBulun terrane2604_101.6070.0200.2630.00541270385930949SibérieBulun terrane2604_41.6970.0330.25740.00472553692132317SibérieBulun terrane2604_52.0580.0330.25740.00472553692132317SibérieBulun terrane2604_91.710.0160.24560.00602968396315710SibérieBulun terrane2604_91.710.0160.24560.00602968396315710SibérieOnot terrane4003_11.5350.013 <t< th=""><th>Russie</th><th>Varanger complex</th><th>742 3</th><th>1.895</th><th>0.019</th><th>0.2081</th><th>0.0038</th><th>2732</th><th>42</th><th>5</th><th>2891</th><th>6</th></t<>	Russie	Varanger complex	742 3	1.895	0.019	0.2081	0.0038	2732	42	5	2891	6
Russie Varanger complex 742_4 5.233 0.033 0.159 0.0045 1127 34 54 2445 8 Russie Varanger complex 742_5 1.946 0.033 0.195 0.0048 2673 71 4 2785 8 Russie Varanger complex 742_6 1.908 0.019 0.1954 0.0037 2716 41 3 2788 6 Russie Varanger complex 742_7 1.535 0.019 0.2881 0.0037 2716 41 3 2788 6 Sibérie Bulun terrane 2604_1 1.64 0.017 0.265 0.0050 3120 50 4 3265 8 Sibérie Bulun terrane 2604_4 1.697 0.033 0.2574 0.0054 1270 38 59 3094 9 Sibérie Bulun terrane 2604_4 1.697 0.033 0.2574 0.0057 2986 78 9 3280	Russie	Varanger complex	742 4	1.522	0.019	0.2742	0.0040	3256	49	2	3330	6
RussieVaranger complex742_51.9460.0330.1950.0048267371427858RussieVaranger complex742_61.9080.0190.19540.0037271641327886RussieVaranger complex742_71.5350.0190.28810.0038323449534076SibérieBulun terrane2604_11.640.0170.2650.0050312050432658SibérieBulun terrane2604_24.5920.0330.23610.00541270385930949SibérieBulun terrane2604_41.6970.0330.25740.00472553692132317SibérieBulun terrane2604_52.0580.0330.25740.0047256578932808SibérieBulun terrane2604_41.6170.0180.26990.0052310445633058SibérieBulun terrane2604_81.6170.0160.24560.00602968396315710SibérieOnot terrane4003_11.530.0120.28220.0031324231433755SibérieOnot terrane4003_11.5350.0130.28460.0041323635433866SibérieOnot terrane4003_21.5520.0120.2	Russie	Varanger complex	742 4	5.233	0.033	0.159	0.0045	1127	34	54	2445	8
RussieVaranger complex742_61.9080.0190.19540.0037271641327886RussieVaranger complex742_71.5350.0190.28810.0038323449534076SibérieBulun terrane2604_11.640.0170.2650.0050306942632768SibérieBulun terrane2604_101.6070.0200.2630.0050312050432658SibérieBulun terrane2604_24.5920.0330.23610.00541270385932808SibérieBulun terrane2604_41.6970.0330.25740.00472553692132317SibérieBulun terrane2604_52.0580.0330.25740.00472553692133058SibérieBulun terrane2604_91.710.0160.24560.00602968396315710SibérieOnot terrane4003_11.5350.0120.28220.0031324231433755SibérieOnot terrane4003_11.5350.0120.28460.0044323434533897SibérieOnot terrane4003_101.5340.0140.28420.0036320631634026SibérieOnot terrane4003_21.5520.0120.	Russie	Varanger complex	742 5	1.946	0.033	0.195	0.0048	2673	71	4	2785	8
Russie Varanger complex 742_7 1.535 0.019 0.2881 0.0038 3234 49 5 3407 6 Sibérie Bulun terrane 2604_1 1.64 0.017 0.265 0.0050 3069 42 6 3276 8 Sibérie Bulun terrane 2604_10 1.607 0.020 0.263 0.0050 3120 50 4 3265 8 Sibérie Bulun terrane 2604_2 4.592 0.033 0.2361 0.0054 1270 38 59 3094 9 Sibérie Bulun terrane 2604_4 1.697 0.033 0.2564 0.0057 286 78 9 3280 8 Sibérie Bulun terrane 2604_5 2.058 0.033 0.2574 0.0047 2553 69 21 3231 7 Sibérie Bulun terrane 2604_8 1.617 0.018 0.2699 0.0052 3104 45 6 3305	Russie	Varanger complex	742_6	1.908	0.019	0.1954	0.0037	2716	41	3	2788	6
Sibérie Bulun terrane 2604_1 1.64 0.017 0.265 0.0050 3069 42 6 3276 8 Sibérie Bulun terrane 2604_10 1.607 0.020 0.263 0.0050 3120 50 4 3265 8 Sibérie Bulun terrane 2604_2 4.592 0.033 0.2361 0.0054 1270 38 59 3094 9 Sibérie Bulun terrane 2604_4 1.697 0.033 0.2656 0.0050 2986 78 9 3280 8 Sibérie Bulun terrane 2604_5 2.058 0.033 0.2574 0.0047 2553 69 21 3231 7 Sibérie Bulun terrane 2604_5 1.617 0.018 0.2699 0.0052 3104 45 6 3305 8 Sibérie Bulun terrane 2604_9 1.71 0.016 0.2456 0.0060 2968 39 6 3157 <	Russie	Varanger complex	7427	1.535	0.019	0.2881	0.0038	3234	49	5	3407	6
Sibérie Bulun terrane 2604_10 1.607 0.020 0.263 0.0050 3120 50 4 3265 8 Sibérie Bulun terrane 2604_2 4.592 0.033 0.2361 0.0054 1270 38 59 3094 9 Sibérie Bulun terrane 2604_4 1.697 0.033 0.2656 0.0050 2986 78 9 3280 8 Sibérie Bulun terrane 2604_5 2.058 0.033 0.2574 0.0047 2553 69 21 3231 7 Sibérie Bulun terrane 2604_8 1.617 0.018 0.2699 0.0052 3104 45 6 3305 8 Sibérie Bulun terrane 2604_9 1.71 0.016 0.2456 0.0060 2968 39 6 3157 10 Sibérie Onot terrane 4003_1 1.53 0.012 0.2822 0.0031 3242 31 4 3375 5 Sibérie Onot terrane 4003_10 1.534 0.014 0.	Sibérie	Bulun terrane	2604 1	1.64	0.017	0.265	0.0050	3069	42	6	3276	8
Sibérie Bulun terrane 2604_2 4.592 0.033 0.2361 0.0054 1270 38 59 3094 9 Sibérie Bulun terrane 2604_4 1.697 0.033 0.2656 0.0050 2986 78 9 3280 8 Sibérie Bulun terrane 2604_5 2.058 0.033 0.2574 0.0047 2553 69 21 3231 7 Sibérie Bulun terrane 2604_8 1.617 0.018 0.2699 0.0052 3104 45 6 3305 8 Sibérie Bulun terrane 2604_9 1.71 0.016 0.2456 0.0060 2968 39 6 3157 10 Sibérie Onot terrane 4003_1 1.53 0.012 0.2822 0.0031 3242 31 4 3375 5 Sibérie Onot terrane 4003_10 1.534 0.014 0.2842 0.0041 3236 35 4 3386	Sibérie	Bulun terrane	2604 10	1.607	0.020	0.263	0.0050	3120	50	4	3265	8
Sibérie Bulun terrane 2604 4 1.697 0.033 0.2656 0.0050 2986 78 9 3280 8 Sibérie Bulun terrane 2604 5 2.058 0.033 0.2574 0.0047 2553 69 21 3231 7 Sibérie Bulun terrane 2604 8 1.617 0.018 0.2699 0.0052 3104 45 6 3305 8 Sibérie Bulun terrane 2604 9 1.71 0.016 0.2456 0.0060 2968 39 6 3157 10 Sibérie Onot terrane 4003 1 1.53 0.012 0.2822 0.0031 3242 31 4 3375 5 Sibérie Onot terrane 4003 1 1.535 0.013 0.2846 0.0044 3234 34 5 3389 7 Sibérie Onot terrane 4003 10 1.534 0.014 0.2842 0.0041 3236 35 4 3386 6 Sibérie Onot terrane 4003 2 1.552 0.012 0.287	Sibérie	Bulun terrane	2604 2	4.592	0.033	0.2361	0.0054	1270	38	59	3094	9
Sibérie Bulun terrane 2604 5 2.058 0.033 0.2574 0.0047 2553 69 21 3231 7 Sibérie Bulun terrane 2604 8 1.617 0.018 0.2699 0.0052 3104 45 6 3305 8 Sibérie Bulun terrane 2604 9 1.71 0.016 0.2456 0.0060 2968 39 6 3157 10 Sibérie Onot terrane 4003 1 1.53 0.012 0.2822 0.0031 3242 31 4 3375 5 Sibérie Onot terrane 4003 1 1.535 0.013 0.2846 0.0044 3234 34 5 3389 7 Sibérie Onot terrane 4003 10 1.534 0.014 0.2842 0.0041 3236 35 4 3386 6 Sibérie Onot terrane 4003 2 1.552 0.012 0.2877 0.0036 3206 31 6 3402 <th< th=""><th>Sibérie</th><th>Bulun terrane</th><th>2604 4</th><th>1.697</th><th>0.033</th><th>0.2656</th><th>0.0050</th><th>2986</th><th>78</th><th>9</th><th>3280</th><th>8</th></th<>	Sibérie	Bulun terrane	2604 4	1.697	0.033	0.2656	0.0050	2986	78	9	3280	8
Sibérie Bulun terrane 2604 8 1.617 0.018 0.2699 0.0052 3104 45 6 3305 8 Sibérie Bulun terrane 2604 9 1.71 0.016 0.2456 0.0060 2968 39 6 3157 10 Sibérie Onot terrane 4003 1 1.53 0.012 0.2822 0.0031 3242 31 4 3375 5 Sibérie Onot terrane 4003 1 1.535 0.013 0.2846 0.0044 3234 34 5 3389 7 Sibérie Onot terrane 4003 10 1.535 0.013 0.2842 0.0041 3236 35 4 3386 6 Sibérie Onot terrane 4003 2 1.552 0.012 0.287 0.0036 3206 31 6 3402 6 Sibérie Onot terrane 4003 3 1.68 0.012 0.2591 0.0038 3011 30 7 3241 6 Sibérie Onot terrane 4003 4 2.21 0.012 0.2661	Sibérie	Bulun terrane	2604 5	2.058	0.033	0.2574	0.0047	2553	69	21	3231	7
Sibérie Bulun terrane 2604_9 1.71 0.016 0.2456 0.0060 2968 39 6 3157 10 Sibérie Onot terrane 4003_1 1.53 0.012 0.2822 0.0031 3242 31 4 3375 5 Sibérie Onot terrane 4003_1 1.53 0.012 0.2822 0.0044 3234 34 5 3389 7 Sibérie Onot terrane 4003_10 1.535 0.013 0.2846 0.0044 3236 35 4 3386 6 Sibérie Onot terrane 4003_10 1.532 0.012 0.2842 0.0041 3236 35 4 3386 6 Sibérie Onot terrane 4003_2 1.552 0.012 0.287 0.0036 3206 31 6 3402 6 Sibérie Onot terrane 4003_3 1.68 0.012 0.2591 0.0038 3011 30 7 3241 6 Sibérie Onot terrane 4003_4 2.21 0.012 0.2661	Sibérie	Bulun terrane	2604 8	1.617	0.018	0.2699	0.0052	3104	45	6	3305	8
Sibérie Onot terrane 4003_1 1.53 0.012 0.2822 0.0031 3242 31 4 3375 5 Sibérie Onot terrane 4003_1 1.535 0.012 0.2822 0.0031 3242 31 4 3375 5 Sibérie Onot terrane 4003_10 1.535 0.014 0.2846 0.0044 3234 34 5 3386 6 Sibérie Onot terrane 4003_2 1.552 0.012 0.287 0.0036 3206 31 6 3402 6 Sibérie Onot terrane 4003_3 1.68 0.012 0.2591 0.0038 3011 30 7 3241 6 Sibérie Onot terrane 4003_3 1.68 0.012 0.2591 0.0038 3011 30 7 3241 6 Sibérie Onot terrane 4003_4 2.21 0.012 0.2661 0.0031 2406 23 27 3283 5	Sibérie	Bulun terrane	2604 9	1 71	0.016	0.2456	0.0060	2968	39	6	3157	10
Sibérie Onot terrane 4003_10 1.535 0.012 0.2846 0.0044 3234 34 5 3389 7 Sibérie Onot terrane 4003_10 1.535 0.014 0.2842 0.0041 3236 35 4 3386 6 Sibérie Onot terrane 4003_2 1.552 0.012 0.2842 0.0041 3236 35 4 3386 6 Sibérie Onot terrane 4003_2 1.552 0.012 0.2842 0.0036 3206 31 6 3402 6 Sibérie Onot terrane 4003_3 1.68 0.012 0.2891 0.0038 3011 30 7 3241 6 Sibérie Onot terrane 4003_3 1.68 0.012 0.2661 0.0031 2406 23 27 3283 5	Sibérie	Onot terrane	4003 1	1.53	0.012	0.2822	0.0031	3242	31	4	3375	5
Sibérie Onot terrane 4003_10 1.534 0.014 0.2842 0.0041 3236 35 4 3386 6 Sibérie Onot terrane 4003_2 1.552 0.012 0.2842 0.0041 3236 35 4 3386 6 Sibérie Onot terrane 4003_2 1.552 0.012 0.2877 0.0036 3206 31 6 3386 6 Sibérie Onot terrane 4003_3 1.68 0.012 0.2591 0.0038 3011 30 7 3241 6 Sibérie Onot terrane 4003_4 2.21 0.012 0.2661 0.0031 2406 23 27 3283 5	Sibérie	Onot terrane	4003_1	1.535	0.013	0.2846	0.0044	3234	34	5	3389	7
Sibérie Onot terrane 4003_2 1.552 0.012 0.267 0.0036 3206 31 6 3402 6 Sibérie Onot terrane 4003_3 1.68 0.012 0.287 0.0036 3206 31 6 3402 6 Sibérie Onot terrane 4003_3 1.68 0.012 0.2591 0.0038 3011 30 7 3241 6 Sibérie Onot terrane 4003_4 2.21 0.012 0.2661 0.0031 2406 23 27 3283 5	Sibérie	Onot terrane	4003 10	1 534	0.014	0.2842	0.0041	3236	35	4	3386	6
Sibérie Onot terrane 4003_3 1.68 0.012 0.2591 0.0038 3011 30 7 3241 6 Sibérie Onot terrane 4003_4 2.21 0.012 0.2591 0.0031 2406 23 27 3283 5	Sibérie	Onot terrane	4003 2	1.552	0.012	0.287	0.0036	3206	31	6	3402	6
Sibérie Onot terrane 40034 2.21 0.012 0.2661 0.0031 2406 23 27 3283 5	Sibérie	Onot terrane	4003_3	1.68	0.012	0 2591	0.0038	3011	30	7	3241	6
	Sibérie	Onot terrane	4003_4	2.21	0.012	0.2661	0.0031	2406	23	27	3283	5

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation-laser ICP-MS

Tableau D-5 (Suite)	. Donnees isotopiques 0-1 b p		lis analyses par abla	mon-laser ic	1-1/15		238U/206Pb* ago		Discordonco	²⁰⁷ Ph */ ²⁰⁶ Ph * ago	
Localisation	Craton/Complex/Zone	Echantillon	²³⁸ U/ ²⁰⁶ Pb*	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	(Ma)	2 σ	(%)	(Ma)	2 σ (Ma)
Sibérie	Onot terrane	4003 5	1.497	0.012	0.2856	0.0032	3299	31	3	3394	5
Sibérie	Onot terrane	4003 7	1.493	0.014	0.2749	0.0046	3305	37	1	3334	7
Sibérie	Onot terrane	4003 8	1.469	0.014	0.2858	0.0041	3348	36	1	3395	6
Sibérie	Onot terrane	4003 9	1.582	0.015	0.2869	0.0049	3157	36	7	3401	8
Sibérie	Onot terrane	5203 1	1.497	0.013	0.2871	0.0036	3297	32	3	3402	6
Sibérie	Onot terrane	5203 1	1.551	0.017	0.2873	0.0044	3207	44	6	3403	7
Sibérie	Onot terrane	5203 2	1.524	0.016	0.2836	0.0048	3252	40	4	3383	8
Sibérie	Onot terrane	5203 2	1 571	0.012	0.2832	0.0032	3176	30	6	3381	5
Sibérie	Onot terrane	5203_3	1.516	0.013	0.2877	0.0039	3266	33	4	3405	6
Sibérie	Onot terrane	5203 4	1 509	0.012	0 2864	0.0034	3277	31	4	3398	5
Sibérie	Onot terrane	5203 4	1.549	0.018	0.2846	0.0051	3211	45	5	3388	8
Sibérie	Onot terrane	5203 5	1 473	0.013	0.2859	0.0039	3340	34	2	3395	6
Sibérie	Onot terrane	5803 1	1.509	0.032	0.2811	0.0061	3277	82	3	3369	10
Sibérie	Onot terrane	5803_3	1 601	0.031	0.2846	0.0061	3128	76	8	3388	9
Sibérie	Onot terrane	5803 4	1 546	0.031	0.2771	0.0061	3215	78	4	3347	9
Sibérie	Onot terrane	5803 5	1.615	0.031	0.2781	0.0060	3107	77	7	3352	9
Sibérie	Onot terrane	5803_8	1.641	0.032	0.2738	0.0065	3067	79	8	3328	10
Sibérie	Onot terrane	6004_1	2 133	0.021	0.2359	0.0075	2479	43	20	3092	12
Sibérie	Onot terrane	6004_1	1 843	0.013	0.2337	0.0072	2794	30	11	3134	11
Sibérie	Onot terrane	6004 2	1.015	0.014	0.2618	0.0064	2887	32	11	3258	10
Sibérie	Onot terrane	6004_2	1 691	0.013	0.2615	0.0063	2995	31	8	3256	10
Sibérie	Onot terrane	6004_0	1.586	0.012	0.260	0.0068	3151	30	3	3247	11
Afrique du Sud	Kaan Valley	KV2108_1	1.882	0.027	0.200	0.011	2747	50	15	3237	17
Afrique du Sud	Kaap Valley	KV2108_1	1.587	0.027	0.2585	0.011	3150	55	3	3232	17
Afrique du Sud	Kaan Valley	KV2108_2 KV2108_3	1.507	0.022	0.2567	0.010	3157	52	2	3230	16
Afrique du Sud	Kaap Valley	KV2100_5	1.505	0.021	0.2597	0.010	2854	19	12	3245	16
Afrique du Sud	Kaap Valley	KV2100_4 KV3108_1	1.75	0.021	0.2579	0.010	3084	57	5	3243	10
Afrique du Sud	Kaap Valley	KV3108_2	1.65	0.023	0.2563	0.011	3054	58	5	3224	17
Afrique du Sud	Kaap Valley	KV3100_2 KV3109_2	1.05	0.024	0.2579	0.011	3145	50	3	3224	18
Afrique du Sud	Nalshoogte	NI \$2208_1	2 001	0.024	0.2379	0.011	2613	59	25	3234	16
Afrique du Sud	Nelshoogte	NL S2200_1 NL S2208_3	1 562	0.027	0.2579	0.011	2015	60	25	2724	10
Afrique du Sud	Nelshoogte	NL S2200_5	1.502	0.027	0.2579	0.012	2102	42	1	3234	15
Afrique du Sud	Nelshoogte	NL S2200_4	1.501	0.017	0.2303	0.010	3192	43	1	3224	16
Afrique du Sud	Staunadorn	NL52200_5 Stov1409_1	1.002	0.013	0.2300	0.010	3127	26	3	3220	16
Afrique du Sud	Stevnsdorp	Stey1400_1 Stoy1408_2	1.434	0.013	0.3090	0.010	3412	30	3	3515	16
Afrique du Sud	Steynsdorp	Stey1400_2 Stoy1408_3	2 262	0.013	0.3089	0.010	2250	24	28	3313	10
Afrique du Sud	Stevnsdorp	Stey1400_5 Stoy1408_4	1.008	0.012	0.2030	0.011	2559	24	26	3200	17
Afrique du Sud	Stolzburg	SICY1400_4 STI6_1	1.795	0.014	0.310	0.010	2010	29	12	3321	16
Afrique du Sud	Stolzburg	SIJU_1 STIC 2	1.705	0.013	0.266	0.010	2975	22	15	3407	10
Afrique du Sud	Stolzburg	SIJ0_2 STI6_3	2 2 5 7	0.014	0.2703	0.0099	2280	22	22	3342	15
Afrique du Sud	Stolzburg	SIJU_5 STIC 4	1 200	0.014	0.2696	0.010	2280	41	33 7	3410	16
Afrique du Sud	Stormdorn	51J0_4 Stp. 1	1.200	0.013	0.2907	0.010	3703	22	-1	3403 3442	10
Afrique du Sud	Steynsdorp	Stp_1	1.333	0.015	0.2949	0.0073	3237	33 15	0	J44J 2144	12
Afrique du Sud	Steynsdorp	Stp_1 Stp_3	1.615	0.020	0.2992	0.011	2029	45	18	3400 2062	1/
Afrique du Sud	Steynsdorp	stp_s	1.98/	0.017	0.21/4	0.010	2028	20	11	2702	10
Airique du Sud	Steynsdorp	stp_s	1.00	0.016	0.30//	0.0065	3040	39	13	351U 2505	10
Airique du Sud	Steynsdorp	Stp_4	1.314	0.014	0.3008	0.0064	3209	33 50	/	3505	10
Airique du Sud	Steynsdorp	stp_s	1.008	0.023	0.3065	0.011	311/	30	11	3503	10
Airique du Sud	Steynsdorp	Stp_8	1.398	0.017	0.30/4	0.0064	5155	42	11	3208	10

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation-laser ICP-MS

Localisation	Craton/Complex	/Zone	Echantillon	²³⁸ U/ ²⁰⁶ Pb*	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ ²	³⁸ U/ ²⁰⁶ Pb* age (Ma)	2 σ Discordance (%)		ce ²⁰⁷ Pb*/ ²⁰⁶ Pb* age (Ma)		σ (Ma)
Afrique du Sud	Steynsdorp		Stp_9	1.368	0.017	0.3098	0.0064	3538	46	-1	35	520	10
Swaziland	Ancient gneiss con	mplex	AGCR_4	2.796	0.015	0.2289	0.010	1971	26	35	30	044	16
Standard	²⁰⁷ Pb/ ²³⁵ U	2 σ	²⁰⁶ Pb*/ ²³⁸ U	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age (Ma) ²³⁸ U/ ²⁰⁶ Pb*	2 σ (Ma)	:	Age (Ma) ²³⁵ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²⁰⁷ Pb/ ²⁰⁶ Pb*	2 σ (Ma)
Peixe 1x	0.696	0.023	0.085	0.002	0.0593	0.0015	536	14		527	11	577	55
Peixe_1w	0.687	0.021	0.085	0.002	0.0587	0.0013	531	12		525	10	556	49
GroupJ													
Peixe_1v	0.664	0.022	0.084	0.002	0.0577	0.0014	517	13		517	11	517	52
Peixe_1u	0.677	0.024	0.086	0.002	0.0569	0.0015	525	15		534	12	488	58
Group I Boing 14	0.672	0.022	0.094	0.002	0.0570	0.0015	522	14		522	11	524	55
Poixe_1t	0.674	0.023	0.084	0.002	0.0579	0.0015	523	14		522	10	526	55
Peixe 1r	0.744	0.022	0.087	0.002	0.0618	0.0015	565	13		540	11	668	52
Group H	0.711	0.021	0.007	0.002	0.0010	0.0015	505	11		510		000	52
Peixe 1q	0.654	0.023	0.083	0.002	0.0570	0.0016	511	14		515	11	490	60
Peixe_1p	0.666	0.023	0.083	0.002	0.0579	0.0016	519	14		517	10	526	61
Group G													
Peixe_1o	0.643	0.021	0.082	0.002	0.0571	0.0013	504	13		507	11	495	51
Peixe_1n	0.670	0.036	0.084	0.002	0.0582	0.0027	521	22		517	14	537	99
Group F	0.(24	0.022	0.000	0.002	0.0540	0.0000	100	20		510	1.4	100	0.4
Peixe_11	0.624	0.032	0.082	0.002	0.0549	0.0023	492	20		510	14	409	94
Peixe_1m	0.646	0.032	0.082	0.003	0.0571	0.0023	506	20		508	15	497	86
Group E Poixo 1k	0.640	0.033	0.081	0.002	0.0572	0.0025	502	20		503	13	500	04
Peixe 1i	0.633	0.033	0.081	0.002	0.0572	0.0023	498	20		512	13	437	94
Group D	0.055	0.055	0.005	0.002	0.0000	0.0021	190	20		512	11	157	<i></i>
Peixe 1i	0.663	0.034	0.084	0.002	0.0573	0.0025	516	21		520	14	503	93
Peixe 1h	0.658	0.031	0.086	0.002	0.0553	0.0022	513	19		534	13	424	87
Group C													
Peixe_1g	0.644	0.034	0.083	0.002	0.0564	0.0025	505	21		513	13	468	99
Peixe_1f	0.637	0.030	0.083	0.002	0.0556	0.0021	500	18		514	13	438	84
Group B													
Peixe_1e	0.665	0.034	0.082	0.002	0.0587	0.0025	518	21		509	14	555	91
Peixe_Id	0.644	0.035	0.082	0.002	0.0572	0.0026	505	22		506	15	500	99
Group A Poixo 10	0.672	0.022	0.085	0.002	0.0572	0.0014	522	13		578	11	407	53
reixe_ic Poivo 1h	0.072	0.022	0.085	0.002	0.0572	0.0014	522	13		534	11	47/ 558	55
Peixe 1a	0.700	0.024	0.084	0.002	0.0587	0.0013	525	13		517	11	557	52
Peixe 1a	0.648	0.018	0.081	0.001	0.0583	0.0013	507	11		500	9	541	48
Peixe_1p	0.645	0.020	0.081	0.002	0.0578	0.0014	505	12		501	9	522	52

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation-laser ICP-MS

Standard	²⁰⁷ Pb/ ²³⁵ U	2 σ	²⁰⁶ Pb*/ ²³⁸ U	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age (Ma) ²³⁸ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²³⁵ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²⁰⁷ Pb/ ²⁰⁶ Pb*	2 σ (Ma)
Peixe 1o	0.667	0.026	0.082	0.002	0.0593	0.0019	519	16	506	11	578	67
Peixe 1n	0.705	0.021	0.085	0.002	0.0601	0.0014	542	13	527	10	606	50
Peixe_1m	0.673	0.021	0.083	0.002	0.0589	0.0014	523	13	513	10	564	53
Peixe_11	0.677	0.022	0.085	0.002	0.0578	0.0015	525	13	526	9	520	58
Peixe ¹ k	0.690	0.022	0.087	0.002	0.0578	0.0014	533	13	536	11	522	52
Peixe 1j	0.680	0.022	0.085	0.002	0.0581	0.0015	527	13	525	10	535	56
Peixe 1i	0.695	0.023	0.086	0.002	0.0584	0.0016	536	14	534	10	546	59
Peixe 1h	0.667	0.022	0.085	0.002	0.0568	0.0014	519	13	526	10	485	55
Peixe 1g	0.696	0.022	0.085	0.002	0.0592	0.0015	536	13	527	10	573	54
Peixe 1f	0.688	0.022	0.087	0.002	0.0576	0.0014	531	13	535	11	516	52
Peixe 1e	0.695	0.021	0.086	0.002	0.0588	0.0013	536	12	530	10	560	49
Peixe 1d	0.655	0.024	0.082	0.002	0.0577	0.0017	511	15	510	11	517	66
Peixe_1c	0.673	0.024	0.084	0.002	0.0584	0.0017	523	14	518	10	543	62
Peixe 1b	0.669	0.019	0.083	0.002	0.0587	0.0013	520	12	512	9	557	47
Peixe 1a	0.668	0.022	0.083	0.002	0.0586	0.0014	520	13	512	10	553	53
FC1_1v	1 877	0.037	0.178	0.003	0.0763	0.0009	1073	13	1058	15	1102	24
FC1_1	1.834	0.040	0.176	0.003	0.0758	0.0009	1058	14	1043	18	1089	24
Group J	1.054	0.040	0.170	0.005	0.0750	0.0007	1050	14	1045	10	1009	24
FC1 1n	1 834	0.040	0.176	0.003	0.0758	0.0009	1058	14	1043	18	1089	24
$FC1_1t$	2 016	0.040	0.191	0.003	0.0764	0.0009	1121	14	1129	17	1106	24
Crown I	2.010	0.040	0.171	0.005	0.0704	0.0007	1121	14	112)	17	1100	24
FC1 1s	1 801	0.045	0.180	0.003	0.0761	0.0011	1078	16	1069	18	1097	30
FC1_18 FC1_1a	1.071	0.045	0.130	0.003	0.0701	0.0011	1078	10	1062	13	1097	30
rci_iq	1.075	0.040	0.179	0.003	0.0759	0.0010	1072	14	1002	17	1092	20
Group n	1.920	0.028	0.176	0.002	0.0759	0.0010	1060	14	1045	16	1000	25
FC1_1p FC1_1a	1.639	0.038	0.170	0.003	0.0757	0.0010	1000	14	1043	10	1090	23
FCI_10 Cream C	1.072	0.035	0.179	0.003	0.0757	0.0009	10/1	12	1005	15	1088	23
Group G	1 972	0.024	0.179	0.002	0.0761	0.0008	1071	12	1059	15	1000	21
FCI_III FCI_III	1.875	0.034	0.178	0.003	0.0701	0.0008	10/1	12	1056	15	1099	21
FCI_IM	1.849	0.037	0.178	0.003	0.0754	0.0009	1065	15	1055	10	1080	23
Group F	1.971	0.041	0.190	0.002	0.0750	0.0011	10(7	1.4	10(7	16	10/0	20
FCI_II	1.801	0.041	0.180	0.003	0.0750	0.0011	1067	14	1067	10	1008	30
FCI_IK	1.8/5	0.040	0.179	0.003	0.0759	0.0009	1072	14	1063	17	1092	25
Group E	1.0(2	0.027	0.170	0.002	0.0750	0.0000	10(0	12	1056	16	1002	22
FCI_Ij	1.863	0.037	0.178	0.003	0.0759	0.0009	1068	13	1056	16	1092	23
FC1_li	1.915	0.039	0.183	0.003	0.0761	0.0008	1086	14	1081	17	1097	22
Group D							4.9.79					
FC1_1h	1.864	0.038	0.179	0.003	0.0755	0.0009	1068	13	1061	17	1082	23
FC1_1g	1.837	0.042	0.177	0.003	0.0751	0.0010	1059	15	1053	18	1071	28
Group C												
FC1_1f	1.842	0.038	0.175	0.003	0.0762	0.0009	1061	14	1041	17	1100	23
Group B												
FC1_1e	1.842	0.039	0.176	0.003	0.0761	0.0008	1061	14	1043	18	1098	21
FC1_1d	1.862	0.041	0.178	0.003	0.0759	0.0008	1068	15	1056	19	1092	21
FC1_1c	1.847	0.034	0.176	0.003	0.0761	0.0008	1062	12	1045	15	1099	20
Group A												
FC1_1a	1.844	0.040	0.173	0.003	0.0773	0.0012	1061	14	1028	15	1130	30
FC1_1b	1.826	0.038	0.173	0.003	0.0764	0.0008	1055	14	1031	17	1105	22

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation laser ICP-MS

Standard	²⁰⁷ Pb/ ²³⁵ U	2 σ	²⁰⁶ Pb*/ ²³⁸ U	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age (Ma) ²³⁸ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²³⁵ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²⁰⁷ Pb/ ²⁰⁶ Pb*	2 σ (Ma)
Peixe 1r	0.679	0.024	0.084	0.002	0.0583	0.0014	526	14	523	13	541	53
Peixe_1q Group H	0.689	0.024	0.084	0.002	0.0593	0.0014	532	14	522	13	578	50
Peixe 1n	0.687	0.025	0.085	0.002	0.0588	0.0015	531	15	525	13	558	54
Peixe 10	0.673	0.025	0.087	0.002	0.0565	0.0013	523	14	535	13	470	52
Group G	0.075	0.021	0.007	0.002	0.0000	0.0015	020		000	10	170	02
Peixe 1n	0.689	0.024	0.087	0.002	0.0576	0.0012	532	15	537	15	514	45
Peixe 1m	0.721	0.022	0.089	0.002	0.0585	0.0013	551	13	552	12	547	46
Group F												
Peixe 11	0.682	0.022	0.087	0.002	0.0565	0.0013	528	13	541	11	472	52
Peixe 1k	0.670	0.023	0.084	0.002	0.0581	0.0015	521	14	518	11	534	55
Group E												
Peixe 1j	0.687	0.024	0.087	0.002	0.0570	0.0014	531	15	541	13	490	53
Peixe 1i	0.644	0.029	0.084	0.002	0.0554	0.0020	505	18	522	13	429	78
Group D												
peixe 1h	0.684	0.030	0.085	0.003	0.0581	0.0019	529	18	528	15	533	69
peixe 1g	0.651	0.026	0.083	0.002	0.0567	0.0015	509	16	516	14	479	59
Group C												
Peixe 1f	0.685	0.024	0.086	0.002	0.0577	0.0013	530	15	532	14	519	50
Peixe ¹ e	0.704	0.025	0.086	0.002	0.0596	0.0014	541	15	530	14	588	50
Group B												
Peixe 1d	0.678	0.024	0.084	0.002	0.0587	0.0014	526	15	519	13	555	52
Peixe_1c	0.702	0.024	0.087	0.002	0.0586	0.0013	540	14	537	13	553	48
Group A												
Peixe_1b	0.669	0.028	0.086	0.002	0.0566	0.0017	520	17	530	14	475	67
Peixe_1a	0.700	0.025	0.089	0.002	0.0573	0.0014	539	15	547	14	504	54
FC1_1r	1.844	0.046	0.176	0.004	0.0758	0.0010	1061	16	1048	20	1090	26
FC1_1q	1.848	0.048	0.178	0.004	0.0752	0.0011	1063	17	1058	21	1073	29
Group H												
FC1_1p	1.860	0.048	0.174	0.004	0.0774	0.0010	1067	17	1036	21	1132	26
FC1_1o	1.891	0.051	0.178	0.004	0.0769	0.0011	1078	18	1058	22	1119	28
Group G												
FC1_1n	1.834	0.047	0.176	0.004	0.0756	0.0011	1058	17	1045	20	1084	29
FC1_1m	1.836	0.047	0.175	0.004	0.0760	0.0011	1058	17	1041	20	1094	28
Group F											1000	• •
FC1_11	1.886	0.055	0.181	0.005	0.0757	0.0010	1076	19	1071	25	1086	28
FC1_1k2	1.876	0.050	0.178	0.004	0.0765	0.0010	1073	17	1055	22	1109	26
Group E	1.050	0.051	0.150	0.004	0 0 7 7 7	0.0011	10.65	10	10.55		1000	•
FC1_1j	1.856	0.051	0.178	0.004	0.0755	0.0011	1065	18	1057	23	1082	29
FCI_II	1.873	0.051	0.177	0.004	0.0768	0.0011	1072	18	1050	22	1117	29
Group D	1.000	0.040	0 101	0.004	0.07(0	0.0010	1070	17	1070	22	1004	24
FCI_Ih	1.892	0.048	0.181	0.004	0.0760	0.0010	1078	17	1070	22	1094	26
FCI_lg	1.8/3	0.051	0.178	0.004	0.0762	0.0010	1071	18	1058	23	1100	26
Group C	1 000	0.040	0 101	0.004	0.07(2	0.0011	1001	17	1071	21	1102	20
FCI_II	1.900	0.049	0.181	0.004	0.0763	0.0011	1081	1/	10/1	21	1102	28
FCI_le	1.88/	0.054	0.1/8	0.004	0.0768	0.0011	10//	19	1057	24	1110	27
Group B	1 000	0.047	0.170	0.004	0.0760	0.0010	1090	16	1061	21	1110	25
rc1_1a	1.698	0.04/	0.179	0.004	0.0709	0.0010	1080	10	1001	21	1119	25

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation laser ICP-MS

Standard	²⁰⁷ Pb/ ²³⁵ U	2 σ	²⁰⁶ Pb*/ ²³⁸ U	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age (Ma) ²³⁸ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²³⁵ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²⁰⁷ Pb/ ²⁰⁶ Pb*	2 σ (Ma)
FC1_1c	1.850	0.053	0.175	0.004	0.0765	0.0011	1063	19	1042	24	1108	29
Group A												
FC1_1b	1.921	0.055	0.180	0.004	0.0774	0.0012	1088	19	1067	24	1131	30
FC1_1a	1.836	0.053	0.174	0.004	0.0764	0.0011	1058	19	1035	24	1106	28
FC1 ¹ e	1.850	0.036	0.177	0.003	0.0758	0.0007	1063	13	1050	16	1091	19
FC1 ¹ d	1.886	0.036	0.178	0.003	0.0767	0.0008	1076	13	1058	16	1113	20
Group TTG2												
FC1 1c	1.838	0.039	0.175	0.003	0.0761	0.0008	1059	14	1040	17	1098	22
FC1 ¹ b	1.843	0.040	0.177	0.003	0.0756	0.0008	1061	14	1049	19	1084	20
FC1 ¹ a	1.815	0.040	0.172	0.003	0.0763	0.0008	1051	15	1025	19	1104	21
CHANGE												
MOUNT												
FC1 1r	2.001	0.053	0.192	0.004	0.0757	0.0010	1116	18	1131	24	1087	28
FC1 1a	1.904	0.052	0.180	0.004	0.0767	0.0010	1083	18	1068	24	1112	26
FC1 1p	1.857	0.064	0.180	0.006	0.0750	0.0011	1066	23	1065	31	1068	30
Group G												
FC1_1o	1 899	0.059	0.182	0.005	0.0755	0.0009	1081	21	1080	28	1083	25
$FC1_1n$	1 923	0.061	0.183	0.005	0.0763	0.0011	1089	21	1082	28	1103	28
Group F	1.720	0.001	0.100	0.000	0.0700	0.0011	1009		1002	20	1100	20
FC1 1M	1 873	0.053	0.178	0.004	0.0764	0.0010	1072	19	1055	24	1106	26
FC1_1M	1.842	0.061	0.176	0.005	0.0760	0.0012	1061	22	1044	28	1094	32
Group F	1.042	0.001	0.170	0.005	0.0700	0.0012	1001	22	1044	20	1074	52
FC1 11	1 867	0.060	0.178	0.006	0.0762	0.0011	1070	24	1055	33	1100	20
FC1_1K	1.807	0.009	0.178	0.000	0.0746	0.0011	1070	24	1055	30	1057	29
rci_ij Croup D	1.047	0.005	0.180	0.000	0.0740	0.0011	1002	22	1005	50	1057	20
EC1 1:	1.840	0.050	0.177	0.005	0.0756	0.0010	1063	21	1052	28	1085	27
FC1_II FC1_Ib	1.049	0.039	0.177	0.003	0.0730	0.0010	1003	21	1052	28	1064	27
rci_iii	1.092	0.072	0.185	0.007	0.0748	0.0010	1078	25	1085	35	1004	20
Group C	1 974	0.061	0.190	0.005	0.0757	0.0010	1072	21	1064	20	1097	27
FCI_Ig FCI_If	1.0/4	0.001	0.180	0.003	0.0737	0.0010	1072	21	1064	29	1087	27
FCI_II	1.927	0.070	0.180	0.006	0.0775	0.0012	1090	24	1069	32	1155	32
Group B	1 704	0.055	0.172	0.005	0.0752	0.0010	10.42	20	1007	27	1077	26
FCI_Ie	1.794	0.055	0.173	0.005	0.0753	0.0010	1043	20	1027	27	10//	26
FCI_Id	1.938	0.060	0.183	0.005	0.0768	0.0009	1094	21	1083	28	111/	24
Group A	1.070	0.070	0 177	0.005	0.07(5	0.0010	1070	21	1051	20	1107	26
FCI_IC	1.868	0.060	0.177	0.005	0.0765	0.0010	1070	21	1051	28	1107	26
FCI_Ib	1.825	0.055	0.175	0.005	0.0756	0.0011	1055	19	1040	25	1085	28
FC1_1a	1.866	0.058	0.176	0.005	0.0767	0.0011	1069	21	1048	27	1114	28
Peixe_le	0.594	0.022	0.074	0.002	0.0586	0.0011	474	14	457	14	553	42
Peixe_1d	0.603	0.020	0.074	0.002	0.0594	0.0012	479	13	459	12	580	42
Group TTG2							- 10					
Peixe_1c	0.667	0.016	0.082	0.001	0.0591	0.0009	519	9	507	9	571	33
Peixe_1b	0.641	0.018	0.078	0.002	0.0592	0.0010	503	11	487	11	576	36
Peixe_1a	0.598	0.021	0.075	0.002	0.0579	0.0011	476	14	466	13	525	43
Peixe_1q	0.679	0.027	0.087	0.002	0.0567	0.0016	526	16	537	14	478	61
Peixe_1p	0.673	0.025	0.084	0.002	0.0579	0.0015	523	15	522	13	527	56
Group G												
Peixe_1o	0.709	0.027	0.088	0.003	0.0583	0.0014	544	16	545	15	540	53
Peixe 1n	0.675	0.025	0.084	0.002	0.0582	0.0016	524	15	521	13	537	58

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation laser ICP-MS

Standard	²⁰⁷ Pb/ ²³⁵ U	2 σ	²⁰⁶ Pb*/ ²³⁸ U	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age (Ma) ²³⁸ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²³⁵ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²⁰⁷ Pb/ ²⁰⁶ Pb*	2 σ (Ma)
Group F									-			
Peixe_1M	0.673	0.025	0.084	0.002	0.0579	0.0014	523	15	522	14	525	51
Peixe_1L	0.665	0.025	0.084	0.002	0.0574	0.0015	518	15	520	14	507	56
Group E												
Peixe 1k	0.677	0.025	0.086	0.002	0.0568	0.0013	525	15	535	14	482	51
Peixe 1i	0.660	0.025	0.085	0.003	0.0561	0.0013	515	15	528	15	457	51
Group D												
Peixe 1i	0.706	0.022	0.088	0.002	0.0579	0.0012	543	13	547	13	526	45
Peixe 1h	0.723	0.025	0.089	0.002	0.0592	0.0013	552	15	547	14	574	47
Group C												
Peixe 1g	0.684	0.025	0.088	0.002	0.0566	0.0014	529	15	541	15	477	52
Peixe_1f	0.684	0.031	0.086	0.003	0.0579	0.0014	529	19	530	20	525	53
Group B	0.001	0.051	0.000	0.005	0.0077	0.0011	52)	1)	550	20	525	55
Peive 1e	0.758	0.024	0.095	0.002	0.0579	0.0013	573	14	584	13	527	49
Poixo 1d	0.671	0.024	0.093	0.002	0.0578	0.0012	521	13	521	12	524	45
Group A	0.071	0.021	0.004	0.002	0.0570	0.0012	521	15	521	12	524	45
Boiyo 1o	0.654	0.026	0.083	0.003	0.0575	0.0014	511	16	511	15	512	54
Peixe_IC	0.034	0.020	0.085	0.003	0.0373	0.0014	511	10	526	13	505	52
Peixe_10	0.072	0.024	0.085	0.002	0.0374	0.0014	522	15	520	14	505	52
Feixe_1a	0.700	0.033	0.080	0.003	0.0392	0.0013	1054	19	1020	20	3/3	54 17
FCI_IZ	1.824	0.031	0.175	0.003	0.0763	0.0006	1054	11	1030	14	1104	17
FCI_IX	1.849	0.034	0.176	0.003	0.0761	0.0006	1063	12	1046	16	1097	1/
FCI_Iy	1.884	0.031	0.178	0.003	0.0767	0.0006	1075	11	1057	14	1113	15
Group I	1.040	0.022	0.155	0.000	0.0754	0.000 -	10.00	10	10.10		1005	10
FC1_1w	1.840	0.033	0.177	0.003	0.0756	0.0007	1060	12	1048	15	1085	18
FC1_1v	1.848	0.030	0.176	0.002	0.0761	0.0006	1063	11	1045	13	1098	17
Group H												
FC1_1u	1.871	0.034	0.178	0.003	0.0764	0.0007	1071	12	1054	15	1105	17
FC1_1t	1.853	0.033	0.177	0.003	0.0758	0.0006	1065	12	1053	16	1089	16
Group G												
FC1_1s	1.812	0.031	0.173	0.003	0.0758	0.0006	1050	11	1030	14	1090	16
FC1_1q	1.840	0.030	0.175	0.002	0.0763	0.0006	1060	11	1039	14	1102	15
Group F												
FC1_1p	1.831	0.034	0.174	0.003	0.0763	0.0006	1057	12	1035	16	1102	16
FC1_1o	1.850	0.033	0.175	0.003	0.0768	0.0007	1063	12	1037	14	1117	19
Group E												
FC1 ¹ n	1.805	0.032	0.172	0.003	0.0761	0.0007	1047	11	1023	14	1098	18
FC1 ¹ m	1.854	0.034	0.178	0.003	0.0756	0.0008	1065	12	1055	15	1084	20
FC1 11	1.800	0.037	0.173	0.003	0.0755	0.0008	1046	13	1029	17	1081	21
Group D												
FC1 1k	1.822	0.036	0.174	0.003	0.0761	0.0008	1053	13	1032	16	1099	21
FC1_1i	1.839	0.033	0.176	0.003	0.0760	0.0007	1059	12	1042	15	1095	19
Group C												
FC1_1h	1 839	0.036	0 174	0.003	0.0766	0.0007	1059	13	1034	16	1112	19
Group B	1.007	0.000	5.171	0.000	0.0700	0.0007		15	1001	10		17
FC1 1o	1 878	0.035	0.175	0.003	0.0776	0.0009	1073	12	1042	15	1138	22
$FC1_{16}$	1 861	0.034	0.175	0.003	0.0770	0.0007	1067	12	1041	16	1120	17
FC1_1	1.801	0.034	0.173	0.003	0.0765	0.0007	1054	12	1029	16	1107	20
Crown A	1.024	0.050	0.175	0.003	0.0705	0.0007	1034	15	1029	10	1107	20
Group A												

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation laser ICP-MS

Standard	²⁰⁷ Pb/ ²³⁵ U	2 σ	²⁰⁶ Pb*/ ²³⁸ U	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age (Ma) ²³⁸ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²³⁵ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²⁰⁷ Pb/ ²⁰⁶ Pb*	2 σ (Ma)
FC1 1d	1.885	0.036	0.180	0.003	0.0759	0.0007	1076	13	1068	17	1092	19
FC1 1c	1.833	0.037	0.176	0.003	0.0755	0.0008	1057	13	1046	17	1082	21
FC1 ¹ b	1.891	0.037	0.180	0.003	0.0763	0.0007	1078	13	1066	17	1102	19
FC1 ¹ a	1.879	0.037	0.180	0.003	0.0757	0.0007	1074	13	1067	17	1087	18
Peixe 1w	0.690	0.017	0.086	0.001	0.0583	0.0010	533	10	531	9	539	38
Peixe 1v	0.690	0.017	0.085	0.001	0.0591	0.0011	533	10	524	9	571	39
Group I												
Peixe 1u	0.682	0.016	0.084	0.001	0.0586	0.0009	528	10	522	9	553	35
Peixe 1t	0.675	0.016	0.085	0.002	0.0579	0.0009	524	10	524	9	526	35
Group H												
Peixe 1s	0.675	0.017	0.083	0.002	0.0587	0.0010	524	10	517	9	554	37
Peixe 1r	0.683	0.015	0.084	0.001	0.0590	0.0009	529	9	520	8	568	33
Group G	0.000	0.010	0.001	0.001	0.0090	0.0007	02)	<i></i>	020	Ũ	200	00
Peixe 1a	0.696	0.017	0.086	0.002	0.0585	0.0009	536	10	534	10	547	34
Peixe_1q Peixe_1n	0.700	0.017	0.087	0.002	0.0582	0.0010	539	10	539	9	537	36
Group F	0.700	0.017	0.007	0.002	0.0502	0.0010	557	10	557	,	551	50
Doivo 1o	0.700	0.016	0.086	0.001	0.0592	0.0000	530	10	530	Q	575	35
Poivo 1n	0.700	0.016	0.086	0.001	0.0592	0.0009	544	0	533	0	590	31
Poivo 1m	0.703	0.010	0.084	0.001	0.0590	0.0008	520	10	535	9	563	27
Crown E	0.085	0.017	0.064	0.001	0.0389	0.0010	529	10	321	9	505	57
Group E Deive 11	0.692	0.016	0.094	0.001	0.0599	0.0010	520	10	522	0	550	25
	0.085	0.010	0.084	0.001	0.0388	0.0010	529	10	522	9	539	33
Peixe_ik	0.085	0.017	0.085	0.001	0.0384	0.0010	529	10	525	9	545	57
	0.702	0.017	0.007	0.002	0.0595	0.0010	541	10	520	0	540	20
Peixe_1j	0.703	0.017	0.087	0.002	0.0585	0.0010	541	10	539	9	548	38
Peixe_li	0.701	0.016	0.085	0.001	0.0596	0.0010	539	10	528	8	58/	35
Group C	0.001	0.017	0.00 <i>5</i>	0.001	0.0550	0.0000	500	0		0		24
Peixe_1h	0.681	0.016	0.085	0.001	0.0578	0.0009	528	9	529	8	522	36
Peixe_1g	0.694	0.015	0.087	0.001	0.0580	0.0009	535	9	537	8	529	33
Group B												
Peixe_1f	0.718	0.017	0.088	0.002	0.0592	0.0010	550	10	544	9	574	36
Peixe_1e	0.719	0.016	0.088	0.001	0.0594	0.0009	550	9	542	9	583	32
Group A										_		
Peixe_1d	0.700	0.015	0.087	0.001	0.0585	0.0009	539	9	537	8	548	32
Peixe_1c	0.736	0.016	0.090	0.001	0.0593	0.0009	560	10	555	9	580	33
Peixe_1b	0.677	0.017	0.085	0.002	0.0579	0.0010	525	10	525	10	526	36
Peixe_1a	0.664	0.021	0.081	0.002	0.0592	0.0011	517	13	504	12	576	39
Peixe_2ac	0.659	0.019	0.082	0.002	0.0581	0.0012	514	11	510	10	532	44
Peixe_2ab	0.659	0.022	0.086	0.002	0.0554	0.0014	514	14	533	11	429	57
Peixe_2aa	0.620	0.028	0.078	0.003	0.0574	0.0019	490	18	487	15	505	71
Group K												
Peixe_2z	0.648	0.021	0.083	0.002	0.0568	0.0013	507	13	512	11	483	51
Peixe_2y	0.671	0.020	0.085	0.002	0.0575	0.0013	522	12	524	10	510	51
GroupJ												
Peixe_2x	0.672	0.019	0.084	0.002	0.0578	0.0012	522	12	521	10	522	45
Peixe ² w	0.694	0.020	0.086	0.002	0.0587	0.0012	535	12	530	10	557	44
Group I												
Peixe 2v	0.686	0.018	0.085	0.002	0.0583	0.0011	530	11	528	10	539	39
Peixe 71	0.692	0.018	0.085	0.002	0.0592	0.0010	534	11	525	10	575	38

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation laser ICP-MS
Standard	²⁰⁷ Pb/ ²³⁵ U	2 σ	²⁰⁶ Pb*/ ²³⁸ U	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age (Ma) ²³⁸ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²³⁵ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²⁰⁷ Pb/ ²⁰⁶ Pb*	2 σ (Ma)
Group H												
Peixe_2t	0.666	0.016	0.082	0.001	0.0589	0.0010	519	10	508	8	564	38
Peixe_2s	0.652	0.016	0.083	0.001	0.0570	0.0010	510	10	514	8	493	39
Peixe ² r	0.639	0.022	0.078	0.002	0.0597	0.0012	502	13	482	13	591	43
Peixe ² q	0.707	0.019	0.087	0.002	0.0592	0.0011	543	11	536	10	574	40
Peixe 2p	0.682	0.018	0.085	0.001	0.0583	0.0012	528	11	525	7	540	46
Group G												
Peixe 20	0.687	0.017	0.086	0.002	0.0582	0.0009	531	10	530	9	537	35
Peixe 2n	0.691	0.017	0.084	0.001	0.0596	0.0010	534	10	521	9	588	36
Peixe 2m	0.672	0.015	0.084	0.001	0.0583	0.0009	522	9	517	8	541	35
Group F												
Peixe 21	0.689	0.017	0.084	0.002	0.0593	0.0010	532	10	521	9	578	35
Peixe 2k	0.695	0.017	0.083	0.001	0.0604	0.0011	536	10	516	8	619	38
Group E	0.070	0.017	0.000	0.001	0.000	0.0011	000	10	010	Ũ	017	20
Peixe 2i	0.669	0.017	0.084	0.001	0.0581	0.0011	520	10	517	9	535	41
Peixe_2j	0.666	0.016	0.084	0.001	0.0576	0.0009	518	9	519	8	513	35
Group D	0.000	0.010	0.004	0.001	0.0070	0.0007	510	,	517	0	515	55
Poivo 2h	0.536	0.023	0.067	0.002	0.0576	0.0012	136	15	421	15	516	17
$Poixo_2 \alpha$	0.549	0.023	0.070	0.002	0.0570	0.0012	430	13	421	15	183	41
Crown C	0.549	0.022	0.070	0.002	0.0508	0.0011	444	14	437	15	405	41
Boivo 2f	0.671	0.018	0.084	0.002	0.0582	0.0011	522	11	519	10	529	40
Peixe_21	0.071	0.018	0.064	0.002	0.0506	0.0011	322 199	11	J10 466	10	500	40
Peixe_2e	0.010	0.025	0.075	0.003	0.0590	0.0013	400	10	400 526	15	590	40
reixe_2u	0.075	0.010	0.085	0.002	0.0374	0.0009	322	10	520	9	307	55
Group B	0.(92	0.017	0.095	0.002	0.0590	0.0010	529	10	529	10	520	26
Peixe_2c	0.682	0.017	0.085	0.002	0.0580	0.0010	528	10	528	10	530	30
Peixe_20	0.338	0.031	0.000	0.000	0.0389	0.0018	457	34	415	30	504	07
Peixe_2a	0.499	0.055	0.062	0.004	0.0580	0.0012	411	22	390	24	530	45
Group A	0.000	0.017	0.000	0.002	0.0502	0.0000	5 20	10	520	10	672	21
Peixe_le	0.699	0.01/	0.086	0.002	0.0592	0.0009	538	10	530	10	5/3	31
Peixe_1a	0./11	0.016	0.086	0.001	0.0598	0.0009	545	10	533	8	595	34
Peixe_1c	0.699	0.018	0.087	0.002	0.0581	0.0009	538	11	539	11	534	33
Peixe_1b	0.711	0.017	0.085	0.002	0.0605	0.0009	545	10	527	9	620	32
Peixe_la	0.700	0.01/	0.08/	0.002	0.0585	0.0009	539	10	536	9	54/	35
FC1_20	1.785	0.038	0.169	0.003	0.0765	0.0010	1040	14	1008	16	1108	25
FC1_2n	1.745	0.037	0.166	0.003	0.0761	0.0010	1025	14	992	15	1098	27
Group K												• •
FC1_2m	1.741	0.041	0.164	0.003	0.0770	0.0012	1024	15	979	16	1120	30
FC1_2l	1.721	0.042	0.164	0.003	0.0760	0.0011	1016	16	980	18	1095	30
Group J												
FC1_2k	1.751	0.045	0.170	0.003	0.0746	0.0013	1028	16	1014	18	1058	34
FC1_2j	1.786	0.042	0.170	0.003	0.0760	0.0012	1041	15	1014	17	1096	30
Group I												
FC1_2i	1.793	0.039	0.173	0.003	0.0751	0.0010	1043	14	1030	16	1071	26
FC1_2h	1.759	0.039	0.168	0.003	0.0760	0.0011	1030	14	1000	16	1094	28
FC1_2g	1.810	0.038	0.172	0.003	0.0764	0.0010	1049	14	1022	15	1106	0
Group H												
FC1_2f	1.805	0.038	0.173	0.003	0.0759	0.0010	1047	14	1026	16	1092	25
FC1 ² e	1.759	0.042	0.170	0.003	0.0748	0.0011	1030	15	1015	18	1064	30

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation laser ICP-MS

Standard	²⁰⁷ Pb/ ²³⁵ U	2 σ	²⁰⁶ Pb*/ ²³⁸ U	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age (Ma) ²³⁸ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²³⁵ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²⁰⁷ Pb/ ²⁰⁶ Pb*	2 σ (Ma)
Group G												
FC1_2d	1.753	0.039	0.168	0.003	0.0756	0.0010	1028	14	1002	17	1084	25
FC1_2c	1.782	0.035	0.170	0.003	0.0762	0.0010	1039	13	1010	14	1100	25
FC1_2b	1.775	0.040	0.169	0.003	0.0763	0.0011	1037	15	1005	17	1104	28
FC1_2a	1.699	0.037	0.166	0.003	0.0744	0.0010	1008	14	987	16	1053	27
Group F												
FC1_1r	1.835	0.032	0.175	0.003	0.0762	0.0006	1058	11	1038	15	1099	16
FC1_1q	1.849	0.029	0.176	0.002	0.0760	0.0006	1063	10	1048	13	1095	16
Group E												
FC1_1o	1.810	0.032	0.172	0.003	0.0764	0.0006	1049	11	1022	15	1105	16
FC1 ⁻ 1n	1.810	0.035	0.171	0.003	0.0768	0.0007	1049	13	1018	16	1115	18
Group D												
FC1 1m	1.827	0.031	0.174	0.003	0.0763	0.0006	1055	11	1032	14	1104	16
FC1 11	1.795	0.033	0.171	0.003	0.0763	0.0007	1043	12	1015	15	1103	18
Group C												
FC1 ¹ k	1.798	0.029	0.170	0.002	0.0765	0.0007	1045	10	1015	13	1108	17
FC1 1i	1.837	0.039	0.175	0.003	0.0763	0.0008	1059	14	1037	17	1103	22
Group B												
FC1 1i	1.833	0.029	0.174	0.002	0.0763	0.0006	1057	10	1036	13	1102	16
FC1_1h	1.822	0.031	0.173	0.003	0.0763	0.0006	1053	11	1029	15	1104	15
FC1_1g	1.823	0.032	0.174	0.003	0.0760	0.0006	1054	12	1034	15	1095	16
Group A												
FC1_1f	1 844	0.029	0.175	0.002	0.0763	0.0005	1061	10	1041	14	1102	14
FC1_1e	1.861	0.035	0.176	0.003	0.0768	0.0006	1067	12	1044	16	1115	16
FC1_1d	1.877	0.034	0.180	0.003	0.0755	0.0006	1073	12	1069	16	1081	16
FC1_1c	1.873	0.036	0.177	0.003	0.0767	0.0007	1072	13	1051	17	1113	18
FC1_1b	1.865	0.033	0.177	0.003	0.0766	0.0007	1069	12	1048	15	1111	17
FC1_1a	1.856	0.037	0.177	0.003	0.0759	0.0006	1066	13	1052	17	1093	17
Peixe end?	0.652	0.023	0.082	0.002	0.0579	0.0014	510	14	506	12	527	54
Peixe end	0.643	0.022	0.081	0.002	0.0575	0.0014	504	14	503	12	510	54
Group O	0.015	0.022	0.001	0.002	0.0070	0.0011			000		010	0.1
Peive 1al	0.693	0.018	0.085	0.002	0.0590	0.0010	535	11	527	10	569	37
Peixe 1ak	0.685	0.018	0.085	0.002	0.0581	0.0010	530	11	528	10	535	39
Peixe 1ai	0.688	0.019	0.084	0.002	0.0592	0.0011	532	11	522	10	575	39
Group P	0.000	0.017	0.001	0.002	0.000/2	0.0011	002		022	10	010	57
Peixe 1ah	0.675	0.019	0.084	0.002	0.0583	0.0010	524	12	520	11	539	38
Peixe 1ag	0.708	0.019	0.087	0.002	0.0594	0.0010	544	11	535	10	581	38
Peive 1af	0.690	0.020	0.086	0.002	0.0583	0.0009	533	12	531	12	542	34
Group O	0.070	0.020	0.000	0.002	0.0205	0.0009	555	12	551	12	512	51
Peixe 1ae	0.707	0.020	0.087	0.002	0.0589	0.0010	543	12	539	12	562	38
Poixo 1ad	0.690	0.020	0.086	0.002	0.0579	0.0010	533	12	534	12	527	39
Group N	0.070	0.020	0.000	0.002	0.0017	0.0010		12	227	12	521	57
Peive 1ac	0.683	0.019	0.085	0.002	0.0585	0.0010	529	11	524	11	547	39
Peixe 1ah	0.601	0.019	0.085	0.002	0.0589	0.0010	533	11	524	10	565	37
Group M	0.071	0.010	0.005	0.002	0.0207	0.0010		11	520	10	505	51
Poivo 199	0.670	0.018	0.084	0.002	0.0575	0.0011	521	11	523	10	511	41
Peixe 17	0.676	0.017	0.085	0.002	0.0580	0.0010	524	11	523	9	531	38
Group L	0.070	0.017	0.005	0.002	0.0300	0.0010	524	11	523	2	551	30

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation laser ICP-MS

Standard	²⁰⁷ Pb/ ²³⁵ U	2 σ	²⁰⁶ Pb*/ ²³⁸ U	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age (Ma) ²³⁸ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²³⁵ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²⁰⁷ Pb/ ²⁰⁶ Pb*	2 σ (Ma)
Peixe 1y	0.691	0.021	0.086	0.002	0.0585	0.0011	533	13	530	13	548	40
Peixe 1x	0.678	0.018	0.083	0.002	0.0592	0.0010	525	11	515	10	573	36
Peixe 1w	0.679	0.017	0.085	0.002	0.0579	0.0010	526	10	526	9	526	38
Group K												
Peixe 1v	0.680	0.036	0.085	0.004	0.0579	0.0011	527	22	527	25	525	40
Peixe 1u	0.684	0.023	0.086	0.002	0.0580	0.0010	529	14	530	14	528	39
GroupJ												
Peixe 1s	0.684	0.019	0.085	0.002	0.0581	0.0011	529	11	528	10	532	41
Peixe 1r	0.692	0.021	0.086	0.002	0.0587	0.0011	534	13	529	12	555	42
Group I												
Peixe 1g	0.671	0.018	0.083	0.002	0.0584	0.0010	522	11	516	10	545	38
Peixe 1p	0.676	0.018	0.085	0.002	0.0577	0.0011	524	11	525	10	520	40
Peixe 10	0.702	0.022	0.085	0.002	0.0598	0.0011	540	13	527	13	598	41
Group H												
Peixe 1n	0.697	0.018	0.087	0.002	0.0584	0.0010	537	11	535	10	546	36
Peixe 1m	0.701	0.019	0.087	0.002	0.0583	0.0011	540	11	539	10	540	42
Peixe 11	0.695	0.018	0.085	0.002	0.0591	0.0011	536	11	527	9	570	39
Group G												
Peixe 1k	0.713	0.020	0.088	0.002	0.0585	0.0011	547	12	546	11	549	41
Peixe 1i	0.682	0.020	0.085	0.002	0.0580	0.0011	528	12	527	11	531	41
Group F												
Peixe 1i	0 691	0.022	0.086	0.002	0.0581	0.0011	534	13	533	13	534	42
Peixe 1h	0.714	0.022	0.088	0.002	0.0588	0.0011	547	13	544	13	560	40
Group E	0.711	0.022	0.000	0.002	0.0200	0.0011	517	15	511	15	500	10
Peixe 1g	0.676	0.021	0.085	0.002	0.0576	0.0011	524	13	527	13	513	42
Peixe_1f	0.695	0.018	0.085	0.002	0.0591	0.0010	536	11	528	10	569	38
Peixe 1e	0.626	0.025	0.078	0.002	0.0582	0.0012	493	16	484	16	539	45
Peixe_1d	0.587	0.025	0.074	0.003	0.0572	0.0012	469	16	462	16	500	48
Group D	0.507	0.025	0.071	0.005	0.0572	0.0015	105	10	102	10	500	10
Poivo 1c	0.695	0.022	0.086	0.002	0.0586	0.0011	536	13	532	14	553	40
Peive 1h	0.694	0.022	0.085	0.002	0.0503	0.0011	535	13	526	13	576	38
Poixo 1o	0.678	0.022	0.085	0.002	0.0590	0.0010	525	11	525	13	520	38
Crown C	0.078	0.017	0.005	0.002	0.0500	0.0010	525	11	525	11	52)	50
Poivo 3a	0.682	0.016	0.084	0.001	0.0586	0.0010	528	10	523	0	553	36
Poivo 3f	0.082	0.016	0.085	0.001	0.0588	0.0010	528	10	525	8	560	36
Poixo 30	0.691	0.010	0.085	0.001	0.0578	0.0010	530	10	5327	0	523	38
Crown P	0.080	0.017	0.080	0.002	0.0578	0.0010	550	10	552	2	525	58
Doivo 2d	0 701	0.017	0.087	0.002	0.0599	0.0010	520	10	525	0	559	26
Peixe_3u	0.701	0.017	0.087	0.002	0.0581	0.0010	539	10	535	9	535	30
Feixe_5c	0.099	0.017	0.087	0.001	0.0381	0.0010	558	10	559	9	555	30
Doivo 2h	0.716	0.018	0.088	0.002	0.0599	0.0010	518	11	545	10	550	26
Peixe_50	0.710	0.018	0.088	0.002	0.0502	0.0010	540	11	526	10	539	21
reixe_sa	0.707	0.017	0.007	0.002	0.0592	0.0009	545 540	10	520	10	570	3 I 4 1
reixe_21 Doive_20	0.703	0.023	0.080	0.002	0.0393	0.0011	540	14	554	14	5/8	41
reixe_2e	0.730	0.020	0.090	0.002	0.0587	0.0011	337 549	11	530	10	55/ 570	41
reixe_2d	0./15	0.021	0.08/	0.002	0.0593	0.0011	548	12	540	12	5/9	39
Peixe_2c	0.732	0.019	0.091	0.002	0.0583	0.0009	558	11	562	11	541	35
reixe_20	0./19	0.018	0.089	0.002	0.0589	0.0009	550 572	11	54/	11	504	32
Peixe Za	0.724	0.019	0.090	0.002	0.0585	0.0010	222	11	554	10	547	30

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation laser ICP-MS

Standard	²⁰⁷ Pb/ ²³⁵ U	2 σ	²⁰⁶ Pb*/ ²³⁸ U	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age (Ma) ²³⁸ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²³⁵ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²⁰⁷ Pb/ ²⁰⁶ Pb*	2 σ (Ma)
FC1 end2	1.802	0.045	0.172	0.004	0.0758	0.0007	1046	16	1025	22	1090	18
FC1_end Group O	1.835	0.055	0.175	0.005	0.0760	0.0008	1058	20	1040	27	1095	20
FC1 1an	1.826	0.048	0.174	0.004	0.0759	0.0008	1055	17	1036	23	1093	20
$FC1_1a_0$	1.829	0.049	0.174	0.004	0.0764	0.0008	1056	18	1032	24	1106	20
FC1 1an	1.807	0.045	0.173	0.004	0.0758	0.0007	1048	16	1028	22	1091	20
Switch to 3 Hz												
FC1 1am	1.842	0.041	0.175	0.003	0.0765	0.0009	1061	15	1037	18	1109	24
FC1 1al	1.838	0.048	0.175	0.004	0.0762	0.0010	1059	17	1040	22	1100	26
Group P												
FC1 lak	1.824	0.041	0.173	0.003	0.0767	0.0008	1054	15	1026	19	1112	22
FC1 ⁻ 1aj	1.843	0.047	0.173	0.004	0.0772	0.0008	1061	17	1030	22	1126	22
FC1 1ai	1.821	0.037	0.174	0.003	0.0758	0.0008	1053	13	1036	16	1089	22
Group O												
FC1 1ah	1.861	0.047	0.178	0.004	0.0758	0.0009	1067	17	1056	22	1090	24
FC1 ⁻ 1ag	1.850	0.049	0.176	0.004	0.0762	0.0010	1063	17	1045	23	1102	25
Group N												
FC1 1af	1.858	0.054	0.176	0.005	0.0767	0.0008	1066	19	1044	26	1113	22
FC1 ¹ ae	1.814	0.047	0.175	0.004	0.0752	0.0008	1050	17	1039	22	1074	22
FC1 ¹ ad	1.870	0.046	0.179	0.004	0.0759	0.0009	1071	16	1059	21	1093	24
Group M												
FC1 1ac	1.880	0.050	0.179	0.004	0.0761	0.0009	1074	18	1062	23	1098	25
FC1 ¹ ab	1.892	0.044	0.180	0.004	0.0764	0.0008	1078	15	1064	20	1106	22
FC1 ⁻ 1aa	1.802	0.056	0.173	0.005	0.0755	0.0009	1046	20	1030	27	1081	25
Group L												
FC1 1z	1.833	0.047	0.173	0.004	0.0769	0.0010	1057	17	1028	21	1118	26
FC1_1y	1.844	0.045	0.174	0.004	0.0769	0.0009	1061	16	1033	20	1119	24
Group K												
FC1_1x	1.821	0.045	0.174	0.004	0.0757	0.0009	1053	16	1037	21	1087	24
FC1_1w	1.868	0.039	0.176	0.003	0.0771	0.0009	1070	14	1044	16	1123	24
FC1_1v	1.827	0.042	0.175	0.004	0.0758	0.0007	1055	15	1039	20	1090	20
FC1_1u	1.846	0.059	0.175	0.005	0.0766	0.0009	1062	21	1038	28	1110	23
Group J												
FC1_1t	1.808	0.051	0.174	0.004	0.0755	0.0009	1048	18	1033	24	1081	23
FC1_1r	1.797	0.050	0.172	0.004	0.0759	0.0010	1044	18	1022	23	1093	27
FC1_1s	1.854	0.048	0.175	0.004	0.0767	0.0009	1065	17	1041	22	1114	23
Group I												
FC1_1q	1.791	0.046	0.172	0.004	0.0755	0.0010	1042	17	1023	21	1083	25
FC1_1p	1.811	0.050	0.175	0.004	0.0752	0.0009	1049	18	1037	24	1075	23
Group H												
FC1_1o	1.828	0.040	0.174	0.003	0.0763	0.0008	1055	14	1032	18	1104	21
FC1_1n	1.836	0.040	0.176	0.003	0.0757	0.0009	1058	14	1044	18	1088	23
Group G												
FC1_1m	1.804	0.061	0.173	0.006	0.0755	0.0009	1047	22	1031	30	1081	24
FC1_1k	1.788	0.055	0.174	0.005	0.0746	0.0009	1041	20	1033	27	1058	24
FC1_11	1.833	0.049	0.175	0.004	0.0762	0.0009	1058	17	1037	23	1100	24
Group F												
FC1_1j	1.824	0.046	0.176	0.004	0.0752	0.0009	1054	16	1045	21	1073	23

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation laser ICP-MS

Standard	²⁰⁷ Pb/ ²³⁵ U	2 σ	²⁰⁶ Pb*/ ²³⁸ U	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age (Ma) ²³⁸ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²³⁵ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²⁰⁷ Pb/ ²⁰⁶ Pb*	2 σ (Ma)
FC1 1i	1.846	0.047	0.176	0.004	0.0760	0.0010	1062	17	1046	21	1094	26
Group E												
FC1 ¹ h	1.825	0.055	0.175	0.005	0.0758	0.0009	1055	20	1038	27	1089	23
FC1 1g	1.818	0.049	0.174	0.004	0.0757	0.0009	1052	18	1035	23	1087	25
FC1 If	1.827	0.053	0.174	0.005	0.0760	0.0010	1055	19	1036	25	1094	27
Group D												
FC1 1e	1.818	0.048	0.173	0.004	0.0760	0.0009	1052	17	1031	22	1096	24
FC1 1d	1.901	0.057	0.175	0.005	0.0789	0.0011	1081	20	1038	26	1169	28
FC1_1c	1.823	0.057	0.175	0.005	0.0754	0.0010	1054	20	1041	27	1081	27
FC1_1b	1.828	0.059	0.174	0.005	0.0760	0.0012	1055	21	1036	26	1096	32
FC1_1a	1.857	0.054	0.176	0.004	0.0764	0.0012	1066	19	1047	24	1106	31
Group C												
FC1_2L	1.791	0.036	0.171	0.003	0.0760	0.0010	1042	13	1018	14	1094	25
$FC1_2k$	1 798	0.037	0.170	0.003	0.0766	0.0010	1045	14	1013	15	1111	2.6
FC1_2k	1 829	0.035	0.173	0.003	0.0769	0.0009	1056	13	1015	14	1117	20
Group B	1.02)	0.055	0.175	0.005	0.0709	0.0009	1020	15	1027	11	1117	21
FC1 2i	1 783	0.036	0.170	0.003	0.0760	0.0010	1039	13	1013	14	1095	26
FC1_2h	1.802	0.039	0.173	0.003	0.0756	0.0010	1046	14	1015	16	1093	20
$FC1_2\pi$	1.820	0.037	0.173	0.003	0.0750	0.0010	1056	14	1020	15	1107	30
Crown A	1.629	0.040	0.1/4	0.005	0.0704	0.0012	1050	14	1052	15	1107	50
FC1 2f	1 850	0.043	0 177	0.003	0.0762	0.0011	1067	15	1051	18	1100	28
FC1_21 FC1_2	1.039	0.043	0.177	0.003	0.0702	0.0011	1007	15	1031	10	1001	20
FCI_2e FCI_2d	1.031	0.041	0.170	0.003	0.0755	0.0011	1057	15	1043	17	1001	20
FC1_20 FC1_2	1.845	0.041	0.170	0.003	0.0764	0.0010	1001	13	1045	18	1097	25
FC1_2C	1.079	0.040	0.178	0.003	0.0764	0.0010	10/4	14	1058	1/	105	23
FCI_20	1.839	0.038	0.178	0.003	0.0751	0.0009	1060	14	1054	16	10/1	24
FCI_2a	1.805	0.040	0.175	0.003	0.0774	0.0011	1009	14	1038	15	1132	29
FCI_3I	2.043	0.070	0.195	0.006	0.0760	0.0014	1130	23	1148	30	1096	38
FCI_3e	1.979	0.076	0.184	0.006	0.0780	0.0017	1108	26	1089	31	1146	43
FCI_3d	1.972	0.067	0.192	0.005	0.0746	0.0015	1106	23	1130	28	1058	40
FCI_3c	2.027	0.072	0.192	0.006	0.0764	0.0014	1125	24	1134	32	1106	37
Group K	1 0 5 0		0.100	0.007	0.0755	0.0015		24		22	1001	
FCI_3b	1.970	0.077	0.189	0.006	0.0755	0.0017	1105	26	1118	33	1081	44
FCI_3a	2.011	0.071	0.194	0.005	0.0751	0.0016	1119	24	1145	29	1070	43
Change Mount	• • • •	0.044	0.107	0.005	0.0754	0.0010			11.50	•	1000	
FC1_2i	2.048	0.066	0.197	0.005	0.0754	0.0013	1132	22	1159	29	1080	34
FC1_2h	2.126	0.080	0.202	0.007	0.0762	0.0013	1157	26	1188	36	1100	33
FC1_2g	2.035	0.065	0.194	0.005	0.0760	0.0012	1127	22	1144	30	1095	31
Group J												
FC1_2f	2.120	0.070	0.201	0.006	0.0763	0.0013	1155	23	1183	31	1104	34
FC1_2e	2.035	0.071	0.196	0.006	0.0753	0.0013	1127	24	1154	32	1076	33
FC1_2d	2.049	0.069	0.197	0.006	0.0754	0.0014	1132	23	1159	30	1080	37
Group I												
FC1_2c	2.077	0.065	0.196	0.005	0.0768	0.0012	1141	21	1155	29	1115	32
FC1_2b	2.189	0.078	0.208	0.007	0.0764	0.0013	1177	25	1218	35	1104	33
FC1_2a	2.039	0.067	0.193	0.005	0.0764	0.0014	1129	22	1140	29	1107	36
Switch to 3Hz												
FC1_1y	2.144	0.051	0.204	0.004	0.0761	0.0008	1163	16	1198	24	1098	20
FC1_1x	2.132	0.048	0.204	0.004	0.0757	0.0008	1159	16	1198	22	1087	20

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation laser ICP-MS

Standard	²⁰⁷ Pb/ ²³⁵ U	2 σ	²⁰⁶ Pb*/ ²³⁸ U	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age (Ma) ²³⁸ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²³⁵ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²⁰⁷ Pb/ ²⁰⁶ Pb*	2 σ (Ma)
Group H												
FC1_1w	2.134	0.051	0.202	0.004	0.0765	0.0007	1160	17	1188	24	1108	18
FC1_1v	2.101	0.051	0.202	0.005	0.0754	0.0008	1149	17	1187	24	1078	20
FC1_1u	2.152	0.049	0.205	0.004	0.0762	0.0008	1166	16	1201	22	1100	20
Group G												
FC1_1t	2.157	0.051	0.206	0.004	0.0761	0.0008	1167	16	1206	23	1096	20
FC1_1s	2.322	0.049	0.220	0.004	0.0764	0.0007	1219	15	1284	22	1105	19
FC1_1r	2.142	0.052	0.205	0.005	0.0758	0.0008	1163	17	1202	24	1090	21
Group F												
FC1_1q	2.176	0.045	0.208	0.004	0.0759	0.0007	1174	14	1218	21	1092	19
FC1_1p	2.128	0.049	0.202	0.004	0.0764	0.0007	1158	16	1186	23	1105	18
Group E												
FC1_1o	2.184	0.050	0.208	0.004	0.0763	0.0008	1176	16	1217	23	1102	20
FC1_1n	2.171	0.053	0.208	0.005	0.0758	0.0007	1172	17	1217	25	1089	19
Group D												
FC1_1m	2.126	0.049	0.203	0.004	0.0759	0.0007	1157	16	1192	23	1094	18
FC1_11	2.157	0.050	0.206	0.004	0.0759	0.0007	1167	16	1209	23	1091	19
FC1_1k	2.239	0.049	0.213	0.004	0.0763	0.0007	1193	15	1244	22	1103	19
Group C												
FC1_1j	2.189	0.053	0.207	0.005	0.0766	0.0007	1177	17	1214	24	1111	19
FC1_1i	2.237	0.053	0.213	0.005	0.0763	0.0007	1193	16	1243	25	1102	18
FC1_1h	2.147	0.046	0.205	0.004	0.0758	0.0007	1164	15	1204	21	1091	19
Group B												
FC1_1g	2.179	0.049	0.208	0.004	0.0760	0.0007	1174	16	1217	23	1095	18
FC1_1f	2.241	0.046	0.212	0.004	0.0766	0.0007	1194	14	1241	21	1110	17
FC1_1e	2.177	0.051	0.208	0.004	0.0760	0.0007	1174	16	1217	24	1096	18
Group A												
FC1_1d	2.223	0.057	0.212	0.005	0.0761	0.0007	1188	18	1239	27	1097	19
FC1_1c	2.194	0.051	0.209	0.004	0.0759	0.0007	1179	16	1226	23	1094	19
FC1_1b	2.209	0.053	0.211	0.005	0.0759	0.0007	1184	17	1235	24	1091	19
FC1_1a	2.175	0.050	0.207	0.004	0.0761	0.0007	1173	16	1214	24	1099	17
Peixe_3h	0.775	0.026	0.095	0.002	0.0590	0.0014	583	15	587	13	566	51
Peixe_3g	0.748	0.027	0.094	0.002	0.0575	0.0015	567	15	581	13	510	58
Peixe_3f	0.752	0.029	0.093	0.003	0.0586	0.0016	570	17	574	15	554	57
Group K												
Peixe_3e	0.774	0.027	0.096	0.003	0.0586	0.0014	582	16	590	15	552	52
Peixe_3d	0.789	0.025	0.100	0.002	0.0572	0.0012	591	14	615	14	498	47
Peixe_3c	0.792	0.029	0.097	0.003	0.0592	0.0016	592	17	597	15	575	58
Peixe_3b	0.768	0.027	0.096	0.002	0.0580	0.0014	578	16	590	15	531	54
Peixe_3a	0.750	0.025	0.092	0.002	0.0591	0.0014	568	15	567	14	573	50
Change Mount												
TTG2												
Peixe_2h	0.756	0.027	0.094	0.002	0.0581	0.0015	572	16	581	14	535	56
Peixe_2g	0.738	0.026	0.094	0.002	0.0569	0.0014	561	15	579	14	488	53
GroupJ												
Peixe 2f	0.757	0.027	0.095	0.002	0.0581	0.0015	572	16	582	14	532	55
Peixe_2e	0.761	0.028	0.093	0.002	0.0590	0.0016	574	16	576	14	568	57
Peixe 2d	0.744	0.026	0.091	0.002	0.0594	0.0014	565	15	561	14	580	50

Tableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation laser ICP-MS

	Group I
-	ableau B-5 (suite) : Données isotopiques U-Pb pour les zircons individuels analysés par ablation laser ICP-MS

Standard	²⁰⁷ Pb/ ²³⁵ U	2 σ	²⁰⁶ Pb*/ ²³⁸ U	2 σ	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	Age (Ma) ²³⁸ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²³⁵ U/ ²⁰⁶ Pb*	2 σ (Ma)	Age (Ma) ²⁰⁷ Pb/ ²⁰⁶ Pb*	2 σ (Ma)
Peixe_2c	0.743	0.026	0.094	0.002	0.0572	0.0013	564	15	581	14	499	49
Peixe_2b	0.733	0.028	0.093	0.003	0.0574	0.0014	558	16	571	15	507	55
Peixe_2a	0.718	0.025	0.093	0.003	0.0563	0.0013	550	15	571	15	463	50
Switch to 3F	Ηz											
Peixe_1v	0.776	0.023	0.096	0.002	0.0588	0.0011	583	13	589	13	561	41
Peixe_1u	0.774	0.026	0.096	0.002	0.0587	0.0012	582	15	589	14	558	45
Peixe_1t	0.787	0.024	0.096	0.002	0.0597	0.0011	589	14	588	14	593	41
Group H												
Peixe_1s	0.779	0.025	0.095	0.002	0.0594	0.0012	585	14	585	14	583	42
Peixe_1r	0.775	0.022	0.095	0.002	0.0593	0.0010	583	13	584	12	579	38
Group G												
Peixe_1q	0.789	0.024	0.098	0.002	0.0586	0.0011	591	14	601	14	553	40
Peixe_1p	0.802	0.024	0.099	0.002	0.0586	0.0011	598	13	610	13	553	42
Group F												
Peixe_1o	0.787	0.023	0.099	0.002	0.0578	0.0012	589	13	607	12	522	44
Peixe_1n	0.741	0.023	0.094	0.002	0.0574	0.0011	563	13	576	13	508	43
Peixe_1m	0.794	0.024	0.098	0.002	0.0589	0.0012	594	14	602	13	562	44
Group E												
Peixe_11	0.769	0.024	0.097	0.002	0.0576	0.0011	579	14	596	14	514	40
Peixe_1k	0.776	0.023	0.097	0.002	0.0580	0.0010	583	13	597	13	531	39
Group D												
Peixe_1j	0.786	0.025	0.098	0.002	0.0580	0.0012	589	14	605	14	528	45
Peixe_1i	0.778	0.024	0.096	0.002	0.0588	0.0012	585	13	591	13	558	44
Group C												
Peixe_1h	0.769	0.023	0.096	0.002	0.0579	0.0011	579	13	593	13	525	43
Peixe_1g	0.770	0.026	0.095	0.002	0.0586	0.0013	580	15	587	14	551	49
Group B												
Peixe_1f	0.803	0.023	0.098	0.002	0.0596	0.0011	598	13	601	12	588	42
Peixe_1e	0.783	0.023	0.096	0.002	0.0592	0.0012	587	13	590	12	574	45
Group A												
Peixe_1d	0.791	0.023	0.099	0.002	0.0582	0.0011	592	13	606	13	538	41
Peixe_1c	0.795	0.025	0.098	0.002	0.0589	0.0012	594	14	602	14	562	43
Peixe_1b	0.804	0.024	0.099	0.002	0.0589	0.0011	599	13	608	13	565	42
Peixe_1a	0.798	0.026	0.099	0.002	0.0583	0.0012	596	14	610	14	540	47

Tableau B-o : Tableau de comparaison des techniques d'anaryse en solution et par abranon-raser des zircons individuels (ages et données isotopiques Lu-Hi deja presentes dans les Tableau									eaux D-2	а Б-З)			
Type d'analyse	Localisation	Craton/Complex/Zone	Echantillon	Age (Ma)	2 σ (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf _{in}	٤ _{Hf}	٤ _{Hfin}	2 σ
Laser	Greenland	Isua (Amitsoq)	030013_4	3700	10	0.280466	4.6E-05	0.00087	5.8E-05	0.280404	-82	0.8	1.6
Solution	Greenland	Isua (Amitsoq)	030013-4	3676	16	0.280392	1.4E-05	0.00052	2.6E-05	0.280354	-84.6	-1.5	0.5
Laser	Greenland	Isua (Amitsoq)	060010_2	3797	12	0.280488	7.7E-05	0.0015	1.8E-04	0.280379	-81.2	2.2	2.7
Solution	Greenland	Isua (Amitsoq)	060010-2	3692	16	0.280333	1.1E-05	0.00029	1.5E-05	0.280312	-86.7	-2.7	0.4
Laser	China	Guzuizi	08GZZ01 2	2514	11	0.28126	3.9E-05	0.00036	2.7E-06	0.281243	-53.9	2.6	1.4
Solution	China	Guzuizi	08GZZ01-2	2455	8	0.281323	8.9E-06	0.0002	1.0E-05	0.281314	-51.7	3.7	0.3
Laser	China	Xiwanshan	08XWS01 2	2501	22	0.281379	4.3E-05	0.00053	5.1E-06	0.281353	-49.7	6.2	1.5
Solution	China	Xiwanshan	08XWS01-2	2430	8	0.281358	8.0E-06	0.00026	1.3E-05	0.281346	-50.5	4.3	0.3
Laser	Australia	Muccan	142828 4	3095	12	0.280589	5.3E-05	0.0016	6.8E-05	0.280493	-77.6	-10.4	1.9
Solution	Australia	Muccan	142828-4	3066	11	0.280642	1.3E-05	0.0014	7.0E-05	0.280559	-75.8	-8.8	0.4
Laser	Russia	Karélie	181B92 2	2909	16	0.280915	4.8E-05	0.00055	6.6E-05	0.280884	-66.1	-0.9	1.7
Solution	Russia	Karélie	18B92-2	2660	19	0.281002	1.8E-05	0.00081	4.0E-05	0.280961	-63	-4	0.6
Laser	Russia	Karélie	385_2	2817	15	0.281132	7.0E-05	0.00035	4.9E-05	0.281113	-58.4	5.1	2.5
Solution	Russia	Karélie	385-2	2668	9	0.281021	3.4E-05	0.0002	1.0E-05	0.28101	-62.4	-2.1	1.2
Laser	Siberie	Onot terrane	4003 1	3375	5	0.280682	3.4E-05	0.00063	5.8E-06	0.280641	-74.4	1.5	1.2
Solution	Siberie	Onot terrane	4003-1	3258	12	0.28068	9.4E-06	0.00032	1.6E-05	0.28066	-74.4	-0.6	0.3
Laser	Siberia	Onot terrane	4003 5	3394	5	0.280671	4.3E-05	0.0012	7.9E-05	0.280595	-74.8	0.3	1.5
Solution	Siberia	Onot terrane	4003-5	3155	12	0.280678	1.3E-05	0.00051	2.6E-05	0.280647	-74.5	-3.6	0.5
Laser	Siberie	Onot terrane	5203 2	3381	5	0.28073	4.9E-05	0.00051	2.3E-05	0.280697	-72.7	3.6	1.7
Solution	Siberia	Onot terrane	5203-2	3249	31	0.280678	1.6E-05	0.00048	2.4E-05	0.280648	-74.5	-1	0.6
Laser	Russia	Karélie	742 2	2784	9	0.28112	7.0E-05	0.0012	4.8E-05	0.281056	-58.9	2.3	2.5
Solution	Russia	Karélie	742-2	2626	9	0.281123	1.4E-05	0.00041	2.0E-05	0.281103	-58.8	0.2	0.5
Laser	Antarctica	Mount Sones	78285007_1	3730	11	0.280298	5.1E-05	0.00083	4.4E-05	0.280238	-87.9	-4.4	1.8
Solution	Antarctica	Mount Sones	78285007-1	3492	14	0.280312	8.6E-06	0.00051	2.5E-05	0.280278	-87.4	-8.7	0.3
Laser	Antarctica	Mount Sones	78285007_13	3552	15	0.280393	4.4E-05	0.00075	2.7E-05	0.280341	-84.6	-5	1.6
Solution	Antarctica	Mount Sones	78285007-13	3280	12	0.280546	1.2E-05	0.00034	1.7E-05	0.280524	-79.2	-5	0.4
Laser	Antarctica	Gage Ridge	78285013_1	2490	15	0.280637	4.8E-05	0.0015	1.5E-04	0.280566	-76	-22.1	1.7
Solution	Antarctica	Gage Ridge	78285013-1	2479	8	0.280598	1.6E-05	0.00065	3.3E-05	0.280567	-77.3	-22.3	0.6
Laser	Antarctica	Gage Ridge	78285013_4	3627	8	0.280367	4.7E-05	0.0018	1.0E-04	0.280239	-85.5	-6.8	1.7
Solution	Antarctica	Gage Ridge	78285013-4	3238	12	0.280534	1.2E-05	0.00037	1.9E-05	0.280511	-79.6	-6.4	0.4
Laser	Canada	Acasta	Acasta 1-1	3997	15	0.28025	5.0E-05	0.0018	7.3E-06	0.280107	-89.7	-2.7	1.8
Solution	Canada	Acasta	Acasta 1-1	3932	18	0.280247	5.6E-06	0.00067	3.3E-05	0.280196	-89.8	-1.1	0.2
Laser	Canada	Acasta	AG09001_1	3763	13	0.280332	4.8E-05	0.0014	3.0E-05	0.280228	-86.7	-4	1.7
Solution	Canada	Acasta	AG09001-1	3268	12	0.280374	1.6E-05	0.0011	5.7E-05	0.280303	-85.3	-13.1	0.6
Laser	Canada	Acasta	AG09008_6	3683	18	0.280334	7.0E-05	0.0015	2.0E-04	0.280231	-86.7	-5.8	2.5
Solution	Canada	Acasta	AG09008-6	3362	69	0.28062	1.0E-04	0.0018	9.2E-05	0.28050	-76.6	-3.9	3.5
Laser	Canada	Acasta	AG09008gt_7	3982	20	0.28014	1.1E-04	0.00078	3.8E-05	0.28008	-93.7	-4.2	4
Solution	Canada	Acasta	AG09008gt-7	3691	16	0.280215	1.0E-05	0.00091	4.5E-05	0.28015	-90.9	-8.5	0.4
Laser	Canada	Acasta	AG09009_5	3583	8	0.280451	7.6E-05	0.0010	2.3E-05	0.280379	-82.5	-2.9	2.7
Solution	Canada	Acasta	AG09009-5	3481	60	0.280479	2.0E-05	0.00057	2.9E-05	0.280441	-81.5	-3.1	0.7
Laser	Canada	Acasta	AG09016_4	3964	5	0.280158	3.4E-05	0.00038	3.7E-05	0.280129	-92.9	-2.7	1.2
Solution	Canada	Acasta	AG09016-4	3750	16	0.28001	1.0E-04	0.00095	4.7E-05	0.27994	-98	-14	3.5
Laser	Canada	Acasta	AG09016_6	3948	15	0.280142	4.8E-05	0.00025	1.2E-05	0.280123	-93.4	-3.3	1.7
Solution	Canada	Acasta	AG09016-6	3648	18	0.280203	1.6E-05	0.00038	1.9E-05	0.280177	-91.3	-8.6	0.6
Laser	Canada	Acasta	AG09017 1	3801	14	0.280266	4.2E-05	0.0015	3.2E-05	0.280155	-89.1	-5.7	1.5

Tableau B-6 : Tableau de comparaison des techniques d'analyse en solution et par ablation-laser des zircons individuels (âges et données isotopiques Lu-Hf déjà présentés dans les Tableaux B-2 à B-5)

Type d'analyse	Localisation	Craton/Complex/Zone	Echantillon	Age (Ma)	2 σ (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2 σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf _{in}	٤ _{Hf}	٤ _{Hfin}	2 σ
Solution	Canada	Acasta	AG09017-1	3620	15	0.280228	1.0E-05	0.0014	7.0E-05	0.28013	-90.4	-10.9	0.4
Laser	Canada	Acasta	AG09032_2	3618	11	0.280431	3.9E-05	0.00078	8.3E-05	0.280377	-83.2	-2.1	1.4
Solution	Canada	Acasta	AG09032-2	3330	13	0.280405	2.0E-05	0.00063	3.1E-05	0.280365	-84.2	-9	0.7
Laser	India	Closepet	CG24_1	3281	20	0.280857	4.4E-05	0.0015	2.5E-05	0.280762	-68.2	3.6	1.6
Solution	India	Closepet	CG24-1	2897	19	0.280849	1.7E-05	0.0010	5.1E-05	0.280792	-68.5	-4	0.6
Laser	Finland	Karélie	H53_5	2963	10	0.280955	6.6E-05	0.00025	1.1E-05	0.280941	-64.7	2.4	2.3
Solution	Finland	Karélie	H53-5	2794	15	0.280939	2.0E-05	0.00048	2.4E-05	0.280913	-65.3	-2.6	0.7
Laser	Finland	Karélie	H54_2	4013	16	0.280811	4.9E-05	0.00058	3.8E-05	0.280766	-69.8	21.3	1.7
Solution	Finland	Karélie	H54-2	2877	10	0.280999	4.5E-06	0.00033	1.6E-05	0.280981	-63.1	1.8	0.2
Laser	Finland	Karélie	H70_1	2719	11	0.281106	5.1E-05	0.00064	1.7E-05	0.281073	-59.4	1.4	1.8
Solution	Finland	Karélie	H70-1	2718	13	0.281092	1.8E-05	0.00027	1.4E-05	0.281078	-59.9	1.5	0.6
Laser	South Africa	Kaap valley	KV2108_3	3227	16	0.280824	6.0E-05	0.00065	2.5E-05	0.280784	-69.3	3	2.1
Solution	South Africa	Kaap valley	KV2.1-08-3	3060	111	0.280811	8.6E-05	0.00046	2.3E-05	0.280784	-69.8	-0.9	3.1
Laser	South Africa	Kaap valley	KV3108_3	3234	18	0.28083	5.5E-05	0.00062	4.6E-06	0.280791	-69.2	3.5	1.9
Solution	South Africa	Kaap valley	KV3.1-08-3	3127	115	0.280769	3.8E-05	0.00049	2.5E-05	0.280739	-71.3	-0.9	1.3
Laser	South Africa	Nelshoogte	NLS2208_3	3234	19	0.280864	5.3E-05	0.00081	3.0E-05	0.280814	-67.9	4.3	1.9
Solution	South Africa	Nelshoogte	NLS2.2-08-3	3129	88	0.280859	1.6E-05	0.00051	2.5E-05	0.280828	-68.1	2.3	0.6
Laser	India	Kolar	PG24_5	2879	19	0.28086	6.8E-05	0.0013	1.6E-04	0.280786	-68.1	-5.1	2.4
Solution	India	Kolar	PG24-5	2501	83	0.281064	7.7E-05	0.00082	4.1E-05	0.281025	-60.8	-5.5	2.7
Laser	India	Kolar	PG25_1	2609	10	0.281053	3.7E-05	0.0023	3.1E-05	0.280938	-61.3	-6	1.3
Solution	India	Kolar	PG25-1	2652	59	0.281011	5.0E-05	0.0019	9.4E-05	0.280916	-62.7	-5.8	1.8
Laser	India	Kolar	PG25_5	3126	10	0.280846	4.7E-05	0.0011	1.0E-05	0.280778	-68.6	0.4	1.7
Solution	India	Kolar	PG25-5	2970	11	0.280912	7.6E-06	0.00048	2.4E-05	0.280884	-66.2	0.5	0.3
Laser	India	Kolar	PG9_3	2717	13	0.281143	4.8E-05	0.00021	3.7E-06	0.281132	-58.1	3.4	1.7
Solution	India	Kolar	PG9-3	2584	9	0.281135	8.4E-06	0.0003	1.5E-05	0.28112	-58.4	-0.2	0.3
Laser	South Africa	Stolzburg	STJ6_2	3342	15	0.280648	5.1E-05	0.00058	2.7E-05	0.28061	-75.6	-0.4	1.8
Solution	South Africa	Stolzburg	STJ-6-2	3373	132	0.28063	1.2E-04	0.00034	1.7E-05	0.28061	-76.3	0.2	4.3
Laser	South Africa	Steynsdorp	Stp_9	3520	10	0.28066	6.3E-05	0.00077	6.9E-05	0.280608	-75.2	3.7	2.2
Solution	South Africa	Steynsdorp	Stp-9	3393	133	0.280578	4.0E-05	0.00069	3.5E-05	0.280532	-78.1	-2	1.4
Laser	Brasil	Sete Voltas	SV11_4	3421	18	0.280573	5.5E-05	0.00036	4.8E-06	0.280549	-78.2	-0.7	2
Solution	Brasil	Sete Voltas	SV11-4	3326	13	0.280589	7.5E-06	0.00024	1.2E-05	0.280573	-77.7	-2.1	0.3
Laser	Brasil	Sete Voltas	SV11_7	3430	10	0.280518	4.0E-05	0.00036	5.1E-06	0.280494	-80.2	-2.5	1.4
Solution	Brasil	Sete Voltas	SV11-/	3408	13	0.280555	5./E-06	0.00018	9.1E-06	0.280543	-/8.9	-1.2	0.2
Laser	Brasil	Sete Voltas	SV9_4	3382	10	0.280533	5.6E-05	0.00037	0.1E-06	0.280509	-/9.0	-3.1	2
Solution	Brasil	Sete Voltas	5V9-4	3300	13	0.280591	1.0E-05	0.00037	1.8E-05	0.28050/	-//.0	-2.9	0.6
Laser	Brasil	Sete Voltas	SV9_5	3404	1/	0.280588	2.9E-05	0.00082	1.2E-05	0.280534	-//./	-1.0	1
Solution	Brasil	Sete Voltas	579-5	2995	11	0.280579	1.2E-05	0.00043	2.2E-05	0.280555	-/8	-10.6	0.4

Tableau B-6 (suite) : Tableau de comparaison des techniques d'analyse en solution et par ablation-laser des zircons individuels (âges et données isotopiques Lu-Hf déjà présentés dans les Tableaux B-2 à B-5)

Annexe C

Programme Mathlab de calcul des rapports ¹⁷⁵Lu/¹⁷⁶Lu à partir de la mesure des isotopes du Lu et de l'Yb.

```
nc=16;% nombre de parametres imprimes (rapports, intensites, f);
filtre=2.7; % filtrage en 'filtre' * sigmas
nom='Sample';
loope=1;
while loope==1
    %disp('Cliquez sur un fichier à ouvrir')
    %disp('
                                                                                    ')
    [filename, pathname] = uigetfile('*.txt');
    disp(['File open: ',pathname,filename])
    fid=fopen([pathname, filename], 'rt');
    er=0;
    while er==0
        [A0,name,er]=readLu(fid);
        if er==1, break, end
        A=A0;
        [m,n]=size(A);
        % clean up the data
        sA=std(A);mA=mean(A);
        red=(A(:,1:n-1)-ones(m,1)*mA(:,1:n-1))./(ones(m,1)*sA(:,1:n-1));
        keep=zeros(m,1);
        for i=1:m
           j=find(red(i,:)>filtre);
            if length(j)==0
                keep(i)=1;
           end
        end
        remov=m-sum(keep);
        if remov>0
          disp([sprintf('%4.0f', remov), ' data removed'])
        end
        A=A(keep>0,:);
        iout=m-length(keep);
        if length(iout) > 0
            disp([sprintf('%4.0f',length(iout)),' data removed'])
        end
        [m,n]=size(A);
        el='Yb+Lu';
        if abs(mean(A(:,5)))<0.01, el='Yb';end</pre>
        if abs(mean(A(:,1)))<0.01, el='Lu';end</pre>
        if length(name)<1</pre>
            name=[' ',el];
        end
        disp(['Sample: ', name])
        switch el
            case 'Yb'
                 A(:,6)=A(:,6)-0.2827*A(:,7);
                 Yb1 4=mean(A(:,1)./A(:,4));
                 sYb1_4=std(A(:,1)./A(:,4))*2/sqrt(m);
                 ff1 4=log(A(:,1)./A(:,4)/0.445929)/log(171/174);
                 fl \overline{4}=mean(ffl 4);
                 sf1 4=std(ff1 4)*2/sqrt(m);
                 str=['171Yb/174Yb: ',sprintf('%9.6f',Yb1_4),'
',sprintf('%9.6f',sYb1 4),' ',sprintf('%6.3f',f1 4),' ',sprintf('%6.3f',sf1 4)];
                 Yb2_4=mean(A(:,2)./A(:,4));
                 sYb2 4=std(A(:,2)./A(:,4))*2/sqrt(m);
                 ff2_4=log(A(:,2)./A(:,4)/0.68321)/log(172/174);
                 f2_4=mean(ff2_4);
sf2_4=std(ff2_4)*2/sqrt(m);
                 str=strvcat(str,['172Yb/174Yb: ',sprintf('%9.6f',Yb2 4),'
',sprintf('%9.6f',sYb2 4),' ',sprintf('%6.3f',f2 4),' ',sprintf('%6.3f',sf2 4)]);
                 Yb3_4=mean(A(:,3)./A(:,4));
                 sYb3 4=std(A(:,3)./A(:,4))*2/sqrt(m);
                 ff3 4=log(A(:,3)./A(:,4)/0.505039)/log(173/174);
                 f3 \overline{4}=mean(ff3 4);
                 sf3 4=std(ff3 4)*2/sqrt(m);
```

```
str=strvcat(str,['173Yb/174Yb: ',sprintf('%9.6f',Yb3 4),'
',sprintf('%9.6f',sYb3 4),' ',sprintf('%6.3f',f3 4),' ',sprintf('%6.3f',sf3 4)]);
                Yb6 4=mean(A(:,6)./A(:,4));
                sYb6 4=std(A(:,6)./A(:,4))*2/sqrt(m);
                ff6 4=log(A(:,6)./A(:,4)/0.402213)/log(176/174);
                f6 4=mean(ff6 4);
                sf6_4=std(ff6_4)*2/sqrt(m);
                str=strvcat(str,['176Yb/174Yb: ',sprintf('%9.6f',Yb6 4),'
',sprintf('%9.6f',sYb6_4),' ',sprintf('%6.3f',f6_4),' ',sprintf('%6.3f',sf6_4)]);
                disp(str)
                covf=cov([ff1 4,ff2 4,ff3 4]);
                invcovf=inv(covf);
                smoy=1./(ones(1,3)*invcovf*ones(3,1));
                fmoy=ones(1,3)*invcovf*[f1_4;f2_4;f3_4]*smoy;
                disp(['average (171-173) f: ',sprintf('%7.4f',fmoy),'
2s:', sprintf('%7.4f', 2*sqrt(smoy)/sqrt(m))])
            case 'Lu'
                A(:,6)=A(:,6)-0.402213*(176/174)^1.8*A(:,4);
                Lu6_5=mean(A(:,6)./A(:,5));
                sLu6 5=std(A(:,6)./A(:,5))*2/sqrt(m);
                f6 5=mean(log(A(:,6)./A(:,5)/0.02656)/log(176/175));
                sf6_5=std(log(A(:,6)./A(:,5)/0.02656)/log(176/175))*2/sqrt(m);
                str=['176Lu/175Lu: ',sprintf('%9.6f',Lu6_5),'
',sprintf('%9.6f',sLu6 5),' ',sprintf('%6.3f',f6 5),' ',sprintf('%6.3f',sf6 5)];
                disp(str)
            case('Yb+Lu')
                A(:, 6) = A(:, 6) - 0.2827 * A(:, 7);
                Ybl_4=mean(A(:,1)./A(:,4));
Ybl_4=mean(A(:,1)./A(:,4));
                sYb1 4=std(A(:,1)./A(:,4))*2/sqrt(m);
                ff1 4=log(A(:,1)./A(:,4)/0.445929)/log(171/174);
                f1_4=mean(ff1_4);
                sf1_4=std(ff1_4)*2/sqrt(m);
                str=['171Yb/174Yb: ',sprintf('%9.6f',Yb1_4),'
',sprintf('%9.6f',sYb1_4),' ',sprintf('%6.3f',f1_4),' ', sprintf('%6.3f',sf1_4)];
                Yb2_4=mean(A(:,2)./A(:,4));
                sYb2_4=std(A(:,2)./A(:,4))*2/sqrt(m);
                ff2 4=log(A(:,2)./A(:,4)/0.68321)/log(172/174);
                f2 4=mean(ff2 4);
                sf2 4=std(ff2_4)*2/sqrt(m);
                str=strvcat(str,['172Yb/174Yb: ',sprintf('%9.6f',Yb2 4),'
',sprintf('%9.6f',sYb2 4),' ',sprintf('%6.3f',f2 4),' ',sprintf('%6.3f',sf2 4)]);
                Yb3 4=mean(A(:,3)./A(:,4));
                sYb3 4=std(A(:,3)./A(:,4))*2/sqrt(m);
                ff3 4=log(A(:,3)./A(:,4)/0.505039)/log(173/174);
                f3 4=mean(ff3 4);
                sf3_4=std(ff3_4)*2/sqrt(m);
                str=strvcat(str,['173Yb/174Yb: ',sprintf('%9.6f',Yb3 4),'
',sprintf('%9.6f',sYb3 4),' ',sprintf('%6.3f',f3 4),' ',sprintf('%6.3f',sf3 4)]);
                disp(str)
                YbLu=A(:,6)./A(:,5)/0.02656-ones(m,1); % rapport Yb/Lu à la masse
176
                avYbLu=mean(YbLu);
                sYbLu=std(YbLu);
                ff=[ff1 4,ff2 4,ff3 4];
                covf=cov(ff);
                invcovf=inv(covf);
                smoy=1./(ones(1,3)*invcovf*ones(3,1));
                fmoy=ones(1,3)*invcovf*[f1 4;f2 4;f3 4]*smoy;
                disp(['average (171-173) f: ',sprintf('%7.4f',fmoy),'
2s:', sprintf('%7.4f', 2*sqrt(smoy)/sqrt(m))])
```


Annexe D

Exemple d'une carte d'un plot utilisé pour les analyses ponctuelles avec images MEB en BSE et localisation des spots

Annexe E

Article publié pendant ma thèse portant sur mon stage de Master 2 effectué au Laboratoire de Géodynamique des Chaînes Alpines maintenant Institut des Sciences de la Terre de Grenoble sous la direction de Nicholas T. Arndt

Olivine, and the Origin of Kimberlite N. T. ARNDT1, M. GUITREAU2, A.-M. BOULLIER3, A. LE ROEX4, A. TOMMASI5, P. CORDIER6 AND A. SOBOLEV7

1LGCA, UNIVERSITE JOSEPH FOURIER & CNRS, GRENOBLE 38400, FRANCE 2ECOLE NORMALE SUPERIEURE DE LYON, LYON 69364, FRANCE 3LGIT, UNIVERSITE JOSEPH FOURIER & CNRS, GRENOBLE 38400, FRANCE 4UNIVERSITY OF CAPE TOWN, CAPE TOWN 7701, SOUTH AFRICA 5GEOSCIENCES MONTPELLIER, UNIVERSITE DE MONTPELLIER & CNRS, MONTPELLIER 34095, FRANCE 6LSPES, UNIVERSITE DE LILLE & CNRS, LILLE 59655, FRANCE 7VERNADSKY INSTITUTE, MOSCOW, RUSSIA

JOURNALOF PETROLOGY VOLUME 51 NUMBER 3 PAGES 573-602 2010

doi:10.1093/petrology/egp080

<u>Résumé :</u>

Ce travail de thèse présente des analyses isotopiques Lu-Hf par MC-ICP-MS combinées de zircons ignés et de roches totales d'une importante collection de granitoïdes archéens appartenant à la suite des Tonalite-Trondhjémite-Granodiorite (TTG) afin d'apporter un regard nouveau sur la croissance de la croûte continentale et tout particulièrement dans le début de l'histoire de la Terre. Nos données indiquent un bon accord général entre les zircons ignés, mesurés par ablation-laser et par solution, avec leurs roche-hôtes. Nous démontrons que le rapport Lu/Hf intégré dans le temps de la source mantellique des TTG est près de la valeur chondritique et n'a pas significativement changée au cours des 4 derniers milliards d'années. Par conséquent, les continents se sont formés à partir d'un matériel primitif non fractionné extrait du manteau profond par l'intermédiaire de panaches qui après fusion partielle ont laissés un résidu appauvri dans le manteau supérieur.

Les cristaux de zircon extraits des TTG ont des compositions isotopiques en Hf cohérentes au sein d'une même population alors que le système U-Pb, dans les mêmes grains, est souvent perturbé résultant ainsi en l'obtention de valeurs d' ϵ_{Hf} initial erronées. Ce problème est endémique aux cristaux de zircon détritiques archéens et en accord avec des résultats expérimentaux sur la mobilité préférentielle de l'Hf en fonction de celle de l'U et du Pb au sein du zircon. Nous suggérons que ce problème biaise l'enregistrement détritique archéen en faveur de valeurs d' ϵ_{Hf} initial négatives qui contrastent avec les valeurs obtenues pour les TTG mais peuvent être expliquées par l'utilisation d'âges 207 Pb/²⁰⁶Pb nonmagmatiques. Si l'on considère les cristaux de zircon de Jack Hills au vu de ces résultats, la source des continents serait restée inchangée depuis 4,3 Ga.

Summary :

This PhD thesis presents combined whole-rock and single zircon MC-ICP-MS Lu-Hf isotope data for a large collection of Archean granitoids belonging to typical Tonalite-Trondhjemite-Granodiorite (TTG) suites. The data were collected in an attempt to shed new light on early crustal growth. Our data display overall good agreement between Hf isotope compositions of igneous zircons, measured by both laser-ablation and solution chemistry, and their host-rocks. It is shown that the time-integrated Lu/Hf of the mantle source of TTGs is near-chronditic and has not significantly changed over the last 4 Gy. Continents therefore most likely grew from nearly primordial unfractionated material extracted from the deep mantle via rising plumes that left a depleted melt residue in the upper mantle.

Zircons extracted from the analyzed TTGs have Hf isotopic compositions broadly consistent within populations, whereas the U-Pb system in the same grains is often disturbed, causing spurious initial ϵ_{Hf} values. This problem is endemic to the Archean detrital zircon record and consistent with experimental results bearing on the relative retentivity of Hf vs. U and Pb in zircon. We argue that this behavior biases the Archean zircon record towards negative ϵ_{Hf} values, which are at odds with the present TTG data set but can be explained by zircons having non-magmatic 207 Pb/ 206 Pb ages. If the Hadean Jack Hills zircons are considered in light of these results, the mantle source of continents has remained unchanged for the last 4.3 Gy.