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Optimal resilience patterns to cope with
fail-stop and silent errors
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†University of Tennessee Knoxville, USA

Abstract—This work focuses on resilience techniques at ex-
treme scale. Many papers deal with fail-stop errors. Many others
deal with silent errors (or silent data corruptions). But very
few papers deal with fail-stop and silent errors simultaneously.
However, HPC applications will obviously have to cope with
both error sources. This paper presents a unified framework
and optimal algorithmic solutions to this double challenge.
Silent errors are handled via verification mechanisms (either
partially or fully accurate) and in-memory checkpoints. Fail-stop
errors are processed via disk checkpoints. All verification and
checkpoint types are combined into computational patterns. We
provide a unified model, and a full characterization of the optimal
pattern. Our results nicely extend several published solutions and
demonstrate how to make use of different techniques to solve the
double threat of fail-stop and silent errors. Extensive simulations
based on real data confirm the accuracy of the model, and show
that patterns that combine all resilience mechanisms are required
to provide acceptable overheads.

Index Terms—resilience, fail-stop errors, silent errors, multi-
level checkpoint, verification, optimal pattern.

I. INTRODUCTION

Fault-tolerance techniques are mandatory at extreme
scale [12], [13]. The first source of problems is the frequent
striking of fail-stop (unrecoverable) errors. This phenomenon
is well understood: regardless of the robustness of each in-
dividual resource, aggregating too many resources will cause
trouble at some point. Specifically, if the MTBF (Mean Time
Between Failures) of each resource is ten years (a pretty
optimistic figure for, say, a socket or a processor node), then
the MTBF of a platform comprising one million of such
resources is only five minutes1. The standard approach to cope
with fail-stop errors is checkpoint and rollback recovery, and
many protocols are available (see [19] for a survey).

The second source of problems is the frequent striking
of silent errors (or SDCs, for Silent Data Corruptions). This
phenomenon is not so well understood, but has been recently
identified as one of the major challenges for Exascale [13].
There are several causes of silent errors, such as cosmic
radiation, packaging pollution, among others. In contrast to
a fail-stop error whose detection is immediate, a silent error
is identified only when the corrupted data leads to an unusual
application behavior. Such a detection latency raises a new
challenge: if the error struck before the last checkpoint,
and is detected after that checkpoint, then the checkpoint

1The MTBF µp with p resources is µp = µind/p, where µind is the MTBF
of each resource, see [19, Proposition 1.2].

is corrupted and cannot be used for rollback. In order to
avoid corrupted checkpoints, an effective approach consists
in employing some verification mechanism and combining it
with checkpointing [15], [22], [8]. This verification mechanism
can be general-purpose (e.g., based on replication [18] or
even triplication [20]) or application-specific (e.g., based on
Algorithm-based fault tolerance (ABFT) [11], on approximate
re-execution for ODE and PDE solvers [9], or on orthogonality
checks for Krylov-based sparse solvers [15], [22]).

Verification mechanisms are typically costly; in fact, repli-
cation is the only alternative in an application-agnostic frame-
work. Guaranteeing accurate and efficient detection of silent
errors for scientific applications is one of the hardest chal-
lenges in extreme-scale computing [13]. For many parallel
applications, alternative techniques exist that are capable of
detecting some but not all errors. We call these techniques
partial verifications, while a guaranteed verification is capable
of detecting all silent errors. One example is the lightweight
SDC detector based on data dynamic monitoring [3], designed
to recognize anomalies in HPC datasets based on physical
laws and spatial interpolation. Similar fault filters have also
been designed to detect silent errors based on time series
predictions [10]. Although not completely accurate, these
partial verification techniques nevertheless cover a substantial
amount of silent errors, and more importantly, they incur low
overhead. These properties make them attractive candidates
for designing more efficient resilient protocols.

Altogether, the detection of silent errors seriously compli-
cates the design of resilience protocols. What is the best type
of verification, either guaranteed or partial? And what is the
best combination with checkpoints? To further complicate the
story, silent errors naturally call for in-memory checkpointing,
because a local copy of the data can be used after corruption
has been detected. On the contrary, fail-stop errors require
to store the checkpoints on remote stable storage (disks)
because the whole memory content can be lost when such
a failure strikes. Granted, multi-level checkpointing protocols
have been designed for several years, but we face two major
difficulties when combining fail-stop and silent errors. First,
and to the best of our knowledge, the interplay of verification
mechanisms with two types of checkpoints, in-memory and
disk-based, has never been investigated. Second, the inherent
detection latency of silent errors renders the problem quite
different from traditional multi-level checkpointing, where
each failure, regardless of its level, is detected immediately



upon striking. In this work, after some quite technically
involved derivations, we provide the optimal solution to the
problem, either with guaranteed or with partial verifications.
This was somewhat unexpected, because no optimal solution
is known for two-level checkpointing with two levels of fail-
stop errors; state-of-the-art protocols in that latter context rely
on heuristics [17].

Our approach to solving the double problem of fail-stop
and silent errors is to partition the execution of the application
into periodic patterns, i.e., computational units that repeat over
time. Each pattern ends with a guaranteed verification, an in-
memory checkpoint and a disk checkpoint, so that errors do
not propagate from a given pattern to the next one. Inside
each pattern, there are several segments, each ending with
a guaranteed verification and an in-memory checkpoint. In
turn, each segment is partitioned into work chunks (possibly
of different sizes) that are separated by partial verifications.
See Figure 1(b) for an example with three segments and a
total of six chunks. Several parameters should be given to
fully characterize a pattern, namely the number of segments,
and the number and size of each chunk inside each segment.
The shape of a pattern is quite flexible, which enables us to
provide the first model including two levels of checkpoints.

The main objective is to design an optimal pattern. Infor-
mally, consider a pattern P that includes W units of work (the
cumulated size of all the chunks within the pattern). Without
loss of generality, assume unit speed computation, so that we
can speak of time or work interchangeably. In the presence
of fail-stop or silent errors, the expected execution time of
the pattern will be E(P): we have to take expectations, as
the computation time is no longer deterministic. Note that
E(P) > W for two reasons: the time spent in checkpoints
and verifications, even if there is no error, and the time lost
due to recovery and re-execution after an error. An optimal
pattern is defined as the one minimizing the ratio E(P)

W , or
equivalently the ratio E(P)−W

W = E(P)
W − 1. This latter ratio

is the relative overhead paid for executing the pattern. The
smaller this overhead, the faster the progress of the execution.

The main contributions of this work are the following:
• The design of a detailed model based upon the computational
patterns described above.
• The determination of the optimal pattern, first in some par-
ticular cases (one-chunk segments, one segment with multiple
chunks), and then in the general case. The comprehensive list
of results summarized in Table I extends and unifies many
results from the literature.
• An extensive set of simulations that use data collected on
real platforms, and extrapolate them to exascale platforms.
The results confirm the accuracy of the model, as long as the
MTBF is large enough in front of the resilience parameters.
They also help assess the impact of each resilience mechanism,
and show that patterns that combine all mechanisms (partial
and guaranteed verifications and two checkpoint types) are
required to provide acceptable overheads.

The rest of the paper is organized as follows. Section II

introduces the model and notations. The following section
shows how to determine the optimal pattern. We start with the
simplest pattern (a single one-chunk segment) in Section III-A,
extending Young and Daly’s formula to two error sources.
We discuss patterns with multiple one-chunk segments in
Section III-B, and the most general pattern in Section III-C.
Simulation results are presented in Section IV. Section V
briefly discusses related work. Finally, Section VI provides
concluding remarks and hints for future directions.

II. MODEL

Failure model. We consider a realistic scenario in large-scale
systems, where hardware faults and silent data corruptions
coexist. They are commonly referred to as fail-stop errors
and silent errors in the literature. Since these two types
of errors are caused by different sources, we assume that
they are independent and that both occurrences follow a
Poisson process with arrival rates λf and λs, respectively.
The probability of having at least a fail-stop error during a
computation of length w is given by pf = 1− e−λfw and that
of having at least a silent error during the same computation
is ps = 1 − e−λsw. We also assume that both error rates are
in the same order, i.e., λf = Θ(λ), and λs = Θ(λ), where
λ = λf + λs = 1/µ denotes the reciprocal of the platform
MTBF µ while accounting for both types of failures.

Two-level checkpointing. To deal with both fail-stop and
silent errors, resilience is provided through the use of a two-
level checkpointing scheme coupled with an error detection
(or verification) mechanism. The protocol is enforced by a
periodic computing pattern as discussed in Section I. When a
fail-stop error strikes inside a pattern, the computation is inter-
rupted immediately due to a hardware fault, so all the memory
content is destroyed: we then roll back to the beginning of the
pattern and recover from the last disk checkpoint (taken at
the end of the previous pattern, or the initial data for the first
pattern). On the contrary, when a silent error is detected inside
a pattern, either by a partial verification or by a guaranteed
one, we roll back to the nearest memory checkpoint in the
pattern, and recover from the memory copy there, which is
much cheaper than recovering from the last disk checkpoint.
We enforce the following two properties for a pattern:
• A memory checkpoint is always taken immediately before
each disk checkpoint. Since performing an I/O operation
requires first flushing the data to a memory buffer, this
process incurs little extra overhead and hence has a natural
justification. Indeed, such a property has been enforced in
some practical multi-level checkpointing systems [5]. Simi-
larly, when we recover from a disk checkpoint, we also restore
the corresponding memory copy, which was destroyed due to
the last fail-stop error.
• A guaranteed verification is always executed immediately be-
fore each memory checkpoint. Since storing a checkpoint can
be expensive even for the memory, this property guarantees
that all (memory and disk) checkpoints are valid, and hence
avoids the need of maintaining multiple checkpoints, which is



known to be difficult to recover from (one has to decide which
checkpoint is valid, etc.). With this property, only one memory
checkpoint and one disk checkpoint need to be maintained at
any time during the execution of the application.

To simplify the presentation, we assume that errors only
strike the computations, while verifications, memory copies,
and I/O transfers are protected from failures. However, all
optimality results hold without this assumption [7].

Notations. Let CD denote the cost of disk checkpointing, CM
the cost of memory checkpointing, RD the cost of disk recov-
ery, and RM the cost of memory recovery. Recall that when
a disk recovery is done, we also need to restore the memory
state, hence a cost RD + RM is paid. Also, let V ∗ denote
the cost of guaranteed verification and V the cost of a partial
verification. The partial verification is also characterized by its
recall, which is denoted by r and represents the proportion of
detected errors over all silent errors that have occurred during
the execution. If multiple partial verifications are available,
our previous work [14], [2] has suggested to use the one
with the largest accuracy-to-cost ratio, which is defined as
r

2−r/
V

V ∗+CM
. Note that the guaranteed verification can be

considered as one with recall r∗ = 1 and hence with accuracy-
to-cost ratio CM

V ∗ +1. Since a partial verification usually incurs
a much smaller cost yet has a reasonable recall, its accuracy-
to-cost ratio can be orders of magnitude (e.g., 100x) better
than that of the guaranteed verification [3], [10]. Hence partial
verifications are highly attractive for detecting silent errors,
and we make use of them between memory checkpoints in
the pattern.

For clarity, we refer to the computation between two con-
secutive memory checkpoints as a segment, and refer to the
computation between two consecutive verifications as a chunk.
Formally, a pattern P(W,n,α,m, 〈β1, . . . ,βn〉) is defined by
the following parameters:
• W : total amount of computation (or work) of the pattern.
• n: number of memory checkpoints inside the pattern (also
number of segments within the pattern).
• α = [α1, α2, . . . , αn]: proportion of the segment sizes, i.e.,
αi = wi/W , where wi denotes the amount of work in the i-th
segment of the pattern. Hence

∑n
i=1 αi = 1.

•m = [m1,m2, . . . ,mn]: number of verifications inside each
segment (also number of chunks in that segment).
• βi = [βi,1, βi,2, . . . , βi,mi ] ∀i = 1, 2, . . . , n: proportion of
the chunk sizes in the segments, i.e., βi,j = wi,j/wi, where
wi,j denotes the amount of work in the j-th chunk of the i-th
segment. Hence

∑mi
j=1 βi,j = 1 for all i = 1, 2, . . . , n.

The simplest pattern is illustrated in Figure 1(a), and it con-
sists of a single segment (n = 1, W = w1), which comprises
a single chunk (m = [1]). By construction, this chunk is
followed by a guaranteed verification, followed immediately
by a memory checkpoint and a disk checkpoint. With our
notations, this pattern is denoted as P(W, 1, [1], [1], 〈[1]〉), or
PD (only disk checkpoints, which are always preceded by a
guaranteed verification and a memory checkpoint). Figure 1(b)
shows a more complicated pattern, with three segments. The

first segment has three chunks, the second segment has one
chunk, and the third segment has two chunks. Therefore, if a
silent error is detected by the guaranteed verification at the
end of the second segment, it is possible to recover from
the memory checkpoint preceding it, rather than starting the
whole pattern again. Moreover, silent errors, if occurred in the
first and third segments, may be detected earlier thanks to the
additional partial verifications.

Objective. The objective is to find a pattern that minimizes the
expected execution time of the application. Let Wbase denote
the base execution time of an application without any overhead
due to resilience techniques (without loss of generality, we as-
sume unit-speed execution). Since the execution is divided into
periodic patterns, defined by P(W,n,α,m, 〈β1, . . . ,βn〉), let
E(P) be the expected execution time of the pattern. For large
jobs, the expected makespan Wfinal of the application when
taking failures into account can then be approximated by
Wfinal ≈ E(P)

W · Wbase. Now, define H(P) = E(P)
W − 1 to be

the expected overhead of the pattern. We obtain Wfinal ≈
Wbase+H(P)·Wbase. Thus, minimizing the expected makespan
is equivalent to minimizing the pattern overhead H(P). Hence,
we will focus on minimizing the overhead in this paper.

TimeW

V ∗ CM CD V ∗ CM CD

(a) Pattern PD = P(W, 1, [1], [1], 〈[1]〉)

Time1st segment 2nd segment 3rd segment

V ∗ CM CD V V V ∗ CM V ∗ CM V V ∗ CM CD

(b) Pattern with three segments and six chunks

Figure 1. Two examples of patterns.

III. OPTIMAL PATTERNS

A. Pattern PD, or revisiting Young and Daly

In this section, we revisit Young [23] and Daly [16] on
computing the optimal periodic checkpointing interval, and
extend their formula to include both fail-stop and silent errors.
The result on the order of the optimal interval and the
observations established in this case will pave the way for
the subsequent analysis on more advanced patterns.

The classical formula by Young and Daly gives the optimal
disk checkpointing interval without considering silent errors,
thus does not include verifications and memory checkpoints
in the pattern. To cope with both fail-stop and silent errors,
we analyze the pattern PD = P(W, 1, [1], [1], 〈[1]〉), which
contains one single segment with a unique chunk followed
by a guaranteed verification, a memory checkpoint and a disk
checkpoint (see Figure 1(a)). Obviously, the only parameter to
determine is the work length W , which is commonly referred
to as the checkpointing period in the literature. The following
proposition shows the expected execution time of a pattern
with a fixed work length.



Proposition 1. The expected execution time of a given pattern
P(W, 1, [1], [1], 〈[1]〉) is

E(P) = W + V ∗ + CM + CD +

(
λs +

λf
2

)
W 2

+ λsW (V ∗ +RM ) + λfW (RM +RD) +O(λ2W 3) .
(1)

Proof. Let pf = 1 − e−λfW and ps = 1 − e−λsW denote
the probabilities of having at least one fail-stop error and at
least one silent error, respectively, in the pattern. The expected
execution time obeys the following recursive formula:

E(P) = pf
(
E(T lost) +RD +RM + E(P)

)
+ (1− pf )

(
W + V ∗ + ps (RM + E(P))

+ (1− ps)(CM + CD)
)
, (2)

where E(T lost) denotes the expected time loss during the
execution of the pattern if a fail-stop error strikes. Equation (2)
can be interpreted as follows: if a fail-stop error occurs, we
lose E(T lost) time, perform a recovery from both disk and
memory, and then re-execute the pattern (Line 1). If no fail-
stop error strikes during the execution, we run the guaranteed
verification to detect silent errors, which if indeed occurred
involves a memory recovery only followed by a re-execution
(Line 2). Otherwise, if no silent error strikes either, we can
proceed with the memory and disk checkpointing (Line 3).

To derive the expected execution time, we need to com-
pute E(T lost), which can be expressed as follows: E(T lost) =∫∞
0
xP(X = x|X < W )dx = 1

P(X<W )

∫W
0
xP(X = x)dx,

where P(X = x) denotes the probability that a fail-stop error
strikes at time x. By definition, we have P(X = x) = λfe

−λfx

and P(X < W ) = 1− e−λfW . Integrating by parts, we get

E(T lost) =
1

λf
− W

eλfW − 1
. (3)

Substituting Equation (3) into Equation (2) and solving the
recursion, we obtain

E(P) =
e(λf+λs)W − eλsW

λf
+ eλsWV ∗ + CD + CM

+
(
e(λf+λs)W − eλsW

)
RD +

(
e(λf+λs)W − 1

)
RM .

By approximating eλx = 1 + λx + λ2x2

2 up to the second-
order term, we can further simplify the expected execution
time, which turns out to be given by Equation (1).

Theorem 1. A first-order approximation to the optimal work
length in pattern P(W, 1, [1], [1], 〈[1]〉) is given by

W ∗ =

√
V ∗ + CM + CD

λs +
λf
2

. (4)

The optimal expected overhead in this case is

H∗(P) = 2

√(
λs +

λf
2

)
(V ∗ + CM + CD) +O(λ) . (5)

Proof. From the result of Proposition 1, the expected overhead
of the pattern can be computed as

H(P) =
V ∗ + CM + CD

W
+

(
λs +

λf
2

)
W

+ λs(V
∗ +RM ) + λf (RM +RD) +O(λ2W 2) . (6)

Assuming that the platform MTBF µ = 1/λ is large in front
of the resilience parameters, consider the first two terms of
H(P) (Line 1 of Equation (6)): the overhead is minimal when
the pattern has length W = Θ(λ−1/2), and in that case both
terms are in the order of λ1/2, so that we have

H(P) = Θ(λ1/2) +O(λ).

Indeed, the last term O(λ2W 2) becomes also negligible com-
pared to Θ(λ1/2). Hence, the optimal pattern length W ∗ can
be obtained by balancing the first two terms of Equation (6),
which gives rise to Equation (4). Then, by substituting W ∗

back into H(P), we get the optimal expected overhead as
shown by Equation (5).

When only fail-stop errors exist, we retrieve the classical
formula by Young [23] and Daly [16], which is given by W ∗ =√

2CD/λf . When there are only silent errors, the optimal
work length is given by W ∗ =

√
(V ∗ + CM )/λs.

We observe from Theorem 1 that the optimal work length
W ∗ of a pattern is in the order of λ−1/2 and the optimal
overhead H∗(P) is in the order of λ1/2. Theorem 1 also shows
that we can express the expected execution overhead of a
pattern as H(P) = oef

W + orwW + O(λ), where oef and orw
are two key parameters that characterize two different types
of overheads in the execution, and they are defined below.

Definition 1. For a given pattern, oef denotes the error-free
overhead due to the resilience operations (e.g., verification,
checkpointing), and orw denotes the re-executed work over-
head, in terms of the fraction of re-executed work due to errors.

In the simple pattern P(W, 1, [1], [1], 〈[1]〉) analyzed above,
these two overheads are given by oef = V ∗ + CM + CD and
orw = λs +

λf
2 , respectively. The optimal pattern length and

the optimal expected overhead can thus be expressed as

W ∗ =

√
oef

orw
and H∗(P) = 2

√
oef · orw +O(λ) . (7)

We see that minimizing the expected execution overhead
H(P) of a pattern becomes equivalent to minimizing the
product oef ·orw up to the dominating term. Intuitively, includ-
ing more resilience operators reduces the re-executed work
overhead but adversely increases the error-free overhead, and
vice versa. This requires a resilience protocol to find the
optimal trade-off between oef and orw. We will make use of this
observation in the subsequent sections to derive the optimal
patterns in more complicated protocols.

B. Pattern PDM = P(W,n,α, [1, . . . , 1], 〈[1], . . . , [1]〉)
We first consider a pattern with multiple segments,

but each segment has only one chunk. In other words,



Timew1 w2 wn

· · ·

· · ·

V ∗ CM CD V ∗ CM V ∗ CM V ∗ CM V ∗ CM CD

(a) Pattern PDM = P(W,n,α, [1, . . . , 1], 〈[1], . . . , [1]〉)

Timew1,1 w1,2 w1,m

· · ·

· · ·

V ∗ CM CD V V V V ∗ CM CD

(b) Pattern PDV = P(W, 1, [1], [m], 〈β〉)

Timew1,1 w1,m1 wn,1 wn,mn

· · ·

· · ·

· · ·

· · · · · ·

· · ·V ∗ CM CD V V V ∗ CM V ∗ CM V V V ∗ CM CD

(c) Pattern PDMV = P(W,n,α,m, 〈β1, . . . ,βn〉)

Figure 2. Patterns PDM , PDV and PDMV .

the protocol performs multiple memory checkpoints be-
tween two disk checkpoints but without any intermedi-
ate verification. Figure 2(a) depicts the pattern PDM =
P(W,n,α, [1, . . . , 1], 〈[1], . . . , [1]〉) in this protocol. The goal
is to determine the work length W , the number of memory
checkpoints n, and the relative lengths of the segments α
in the pattern. The following proposition shows the expected
execution time of a pattern when these parameters are fixed.

Proposition 2. The expected execution time of a given pattern
P(W,n,α, [1, . . . , 1], 〈[1], . . . , [1]〉) is

E(P) = W + n(V ∗ + CM ) + CD

+

(
λs

n∑
i=1

α2
i +

λf
2

)
W 2 +O(

√
λ) . (8)

Proof. Define Ei as the expected time to execute the i-th
segment of the pattern up to the memory checkpoint at the
end of the segment. We first show the following result:

Ei = wi+V
∗+CM+λsw

2
i +λf

(
w2
i

2
+

i−1∑
k=1

wkwi

)
+O(
√
λ) ,

where wi = αiW denotes the work length of the i-th segment.
We prove the above claim by induction on i. For the base

case, the problem is reduced to the simple pattern shown in
Section III-A, except that there is no disk checkpoint. Since
we know from Theorem 1 that the work length of a pattern
is in the order of λ−1/2, we get the following result from
Proposition 1: E1 = w1+V ∗+CM +λsw

2
1 +

λf
2 w

2
1 +O(

√
λ).

Suppose the claim holds up to Ei−1. Then, Ei can be
expressed recursively as follows:

Ei = pfi

(
E(T lost

i )+RD+RM+

i−1∑
k=1

Ek+Ei

)
+(1− pfi )

(
wi+V

∗+psi (RM+Ei)+(1− psi )CM
)
,

where E(T lost
i ) denotes the expected time loss during the

execution of segment i when a fail-stop error strikes, which
according to Equation (3) is given by E(T lost

i ) = 1
λf
− wi
eλfwi−1

,

and pfi = 1 − e−λfwi and psi = 1 − e−λswi denote the

probabilities of having at least one fail-stop error and at least
one silent error in segment i, respectively. By following the
reasoning of the proof of Proposition 1, we obtain:

Ei = wi+V
∗+CM+λsw

2
i +

λf

2
w2

i +λfwi

i−1∑
k=1

Ek+O(
√
λ)

= wi+V
∗+CM+λsw

2
i +

λf

2
w2

i +λfwi

i−1∑
k=1

(wk+O(1))+O(
√
λ)

= wi+V
∗+CM+λsw

2
i +λf

(
w2

i

2
+

i−1∑
k=1

wkwi

)
+O(

√
λ) .

Now, we can compute the expected execution time of the
pattern by summing up all the Ei’s as follows:

E(P) =
n∑

i=1

Ei+CD =

n∑
i=1

wi+n(V
∗+CM )+CD

+λs

n∑
i=1

w2
i +λf

n∑
i=1

(
w2

i

2
+

i−1∑
k=1

wkwi

)
+O(

√
λ)

=W+n(V ∗+CM )+CD+

(
λs

n∑
i=1

α2
i +

λf

2

)
W 2+O(

√
λ) ,

since
∑n
i=1

(
w2
i + 2

∑i−1
k=1 wkwi

)
= W 2.

Theorem 2. A first-order approximation to the optimal param-
eters in pattern P(W,n,α, [1, . . . , 1], 〈[1], . . . , [1]〉) is given by

α∗i = 1
n∗ for 1 ≤ i ≤ n∗, W ∗ =

√
n∗(V ∗+CM )+CD

λs
n∗ +

λf
2

, and n∗

is either max(1, bn̄∗c) or dn̄∗e, where n̄∗ =
√

2λs
λf
· CD
V ∗+CM

.
The optimal expected overhead in this case is H∗(P) =
2
√
λs(V ∗ + CM ) +

√
2λfCD +O(λ).

Proof. (Sketch) Given the number of segments n and subject
to
∑n
i=1 αi = 1, we know that

∑n
i=1 α

2
i is minimized when

αi = 1
n for all 1 ≤ i ≤ n. Hence, we can derive the two types

of overheads from Proposition 2 as follows:

oef = n(V ∗ + CM ) + CD and orw =
λs
n

+
λf
2
.

For a given n, we can then retrieve the value of the optimal
work length W ∗ =

√
oef
orw

. Now, minimizing F (n) = oef ·orw =(
n(V ∗+CM )+CD

) (
λs
n +

λf
2

)
, we get the optimal value of

n̄∗ as shown in the theorem. Since the number of segments can
only be a positive integer, and F (n) is a convex function of
n, the optimal integer solution is either max(1, bn̄∗c) or dn̄∗e,
whichever one leads to a smaller value of F (n). Substituting
all these values back into H∗(P) = 2

√
oef · orw + O(λ), we

obtain the optimal expected overhead.

C. General patterns

Due to lack of space, we refer to [7] for a detailed (and
technical) proof for the characterization of the optimal pattern
in the general case. We report all results in Table I, which
contains six optimal patterns. In addition to PD (one single-
chunk segment, Section III-A) and PDM (several one-chunk
segments, Section III-B), we have:



Pattern W ∗ n∗ m∗ H∗(P)

PD
√

V ∗+CM+CD

λs+
λf
2

– – 2

√(
λs +

λf
2

)
(V ∗ + CM + CD)

PDV ∗

√
m∗V ∗+CM+CD
1
2 (1+ 1

m∗ )λs+
λf
2

–
√

λs
λs+λf

· CM+CD
V ∗

√
2(λs + λf )CM + CD +

√
2λsV ∗

PDV
√

(m∗−1)V+V ∗+CM+CD
1
2

(
1+ 2−r

(m∗−2)r+2

)
λs+

λf
2

– 2− 2
r +

√
λs

λs+λf
· 2−rr

(
V ∗+CM+CD

V − 2−r
r

) √
2(λs + λf )

(
V ∗ − 2−r

r V + CM + CD
)

+
√

2λs
2−r
r V

PDM
√

n∗(V ∗+CM )+CD
λs
n∗ +

λf
2

√
2λs
λf
· CD
V ∗+CM

– 2
√
λs(V ∗ + CM ) +

√
2λfCD

PDMV ∗

√
n∗m∗V ∗+n∗CM+CD

1
2 (1+ 1

m∗ ) λsn∗ +
λf
2

√
λs
λf
· CDCM

√
CM
V ∗

√
2λfCD +

√
2λsCM +

√
2λsV ∗

PDMV

√
n∗(m∗−1)V+n∗(V ∗+CM )+CD

1
2

(
1+ 2−r

(m∗−2)r+2

)
λs
n∗ +

λf
2

√
λs
λf
· CD
V ∗− 2−r

r V+CM
2− 2

r +
√

2−r
r

(
V ∗+CM

V − 2−r
r

) √
2λfCD +

√
2λs

(
V ∗ − 2−r

r V + CM
)

+
√

2λs
2−r
r V

Table I
THE SIX OPTIMAL PATTERNS. PD , PDV ∗ AND PDV HAVE ONLY ONE LEVEL OF CHECKPOINTING, WHILE PDM , PDMV ∗ AND PDMV HAVE TWO

LEVELS. THE TABLE REPORTS THE OPTIMAL PATTERN LENGTH W ∗ , THE OPTIMAL OVERHEAD H∗(P) (IGNORING LOWER-ORDER TERMS), THE
OPTIMAL NUMBER OF MEMORY CHECKPOINTS n∗ FOR THE TWO-LEVEL CHECKPOINTING PATTERNS, AND THE OPTIMAL NUMBER OF VERIFICATIONS

m∗ WITHIN A SEGMENT WHEN ADDITIONAL VERIFICATIONS ARE ADDED.

• PDV , the optimal pattern with a single segment that has mul-
tiple chunks in it. Each chunk ends with a partial verification,
except the last one, which ends with a guaranteed verification
followed by a memory checkpoint and a disk checkpoint (see
Figure 2(b)). In the optimal solution, all chunks have same
length, except the first and last one, which are larger.
• PDV ∗ , the variant of PDV with only guaranteed verifications.
For this variant, all chunks have same length.
• PDMV , the optimal pattern in the general case, with several
multiple-chunk segments (see Figure 2(c)). In the optimal
solution, all segments are identical. In each segment, all
chunks have the same length, except the first and last one,
which are larger.
• PDMV ∗ , the variant of PDMV with only guaranteed verifi-
cations. For this variant, all chunks have the same length.

IV. PERFORMANCE EVALUATION

In this section, we conduct a set of simulations whose goal
is twofold: (i) corroborate the theoretical study, and (ii) assess
the relative efficiency of each checkpoint and verification
type under realistic scenarios. We rely on simulations to
evaluate the performance of the patterns at extreme scale,
and we instantiate the model with three scenarios. In the
first scenario, we compare all patterns using real parameters
from the literature. The second scenario is a weak scaling
experiment, whose purpose is to assess the scalability of the
approach on increasingly large platforms. In the last scenario,
we study the impact of varying error rates on the overhead. The
simulator code is publicly available at http://graal.ens-lyon.fr/
∼yrobert/two-level.zip, so interested readers can experiment
with it and build relevant scenarios of their choice.

A. Simulation setup

We make several assumptions on the input parameters.
First, we assume that the recovery cost is equivalent to
the corresponding checkpointing cost, i.e., RD = CD and
RM = CM . This is reasonable because writing a checkpoint
and reading one typically takes the same amount of time. Then,
we assume that a guaranteed verification must check all the
data in memory, making its cost in the same order as that

of a memory checkpoint, i.e., V ∗ = CM . Furthermore, we
assume partial verifications similar to those proposed in [10],
[3], [4], with very low cost while offering good recalls. In
the following, we set V = V ∗

100 and r = 0.8. All these
choices are somewhat arbitrary and can easily be modified
in the simulator; we believe they represent reasonable values
for current and next-generation HPC applications.

The simulator generates errors following an exponential
distribution of parameter λf for fail-stop errors and λs for
silent errors. An experiment goes as follows. We feed the
simulator with the description of the platform, consisting
of the parameters λf , λs, CD and CM (since the other
parameters can be deduced from the above assumptions). For
each pattern, we compute the optimal length W ∗, the optimal
overhead H∗(P), as well as the optimal number of memory
checkpoints n∗ and the optimal number of verifications m∗

(when applicable), using the formulas from Table I. The total
amount of work for the application is set to that of 1000
optimal patterns, and the simulator runs each experiment 1000
times. For each pattern, it outputs the simulated overhead, the
simulated number of disk checkpoints, memory checkpoints,
verifications, disk recoveries and memory recoveries, by aver-
aging the values from the 1000 runs.

B. Assessing resilience mechanisms on real platforms

In the first scenario, we assess the performance of the six
optimal patterns shown in Table I on four different platforms
with real parameter settings.

1) Platform settings: Table II presents the four platforms
used in this experiment and their main parameters. These
platforms have been used to evaluate the Scalable Check-
point/Restart (SCR) library by Moody et al. [21], who provide
accurate measurements for λf , λs, CD and CM using real
applications. Note that the Hera platform has the worst error
rates, with a platform MTBF of 12.2 days for fail-stop errors
and 3.4 days for silent errors. In comparison, and despite
its higher number of nodes, the Coastal platform features
a platform MTBF of 28.8 days for fail-stop errors and 5.8
days for silent errors. In addition, the last platform uses SSD



platform #nodes λf λs CD CM
Hera 256 9.46e-7 3.38e-6 300s 15.4s
Atlas 512 5.19e-7 7.78e-6 439s 9.1s

Coastal 1024 4.02e-7 2.01e-6 1051s 4.5s
Coastal SSD 1024 4.02e-7 2.01e-6 2500s 180.0s

Table II
PLATFORM PARAMETERS.

technology for memory checkpointing, which provides more
data space, at the cost of higher checkpointing costs.

2) Pattern overhead: The first row of Figure 3 presents,
for each pattern, the predicted overhead H∗(P) (in blue)
versus the simulated one (in yellow) on each platform. Re-
member that the derivation of the expected overhead uses
first-order approximation, ignoring some low-order terms in
the computation. As a result, the predicted overhead, being
a little optimistic, is always slightly less than the simulated
one. However, the difference between the two is very small
(less than 1%), which validates the model quite satisfacto-
rily. Overall, the overhead oscillates between 4% and 7%
on Hera, where checkpoints are relatively cheaper, to just
over 15% on Coastal SSD, where checkpoints are more
expensive. Regardless of the platform, the more advanced
patterns always result in smaller overheads. In particular, we
observe a significant difference between the first three patterns
(PD,PDV ∗ ,PDV ), which use single-level checkpointing, and
the last three patterns (PDM ,PDMV ∗ ,PDMV ), which use two-
level checkpointing. The gap is more visible for Atlas (5%)
and Coastal (4%), where the difference between the costs of
a disk checkpoint and a memory checkpoint is larger, thus
making memory checkpoints more valuable.

3) Pattern periods: The second row of Figure 3 shows
the work lengths (periods) of the patterns on each plat-
form. Single-level patterns are associated with shorter periods
(around 3 hours on Hera and 10 hours on Coastal), as opposed
to the longer periods shown by the two-level patterns (around
8 hours on Hera and 20 hours on Coastal). Indeed, when a
fail-stop error strikes, the only choice is to recover from the
last disk checkpoint, losing all the work done so far. In that
case, a short period helps to mitigate the amount of time lost.
However, silent errors are more prominent on these platforms
and when a silent error occurs, two-level patterns can recover
from an intermediate memory checkpoint instead. Not only
does that provide a faster recovery, but also it does not require
the application to restart from the very beginning of the
pattern. As a result, disk checkpoints are only used for fail-stop
errors, and a longer period is favored in order to accommodate
more but cheaper intermediate memory checkpoints.

4) Pattern checkpoints and verifications: The third row of
Figure 3 presents the average number of disk checkpoints,
memory checkpoints and verifications taken by each pattern.
We take all checkpoints and verifications into account, in-
cluding the ones performed in recoveries and re-executions.
Since a partial verification is much cheaper than a guaranteed
one, the two patterns that are allowed to use them (PDV and
PDMV ) tend to take full advantage of this mechanism. On
Hera, PDV generates an average of 13 verifications per hour,
which is slightly more than its two-level counterpart (PDMV ),

which generates 12 verifications per hour. On Coastal, there
are more than 20 verifications per hour for PDV and 19 for
PDMV . For the two-level patterns, whose periods are longer,
the disk checkpointing frequencies become lower. However,
their memory checkpointing frequencies are higher, because
the cheaper memory checkpoints are favored in these two-
level schemes in order to better protect the application from
silent errors. Lastly, we observe that the Coastal SSD platform
requires very few verifications and memory checkpoints. This
is because the cost of a memory checkpoint is much larger on
this platform (180s) as opposed to the costs on other platforms
(15.4s on Hera and 4.5s on Coastal).

5) Pattern recoveries: The last row of Figure 3 shows the
number of recoveries performed per day by each pattern on
each platform. The number of disk recoveries follows closely
the fail-stop error rate of a given platform, and it is not affected
by the pattern used. Indeed, when a fail-stop error strikes, a
disk recovery is performed regardless of the pattern. On Hera,
we observe 0.083 disk recovery per day on average, translating
to approximately one recovery every 12 days, which is in
accordance with the platform MTBF of 12.2 days for fail-
stop errors. The same applies to Atlas and Coastal, which
show respectively 0.044 and 0.034 disk recoveries per day on
average (equivalent to a platform MTBF of 22 days and 29
days). The number of memory recoveries is more complicated
to analyze, because a memory recovery is not performed
immediately after the occurrence of a silent error. Instead, it
is performed only when an alarm is raised by a verification,
or when a fail-stop error strikes. In both cases, more than one
silent error could have occurred before the memory recovery.
In the latter case, a memory recovery is triggered right after a
disk recovery, possibly without any silent error. In general, the
memory recovery frequency could well depend on the pattern
used, which explains the slight difference under different
patterns. Nevertheless, the simulation results show that the
silent error rate is a good indicator of the memory recovery
frequency. For instance, on Hera, we observe 0.285 memory
recovery per day on average, which is approximately one
memory recovery every 3.5 days. This is very close to the
MTBF of 3.4 days for silent errors.

C. Weak scaling experiment

We now present the results of a weak scaling experiment to
assess the scalability of the model. This experiment is based
on the Hera platform, whose disk checkpoint cost is the closest
to state-of-the-art platforms (5 minutes).

1) Platform settings: We first calculate the MTBF of one
computing node, which is 8.57 years for fail-stop errors and
2.4 years for silent errors. The platform MTBF is obtained
by dividing the per-node MTBF by the number of nodes. For
example, when 217 nodes are used, the MTBF decreases to
2064s for fail-stop errors and 577s for silent errors. Under
weak scaling, the problem size grows linearly with the number
of nodes, so the time to perform a memory checkpoint
CM remains constant. In addition, we make the optimistic
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Figure 3. Performance of the six optimal patterns on the four platforms. Each column represents one platform.

assumption that the disk checkpointing time CD also remains
constant by scaling the I/O bandwidth of the file system2.

2) Results: Figure 4 presents the simulation results for the
simplest pattern PD and the most advanced pattern PDMV .
We can see that the overheads remain acceptable up to
215 = 32768 nodes, which are 100% for PD and 64% for
PDMV . Beyond that, the overheads increase drastically for
both patterns, eventually exceeding 500% for 218 = 262144
nodes. However, compared to the simple pattern PD, the two-
level pattern PDMV improves the overhead by a few percent
on 256 nodes up to over 150% on 218 nodes.

We also observe the difference between the simulated over-
head and the predicted one, which starts negligible for a small
number of nodes but reaches more than a factor of three for
218 nodes. The reason is the use of first-order approximation to
compute the predicted overhead, which is only accurate when
the platform MTBF is large in front of the other parameters.
Obviously, this is no longer the case for a large number of
nodes. For instance, when the number of nodes reaches 105

(almost 217 nodes), the MTBF of the whole platform reduces
to less than 10 minutes, which is in the same order as the

2In actual systems, the I/O bandwidth could become a bottleneck, resulting
in increased disk checkpointing cost. This would further widen the perfor-
mance gap between single-level and two-level patterns.

pattern period. At this point, the application experiences more
than half a dozen errors per hour. In order to minimize the
impact of errors, the pattern PDMV places a large number of
verifications and more than 10 memory checkpoints per hour.
As a result, a lot of time is wasted on resilience operations.
When the error rate is this high, however, there is not much
flexibility in the optimization, and no pattern is able to offer
satisfying performance.

Similar results are also obtained when we repeat the weak
scaling experiment with a disk checkpointing cost of 90s
instead of 300s to account for improved disk technology [7].

D. Impact of error rates

Finally, we study the impact of the error rates on the
performance of the patterns. Again, we focus on the Hera
platform but scale its number of nodes to 105. We vary the
error rates λf and λs with respect to their nominal values
while keeping the other parameters fixed.

The first row of Figure 5 presents the impact of λf and λs
on the simulated overheads of two patterns PD and PDMV .
For the PDMV pattern, the overhead is affected more by the
fail-stop errors than by the silent errors. This is because the
intermediate memory checkpoints better protect the applica-
tion from silent errors. On the other hand, the overhead of the
single-level pattern PD is affected more by the silent errors,
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Figure 4. Weak scaling experiment on the Hera platform.

because silent errors have a much higher rate. The figure
also shows the difference between the overheads of the two
patterns, which is small when most errors are fail-stop, due
to the relatively small rate. However, when the silent error
rate increases, the two-level pattern achieves a much better
performance than the single-level pattern, by saving up to
200% on the overhead.

The second row of Figure 5 presents the impacts of λf and
λs separately on the periods and checkpointing frequencies of
the two patterns. First, when the silent error rate is fixed at its
nominal value, the period of PD remains constant with varying
λf , while the period of PDMV decreases as λf increases.
This is because the high silent error rate has already driven
the period of PD very low (< 10 minutes), so increasing the
fail-stop error rate has a limited impact. On the other hand,
the period of PDMV is primarily driven by the fail-stop error
rate, so it decreases quickly, allowing more disk checkpoints to
be taken. In addition, the number of checkpoints successfully
taken in an hour remains stable for both patterns. Since the
period of PDMV decreases while the period of PD remains
constant, it implies degraded performance for the two-level
pattern and stable performance for the single-level one, cor-
roborating the previous analysis. The role is reversed when the
fail-stop error rate is fixed at the nominal value and the silent
error rate is changed. Since the PDMV pattern is equipped
with more memory checkpoints and verifications, silent errors
have little impact on its period. On the contrary, the period of
PD decreases in order to detect silent errors earlier, which
is the only way to protect the application from increased
silent error rate. Lastly, the number of memory checkpoints
performed by PDMV increases with the silent error rate in
order to compensate for the fixed number of disk checkpoints.
For the PD pattern, the checkpointing frequency remains the
same, implying degraded performance with decreased period.

E. Summary

From the simulation results, we conclude that the first-order
approximation for the resilience patterns provides an accurate
performance model for systems with up to tens of thousands
of nodes. Overall, the complex pattern that combines all
resilience mechanisms offers significantly better performance,
improving the base pattern by up to 150% in the execution
overhead. The findings are consistent on different platforms
and with varying error rates. The results nicely corroborate
the analytical study, and demonstrate the benefit of using two-
level patterns for dealing with both fail-stop and silent errors.

V. RELATED WORK

Due to lack of space, we refer to [7] for a detailed list
of related work on multi-level checkpointing and silent error
detection. Here we only outline differences with our previous
work. In a nutshell, our previous work investigates the design
of special patterns. Aupy et al. [1] analyzed two simple
patterns: one with k checkpoints and one guaranteed verifi-
cation, and the other with k verifications and one checkpoint.
Benoit et al. [6] studied the latter pattern and gave explicit
formulas to accommodate both fail-stop and silent errors.
The idea of interleaving p checkpoints and q verifications
has also been explored in [8] to achieve more optimized
computing patterns. The first analysis of a pattern using partial
verification for silent error detection was given by Cavelan et
al. [14]. This analysis has been recently extended to the case
with multiple partial verifications [2]. All these results apply
to a single level of checkpointing only, which considerably
simplifies the design of optimal solutions. To the best of our
knowledge, this work is the first to investigate the combination
of memory checkpoints, disk checkpoints, partial verifications
and guaranteed verifications.

Finally, we stress that this work is along the same direction
as multi-level checkpointing, but the two levels we propose
target different error sources, namely, fail-stop errors and
silent errors. This dramatically changes the computation of
the expected re-execution time, because we do not have to
distinguish which error type strikes first. Moreover, as in
Young [23] and Daly [16], we provide explicit formulas on the
optimal checkpointing intervals for both levels (up to a first-
order approximation), while previous work relies on numerical
methods to find the optimal solution [17].

VI. CONCLUSION

When computing at extreme scale, both fail-stop errors and
silent errors are major threats to executing HPC applications
with acceptable overhead. While several techniques have been
developed to cope with either threat, few approaches are
devoted to addressing both of them simultaneously. Although
surprising—because dealing with both error sources is un-
avoidable on large-scale platforms—, this lack of solutions
may be explained by the new challenges raised by silent errors,
whose detection is not immediate and requires the use of
verification mechanisms, either partial or guaranteed. Also,
the interplay of two levels of checkpoints and of two types
of verifications raises difficult optimization challenges. The
major contribution of this paper is the characterization of the
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Figure 5. Impact of error rates λf and λs on the performance of the patterns on the Hera platform with 105 nodes.

optimal computational pattern. The derivation is technically
involved, but the results are easy to use in real-life scenarios:
one has just to look at Table I and pick the optimal pattern that
fits their resilience needs. The accuracy of our model as well
as the analysis have been nicely corroborated by extensive
simulations. The results show acceptable difference in the
predicted overhead and the simulated one on systems with
up to tens of thousands of nodes. Also, the complex pattern
that combines all resilience mechanisms provides up to 150%
improvement in the execution overhead compared to the base
pattern dictated by the classical Young/Daly’s formula.

Finally, our approach is application-agnostic. Future work
will be devoted to the study of application-specific verification
and checkpoint mechanisms, in particular for sparse iterative
solvers. It will be interesting to assess the impact of ad-hoc
techniques (ABFT, orthogonality checks, incremental check-
pointing, etc) on the overhead of computational patterns in the
latter framework.
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