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Correlated-Gaussian calculations of the ground and low-lying excited states of the boron atom
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Benchmark variational calculations of the four lowest 2P and 2S states of the boron atom (including the ground
state) have been performed. The wave functions of the states have been expanded in terms of all-particle explicitly
correlated Gaussian basis functions and the finite mass of the nucleus has been explicitly accounted for.Variational
upper bounds for the nonrelativistic finite- and infinite-nuclear-mass energies of all considered states have been
obtained with the relative convergence of the order of 10−7–10−8. Expectation values of the powers of the
inter-particle distances and Dirac δ functions depending on those distances have also been computed. These
calculations provide reference values that can be used to test other high-level quantum chemistry methods.
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I. INTRODUCTION

There are several reasons for which finding accurate
solutions of the Schrödinger equation for small atoms and
molecules is important. Probably the most compelling one
is to keep up with constantly improving experimental mea-
surements. Much of the up-to-date atomic and molecular
spectroscopic data have a resolution that exceeds 0.01–
0.001 cm−1 or even better. Unfortunately, theoretical tech-
niques are usually unable to match such high accuracy values.
With this, a good amount of potentially interesting physical
phenomena remain inaccessible for quantitative (and often
even qualitative) analysis and interpretation. For some atomic
properties, the theory is orders of magnitude behind the
experiment. It should be mentioned that the results obtained
in high accuracy calculations of small few-electron systems
when combined with high-resolution spectroscopic data make
it possible to precisely determine such quantities as the
fine-structure constant, electron-to-proton mass ratio, nuclear
radii, quadrupole moments, etc.

Another important reason for performing accurate calcu-
lations on small atomic and molecular systems is that they
can provide valuable reference data for the development
and testing of less accurate quantum-chemical methods. A
simple example is the total nonrelativistic energy of the
system, which is one of the most commonly calculated
quantities. This energy is difficult to determine very precisely
based on purely experimental data because, even if very
accurate measurements of the ionization potentials and/or the
dissociation energies are available, the procedure to determine
the energy requires knowledge of the binding energies of
subsystems and the exact contribution of relativistic and QED
effects. These latter quantities, while readily available from
the calculations, are not directly obtained in the experiment.

However desirable very precise calculations on small atoms
are, the difficulties associated with obtaining a very accurate
solution of the Schrödinger equation are quite substantial.
The main cause of these difficulties is rooted in the multi-
dimensional nature of the wave function. The amount of the
computational work necessary for such a task grows very fast
with the number of particles in the system. Among the methods
that are capable of effectively describing the inter-particle

correlation effects, the class of explicitly correlated methods
has proven to be particularly powerful. In this class of methods,
the wave function of the system is represented in terms of basis
functions that explicitly depend not only on the positions of
the particles but also on the inter-particle distances. When this
type of wave function is combined with the Rayleigh-Ritz
variational scheme, it can describe either the ground state or
an excited state of a small atom, a molecule, or any other
quantum-mechanical system with an unmatched accuracy. In
the case of the most studied three-particle atomic system, the
helium atom, the accuracy of the best recent calculations has
been truly impressive and exceeded 40 decimal figures in the
total energy [1–3]. Such accuracy was possible due to the use
of a basis set that, apart from other necessary components, also
included logarithmic terms that correctly describe the behavior
of the wave function at three-particle coalescence points.

Unfortunately, including basis functions that are capable
of exactly representing all fine nuances of the exact wave
function is only possible for three-particle systems. Including
such functions in the calculations of larger systems leads
to extremely complicated Hamiltonian and overlap matrix
elements. For this reason, the next smallest atom, Li, has been
computed with “only” 12- to 13-digit accuracy [4–6] using
wave functions expanded in terms of the Hylleraas-type basis
functions. These basis functions do not have proper behavior
at the three-particle coalescence points, but the wave function
constructed with them can still satisfy the Kato cusp conditions
[7]. The calculations with Hylleraas-type basis functions are
currently limited to four-particle (or three-electron) atomic
systems. The extension of the approach to larger atoms
again faces difficulties with the analytic evaluation of the
multidimensional integrals. The same is true in the case of
yet another type of basis function, i.e., explicitly correlated
exponential functions (also known as explicitly correlated
Slater-type functions) [8–11].

The achieved precision in the calculations on atoms larger
than Li drops even further. The accuracy in the calculations
of the Be atom and other four-electron atomic systems
had remained significantly lower than the accuracy of the
available spectroscopic data until very recently, when a series
of calculations matching the experimental error bars were
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reported [12–18]. All those calculations were performed using
the explicitly correlated Gaussian functions (ECGFs). These
functions have the advantage that the algorithms for the
Hamiltonian matrix elements with them can be derived in the
general form for any number of electrons, thus overcoming
the difficulties associated with the use of the Hylleraas-type
functions and of the explicitly correlated Slater-type functions.

In this paper, we show that, if sufficient computational effort
is invested, the correlated Gaussians are capable of producing
results for the ground and some lower-lying excited states of
a five-electron atomic system, the boron atom, which almost
match the accuracy achieved for the four-electron systems. As
will be described in the next section, the key component of the
variational energy minimization procedure that leads to such
accurate results is the analytical energy gradient determined
with respect to the Gaussian nonlinear parameters, which are
optimized.

II. METHOD

The standard atomic quantum-mechanical calculations are
usually performed with infinite nuclear mass, i.e., with assum-
ing the Born-Oppenheimer (BO) approximation. However, in
calculations where very high accuracy is desired, the energy
needs to include the effect of the finite mass of nucleus.
This can be done by using a Hamiltonian, which represents
the internal state of the system, to explicitly include the
dependency on the nuclear mass. Such a Hamiltonian, called
here the internal Hamiltonian, is obtained from the laboratory-
frame nonrelativistic Hamiltonian by rigorously separating out
the center-of-mass motion. For an atom with n electrons, this is
done by a transformation from a laboratory coordinate frame,
which describes the positions and the nucleus and the electrons
of the atom, to a new set of coordinates comprising three
Cartesian coordinates of the center of mass and n internal
Cartesian coordinates describing the positions of the electrons
with respect to the nucleus. By separating out the center-of-
mass motion, we obtain the following internal Hamiltonian
(for details, see [19–22]):

Ĥ = −1

2

(
n∑

i=1

1

µi

∇2
ri

+
n∑

i,j=1
i �=j

1

m0
∇ri

· ∇rj

)

+
n∑

i=1

q0qi

ri

+
n∑

i>j=1

qiqj

rij

, (1)

where ri is the distance between the ith electron and the
nucleus, m0 is the nucleus mass [m0(10Be) = 18 247.4689me

and m(11Be) = 20 063.7375me, where me the electron mass],
q0 is its charge, qi are electron charges, and µi = m0mi/

(m0 + mi) are electron reduced masses. The Hamiltonian
(1) describes the motion of n (pseudo)electrons, the masses
of which are the reduced masses, in the central field of
the nuclear charge. This motion is coupled through the
Coulombic interactions between the electrons and the nucleus∑n

i=1
q0qi

ri
and through the interactions between the electrons∑n

i>j=1
qiqj

rij
, where rij = |rj − ri |, as well as through the mass

polarization term − 1
2

∑n
i,j=1
i �=j

(1/m0)∇ri
· ∇rj

.

In the calculations of atomic states with only s electrons (in
the leading configuration), we use the following all-electron,

spherical ECGFs:

φk(r1,r2, . . . ,rn) = exp[−r′(Ak ⊗ I3)r], (2)

where r is a vector formed by the r1,r2, . . . ,rn vectors stacked
on top of each other, Ak is a n × n symmetric matrix, I3 is
a 3 × 3 identity matrix, ⊗ is the Kronecker product symbol,
and the prime indicates the matrix or vector transpose. As
the basis functions used in describing bound states must be
square integrable, restrictions must be imposed on the Ak

matrices. Each Ak matrix must be positive definite. Rather than
imposing restrictions on the Ak matrix elements, which can be
quite costly to handle in the computational implementation, we
use the following Cholesky factored form of Ak: Ak = LkL

′
k ,

where Lk is a lower triangular matrix. With this representation,
Ak is automatically positive definite for any values of the Lk

matrix elements ranging from −∞ to ∞. Thus, the variational
energy minimization with respect to the Lk parameters can be
carried out without any restrictions imposed on the optimized
parameters. It should be noted that the LkL

′
k representation

of Ak matrix does not limit the flexibility of basis functions,
because any symmetric positive matrix can be represented in
a Cholesky factored form.

To describe states with (n − 1) s electrons and a single
p electron, we used the following ECGFs in the wave-function
expansion:

φk(r1,r2, . . . ,rn) = zmk
exp[−r′(Ak ⊗ I3)r]. (3)

Here mk is an integer that depends on k with values ranging
from 1 to n. mk is also subject to optimization.

Appropriate symmetry projections are used to make the
wave function of the atom antisymmetric with respect to
the permutation of the electron labels. In this paper, we use the
spin-free formalism. In this formalism, the symmetry projec-
tions acting on the spatial parts of the wave function, i.e., the
basis functions, can be represented using the Young projection
operators Ŷ , which are linear combinations of permutational
operators P̂γ . As the Hamiltonian is invariant with respect to
all permutations of the electrons, in calculating the overlap and
Hamiltonian matrix elements, the permutational operators can
be applied to the ket (or the bra) only. More specifically, the
ket basis functions in those matrix elements are operated on
with the operator Ŷ †Ŷ (the dagger stands for conjugate), where
the Ŷ operator is derived using the appropriate Young tableaux
for the state under consideration (for details of the formalism
see, for example, [23]). For the doublet states of boron, the
Young operator can be chosen as Ŷ = (1̂ + P̂23)(1̂ + P̂45)(1̂ −
P̂24)(1̂ − P̂26 − P̂46)(1̂ − P̂35), where the nucleus is labeled as
particle 1, and the electrons are labeled as particles 2, . . . ,6, 1̂
is the identity operator, and P̂ij is the permutation operator of
the spatial coordinates of the ith and j th electrons.

III. RESULTS AND DISCUSSION

The two lowest 2S and two lowest 2P states of boron are
considered in these calculations. The lowest 2P state is the
boron ground state. In Fig. 1, we use the experimental data
taken from NIST Atomic Spectra Database [24] to show
where those considered states are positioned in the boron
spectrum.
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FIG. 1. The energy level diagram of the low-lying states of the
boron atom. The four levels computed in this work are marked with
the solid line.

The calculations have been carried out for 10B and 11B
isotopes as well as for ∞B; the latter one corresponds to
the boron atom with an infinitely heavy nucleus. As the
majority of quantum-chemical calculations are traditionally
performed with an infinite nuclear mass, including the ∞B
results here may provide a useful set of reference values for
such calculations. The basis sets for different states have only
been generated for the main 11B isotope and reused in the
calculations of 10B and ∞B. The reason for this time-saving
simplification is due to the fact that, upon a small change of the
wave function (the change remains small as long as the mass
of the nucleus is significantly larger than that of electrons), it
is sufficient to readjust only the linear coefficients of the wave
function in order to recover the shift in the total energy. The

simplification has virtually no effect on the accuracy of the
calculation.

These calculations have been performed using the standard
variational approach. In the variational energy minimization,
the matrix elements of the Lk matrices of the basis functions
have been optimized. As mentioned, this was only done for the
11B isotope. For 2P states, the mk powers have been partially
optimized. The optimization was carried out independently
for each state and the basis set for each state has been grown
incrementally from a small set of functions to the size of 5100
functions. Some preliminary results for ground state only and
the basis size up to 2000 functions were reported in one of our
previous works [25]. The initial selection of Lk parameters
(and mk for P states) was done using a stochastic scheme
similar to that described in other works [26–28]. After each
function was added to the set, its Lk parameters were optimized
using a method that employs an analytical energy gradient
determined with respect to the optimized parameters. After a
subset of 10 functions were added to the basis, all functions
in the set were reoptimized one by one using the gradient-
based method. When the basis size reached 5000, we further
increased the computational effort by changing the number
of cycles performed after the addition of each new 10 basis
functions from one to three. Also, starting from approximately
the 5080 function basis, we switched from standard double
precision (64-bit) to extended precision (80-bit) to improve the
quality of the optimization, which is sensitive to the numerical
accuracy of the computed eigenvalues and their derivatives.

The results of the calculations are presented in Table I.
For the 11B isotope, the energies obtained with 1000, 2000,
3000, 4000, 5000, and 5100 ECGFs are shown. This allows
for an analysis of the energy convergence. We estimate that
the energies for all considered states are converged to about
10−7–10−8 relative to the respective energy values. For 10B and
∞B, we only show the energies obtained with 5100 ECGFs.
They are as well converged as the 11B energies.

Using the total energies of the states from Table I, we can
determine the energies corresponding to transitions between
states. These, in turn, can be directly compared with the
experimental data taken from Ref. [24]. Such a comparison
is presented in Table II. First let us examine the convergence
of the calculated transition energies. This analysis can be
done based on the transition energy values obtained for the
11B isotope for the different basis-set sizes. It shows that

TABLE I. The convergence of the total nonrelativistic energies (in Hartrees) with the basis size for the main isotope of boron atom 11B.
Energies obtained for 10B and ∞B with 5100 basis functions are also shown. The values in parentheses are estimates of the remaining uncertainty
due to finite basis size used in the calculations.

Isotope Basis 2P o (1s22s22p) 2S (1s22s23s) 2P o (1s22s23p) 2S (1s22s24s)

11B 1000 −24.652 494 17 −24.470 106 32 −24.430 979 54 −24.401 841 39
2000 −24.652 598 09 −24.470 136 27 −24.431 073 08 −24.401 923 14
3000 −24.652 615 70 −24.470 140 92 −24.431 088 39 −24.401 936 14
4000 −24.652 621 14 −24.470 142 33 −24.431 093 26 −24.401 939 96
5000 −24.652 623 43 −24.470 142 90 −24.431 095 31 −24.401 941 47
5100a −24.652 623 87(250) −24.470 143 16(50) −24.431 095 74(250) −24.401 941 83(150)

10B 5100a −24.652 500 24(250) −24.470 018 76(50) −24.430 971 75(250) −24.401 817 83(150)
∞B 5100a −24.653 866 08(250) −24.471 393 06(50) −24.432 341 44(250) −24.403 187 67(150)

aThis basis set was generated with a more extensive optimization of the nonlinear parameters.
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TABLE II. Nonrelativistic transition frequencies (in cm−1) for different isotopes of B compared to the experimental values.

Isotope Basis 2P
o(2p) → 2S(3s) 2P

o(2p) → 2P
o(3p) 2P

o(2p) → 2S(4s) 2S(3s) → 2P
o(3p) 2S(3s) → 2S(4s) 2P

o(3p) → 2S(4s)

11B 1000 40 029.504 48 616.840 55 011.926 8587.336 14 982.422 6395.086
2000 40 045.740 48 619.119 55 016.792 8573.378 14 971.051 6397.673
3000 40 048.584 48 619.623 55 017.802 8571.039 14 969.218 6398.179
4000 40 049.469 48 619.749 55 018.160 8570.280 14 968.691 6398.411
5000 40 049.847 48 619.802 55 018.331 8569.956 14 968.484 6398.529
5100a 40 049.887(200) 48 619.806(50) 55 018.349(100) 8569.920(200) 14 968.462(100) 6398.542(70)

10B 5100a 40 050.054(200) 48 619.883(50) 55 018.428(100) 8569.828(200) 14 968.374(100) 6398.545(70)
∞B 5100a 40 048.200(200) 48 619.039(50) 55 017.551(100) 8570.839(200) 14 969.351(100) 6398.513(70)

Experimentb 5100a 40 039.650 48 611.817 55 010.181 8572.167 14 970.531 6398.364

aThis basis set was generated with a more extensive optimization of the nonlinear parameters.
bFor transitions frequencies involving P states, there is significant fine-structure splitting (up to several cm−1 in magnitude). In this table, we
show the frequencies corresponding to the transitions involving lowest-lying sublevels.

our nonrelativistic transition energies are converged to about
0.05–0.20 cm−1.

Let us now examine the agreement of the calculated
transition energies with the experimental values. As these
calculations have included neither relativistic nor QED correc-
tions, one may expect some deviations between the calculated
and the experimental values. They indeed appear, but never
exceed about 10 cm−1. It is interesting to examine the transition
energies in the series of the following consecutive excita-
tions: 2P

o
(2p) → 2S(3s), 2S(3s) → 2P

o
(3p), and 2P

o
(3p) →

2S(4s). The corresponding calculated 11B transition energies
are 40 049.887(200), 8569.920(200), and 6398.542(70) cm−1,
respectively. As those excitations correspond to promoting the
valence electron between increasingly higher pairs of adjacent
S and P states, one would expect to see the calculated transition
energies to become closer to the experimental values. This is
because the relativistic contribution is mainly due to the state
of the core electrons and, as the valence electron becomes more
removed from the atom (which happens when it gets excited
to increasingly higher states), the state of the core is affected
increasingly less. This means that the relativistic contribution
to the transition energy should decrease for higher S-P and
P -S transitions. With this, the calculated transition energies
should become closer to the experimental transitions, and this

indeed is what happens in the series of the three mentioned
transitions. The differences between the calculated and the
experimental transition energy values are 10.237, 7.753, and
0.178 cm−1, respectively. As one sees, the transition energy
for the highest transition is very close to the experimental
value.

As the goal of this work has been to provide more accurate
calculated reference values for boron, aside from the energy
we also calculated some other expectation values that provide
some additional characterization of the wave functions of
the considered states. The expectations values are shown in
Table III. They have been calculated using the basis sets
of 5100 ECGFs. Let us first comment on the expectation
value of the nucleus-electron distance 〈ri〉. It characterizes
the spatial extent of the wave function. As expected, as the
level of excitation increases, 〈ri〉 gets bigger. For the highest
2S (1s22s24s) state, it is almost three times larger than for
the ground 2P (1s22s22p) state. Also, 〈ri〉 shows that, when
the nuclear mass increases, the electron density contracts.
This contraction is smaller for the ground state than for the
higher states. However, interestingly, the contraction does not
increase monotonically with the level of excitation. It is slightly
larger for the 2S (1s22s23s) state than for the 2P (1s22s23p)
state, even though the latter has higher energy.

TABLE III. Expectation values of powers of the inter-particle distances and contact densities. All values are in a.u. The results obtained
with 5100 function basis sets are shown. The estimated uncertainties due to finite size of the basis are given in parentheses.

State Isotope 〈1/ri〉 〈1/rij 〉 〈ri〉 〈rij 〉 〈r2
i 〉 〈r2

ij 〉 〈δ(ri )〉 〈δ(rij )〉
2P o (1s22s22p) 10B 2.278 870 27(5) 0.766 675 6(4) 1.348 148(2) 2.245 196(5) 3.101 86(2) 6.707 26(5) 14.3659(30) 0.353 99(5)

11B 2.278 881 37(5) 0.766 678 6(4) 1.348 143(2) 2.245 188(5) 3.101 84(2) 6.707 21(5) 14.3661(30) 0.353 99(5)
∞B 2.278 992 96(5) 0.766 709 2(4) 1.348 088(2) 2.245 104(5) 3.101 60(2) 56.70672(5) 14.3683(30) 0.354 04(5)

2S (1s22s23s) 10B 2.225 981 84(20) 0.670 950 9(3) 2.103 834(4) 3.660 657(8) 10.673 68(3) 21.771 87(6) 14.5047(30) 0.358 29(9)
11B 2.225 993 01(20) 0.670 953 9(3) 2.103 824(4) 3.660 639(8) 10.673 57(3) 21.771 64(6) 14.5049(30) 0.358 29(9)
∞B 2.226 105 21(20) 0.670 984 4(3) 2.103 715(4) 3.660 453(8) 10.672 44(3) 21.769 39(6) 14.5071(30) 0.358 34(9)

2P o (1s22s23p) 10B 2.217 176 77(30) 0.656 747 6(4) 2.483 814(15) 4.404 871(30) 17.067 35(10) 34.544 84(20) 14.4788(10) 0.357 55(5)
11B 2.217 187 83(30) 0.656 750 5(4) 2.483 806(15) 4.404 856(30) 17.067 24(10) 34.544 63(20) 14.4790(10) 0.357 55(5)
∞B 2.217 298 94(30) 0.656 779 1(4) 2.483 719(15) 4.404 712(30) 17.066 21(10) 34.542 57(20) 14.4812(10) 0.357 60(5)

2S (1s22s24s) 10B 2.206 234 20(80) 0.635 222 1(15) 3.598 680(50) 6.611 520(100) 44.840 99(100) 89.997 69(300) 14.4906(30) 0.357 90(7)
11B 2.206 245 18(80) 0.635 224 7(15) 3.598 666(50) 6.611 495(100) 44.840 61(100) 89.996 94(300) 14.4908(30) 0.357 90(7)
∞B 2.206 355 57(80) 0.635 251 6(15) 3.598 524(50) 6.611 241(100) 44.836 85(100) 89.989 43(300) 14.4930(30) 0.357 95(7)
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Another property worth noting is the electron density at
the nucleus [i.e., the 〈δ(ri)〉 expectation value]. With the
increasing level of excitation this density increases, which is
understandable because, as the valence electron moves further
away from the nucleus, the core electrons contract leading to
their higher density at the nucleus. Also, for all the states, the
higher nuclear mass leads to a slightly higher 〈δ(ri)〉.

IV. SUMMARY

In this work, we obtained the four lowest 2S and 2P

states of the two stable isotopes of the boron atom 10B

and 11B. High accuracy has been achieved by employing
large basis sets of explicitly correlated Gaussian functions
and optimizing their nonlinear parameters with an approach
that utilizes the analytical gradient of the energy determined
with respect to those parameters. The results demonstrate that
five-electron atomic systems can now be calculated with a
comparable accuracy as for atoms with four electrons. The
lack of accounting for relativistic and QED effects results in
some discrepancies between the calculated and the experi-
mental transition energies. Thus, the next task in our work
will be to develop algorithms for computing the relativistic
corrections.
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