Conference Program and Practical Information

Managing Forests to Promote Environmental Services

Copenhagen, 3-5 November, 2015

Climate change adaptation and mitigation
Carbon sequestration
Water protection
Biodiversity conservation
Soil quality maintenance
Content

Overview of conference program 3
Keynote speakers 8
Overview of posters 10
List of participants 11

Map of conference venue 12
Getting around 13
Map of S-trains and metro lines 13

More practical information – see conference website

SCIENTIFIC COMMITTEE:

Lars Högbom, Skogforsk, Sweden
Leena Finér, Natural Resources Institute Finland
Inge Stupak, University of Copenhagen, Denmark

ORGANISERS:

CONTACT PERSON:

Inge Stupak
University of Copenhagen
Department of Geosciences and Natural Resource Management
Rolighedsvej 23
1958 Frederiksberg C
E-mail: ism@ign.ku.dk
Tel: +45 35331665
Mobile: +45 41411156
SkypeID: istupak

Cover images: Lars Vesterdal, Lars Högbom, Morten Christensen, Lars Vesterdal
Overview of conference program

Venue:
University of Copenhagen
Bülowsvej 17, 1870 Frederiksberg C.
Room: Aud. A 1-01.01

Tuesday, 3 November

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.00</td>
<td>Registration opens</td>
</tr>
<tr>
<td>10.30</td>
<td>Welcome</td>
</tr>
</tbody>
</table>
| 10.40 | **Keynote:**
 Michael Scherer-Lorenzen - Biodiversity as a tool for managing forest ecosystem services? |

Session I – Biodiversity
Chair: Vitas Marozas

11.10
Biodiversity Conservation and Ecosystem Services in Danish Forests. A National analysis (1)
Petersen, A.H., Lundhede, T.H., Strange, N., Thorsen, B.J., Rahbek, C., Heilmann-Clausen, J., Bruun, H.H.

Effects of deforestation on litter transport, decomposition rate and invertebrate communities in springfed stream ecosystems in Iceland (2)
Helena M. Stefansdottir, M.H., Sigurdsson, B.D., Oddsdottir, E.S., Bjarnadottir, B., Medelyte, G., Olafsson, J.S.

11.50
Lunch

12.50
Effects of whole-tree harvesting and stem-only harvesting on plant biodiversity in Norwegian spruce forest sites (3)
Økland, T., Nordbakken, J.F., Lange, H., Røsberg, I., Kjønaas, O.J., Hanssen, K.H. and Clarke, N

How climate change mitigation and adaptation strategies can threaten or enhance the biodiversity of production forests: Insights from Sweden (4)

13.30
Short break

Session II – Water
Chair: Leena Finer

13.40
CAR-ES presentation:
CAR-ES and forest waters, the first 10-years (5)
Högbom, L., Finér, L., Clarke, N., Futter, M., Gundersen, P., Laurén, A., Launiainen, S., Ring, E.

14.10
Evapotranspiration of forests in Fennoscandia – a synthesis based on Eddy-Covariance data and modelling (6)
Launiainen, S.

Prospects of distributed hydrological modeling in management of forestry drained peatlands (7)
Haathi, K., Warsta, L., Kokkonen, T., Younis, B.A, Kaivusalo, H.

14:50
Coffee break

15:10
Nitrogen leaching after clearfelling and soil scarification at a pine forest nitrogen fertilization experiment, central Sweden (8)
Rappe-George, M.O., Ring, E., Hansson, I, Gärdenäs, A.I.
Peatland forests: optimal rotation age, improvement ditching effort and water protection (9)

Soil solution quality in the fertilized hybrid aspen plantation cultivated in the agroforestry system in Latvia (10)
Bārdule, A., Lazdiņa, D., Bārdulis, A, Toms Sarkanābols, T., Grīnfelde, I., Vīksna, A.

Conceptualizing and Communicating Management Effects on Water Quality in the Swedish Boreal Forest (11)
M.N. Futter, L. Högbom, S. Valinia, R.A. Sponseller, H. Laudon

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.30</td>
<td>Short break</td>
</tr>
<tr>
<td></td>
<td>Session III – Posters</td>
</tr>
<tr>
<td></td>
<td>Chair: Eva Ring</td>
</tr>
<tr>
<td>16.40</td>
<td>Poster session and drinks</td>
</tr>
</tbody>
</table>
Wednesday, 4 November

Session IV - Carbon and Climate Change
Chair: Bjarni Sigurdsson

09.00 CAR-ES presentation:
Soil carbon sequestration in Nordic forestry: influences of changed land-use and management (12)
Vesterdal, L., Clarke, N., Sigurdsson, B. D., Stefánsdóttir, H. M., Kjønaas, O. J., Gundersen, P., Stupak, I., Bárcena, T. G., Kiær, L. P.

09.30 Carbon sequestration service of boreal forested landscapes. A mapping framework based on GIS and dynamic modelling (13)
Akujärvi, A.

Carbon balance of a forest ecosystem after stump harvest (14)
Grelle, A., Strömgren, M., Hyvönen, R.

Surface albedo of different vegetation areas in S-Iceland (15)
Bjarnadottir, B., Sigurdsson, B. D.

Indications that Site Preparation in the Long-Term Increases Overall Carbon Stocks in Coniferous Boreal Forests but not in their Soils (16)
Mjöfors K., Strömgren M., Nohrstedt H-Ö, Johansson M-B., Gårdenäs A.

Impact of alternative forest management regimes and forest supply chain on carbon emissions (17)
Karttunen, K., Raghu, K. C., & Ranta, T.

Excursion: Forest bioenergy and ecosystem services - excursion to forests of Sorø Academy

11.30 Excursion to Sorø Academy, including lunch - forest bioenergy and environmental ecosystem services

18.00 Arrival in Copenhagen (note that the time is approximate)

19.30 Dinner at Restaurant SULT, address: Vognmagergade 8 B, DK-1120 Copenhagen
Thursday, 5 November

Session V – Soil, Nutrients and Carbon Cycling
Chair: Nicholas Clarke

09.00 CAR-ES presentation:
Soil quality indicators to assess forest management impacts (18)
Stupak, I., Hansen, K., Ring, E., Raulund-Rasmussen, K., Callesen, I., Clarke, N.

9.30 Changes of ground vegetation and soil chemical properties after shelter wood cuttings in Scots pine forests (19)
Marozas, V., Sasnauskienė, J. Kęstutis Armolaitis, K.

Effects of elevated N deposition observed after two decades of monthly N-addition to a spruce forest at Klosterhede, Denmark (20)
Gundersen, P.

Impact of hydrology and oxygen limitation on forest growth and CO2 efflux from drained peatlands (21)
Laurén, A., Hökkä, H., Launiainen, S., Palviainen, M.

10.30 Coffee break

10.50 Effects of stump harvesting on soil carbon and nitrogen dynamics in relation to surface disturbance (22)

Carbon and nutrient fluxes from Norway spruce coarse roots and stumps during 40 years of decomposition (23)
Palviainen, M., Finér, L.

Short-term effects of stem-only and whole-tree harvesting on C and N fluxes in two Picea abies stands, SE and SW Norway (24)

11.50 Lunch break

Session VI - Integrated approaches to ecosystem services
Chair: Raija Laiho

12.50 Keynote:
Simon Smart - Modelling the potential benefits of expansion of woodlands in Wales

Ring, E., Bjarnadóttir, B., Finér, L., Libiete, Z., Lode, E., Sandström, C., Stupak, I., Sætersdal, M.

Main findings on Environmental Services from Lithuanian forest ecosystems (26)

Sustainability perspectives in forest operations and management: dealing with social, economic and environmental issues (27)
Abbas, D.

Forestry, Mercury and Good Ecological Status: What to do when the best is not good enough? (28)
Bishop, K.

14.40 Coffee break
Session VII – Summary, discussion and round-off

Chair: Lars Högbom, Raija Laiho

15.10 Summary from sessions, future challenges, input to policy
15.30 Discussion and round-off
16.30 Conference close
Keynote speakers

Michael Scherer-Lorenzen – Tuesday, November 3 at 10.40

Biodiversity as a tool for managing forest ecosystem services?

Abstract
A number of global change drivers, such as land use change and management, climate change, or air-borne eutrophication, have considerable impacts on the biological diversity of forest ecosystems. Understanding and forecasting the consequences of these changes in biodiversity on ecological processes, functions and the delivery of ecosystem services is certainly one of the major challenges for ecological research. Current research on the functional significance of forest biodiversity suggests a positive relationship between tree diversity and functions related to productivity, associated biodiversity, and soil parameters. However, no and even negative effects were also documented for other ecosystem processes, and many studies find stronger effects of species identity than diversity. In addition, disentangling the diversity signal from confounding environmental heterogeneity remains difficult. Comparisons of tree species performance in pure and mixed plantations imply that changes in light acquisition and plant nutrition may be important underlying mechanisms for the observed diversity effects. The question then arises whether we can design mixed species forest stands that capitalize on the different diversity effects to enhance and stabilize the delivery of multiple ecosystem services. So, can we use the diversity of trees as a tool to manage future forests? This implies consideration of knowledge at very different levels, ranging from species functional traits, interspecific mixing effects, but also trade-offs between different ecosystem services or stand versus landscape perspectives.

Michael Scherer-Lorenzen, Professor in Geobotany, University of Freiburg, Germany.

Michael Scherer-Lorenzen focuses his research on the mechanistic understanding of the biotic control of ecological processes and how global change drivers - such as climate change, land use change, nitrogen deposition, or invasive species - are interacting with this control at various temporal and spatial scales. A key topic is the functional role of biodiversity for biogeochemical cycles. Michael also works with applied aspects by quantifying the relationship between ecosystem functioning and the delivery of ecological goods and services.

Contact: michael.scherer@biologie.uni-freiburg.de
Modelling the potential benefits of expansion of woodlands in Wales

Abstract
Major expansion of woodland in Wales (UK) is a major target for the Welsh Government to contribute to a wide range of environment to the achievement of a range of national objectives including combating climate change, improving soil and water quality, connecting habitat patches and improving the aesthetics of the landscape. The interdependency between outcomes and how to best optimise their spatial distribution in the landscape is being explored through use of an ensemble of models. Initial work explored the potential benefits of riparian planting with woody species and expanding existing woodland patches. Farmer surveys also identified what the perceived constraints were to uptake of the agro-environment subsidies available for woodland creation. Outputs from the models estimated benefits at a national scale to be: 1 - 9% improvement in flood mitigation; 5 - 10% reduction in greenhouse gas emissions; increased accessible land for 'generic' broadleaf focal species by 3 to 12%, increased national carbon storage by ca. 0.4%, and reduced eroded soil and phosphorus delivery by up to 15% due to reduced connectivity of erodible land to rivers and lakes. A 75% improvement in habitat for selected 21 indicator plant species was also projected but these required 10-20 years to be realised due to a lag time in the response of environmental conditions. A photograph perception survey identified the importance of woodland to quality of landscape but also the limits the presence of woodland could place on visual accessibility of landscape appreciation from Public Rights of Way. Running the payment and assessment activities of the Welsh agri-environment scheme (Glastir) which is the main payment mechanism to encourage the expansion of woodland by landowners, in combination with an integrated monitoring programme and a suite of biophysical and landscape quality models, allows for adaptive management as the Welsh agri-environment scheme progresses.

Simon Smart, Professor in biodiversity and ecosystem function, Centre for Ecology & Hydrology, United Kingdom

Simon Smart is a botanist and statistical modeller. His interest is in quantifying ecosystem change and using new knowledge to model possible futures. His experiences include managing large-scale ecological surveillance programs for woodlands and the wider countryside in Great Britain, analysis of change and attribution of ecosystem dynamics to human driving forces. He has also advised government on the application and use of Decision Support Tools for planning ecosystem service and biodiversity protection. Research work has focused on development of plant species niche models for the British flora and trait-based models of ecosystem function then linking empirical models to dynamic process models. Recent work has focused on quantifying trade-offs between C sequestration, water quality and biodiversity and developing techniques for Bayesian Structural Equation Modelling.

Contact: ssma@ceh.ac.uk
Overview of Posters

<table>
<thead>
<tr>
<th>Number</th>
<th>Title and author</th>
</tr>
</thead>
</table>
| P1 | Afforestation trials on a cutaway peatland
 Bebre, I., Lazdina, D., Cerelonoka, K., Brumelis, G. |
| P2 | Nordic and baltic forest soils under change: Soil quality contributions to ecosystem service supply in the light of climatic changes and increasing bioenergy demand
 Callesen, I. |
| P3 | Fine litter decomposition after stem harvest in two Picea abies ecosystems: litterbag studies
 Eldhuset, T.D., Kjønaas, O.J., Lange, H. |
| P4 | LIFE & its contribution to climate change adaptation
 Fetris, P. |
| P5 | Organic beef and other ecosystem services produced at semi-natural pasture and forest mosaics
| P6 | Tree growth and ecosystem services of Hybrid aspen (Populus tremula x tremuloides) plantings on managed former agriculture land
 Lazdina D., Sarkanabols T., Bardule A., Lazdins A, Haljiullina A, Rudovica V. |
| P7 | Carbon stock in agricultural soils in Latvia
 Lazdiņš, A., Bārdule, A., Butlers, A. |
| P8 | Modelling the export and concentrations of organic carbon, nitrogen and phosphorus in boreal lakes by using land cover and land management data
 Palviainen, M., Laurén, A., Launiainen, S., Pitraenen, S. |
| P9 | Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems
| P10 | Tree species effects on nutrient cycling processes and functional communities in soil at a common garden experiment
 Ribbons, R., Levy-Booth, D., Grayston, S., McDonald, M., Vesterdal, L., Prescott, C.E. |
| P11 | The ForHot experiment: Effects of natural soil warming gradients on ecosystem structure and function
 Sigurdsson, B.D., Oddsdottir, E.S., Ragnarsdóttir, T., Bjarnadottir, B., Ostonen, I., Ilieva-Makulec, K., Körner, C., Leblans, N., Dauwe, S., Janssens, I. |
| P12 | Short- and long-term natural soil warming in natural grasslands in Iceland
 Leblans, N., Sigurdsson, B.D., Janssens, I. |
| P13 | Impact of soil warming and N enrichment on ecosystem structure and function in Icelandic grasslands
 Dauwe, S., Sigurdsson, B.D., Janssens, I. |
| P14 | Annual growth of mature Norway spruce trees grown for three years in elevated [CO2] at ambient or elevated air temperature and contrasting nutrient availability
 Sigurdsson, B.D., Medhurst, J. L., Eggertsson, O., Linder, S. |
| P15 | Wind and freezing rain damages in forest – impact on fragmentation dynamics: case studies in Latvia
 Baders, E., Purina, L., Libiete, Z., Lazdina, D., Jansons, A. |
| P16 | Development of understory vegetation after afforestation on agricultural soil
 Schmidt, I.K., Mikkelsen NB., Riis-Nielsen T. |
List of participants

<table>
<thead>
<tr>
<th>First name</th>
<th>Last name</th>
<th>Affiliation</th>
<th>Email</th>
<th>Excursion</th>
<th>Dinner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalia</td>
<td>Abbas</td>
<td>University of Georgia</td>
<td>daliaabbas@yahoo.com</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Anu</td>
<td>Akujarvi</td>
<td>Finnish Environment Institute (SYKE)</td>
<td>anu.akujarvi@ymparisto.fi</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Kestutis</td>
<td>Armolaitis</td>
<td>Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry</td>
<td>kestutis.armolaitis@mti.lt</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Arta</td>
<td>Bardule</td>
<td>Latvian State Forest Research Institute "Silava"</td>
<td>arta.bardule@silava.lv</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ieva</td>
<td>Bebre</td>
<td>Latvian State Forest Research Institute "Silava"</td>
<td>bebre.ieva@gmail.com</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Kevin</td>
<td>Bishop</td>
<td>Swedish University of Agricultural Sciences, Dept. of Aquatic Sciences and Assessment</td>
<td>kevin.bishop@geo.uu.se</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Brynhildur</td>
<td>Bjarnadóttir</td>
<td>University of Akureyri</td>
<td>brynhildurb@unak.is</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ingeborg</td>
<td>Callesen</td>
<td>University of Copenhagen</td>
<td>ica@ign.ku.dk</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nicholas</td>
<td>Clarke</td>
<td>Norwegian Institute of Bioeconomy Research</td>
<td>nicholas.clarke@nibio.no</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Toril</td>
<td>Drabøs</td>
<td>Norwegian Institute of Bioeconomy Research</td>
<td>toril.drabos@nibio.no</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adam</td>
<td>Felton</td>
<td>Swedish University of Agricultural Sciences</td>
<td>adam.felton@slu.se</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Panos</td>
<td>Fetsis</td>
<td>LIFE Programme Communications Team</td>
<td>panos.fetsis@neemo.eu</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leena</td>
<td>Finér</td>
<td>Institute Natural Resources Finland</td>
<td>leena.fin@lue.fi</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Martyn</td>
<td>Futter</td>
<td>Swedish University of Agricultural Sciences</td>
<td>martyn.futter@slu.se</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Annemiek</td>
<td>Gårdenäs</td>
<td>Swedish University of Agricultural Sciences</td>
<td>Annemiek.gardenas@slu.se</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Teresa</td>
<td>Gómez de la Bárzana</td>
<td>Norwegian Institute of Bioeconomy Research</td>
<td>Teresa.Barcena@nibio.no</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Achim</td>
<td>Grell</td>
<td>Swedish University of Agricultural Sciences</td>
<td>achim.grell@slu.se</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Per</td>
<td>Gundersen</td>
<td>University of Copenhagen</td>
<td>pgu@ign.ku.dk</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Kersti</td>
<td>Haathi</td>
<td>Aalto University School of Engineering</td>
<td>kersti.haathi@aalto.fi</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lars Nørgaard</td>
<td>Hansen</td>
<td>University of Copenhagen</td>
<td>lnh@ign.ku.dk</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lars</td>
<td>Högbom</td>
<td>Skogforsk</td>
<td>lars.hogbom@skogforsk.se</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Anders</td>
<td>Jensen</td>
<td>University of Copenhagen</td>
<td>anj@ign.ku.dk</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lilli</td>
<td>Kaarakka</td>
<td>University of Helsinki</td>
<td>lilli.kaarakka@helsinki.fi</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Pernille</td>
<td>Kjellberg</td>
<td>Danish Nature Agency</td>
<td>pka@nst.dk</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kalle</td>
<td>Karttunen</td>
<td>Lappeenranta University of Technology</td>
<td>kalle.karttunen@lut.fi</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O. Janne</td>
<td>Kjænaas</td>
<td>Norwegian Institute for Bioeconomy Research</td>
<td>kj@nibio.no</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rajja</td>
<td>Laiho</td>
<td>Natural Resources Institute Finland (Luke)</td>
<td>rajja.laiho@ign.ku.dk</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Samuli</td>
<td>Launiainen</td>
<td>Natural Resources Institute Finland (Luke)</td>
<td>samuli.launiainen@lue.fi</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ari</td>
<td>Laurén</td>
<td>Natural Resources Institute Finland (Luke)</td>
<td>ari.lauren@lue.fi</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dagnija</td>
<td>Lazdina</td>
<td>Latvian State Forest Research Institute "Silava"</td>
<td>dagnija.lazdina@silava.lv</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vitas</td>
<td>Marozas</td>
<td>Aleksandras Stulginskis University</td>
<td>vitas.marozas@asu.lt</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Jenni</td>
<td>Miettinen</td>
<td>University of Helsinki</td>
<td>jenni.miettinen@helsinki.fi</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tania</td>
<td>Fredborg</td>
<td>University of Copenhagen</td>
<td>tn@ign.ku.dk</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tonje</td>
<td>Øland</td>
<td>Norwegian Institute of Bioeconomy Research</td>
<td>toe@nibio.no</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Marjo</td>
<td>Palviainen</td>
<td>University of Helsinki</td>
<td>marjo.palviainen@helsinki.fi</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Anders H.</td>
<td>Petersen</td>
<td>University of Copenhagen</td>
<td>anders.h.petersen@snm.ku.dk</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sirpa</td>
<td>Piirainen</td>
<td>Natural Resources Institute Finland</td>
<td>sirpa.piirainen@lue.fi</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Karsten</td>
<td>Raulund-Rasmussen</td>
<td>University of Copenhagen</td>
<td>krr@ign.ku.dk</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Martin</td>
<td>Rappe-George</td>
<td>Swedish University of Agricultural Sciences</td>
<td>martin.rappe.george@slu.se</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Relena</td>
<td>Ribbons</td>
<td>University of Copenhagen</td>
<td>rribbons@gmail.com</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eva</td>
<td>Ring</td>
<td>Skogforsk</td>
<td>eva.ring@skogforsk.se</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sebastian</td>
<td>Kepfer</td>
<td>University of Copenhagen</td>
<td>skro@ign.ku.dk</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Michael</td>
<td>Scherer-Lorenzen</td>
<td>University of Freiburg</td>
<td>michael.scherer@biologie.uni-freiburg.de</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Inger Kappel</td>
<td>Schmidt</td>
<td>University of Copenhagen</td>
<td>iks@ign.ku.dk</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Laila</td>
<td>Sica</td>
<td>JSC "Latvijas valsts meiz"</td>
<td>l.sica@lvvm.lv</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Bjarni D.</td>
<td>Sigurdsson</td>
<td>Agricultural University of Iceland</td>
<td>bjarni@ibhi.is</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Simon</td>
<td>Smart</td>
<td>Centre for Ecology & Hydrology</td>
<td>ssma@ceh.ac.uk</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Helena Marta</td>
<td>Stefandottir</td>
<td>Agricultural University of Iceland</td>
<td>helenams@ibhi.is</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Inge</td>
<td>Stupak</td>
<td>University of Copenhagen</td>
<td>ism@ign.ku.dk</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lucie</td>
<td>Trokanová</td>
<td>LIFE Programme Communications Team</td>
<td>ltr@aeidl.eu</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iveta</td>
<td>Varnagiriye-Kabaiskiene</td>
<td>Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry</td>
<td>iveta.kabasinskiene@mi.lt</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lars</td>
<td>Vesterdal</td>
<td>University of Copenhagen</td>
<td>lv@ign.ku.dk</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Map of conference venue

The conference will take place at:

University of Copenhagen
Bülowsvej 17, 1870 Frederiksberg C.
Room: Aud. A 1-01.01.

If you are not within walking distance, we recommend transport by metro (Forum station). From Copenhagen Main Station bus no. 2A is the most direct (towards ‘Tingbjerg Station’, stop: ‘Det Biovidenskabelige Fakultet’).
Getting around

It is easy to get around Copenhagen via its great public transportation services. A single ticket can be bought at stations or directly on the bus from the driver (cash only in kroner), change is given. The minimum price for a single adult ticket is kr. 24 covering two travel-zones. A ticket between the airport and the city costs kr. 36. You can travel freely with buses, metro, trains, using the same ticket. Copenhagen is divided into zones. Pay for a minimum of two zones to travel through the city.

For travel planning visit: http://www.rejseplanen.dk/

Taxi

Taxis can be hailed from the street, but if no taxis are available, or you want to make a reservation, taxis can be ordered by phone.

- Taxi 4x35: 35 35 35 35
- DanTaxi: 70 25 25 25

Map of S-train and metro lines
The nearest metro station to the venue is Forum Station.

Directons from Forum metro station to Bülowsej 17, 1870 Frederiksberg C.