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Abstract
Human assisted plant invasions from Europe to North America have beenmore common

than the reverse. We tested endophyte-mediated performance of tall fescue in parallel three

year experiments in Europe and the USA using endophyte infected and uninfected wild and

cultivated plants. Experimental plants were subjected to nutrient and water treatments.

Whereas endophyte infection increased tall fescue performance in general, the effects of

endophytes on plant growth and reproduction varied among plant origins under different envi-

ronmental conditions. Naturally endophyte-free Finnish cultivar ‘Retu’ performed equally well

as ‘Kentucky-31’ in both geographic locations. All Eurasian origin plants performed well in the

US. In Finland, plants established well and both cultivars survived over the first winter. How-

ever, winter mortality of ‘Kentucky-31’ plants was higher, particularly in fertilized soils in the

subsequent winters. Our results suggest that tall fescue ecotype ‘Kentucky-31’ that flourishes

in North America is poorly adapted to Northern European conditions.

Introduction
Successful plant invasions have been largely unidirectional from Europe to North America
since the last Ice Age [1–4]. Since European colonists discovered the Americas, human migra-
tion and increased global trade have facilitated species interchange between the Old World and
the Western Hemisphere, via deliberate introduction of crop and ornamental plants and unin-
tentional introductions, such as stowaways. Human-assisted species introductions fail, how-
ever, to explain successful naturalization of Eurasian plant species into America in general. The
successful invasion and subsequent naturalization of alien species is often linked to the charac-
teristics of the invading species such as self-fertility, reproductive strategies, vigor, phenotypic
plasticity, and genetic variation that allows passage through abiotic and biotic environmental
filters and provides higher potential for rapid adaptive evolution to new conditions. In contrast,
the lower probability of colonization of North American plants to Europe may be at least par-
tially explained by maladaptation of North American plants to comparable climate zones in
Western Europe that have different photoperiods. In general, climates in Western Europe that
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are similar to North American climates are at higher latitudes and thus have greater seasonal
changes in photoperiod [5–8,4].

The invasiveness of plant species may also be tightly linked with presence of mutualistic
symbionts and other service providers such as pollinators, or empty niche and/or enemy escape
in the recipient environment [9–15]. For example, ectomycorrhizal fungi are vitally important
for the distribution of approximately 6000 tree species including many dominant and econom-
ically important species near subarctic tree-lines [16–18]. The importance of microbes to plant
community dynamics is, however, context dependent, incorporating multispecies interactions
and community feedbacks, modifying niches of species competing and/or sharing common
resources [19].

Temperate grasslands are particularly vulnerable to plant invasions because they have a
long history of being driven by human activities such as agriculture [20,21]. In North America,
European settlers opened windows for plant invasions by rapidly converting native grasslands
and forests into arable lands and pastures. The concomitant species introductions were largely
unidirectional from Europe to North America. The great success of many European species in
North America may have been facilitated by plant species adaptations to heavy grazing by cat-
tle due to their long-term coexistence with humans in the Eurasian environment from whence
they originated [3,20]. Before human settlers, the Holocene North America grasslands had pri-
marily been structured and maintained by fires. In the intermountain west and Great Plains,
grazing by bison also maintained grasslands. However, large areas of North American grass-
lands in eastern North America evolved under the lack of heavy gazing pressure until humans
started to regulate fires, reintroduced the horse, and introduced cattle in the 1600s [3]. Increas-
ing agriculture in conjunction with these other anthropogenic changes in type, frequency and
intensity of disturbances greatly facilitated the establishment and naturalization of nonnative
plant species into grasslands and destruction of native grassland plant communities in North
America [20,22].

Many grass species were accidentally or intentionally introduced into N. America, the latter
because of their agronomic value and high tolerance of a wide range of biotic and abiotic condi-
tions. Alien grasses have become tenacious invaders of Native American grassland communi-
ties. Increasing evidence suggests that the success of some of the alien cool season grasses may
be due, at least in part, to their asymptomatic and systemic endophytic fungi [11]. Tall fescue
[Schedonorus phoenix (Scop.) Holub. ex. Lolium arundinaceum, syn. Festuca arundinacea] put
these systemic grass-endophyte symbioses on the map in the 1970s when livestock disorders
associated with the recently commercialized tall fescue cultivar ‘Kentucky 31’ (KY-31) were
attributed to mycotoxins produced by the symbiotic Epichloë endophyte [23–26]. Tall fescue
was originally introduced from Europe in the late 1800’s, probably as a contaminant in hay or
packing materials, and now it is the most important cool-season grass in the United States
[27,28]. The obligately outbreeding allohexaploid cultivar KY-31, which is commonly infected
with Epichloë coenophiala (Morgan-Jones &W. Gams) C.W. Bacon & Schardl (ex. Neotypho-
dium coenophialum Glenn, Hanlin & Bacon) endophyte, is adapted to a wide range of soil
types, fertility and pH, and tolerant to moderate cold and heat stress. It has been and is still
widely used for animal feed, lawns and turf, soil stabilization and wildlife food plots in humid
areas of the US. In 1977, KY-31 tall fescue composed approximately 97% of all tall fescue turf
in the United States [29]. Similar to other endophyte-grass symbiota, endophyte infection fre-
quency in tall fescue varies, but regional and herbarium studies have reported that on average
60–80% of individuals are infected [30,31]. Since then, this highly vigorous cultivar has become
a tenacious invader of managed and unmanaged grasslands threatening the persistence of
native plant species diversity throughout the much of the eastern United States [11,27,28,30].
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The competitive superiority of tall fescue is promoted by E. coenophiala endophyte [11] par-
ticularly in high nutrient agro-environments [32]. Before the European settlers, only part of the
eastern United States was heavily grazed by native vertebrate grazers [3,20]. In contrast, the
present tall fescue green belt is under high grazing pressure by cattle [27], and accordingly the
anti-herbivore advantage provided by the endophyte to the host has been suggested to cause a
rapid increase in endophyte frequency in host populations [30]. Because these grass endo-
phytes are vertically transmitted from maternal plant to offspring via seeds, the invasive grass
host is a phenotypic combination of plant and microbe with a long co-evolutionary history. In
this symbiosis, the host plant often receives increased growth and reproduction, and protection
from pathogens and herbivores provided by fungal produced alkaloids [33–39], while the plant
serves as a shelter, nutrient provider and transmission aid to the fungus. Thus, grass endophyte
symbiosis is often considered to be mutualistic [11,25].

However, the empirical evidence supporting the purported grass-endophyte mutualism has
historically been dominated by a few agronomic and non-native model systems [38,39], partic-
ularly the tall fescue cultivar KY-31 and its endophytic partner E. coenophiala in the US. In
contrast, although this grass species is widely distributed in Europe, infected grasses do not
deter animal grazing nor are they competitively dominant in native or human-modified eco-
systems [31,32]. Tall fescue is described as a species complex consisting of three major (Conti-
nental, Mediterranean and rhizomatous) morphotypes [40,41]. The Continental morphotype
is spread over northern Europe and was also the germplasm stock for the cool-season cultivars
in the US, including KY-31. Today, tall fescue is an increasingly important forage grass also
throughout Europe, and many cultivars are commonly used in agriculture.

In this study, we examined if the success of tall fescue in the US is specific to host popula-
tion-level genotypic characteristics, endophyte infection, or high nutrient agro-environments.
Specifically we studied in parallel experiments in Finland and in the US how endophyte infec-
tion, plant origin and nutrient and water availability affect the growth and reproductive capac-
ity of tall fescue. The experiment in Finland was situated in a boreal climate at the same
latitude with Fairbanks, Alaska, whereas the experiment in North America is situated in the
temperate zone at the same latitude with Athens, Greece in southernmost Europe. In addition
to wild plants collected from three geographic locations in the northernmost distribution range
of the species in Europe, we used two cultivars (KY-31 and ‘Retu’ from US and Europe, respec-
tively) in these experiments. First, we predicted that plants would perform best in the climatic
and latitudinal environment to which they were adapted. Second, we hypothesized that varia-
tion in performance would be lower in cultivars compared to grasses from wild populations
because of lower genetic variation due to breeding. Consequently, the adaptive capacity and
performance of cultivars across a wide range of enviroments should be lower as well. In addi-
tion to plant origin, we predicted that plant performance would be affected by the symbiosis
with Epichloë endophytes. Past literature suggests that the mutualism between E. coenophiala
and KY-31 is strongest in high nutrient agro-environments and may be atypical of other endo-
phyte-tall fescue interactions [38,39,42]. Thus, we predicted that compared to KY-31, the bene-
fits from endophyte infection would be lesser in wild grasses evolved under low herbivory
pressure but instead may depend more heavily on nutrient availability in soils.

Materials and Methods

Plant material
In August 2005, we collected seeds from natural tall fescue populations at three geographic
locations in the Baltic Sea that were isolated by approx. 500 km from each other: the island of
Åland (A) (8 populations), island of Gotland (G) (9 populations) and west coast of Sweden (S)
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(6 populations). We collected 10 to 50 plant individuals from each population. The field studies
did not involve endangered or protected species and public right of access in Nordic countries
allowed us to collect the samples without specific permissions. The presence/absence of sys-
temic endophyte infection was checked by microscopic examination of three seeds from each
individual plant [43]. All the studied tall fescue populations had seed borne Epichloë coeno-
phiala infections varying in infection frequency from 85–100% [31]. We combined all naturally
E- (uninfected) and E+ (infected) seeds separately from each of the three geographic origins
(Åland, Gotland and Sweden). In addition to plants from natural tall fescue populations, both
E+ and E- ‘Kentuky 31’ cultivar (KY-31) seeds were obtained from the University of Kentucky,
as were E- Finnish tall fescue cultivar ‘Retu’ (R) seeds from the Plant Inspection Centre, Seed
Testing Department, Loimaa, Finland (www.evira.fi). Identical sets of seeds were used in paral-
lel field experiments in Finland and USA.

Endophyte removal
A subset of the naturally endophyte infected (E+) seeds were heat-treated by soaking them in
warm water (56–57°C) for 10–20 minutes to kill the fungus while the seed remained viable.
Using these manipulatively endophyte-free (ME-) plants, we aimed to separate the effects of
endophyte from the phenotypic responses of the endophyte-grass symbiotum, and/or estimate
if the plant partner is adapted to the symbiosis during a coevolutionary relationship [39]. We
assume that losing the long-time mutualistic fungal partner would lead to lower performance
of ME- plants than naturally endophyte-free (E-) plants in the same environment.

Parallel field experiments in Finland and USA
The two parallel common garden experiments were carried out in the fields of Turku Botanical
Garden, University of Turku, Finland (60°2600@N, 22°10019@E) and at the University of Ken-
tucky experimental farm in Eden Shale, Kentucky, USA (38°32’22”N, 84°44’24”W). The field
site in Finland is at the edge of the northern distribution range of natural tall fescue popula-
tions, while the Kentucky field site is situated in the heart of the intensive tall fescue cultivation
area in USA–also known as the fescue belt (http://forages.oregonstate.edu/
tallfescuemonograph/) and not far from where the tall fescue that was eventually developed
into the cultivar KY-31 was originally introduced in the 1880’s (near Frenchburg, Kentucky).
Both experimental field sites had been in cultivation in the past and were tilled without nutrient
enrichment in the summer 2004. Winter temperatures were lower in Finland and precipitation
higher in Kentucky (S1 Fig). Although winters in Finland are characterized by months-long
frost temperatures, greater snow cover may provide better protection for plants in the winter
compared to Kentucky. According to the Finnish Meteorological Institute's measurements
(Finnish Meteorological Institute http://www.fmi.fi/en), in 2006 the thermal growing season
was slightly longer than usual, and temperatures were higher. The sum of effective temperature
(the sum of the positive differences between diurnal mean temperatures and 5°C) reached new
records, and consequently the summer 2006 was the driest ever experienced in Southern
Finland.

The experimental set-up was a randomized block design consisting of 10 blocks, each
including 4 plots. In each of these 40 plots we planted grasses from following geographic origin
—endophyte combinations: natural populations [Åland (A), Gotland (G) and coastal Sweden
(S)], cultivar [‘Kentucky 31’ (KY-31)] and endophyte infection statuses (E+, E-, ME-), and
endophyte-free (E-) cultivar ‘Retu’ (R). In every plot, we had one plant from each origin and
endophyte status. Because cultivar ‘Retu’ was always endophyte free (E-), and in the Kentucky
experiment we had only E+ and E- plants of KY-31-origin, there were 13 and 12 plants in each
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plot in Finland and in Kentucky, respectively. The 40 plots consisting of 13 or 12 plants
summed up to total of 520 plants in Finland and 480 plants in Kentucky. Because naturally
occurring and agronomic fields of fescue are never single plant genotypes, we chose a popula-
tion-level approach to this study and did not quantify individual plant genotype responses to
our treatments.

The tall fescue seeds were germinated on moist tissue paper in Petri dishes in a greenhouse
and planted into individual pots with sand and peat mixture 7 days after germination. Plants
were grown in the greenhouse until they had 3 tillers and were then planted to the respective
fields about 0.5 m apart from each other and from the edge of the plot in August 2004.

The four plots in each block were randomly designated to one of the four treatments: con-
trol (C), water (W), nutrient (N), and combined water and nutrient (WN). The control treat-
ment received only ambient rainfall. In Finland, W treatment plots received 3 L of water
applied to each plant separately three times a week from June to August, for N treatment plants
50 g of granular N-P-K-fertilizer (Nurmen Y2, Kemira KnowHow, N-P-K/20-6-6) was applied
two times during the growing seasons, and WN treatment received both water and nutrient
applications. In Kentucky, W treatment plants received 3.8 L of water twice a week from April
to October, and fertilization consisted of 50 kg/ha of N per application as urea. The amount of
water applied corresponds to 350 mm precipitation which doubled the amount of water
received by plants during the annual treatment period in Kentucky in both years and in Fin-
land in 2005. In Finland, the W treatment quadrupled the amount of water received in the
exceptionally dry summer of 2006. We acknowledge that numerous uncontrolled differences
between the two experimental sites may confound the comparison of interpretations from the
two experiments. To take into account the differences in nutrient contents in soils, we analysed
soil samples from the untreated (control) experimental plots. The soil pH was 6.7 and 5.9, total
nitrogen 0.15% and 0.14%, phosphorus 7 and 14 mg/kg, potassium 132 and 81 mg/kg, calcium
1800 and 2080 mg/kg and magnesium 208 and 120 mg/kg for Finland and Kentucky sites,
respectively. The water and nutrient treatments were applied to the experiments in two grow-
ing seasons (2005 and 2006).

The experimental areas were fenced to prevent large vertebrates (e.g., rabbits, deer) from
disturbing the experimental plants. However, smaller vertebrates (e.g., voles) and invertebrates
were able to freely access the area. The space between the experimental plants was either hand
weeded or sprayed with herbicide (glyphosate Roundup1Bio) two times during the growing
season to prevent interspecific competition between weeds and the experimental plants.

Response variables
In 2005, all the experimental plants were double-checked to verify their endophyte status. First,
we sampled a pseudostem from each plant for immunoblot assay to detect monoclonal anti-
bodies specific to Epichloë (Phytoscreen Immunoplot Kit #ENDO7973, Agrinostics, Watkins-
ville, Georgia, USA). In addition, at the end of the summer, three seeds from each plant were
stained [43] and endophyte infections were checked by microscopic examination. The endo-
phyte status of four and 35 plants out of 520 and 480 plants were reassigned to a correct endo-
phyte status in the Finland and Kentucky gardens, respectively.

The survival of the experimental plants was recorded during the three study years (2005–
2007). The vegetative growth and reproductive allocation of the plants was observed in 2005
and 2006 at both study sites at the end of growing season: the number of flowerheads was
counted on a per plant basis and the above ground biomass of individual plants was harvested
by cutting the tillers at the height of 5 cm above the ground using a rice cutting sickle. The bio-
mass was then dried and weighed.
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Statistical analyses
All the statistical analyses were performed in the R environment (R Core Team 2012). The
mortality of plants was analysed using general linear model glm in R [44] with binomial distri-
bution and logit-link function. The statistical model for survival included endophyte status,
nutrient treatments (N: N andWN combined) and control treatments (C: C andW combined),
and plant origins (cultivar ‘Retu’ as baseline, KY-31, A, G, S) and their interactions.

Plant biomass and flowerhead counts were analyzed using general linear mixed models pro-
gram lme in R. The model included study year (2005, 2006), country (Finland, Kentucky),
endophyte infection status (E+, E-, ME-), grass origin (KY-31, Retu, A, G, S), treatments (C,
W, N, WN) as fixed factors and block as a random factor. Normality of biomass and flower-
head counts was gained after square root transformation (as suggested by the Box-Cox analysis,
ℓ = ½).

Results

Survival
Plant survival was higher in Kentucky than in Finland. None of the plants died in Kentucky,
whilst in Finland the death rate gradually increased from one plant in the first winter to 21 and
19 plants in the following two winters. In Finland survival was lowest in KY-31 (83%), while
the other origins ranged from 88% (Retu) to 98% (A) (comparison between origins: n = 520,
x2 = 28.1, df = 4, p<0.0001; Fig 1). Mortality was higher in nitrogen fertilized plants (12.7% vs.
2.3%, n = 520, x2 = 18.7, df = 1, p<0.0001) regardless of the endophyte infection status of the
plant (survivals vs endophyte: x2 = 0.16, df = 2, p = 0.92). In the logit model, survival of fertil-
ized KY-31 plants in Finland (interaction N�KY-31: z = 2.05, P<0.04) was lowest, but in other
origins fertilization did not affect survival (Table 1).

Growth and reproduction
Plant growth and reproduction differed between the two geographic locations and study years
(Figs 2 and 3, Tables 2 and 3, S2 Fig). During the first growing season (2005), the plants in Fin-
land were smaller and produced fewer flowerheads (biomass mean ± S.E.: 297 ± 6, n = 506;
flowerheads mean ± S.E.: 20 ± 1, n = 518) compared to plants in Kentucky (biomass mean ± S.
E.: 353 ± 7, n = 480; flowerheads mean ± S.E.: 33 ± 1, n = 480). The difference was even more
striking in the following year (2006), when the plants in Kentucky grew 60% larger and pro-
duced twice as many flowerheads compared to the plants in Finland (USA: biomass mean ± S.
E.: 496 ± 13, n = 477; flowerheads mean ± S.E.: 69± 2, n = 456; Finland: biomass mean ± S.E.:
201 ± 6, n = 486; flowerheads mean ± S.E.: 35 ± 2, n = 497). It is noteworthy that in Finland in
the exceptionally dry summer of 2006 (S1 Fig; Finnish Meteorological Institute http://www.
fmi.fi/en), some of the KY-31 plants had died after harsh winter conditions, and some of the
surviving KY-31 plants grew poorly.

Growth and reproduction in Finland
The plants in Finland were significantly larger in 2005 compared to 2006 (Figs 2 and 3) proba-
bly because of the exceptionally dry weather conditions in 2006.

The combined water and nutrient treatment (WN) affected similarly the size of the plants
from the three wild European populations (A, G and S) in both study years: the biomass of the
wild plants was always highest for WN treated plants (Figs 2 and 4, Table 2). However, the bio-
mass of the two cultivars (KY-31 and R) was not influenced by the treatments, especially in the
second study year (Fig 4).
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Plant origin did not affect biomass of the plants in the first study year (2005), but in 2006,
cultivar KY-31 was the smallest, and cultivar ‘Retu’ the second smallest compared to plants
from the European wild populations (Fig 4).

Total flowerhead production was 43% higher in 2006 compared to year 2005. While all wild
origins reproduced better in 2006, this differenced could not be detected in cultivars. On the
contrary, KY-31 cultivar produced the highest numbers of flowerheads in the first study year
(2005), but the lowest number of flowerheads in the year 2006 (Fig 5, Table 3).

The combined nutrient and water treatment affected flowerhead production in the first
study year 2005, when WN treated plants produced more flowerheads than the plants in the
other treatments. However, in the second study year (2006), C andW treatment plants pro-
duced twice as many flowers compared to nutrient treated (N and WN) plants (Figs 2 and 5).

Fig 1. Mortality of tall fescue plants in Finland in the end of the experiment. Plant origins: K = ‘Kentucky 31’ cultivar, R = ‘Retu’ cultivar, A = wild type
from Åland, G = wild type from Gotland, S = wild type from costal Sweden. Treatments: C = control, W = water application, N = nutrient application,
WN = water and nutrient application. The origin-treatment interaction is indicated by * (see Table 1).

doi:10.1371/journal.pone.0157382.g001
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This might be partly explained by exceptionally warm and dry summer conditions limiting
nutrient cycling of soils and dissolution of applied granular from the top-soils.

Growth and reproduction in Kentucky
In the Kentucky experiment, plants had 25% higher biomass and produced twice as many flow-
ers in the second study year compared to first study year (Figs 2, 3 and 5).

In the first study year (2005), plants grew slightly, but not statistically significantly, larger on
WN treatment plots compared to other treatments (Figs 2 and 4), but produced equal numbers
of flowerheads on all the treatments (Figs 2 and 5). In the second study year (2006), biomass of
control plants (C) was lowest, whereas biomass in the N andWN treatment was 30–50% higher
compared to other treatments (Year�N interaction in Table 2), and the flowerhead production
in the WN treatment was higher than in the C and W treatments (Year�Treat N -interaction in
Table 3, Fig 5).

Biomass of the two cultivars (Retu and KY-31) was higher compared to wild origin plants
(A, G and S) in the first study year (2005), but this difference was not detected in the second
study year (2006), when all the plants were about the same size (Year�Orig -interactions for
wild origins Table 2, Fig 4). This suggests that the cultivars were less plastic; the biomass was
15–20% and 40–60% higher in 2006 compared to 2005 in cultivars and wild origin plants,
respectively. The wild European origin plants grew better under treatments W, N andWN.

Flowerhead production of the two cultivars (KY-31 and Retu) was clearly superior com-
pared to wild origin plants (Table 3). In the second year, the cultivars produced twice as many
flowerheads compared to the wild origin plants (Fig 5, Table 3).

Endophytes
The overall effect of endophyte infection on tall fescue growth and reproduction was signifi-
cant: E+ grasses tended to be larger and have higher number of flowerheads compared to E-
and ME- grasses (Figs 2 and 3, Tables 2 and 3).

Table 1. Mortality of tall fescue plants in Finland.

Estimate z p

Intercept 2,20 2.948 0.0032 **

Orig K 1,88 1.499 0.1338

Orig A 1,17 1.130 0.2586

Orig G 1,88 1.499 0.1338

Orig S 17,37 0.013 0.9900

Treat N -0,46 -0.475 0.6346

Orig K: Treat N -2,92 -2.046 0.0408 *

Orig A: Treat N 16,66 0.012 0.9904

Orig G: Treat N -1,42 -0.967 0.3336

Orig S: Treat N -16,46 -0.012 0.9905

Logit model for mortality in Finland as a function of origin (Orig) (three wild populations and two cultivars:

A = Åland island, G = Gotland island, S = coastal Sweden, K = cultivar ‘Kentucky-31’, Retu = cultivar

‘Retu’) and treatments (Treat) (Nutrient treatments N = N and WN combined, control treatments C = C and

W combined) and their interaction. The Finnish cultivar ‘Retu’ without fertilization was used as the baseline

for comparisons. Model estimates and Wald statistics (Z) with p-values (** < 0.01,* < 0.05, o < 0.1) are

shown.

doi:10.1371/journal.pone.0157382.t001
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Discussion
Our results support the idea that grass invasions and naturalizations from Europe to North
America are more successful than the reverse. All the 480 experimental plants survived in the
US, and all the plants of the three wild populations from northern Europe and the Finnish cul-
tivar ‘Retu’ performed well in US throughout the study. In contrast, 9% of the plants died in
Finland. Overall mortality was 4% in wild origin plants, 12% in cultivar ‘Retu’ and 18% in culti-
var KY-31, being highest in fertilized ‘KY-31’ plants. At the beginning of the experiment KY-
31 plants established well in the common garden in Finland. All of them survived the trans-
plantation in 2004 and the first winter, and during the second growing season (2005), their
growth was equivalent to and flowerhead production higher than in the other plant origins.
However, after the growing season in 2005, their survival and performance declined. During
the second study year (2006) in Finland, KY-31 survivors produced lower biomass and fewer
flowerheads than the other plant origins. These results suggest that the KY-31 plants are mal-
adapted to high nutrient environments at higher latitudes characterized by harsh winters.

We acknowledge that because these results are from a single tall fescue ecotype KY-31
grown only in two study sites, they should be interpreted cautiously as an indicator of poor
invasion success of Northern American origin tall fescue ecotype to Europe in general. How-
ever, cultivar KY-31 is a good model to test the invasiveness of tall fescue for the following rea-
sons. First, it occurs from the Pacific Northwest to the southern states and dominates semi-
natural grasslands and pastures in the eastern US. KY-31 constitutes majority of all tall fescue
which is the most abundant perennial grass in the eastern USA today. Second, it tolerates well
a wide range of environmental conditions. Thus, it is regarded as an economical and low main-
tenance variety in the US. It grows best in moist environments, but its fibrous root system that
extends more than one meter deep in soils renders it heat, drought and wear tolerant. Thus, it
is perfectly adapted to the climatic "transition zone" of the United States where summers are
too hot and humid for most other perennial cool season grasses [28,45]. The adaptive capacity
of KY-31 to variable environmental conditions might be related to considerable diversity
detected among KY-31 genotypes that may partly be influenced by climatic conditions [46].
For example, in environments characterized by long and harsh winters, juvenile seedlings are
prone to winterkill and some genotypes to poor performance. However, well-established seed-
lings and mature plants are relatively winter hardy. Accordingly, seed companies suggest KY-
31 be used also for the northernmost planting zones such as zones 1, 5, 6 and 7 in Maine, Mich-
igan, Minnesota, New Hampshire, New York, Vermont, western Washington andWisconsin,
corresponding to the environmental conditions of the northernmost distribution range of the
species in Europe in terms of seasonal changes in temperatures. High establishment success,
and growth and flowering during the first growing season in our study suggest that KY-31
should be equally well adapted to endure winters in southernmost Finland as the other Conti-
nental morphotype tall fescue germplasms. Finally, as the oldest, most widely planted and suc-
cessful tall fescue cultivars, it has relatively long adaptive history in the US. KY-31 was
developed from only a few plants from a population adapted to the local seasonal changes in
day length, severe drought and heavy vertebrate grazing [28,32]. This selective bottleneck and
founder effect was largely responsible for KY-31 traits that may have made it successful in the

Fig 2. Growth and reproduction of endophyte-infected and endophyte-free tall fescue in different
environmental conditions. Biomass (x±S.E.) and number of flowerheads (x±S.E.) of endophyte free (E-),
endophyte infected (E+) and manipulatively endophyte free (ME-) tall fescue plants in Finland and Kentucky field
experiments in years 2005 and 2006. The plants received either only ambient rain (C) or water (W), nutrient (N)
and combined water and nutrient (WN) treatments.

doi:10.1371/journal.pone.0157382.g002
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US but not in Europe. Thus it is a good model to test whether the selection for adaptive charac-
ters for success in North America has limited the species invasiveness back to Europe.

Overall in the Kentucky experiment, the biomass and flowerhead production of KY-31
plants were 9% and 47% higher compared to other plant origins in the end of the second grow-
ing season (2006). Similarly, the Finnish cultivar ‘Retu’ plants produced nearly comparable
number of flowerheads to KY-31 plants. Furthermore, the higher number of flowerheads in
KY-31 and ‘Retu’ plants relative to wild plants from Europe was consistent across all the nutri-
ent and water treatments. In contrast, the biomass production and flowerhead production of
the wild plants was highly dependent on nutrient and water availability in soils. This suggests
that tall fescue performance in the US largely depends on environmental conditions and plant
origin, and wild plants are phenotypically more plastic than cultivars.

Fig 3. Growth and reproduction of endophyte-infected and endophyte-free tall fescue from different origins.
Biomass (x±S.E.) and number of flowerheads (x±S.E.) of endophyte free (E-), endophyte infected (E+) and
manipulatively endophyte free (ME-) tall fescue plants in Finland and Kentucky field experiments in years 2005 and
2006. Plants were collected from wild populations in Europe (A = island of Åland, G = Island of Gotland, S = coastal
Sweden) or were cultivars from Europe (Retu) or USA (KY-31).

doi:10.1371/journal.pone.0157382.g003

Table 2. Linear mixedmodels for tall fescue biomass in Finland and Kentucky experiments in years 2005 and 2006.

FINLAND KENTUCKY

Estimate S.E. df t p Estimate S.E. df t p

Intercept 1203.51 1531.46 905 0.79 0.432 14324.53 1084.90 963 13.20 0.000 ***

Year -0.59 0.76 905 -0.77 0.439 -7.14 0.5410 963 -13.19 0.000 ***

E+ 2.03 0.35 905 5.73 0.000 *** 0.73 0.29 963 2.46 0.014 **

ME- -0.12 0.41 905 -0.29 0.775 -0.74 0.30 963 -2.49 0.013 **

Treat N -8327.73 1165.44 905 -7.15 0.000 *** 3169.91 934.96 963 3.39 0.001 ***

Treat W 1.45 0.7925 905 1.83 0.068 o -0.08 0.54 963 -0.15 0.884

Orig R 1284.13 2442.35 905 0.53 0.599 -7448.68 1967.78 963 -3.79 0.000 ***

Orig A -4422.48 1829.99 905 -2.42 0.016 * -11448.19 1378.63 963 -8.30 0.000 ***

Orig G -3978.66 1847.47 905 -2.15 0.032 * -9292.29 1387.13 963 -6.70 0.000 ***

Orig S -5258.68 1833.22 905 -2.87 0.004 ** -13435.25 1390.16 963 -9.66 0.000 ***

Treat N:W 0.77 0.60 905 1.29 0.197 2.31 0.47 963 4.97 0.000 ***

Treat W: Orig R 0.92 1.78 905 0.75 0.451 -0.65 0.98 963 -0.66 0.509

Treat W: Orig A 0.18 0.91 905 0.20 0.843 0.70 0.69 963 1.01 0.311

Treat W: Orig G 0.77 0.92 905 0.84 0.403 1.91 0.69 963 2.77 0.006 **

Treat W: Orig S 1.09 0.91 905 1.20 0.232 1.24 0.69 963 1.79 0.073 o

Year: Orig R -0.64 1.78 905 -0.53 0.599 3.72 0.98 963 3.79 0.000 ***

Year: Orig A 2.21 0.91 905 2.42 0.016 * 5.71 0.69 963 8.31 0.000 ***

Year:Orig G 1.98 0.92 905 2.15 0.032 * 4.63 0.69 963 6.70 0.000 ***

Year: Orig S 2.62 0.91 905 2.87 0.004 ** 6.70 0.69 963 9.67 0.000 ***

Year: Treat N 4.15 0.58 905 7.15 0.000 *** -1.58 0.47 963 -3.39 0.001 ***

The plants were endophyte infected (E+; the baseline), endophyte free (E-) or manipulatively endophyte free (ME-), and they were given either water (W)

nutrient (N) treatments or both (N:W) (Treat; C = control as the baseline). The grasses from the wild origins (Orig) Gotland (G), Åland (A) and Sweden (S)

and cultivar ‘Retu’ (R) were compared with cultivar ‘Kentucky 31’ (KY-31; the baseline). Results for the same model are shown for both Finland and

Kentucky experiment with all main factors and those interactions that were statistically significant in either of the experiments. The main interactions are

shown graphically in Fig 4. Model estimates with standard errors (S.E.), degrees of freedom (df), and t-tests (t) with p-values (*** < 0.001,** < 0.01,

* < 0.05, o < 0.1) are shown.

doi:10.1371/journal.pone.0157382.t002
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Our results do not strongly support the hypothesis that endophyte invariably confers an
invasiveness advantage over uninfected plants. Overall biomass and flowerhead production of
E+ plants were higher compared to E- and ME- plants both in the US and Finland, suggesting
that the endophyte might confer invasiveness advantage over uninfected plants. However, the
advantages from endophytes appear to be highly context dependent. In many cases, environ-
mental conditions and plant origin appear to override the effects of endophyte, and plant
responses varied among years. For example, E+ plants originally collected from Åland islands
grew significantly bigger and produced higher number of flowerheads than their endophyte-
free counterparts in Kentucky, particularly in the second growing season (2006). However,
much of this enhanced plant growth was caused by watering and fertilization treatments. Fur-
thermore, regardless of endophyte infection, KY-31 performed poorly in Finland, and the
endophyte-free Finnish cultivar ‘Retu’ appears to be well adapted to wide range of environmen-
tal conditions, including those in the US. These results suggest that the fungus and host indi-
vidually or in concert as a phenotypic unit, respond to local selection pressures, and the
adaptations of plant or the symbiotum to their original environments largely determine their
responses to new environments.

Our results do suggest, however, that the endophyte symbiosis can modulate adaptive traits
of tall fescue. Overall biomass and flowerhead production was highest in E+ and lowest in ME-
plants, but the positive and negative effects of symbiotic endophyte and its removal varied geo-
graphically and between the plant traits. The poor performance of ME- was particularly pro-
nounced in terms of biomass production in Finland. This suggest that phenotypic selection

Table 3. Linear mixedmodels for tall fescue flowerheads in Finland and Kentucky experiments in years 2005 and 2006.

FINLAND KENTUCKY

Estimate S.E. df t p Estimate S.E. df t p

Intercept -5381.64 745.76 909 -7.22 0.000 *** 1652.51 648.91 967 2.55 0.011 *

Year 2.69 0.37 909 7.23 0.000 *** -0.82 0.32 967 -2.54 0.011 *

E+ 0.59 0.17 909 3.48 0.001 *** 0.63 0.18 967 3.55 0.000 ***

ME- -0.31 0.20 909 -1.54 0.125 0.03 0.18 967 0.19 0.847

Treat N -1862.97 567.53 909 -3.28 0.001 *** 7229.67 559.18 967 12.93 0.000 ***

Treat W -0.33 0.22 909 -1.51 0.133 0.43 0.19 967 2.19 0.028 *

Orig R -1378.57 1189.37 909 -1.16 0.247 -5613.80 1176.94 967 -4.77 0.000 ***

Orig A 1646.34 891.14 909 1.85 0.065 o -10572.12 824.54 967 -12.82 0.000 ***

Orig G 3568.51 899.64 909 3.97 0.000 *** -7953.52 829.66 967 -9.59 0.000 ***

Orig S 1725.19 892.69 909 1.93 0.054 o -10935.16 831.50 967 -13.15 0.000 ***

Treat N:W 0.54 0.29 909 1.86 0.063 o 0.49 0.28 967 1.75 0.081 o

Year: Orig R 0.69 0.59 909 1.16 0.247 2.80 0.59 967 4.77 0.000 ***

Year: Orig A -0.82 0.44 909 -1.85 0.065 o 5.27 0.41 967 12.82 0.000 ***

Year: Orig G -1.78 0.45 909 -3.97 0.000 *** 3.97 0.41 967 9.59 0.000 ***

Year: Orig S -0.86 0.45 909 -1.94 0.053 o 5.45 0.41 967 13.15 0.000 ***

Year: Treat N 0.93 0.28 909 3.28 0.001 ** -3.61 0.28 967 -12.93 0.000 ***

The plants were endophyte infected (E+; the baseline), endophyte free (E-) or manipulatively endophyte free (ME-), and they were given either water (W),

nutrient (N) treatments or both (N:W) (Treat; C = control as the baseline). The grasses from the wild origins (Orig) Gotland (G), Åland (A) and Sweden (S)

and cultivar ‘Retu’ (R) were compared with cultivar ‘Kentucky 31’ (KY31; the baseline). Results for the same model are shown for both Finland and

Kentucky experiment with all main factors and those interactions that were statistically significant in either of the experiments. The main interactions are

shown graphically in Fig 5. Model estimates are standard errors (S.E.), degrees of freedom (df), and t-tests (t) with p-values (p) *** < 0.001,** < 0.01,

* < 0.05, o < 0.1

doi:10.1371/journal.pone.0157382.t003
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operates on plant-microbe symbiotum, and in some cases the loss of fungal partner may lead
to constrained adaptive capacity in the host grass [26]. This may be related to “compensated
trait loss”, i.e., some plant functions may have been lost when they are instead provisioned by
the interacting fungal partner during the long coevolutionary history of the endophyte and the
host grass [26,47]. Therefore, the loss of infection, and the consequent decrease in plant growth
and reproduction, and possibly resistance to herbivores, may have similar or even greater
importance for the species’ range limits than the positive effects of endophytes to the adaptive
grass traits.

Our results demonstrate that all the plants of higher latitude origin performed well when
transplanted in the south, whereas KY-31 performed poorly when transplanted to the north,
supporting the idea that local adaptations may limit the range shift of tall fescue polewards.
Temperature presumably determines overwintering and thus the northernmost distribution
range of the ecotypes of the species. Thus, different tolerance of KY-31 to colder winters of the
northernmost distribution range of the species may partly explain these results. However, both
study sites are characterized by seasonal fluctuation in temperature, including periodic frost,
and the KY-31 is successfully grown in colder climatic conditions north from the study site in
the US. Furthermore, our results show that the possible range-limiting temperature tolerance
of KY-31 is interactively affected by ontogeny of the plants and other environmental forces.
Harsh winters caused some plant deaths in all plant origins in Finland, but only two plants

Fig 4. Effects of nutrient and water treatments, and plant origin on tall fescue growth.Model-based
estimates for biomass (see Table 2 for model) on treatments (C = control, W = water treatment, N = nutrient
treatment, WN = water and nutrient treatment) and three wild populations and two cultivars (A = Åland island,
G = Gotland island, S = coastal Sweden, KY-31 = cultivar ‘Kentucky 31’, Retu = cultivar ‘Retu’) for tall fescue
biomass in Finland and Kentucky experiments in the two study years, 2005 and 2006.

doi:10.1371/journal.pone.0157382.g004
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died in the first winter and the mortality in the subsequent winters was particularly pro-
nounced in KY-31 plants and only in fertilized soils. These results demonstrate that winter
temperatures do not limit the establishment and survival of KY-31 more than European origin
germplasms in low nutrient environments. In contrast, better growth conditions in terms of
nutrient rich soils appear to decrease plant tolerance to winter temperatures. For example, the
ability of KY-31 to allocate higher proportion of resources to aboveground biomass than to
roots could explain the higher mortality of KY-31 compared to other origins.

We hypothesize that these results were in part due to different adaptations of plants to sea-
sonal changes in day length and light quality when they were transplanted across latitudes. The
striking difference between the study sites in the US and Finland is a shorter growing season in
the Finnish site situated at higher latitude, and associated stronger photoperiodism (S3 Fig).
The optimal timing of growth, reproduction and adaptations related to winter hardiness such
as resource allocation to storage organs are critical to tall fescue fitness in both locations of the
cross-latitudinal transplant experiments. However, the consequences of phenological mistim-
ing in the plants are presumably more critical when plants are transplanted to higher latitudes.
From other studies, both temperature and seasonal changes in day length and light quality are
known to be central factors regulating and coordinating tall fescue seed germination, growth,
reproduction and development [48–50]. We propose that although the European origin tall
fescues that are adapted to photoperiodic cues in northern latitude may have limited ability to

Fig 5. Effects of nutrient and water treatments, and plant origin on tall fescue reproduction.Model-
based estimated means of treatments (C = control, W = water treatment, N = nutrient treatment, WN = water
and nutrient treatment) and three wild populations and two cultivars (A = Åland island, G = Gotland island,
S = coastal Sweden, KY-31 = cultivar ‘Kentucky-31’, Retu = cultivar ‘Retu’) for number of tall fescue
flowerheads in Finland and Kentucky experiments in the two study years, 2005 and 2006.

doi:10.1371/journal.pone.0157382.g005
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fully exploit the longer favorable growing season in lower latitudes, the optimal timing of
growth, reproduction and adaptations related to winter hardiness such as resource allocation
to storage organs are more critical to plant fitness in higher latitudes where the favorable grow-
ing season is shorter [4].

Our results have broader importance for understanding the expansion potential of species
across latitudes. Our findings suggest that tall fescue invasions from higher latitudes to lower lati-
tudes are more successful than the reverse. We propose that adaptations to seasonal changes in
photoperiod in combination with cold winters play the key role causing fatal mistiming in the
phenology of tall fescues transplanted to higher latitudes. To refute or support this hypothesis
will be left to the future studies explicitly testing the phenological events of tall fescues in recipro-
cal transplantation experiments across latitudes. In particular, these studies should take into
account that in natural populations, selective forces are more variable and can operate simulta-
neously on several traits, or plasticity in traits, of the fungus, host or host–fungus unit. In contrast
to decreased fitness of the KY-31 plants in higher latitudes, our results showed that all northern
origin tall fescue germplasms, regardless of their endophyte infection status, performed well
when transplanted to lower latitudes. This suggests high potential of Eurasian germplams in agri-
culture in the US, and should be taken into account in tall fescue breeding programmes.
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