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ABSTRACT: Phosphorus (P) flow from deposits through

agriculture to waterways leads to eutrophication and depletion
of P reserves. Therefore, P must be recycled. Low and
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unpredictable plant availability of P in residues is considered to
be a limiting factor for recycling. We identified the determinants

for the plant-availability of P in agrifood residues. We quantified

P in Italian ryegrass (Lolium multiflorum) and in field soil
fractions with different plant availabilities of P as a response to

manure and sewage sludge with a range of P capture and
hygienization treatments. P was more available in manure and

in sludge, when it was captured biologically or with a moderate
iron (Fe)/P (1.6), than in NPK. Increasing rate of sludge
impaired P recovery and high Fe/P (9.8) prevented it.
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Anaerobic digestion (AD) reduced plant-availability at relevant rates. The recovery of P was increased in AD manure via
composting and in AD sludge via combined acid and oxidizer. P was not available to plants in the sludge hygienized with a high
calcium/P. Contrary to assumed knowledge, the recyclability of P in appropriately treated residues can be better than in NPK.
The prevention of P sorption in soil by organic substances in fertilizers critically enhances the recyclability of P.

1. INTRODUCTION

Securing a food supply for an increasing global population is
one of the greatest challenges of our time, as climate,
biodiversity, and aquatic ecosystems are endangered"” and
mineral and fossil resources are being depleted. The efficient
use of agrifood residues for energy and nutrients represents an
important part of a solution.>* Phosphorus (P) is a finite
resource that is a key element in terrestrial and aquatic
eutrophication. However, the limited, unpredictable, or
unknown P availability for plants in residues, compared with
soluble fertilizers, is perceived as a hinder for recycling.>®

There is increasing scarcity of virgin P reserves’ while P
fertilizers still are in demand even in the industrial world.® The
key role of P in terrestrial and aquatic eutrophication, as well as
the ongoing paradigm shift toward recycling®* and recovery
from the accumulated reserves, “the agricultural legac:y”,lo_12
have brought the plant availability of P in residues into the
focus.® Because most P flows within agrifood systems,'>'*
recycling agrifood residues indeed is critical for this nutrient.
Among agrifood residues, animal manure often contains the
major share of P, while sewage sludge is spatially concentrated,
making it readily available in large quantities.'> The leaching of
P from manure of the spatially concentrated animal production
and from sewage-originated P precipitates in landscaping over
the long-term has focused additional attention on the necessity
of recycling P in these residues.
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Efficient P recycling is only possible through transformations
at number of societal levels. Breaking up the spatial separation
of cropping and animal husbandry or locating animal houses
close to heat demand for facilitating a comprehensive energy
recovery'® would enhance the feasibility of efficiently using the
nutrients in manure. Avoiding mixing sewage with high and low
contaminant risks would enable safer use of more sewage
sludge. While these shifts would require synchronized actions
throughout the agrifood systems, immediate progress can be
made through appropriate technological choices. The safety for
humans and the environment by these choices has been
extensively addressed through research and regulation. In
contrast, major knowledge gaps remain regarding recovery of
P from current agrifood residues. Because of insufficient
empirical information, using residue P is often perceived as
detrimental toward the temporal and spatial precision.”'®
Consequently, an advanced understanding of the nutrient
cycling processes subsequent to application of the residue P to
soil, of the effects that various treatments of the materials have
on the processes,4 and of the determining factors is needed to
develop guidelines that could incentivize the recovery of P.*
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Table 1. Fertilizers and Rates of Application (AD = anaerobic digestion; P = phosphorus; Fe = iron; OLR = organic loading rate;

HLR = hydraulic retention time)

Fertiliser Origin P capture Hygienisation C/N C/P Rate
grw per pot Py mg per pot
1 2 3 1 2 3
Manures
Man Liquid dairy manure, Finlanc 13 70 344 68.9 300 25.0 50.0 218
Man AD Liquid dairy manure, Finland AD, mesophilic process 37 °C, OLR 3 59 39 437 87.3 475 19.1 38.1 207
kgvSm’"'d", HRT 26 d
Man ADComp Liquid dairy manure, Finland AD, dewatered 7-8 DM%, closed 28 113 873 175 365 48.6 97.3 204
composting (ManAD:peat:straw 1:1:0,3,
viviv) 2 wk 40-45°C, maturing 5 wk
Sludges
S1 Sewage, Plant 1 S dary tr Fe I Primary and secondary treatment sludge, 8.3 20 87.0 157 394 200 362 905
Fe/P 1.6 dewatered using rotating sieve
S2 DirAD Sewage, Plant 2 Primary treatment, direct, Fe- AD, dewatered 79 16 497 263 657 186 985 2462
coagulant, Fe/P 9.8
S3 BioAD Sewage, Plant 3 Biological P removal, Fe/P 0.2 AD, dewatered 64 13 562 113 293 38.8 77.6 202
S4 BioADStr Sewage, Plant 4 Biological P removal, Fe/P 0 AD, dewatered, struvite 09 04 0.70 2.15 3.50 64.0 196 320
MgNH,PO,*6H,0 from reject water
S1 AD Sewage, Plant 1 S dary tr Fe I AD, d d 74 85 210 68.9 172 212 695 1738
Fe/P 1.6
S1 ADComp Sewage, Plant 1 S dary tr Fe I AD, d d, tunnel posting (S1 9.0 13 285 76.3 191 218 584 1460
Fe/P 1.6 AD:bricks:peat, 1t2m’: 1m’, wiviv) 2 wk
S1 ADKem Sewage, Plant 1 S dary tr F 1 AD, KemiCond: H,SO,, H,0,, NaOH, 72 11 48.0 66.7 167 223 310 776
Fe/P 1.6 dewatered using centrifuge
S1 ADLime Sewage, Plant 1 S dary tr Fi I AD, d d, CaO 80 kg t”', tractor 81 98 235 131 327 210 11702926
Fe/P 1.6 mixed
References
NPK:NPK1, NPK2,NPK3 NH,NO;, K,HPO,*3H,0; KCI 1.43;0.37;0.39 3.57;0.92;0.97 5.71;1.47;1.55 50.0 125 200
Control: 0, NK, NPK0.5  NH,NO;. K,HPO,*3H,0; KCI 0;0;0 0.71;0;0.31  0.71;0.18;0.19 0 0 25.0
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Figure 1. P composition of the soil and fertilizers. Proportions of fertilizer phosphorus (P) (0.2 g per pot) in the seven P fractions and the

corresponding proportions of soil P before fertilization.

The availability of P to plants can be either enhanced or
reduced, depending on the chemicals used to capture P in
sewage, the hygienization method, and the applied amount.'”
The determining factors are not well understood. The capture
of P in sewage using iron (Fe) coagulants is a treatment
employed to stop P from entering waterways that raises
particular concerns for its impact on the availability of P to
plants.® Manure is the best known organic fertilizer, and
anaerobic digestion (AD) used to extract energy and enhance
the hygiene of organic solid wastes with or without a
subsequent composting is in many aspects mature.'® However,
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while the use of these techniques is rapidly expanding, the
impact on the plant availability of P in manure and sewage is not
known. This knowledge is needed to implement the rethinking
of P management,'” to explore the options to recycle materials,
and to neutralize fixation sites.

The present study explores the relative recyclability of P in
manure and sewage in comparison with NPK, as well as how to
treat the residues to enhance recyclability. The current
treatments to capture P in sewage and to hygienize manure
and sewage sludge were compared in terms of the proportions
of P in plant and soil. To facilitate the detection of the
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underlying mechanisms, a pot experiment with field soil was
conducted where a broad range of amounts applied also indicate
the effects of accumulation, there is little buffering by bulk soil,
and prevention of uncontrolled P losses is possible. The
following question was posed: How recyclable is P in agrifood
residues, and what determines the recyclability?

2. MATERIALS AND METHODS

2.1. Fertilizers. Sewage sludge, dairy manure, and a soluble
NPK compound were compared, as well as various treatments
to capture P from sewage and to ensure hygiene of sewage
sludge and manure (Table 1, Figure 1). The sewage origins and
treatments were selected to cover the entire range of European
practices. The sewage sludge-based fertilizers originated from
three North European wastewater treatment plants that used a
different P removal method each. The manure-based fertilizers
were acquired from a single origin. A series of sewage sludge-
based fertilizers was prepared with sludge from one of the
wastewater treatment plants to ensure that the treatments could
be compared. This wastewater treatment plant was a secondary
treatment plant that used Fe precipitation, adhering to practices
common among North European large-scale plants. In addition,
struvite was precipitated from the reject water from the sewage
from a fourth plant used in this study. The NPK compound
(Table 1) served as the control to represent soluble inorganic
fertilizers that are currently the dominant P source in
agriculture. The experiment included also a hygienization
treatment of AD sludge with NH; 2.9% dmsemgeSludge_1 and
H,SO, for a preliminary investigation. However, the results of
this treatment, which is not applied in practice, are not reported
because it increased the soil conductivity to a critically high
level, obviously inhibiting nitrification and halting microbial
activity altogether at higher rates hindering P release from the
organic fertilizer.

The sewage sludges and struvite were sampled at the start of
December 2011. The sewage sludge for preparing S1 ADKem
was sampled on February 7, 2012, due to a failure during the
first treatment process. Liquid dairy manure originating from an
MTT Agrifood Research Finland research farm operated with
modern European husbandry practices was sampled with and
without AD on November 14, 2011. The AD manure was
composted from November 23, 2011, to January S, 2012 (Table
1). All of the fertilizers were stored in closed containers at +5 °C
until the experiment was established on February 14—16, 2012.

2.2. Pot Experiment. The plant availability of P in the
tertilizers was studied in a pot experiment by statistically
modeling the proportions of P in the plants and in the soil at the
end of the experiment. Three different application rates were set
for each fertilizer to achieve comparable plant P uptake rates
across the fertilizers (Table 1). These rates were selected based
on the results of a preliminary pot trial. To ensure that the
nitrogen (N) and potassium (K) would not limit the P uptake,
they were supplied in excess. N was supplied at 100, 200, 500,
and 800 mg (kgdw)_l, and K was supplied at 66, 132, 330, and
528 mg (kgy,,) " for each P rate, respectively. With the organic
fertilizers, the three lowest rates for both N and K were used.
Analytical grade ammonium nitrate (NH,NO;), potassium
chloride (KCl), and (for NPK treatments only) dipotassium
phosphate (K,HPO,-3H,0) were applied. The experiment was
designed using information regarding the variations in the light
and other conditions in the growth chambers. The experiment
had a factorial alpha design with five complete replicates and
seven blocks of six fertilizer by fertilizer rate combinations
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within each replicate. Each fertilizer level occurred twice in each
block.

The soil for the experiment was collected on September 7,
2011, from a 5—2S cm surface layer of a field that had been
under grass for more than five years. Soil was sieved through a §
mm screen to remove organic residues and stored at +2 °C. The
soil had a low content of plant-available P and consisted of clay
3.8%, silt 11.4%, and sand 84.8% (fine sand 48.2%, sand 32.8%,
coarse sand 3.9%). The soil (2.5 kgg, per pot) was carefully
mixed with the fertilizers except for a layer of 0.3 kg in which the
seeds were sown to avoid any negative effects induced by
fertilization on germination. Italian ryegrass (Lolium multiflorum
Lam.) was sown at S0 seeds per pot.

The soil mixture was maintained at 70% water holding
capacity. The lighting was provided by 36 W fluorescent lamps
for plants (Model Osram fluora). The photosynthetic flux in the
growth chamber was 280 ymol m™ s™! at plant height with a
16/8 h light/dark cycle. The air temperature was 21/15 °C. The
daily humidity ranged from 50% to 90%, and the CO,
concentration varied from 290 to 490 ppm. The plants were
harvested twice, on March 19 and April 10 (regrowth),
approximately 4 and 8 weeks after sowing, respectively. The
shoots were cut 2 cm above the soil surface and dried at 60 °C.

2.3. Fertilizer Analyses. The dry matter content of the
fertilizers was determined by drying at 105 °C, and the
laboratory compacted bulk density was determined for 1 L of
soil (EN 13040). Water extractions were performed using moist
samples at 1:5 (v/v) (EN 13652) or 1:60 (w/w), shaking for 1
h. The suspensions were centrifuged for 15 min at 3500 rpm,
passed through a 2 um filter, and stored in closed polyethylene
bottles until analysis for pH, conductivity, and soluble P. After
1:5 and 1:60 H,O extractions, the samples were dried at 37 °C
and passed through a 2 mm sieve.

A modified Hedley fractionation of P was sequentially
performed. The fractionation consisted of four extractions with
60 mL for 16 h, using H,0 (4 and 16 h), 0.5 M NaHCO; (pH
8.5), 0.1 M NaOH, and 1 M HC], at 1:60 (w/w). After shaking
with 1 g of dry fertilizer, the solution was centrifuged for 15 min
at 3500 rpm and filtered through a 0.2 gm membrane for the
determination of inorganic P. An unfiltered subsample was
autoclaved for 30 min at 120 °C to release any organically
bound P, except for the last extraction with 1 M HCL The
filtered and autoclaved extracts were stored in closed poly-
ethylene bottles until the analyses of inorganic and total P were
conducted. The extracts were analyzed using the molybdenum
blue color method using a Shimadzu UV/vis spectrophotom-
eter 120-02 (882 nm).

Solubilities for Al, Ca, Fe, and P were determined using 0.029
M ammonium oxalate extraction (1:20; w/w), and Al, Ca, Fe,
and P were measured by inductively coupled plasma optical
emission spectrometry (ICP-OES; Thermo Jarrell Ash IRIS
Advantage, USA). Acid ammonium acetate (pH 4.6, 0.5 M)
extractable (1:10) P was determined using a Skalar autoanalyzer
on the extracts that had been passed through a 2 ym filter and
stored in closed polyethylene bottles. The P extractable in
neutral ammonium citrate was determined from 1 g of fertilizer
using 100 mL of citrate at 65 °C. After leaching P with water at
1:200, ammonium citrate extractable P was estimated as the
difference between total P and P determined from the solid after
filtration.**

The total P, Ca, Fe, Al, and heavy metal (Cd, Cu, Zn, Mn, Pb,
Hg, As, and Se) contents were determined from Aqua regia
extraction (EN 13346 Sludges and EN13650 Soil improvers and
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growing media). The total C was measured using the Dumas
method (LECO CN-2000) from a dry sample.

The chloride content was analyzed from a 1:5 (v/v) water
extract using a Skalar autoanalyzer. To assess phytotoxicity and
maturity of the fertilizers, seed germination, root length (EN
16086-2:2011 applied),** and CO, production in a closed bottle
test (Evira 7405) were determined for pure wet samples or
samples mixed with 30% of substrate.**

2.4. Plant and Soil Analyses. The plant samples were
prepared using wet digestion, involving dissolution in heated
HNO;. The P concentrations were measured with ICP-OES.
The soil was analyzed before the experiment using the same
analytical methods as for the fertilizers with the exception of the
total N, which was measured using the Dumas method (LECO
CN-2000). After the experiment, the soils from all of the pots
were analyzed for electrical conductivity, pH, and Py,q from a
1:5 extract (CEN 13652). A simplified sequential Hedley
fractionation for the dried samples at 1:60 (w/w) H,O,
NaHCO;, and NaOH extractions was performed, and the total
P in the extract (not distinguishing organic and inorganic P)
was determined.

P of the four mutually exclusive soil fractions with potentially
plant-available P** and plant P uptake at the end of the
experiment was summed and the sum, ie., potentially plant-
available P (P potentially plant-available, g P er POt) = P lant P up take +
$0il Py 1.5 + 801l Piyyo 1,60 + S0il P napcos + s0il Py,on was used
in statistical modeling. Both fertilizer P and soil P before
fertilization (same soil in every pot within each replicate) are
included in P oentially plant-available: FOUr discrepant observations
were excluded from the modeling because they were regarded as
suspect measurements and would have had a pronounced effect
on the results (Supporting Information Figure S1). To
investigate the fate of P for the fertilizers, the proportions of
Ppotentially plant-available found in plant and in the four soil fractions
were analyzed separately by employing generalized linear mixed
models with the logit link function, and each proportion was
assumed to have a beta distribution. The use of a beta
distribution for modeling proportions was proposed, e.g, by
Gbur et al.*® The models were fitted using maximum likelihood
estimation based on a Laplace integral approximation method.*®

To take account of the experimental design, replicate effects
and block effects nested within replicates were included as
random variables in the models. The relationship between each
proportion and P qensialy plant-available Was modeled using poly-
nomials. The most complex model for the relation was a
second-order polynomial with separate intercepts and linear and
quadratic coefficients for each fertilizer. The model had the
following form:

logit(u,,) = a; + fiBy + TP + 1+ by (1)
where ;. and Py denote the mean proportion and the
Ppotentially plant-available for fertilizer i in block k of replicate j,
respectively, and logit(u;) = In[uu/(1 — py)l; @ is the
intercept, f3; is the linear coefficient, and y; is the quadratic
coefficient for fertilizer i. The replicate effects (rj) were assumed
to be distributed independently and normally with means of
zero and a constant variance. The distributional assumptions of
the random block effects (by)) were similar, and both effects
were also assumed to be independent of one another. The mean
proportion for each fertilizer (i;) can be solved from eq 1 as a
function of P as follows:
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W= [1 + exp(—a, — /}iPijk — ;/I.Pzijk)]_1 )
Sequential “type 1” Wald F-tests with the denominator degrees
of freedom calculated using the containment method®® were
used to assess the need to have a quadratic term and separate
coefficients for the fertilizers in the models. For all proportions
of P there was evidence of varying coeflicients among the
fertilizers indicating nonparallel first- or second-order poly-
nomials for the fertilizers on the logit scale. However, based on
the comparisons of the estimated linear and quadratic
coefficients and on a measure pseudo-R* of the explained
variation,”” the number of the coefficients could be diminished
by dividing the fertilizers into groups such that the coefficients
could be considered homogeneous within the groups and
different between the groups. After finding an adequate model
for each proportion of P, the mean proportions for the fertilizers
and the 95% confidence intervals for the means were estimated
on the basis of the models at 0.8 g P per pot. Also the
preplanned comparisons among the fertilizers were made at this
P level using two-sided Wald ¢ tests. The P level was selected by
taking into account the ranges of the observations for the
fertilizers. The statistical analyses were performed by the
GLIMMIX procedure in version 9.3 of the SAS/STAT
software.”®

The agreement of the final models with the data was checked
graphically. Systematic departures from the models were
assessed by plotting studentized residuals against the linear
predictor, and the adequacy of the link function was checked by
plotting logit-transformed proportions against the linear
predictor.”® Furthermore, the fit of each model to the data
was verified by presenting the models together with the scatter
diagrams of the data (e.g, Supporting Information Figure S1).

The statistical analysis of the temporal development of the
plant P availability was based on a general linear mixed model,®
where the difference in plant P uptake between the first and
second harvest was a response variable, fertilizer, fertilizer level,
and their interaction were the fixed effects, and replicate, block,
and experimental error were the random effects. To take
account of the increasing variance when increasing the fertilizer
level, unequal residual variances were allowed for the three
fertilizer rates. The model was fitted by using the restricted
maximum likelihood (REML) estimation method. The
deviations of the mean differences between the harvests from
zero were tested using two-sided t-type tests. The analysis was
performed by the MIXED procedure in version 9.3 of the SAS/
STAT software.”®

3. RESULTS

3.1. Fate of P. To get a comprehensive view of the
differences in the fate of P among the fertilizers, they were
compared in terms of the mean proportions of
Ppotentially plant-available i Plant and in the four soil fractions at
the fixed amount of 0.8 g P per pot. Fixing the denominator in
the proportion of plant P uptake, for example, indicates that if
the mean proportion is higher for fertilizer A compared to
fertilizer B, also the mean plant P uptake is higher for A than for
B. (At 0.8 g P per pot the mean P uptake = (mean proportion of
P in plant %/100) X 0.8 g P per pot).

3.1.1. Plant. The relationship between the P qtentially plant-available
and the proportion of P taken up by the plants was
approximately linear for all fertilizers on the logit scale and
could be modeled using regression lines. Furthermore, the
fertilizers could be divided into three groups based on their
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(a) Estimated models for the fertilizers
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Figure 2. Comparison of plant availability of phosphorus (P) among the fertilizers. (a) Model-based mean proportion of potentially plant-available P
in plants at various P amounts at the end of the experiment. The vertical reference line corresponds to 0.8 g P per pot, and the horizontal reference
line shows the mean proportion of 0.8 g P for NPK. (b) Model-based mean proportions of 0.8 g P per pot (dots) and 95% confidence intervals for the
means (bars). The vertical reference line corresponds to the mean proportion for NPK. The statistically significant differences compared to NPK are

marked with asterisks (p < 0.02). For S1 ADComp v. NPK, p = 0.08.

Table 2. Test Results for the Paired Comparisons of Fertilizers in Terms of the Proportion of Potentially Plant-Available

Phosphorus (P) in the Plant at the End of the Experiment”

Comparison df t-value  P-value
Residue

Manure v. sewage sludge: Man - S1 154 0.4 0.69
P capture

Direct: S1 AD - S2 DirAD 154 1.78 0.08
Biological: S1 AD - S3 BioAD 154 -1.35 0.18
Struvite: S1 AD - S4 BioADStr 154 -2.38 0.02
Hygienisation

AD of manure: Man - Man AD 154 1.25 0.21
AD of sewage sludge: S1 - S1 AD 154 228 0.02
Composting of manure: Man AD - Man ADComp 154 -6.17 <0.001
Composting of sewage sludge: S1 AD - S1 ADComp 154 -0.87 0.39
Acid and oxidiser: S1 AD - S1 ADKem 154 -1.88 0.06
Lime stabilisation: S1 AD - S1 ADLime 154 4.44 <0.001

“The potentially plant-available P was fixed at 0.8 g per pot for each fertilizer.

estimated slopes so that the slopes were approximately
homogeneous within groups and different between groups.
The final models with fertilizer-specific intercepts but just three
different slopes were transformed to the original scale in which
the models are nonlinear (Figure 2, Supporting Information
Figure S1). The proportion of Ppotentially plant-available found in the
plant increased nonlinearly when increasing the amount of
P gtentially plant-available f0T both the manures and the control (0,
NK, NPKO.5) (Figure 2). For the sewage sludges, the
proportion of P in the plant tended to decline with increased
P amounts. The negative relation was weak for the biologically
captured P in S3 BioAD and in struvite (S4 BioADStr), as well
as for the AD sewage sludge (S1 AD) and NPK (NPK1, NPK2,
NPK3) (Figure 2).

in the plant was

2119

The mean proportion Of Ppotentially plant-available
for manures and lower amounts of sewage sludges with
biologically captured P or with a moderate Fe/P higher than
for NPK, struvite (S4 BioADStr) performing best among
sewage sludges (Figure 2). Direct precipitation using a high Fe/
P (S2 DirAD) led to a low proportion of P in the plant. The AD
reduced the proportion of P,nially plant-avaitable fOUnd in the plant
with manure. The reduction in the proportion did not depend
on the P amount, but the reduction in plant P uptake was clearly
the higher the amount. The AD reduced the proportion of P in
the plant also at the lowest amounts of sludge, but at high
amounts, the plant-availability of P was increased by AD (Figure
2, Table 2). The mean proportion of Ppotentially plant-available i the
plant was highest for composted manure (Man ADComp), but
in the AD sewage sludge not increased by composting (Figure
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2, Table 2). An acid and oxidizer treatment (S1 ADKem)
increased the proportion of P in plant, whereas sludge
hygienized with lime reduced the proportion and the plant P
uptake below that of the control (Figure 2).

The higher the proportion of P engially plant-avaitable i the plant
and the plant P uptake, the higher also the growth tended to be
(Supporting Information Figure S2). Regarding the temporal
development of the plant P uptake, the results of the fertilizer
comparisons were quite similar to the results of the comparisons
for proportions in the plant: the higher the P proportion for a
fertilizer, the faster the P uptake for that fertilizer also was
(Supporting Information Figure S3). The exception was the
acid and oxidizer treatment (S1 ADKem), which was beneficial
to P proportion in plant but slowed the P uptake compared to
NPK (Supporting Information Figure S3).

3.1.2. Soil. At the end of the experiment, the differences
among the fertilizers in the mean proportions of the relatively
readily extractable soil fractions (i.e., Pyo and Pyuucos vs
PNaOH) Of the Ppotentiallyplant—available were generaﬂy Similar to the
differences among the fertilizers in the mean proportion of
P otentially plant-available i1 plant. The exception was that the
proportions of the readily extractable P were lower than for
NPK for sewage sludges and further reduced by hygienization
(Supporting Information Figure S4). At the amounts higher
than 0.8 g P per pot the differences between the fertilizers were
more pronounced. Especially the mean proportion in Py,ycos
was higher and the mean proportion in Py,oy lower for
manures, references and sewage sludges with P captured
biologically (S3 BioAD, S4 BioADStr), whereas the opposite
was true for the rest of the sewage sludges.

Composted manure (Man ADComp) and struvite (S4
BioADStr) produced the highest mean proportions in Py,
and the lowest proportions in Py,oy relative to the other
fertilizers (Supporting Information Figure SS). However,
composted sludge (S1 ADComp) had a higher mean
proportion Of the Ppotentiallyplant-available in I)NaOH and a lower
one in Py,yco; than S1 AD at low amounts of sludge. AD had
no clear impact on the fate of P in soil. The proportion of P in
Pi1501.60 tended to increase with increasing amount for Control,
NPK, manures, and S4 BioADStr and decline for the rest of
sewage sludges (Supporting Information Figure SS). The same
pattern was observed for Py,co3 although the P proportion in
this fraction also increased for the S3 BioAD and S1 with
increasing P amount.

3.2. Determinants. No single dominant variable explained
the differences in plant availability of P across the fertilizers.

3.2.1. P Composition of the Fertilizers. The proportion of
Pyyo in the fertilizers was related to high proportion of
Ppotentially plant-available i Plant, with the exceptions of water-soluble
NPK (small proportion of P in plant) and the acid and oxidizer
(S1 ADKem; low Py,, proportion but relatively high
proportion of P in plant) (Figures 1 and 2). For manures
containing a relatively high proportion of P in water-extractable
fractions, a greater mean proportion of P was also found in
water-extractable fractions in soil at the end of the experiment
than for sewage sludges that contained less Py,o (Figure
1,Supporting Information Figures S4 and S5). NPK with fully
water-extractable P was an exception: the proportion in soil
Pip01.5 was clearly the smallest for NPK at lower P amounts
(Supporting Information Figure SS). The organic fractions of P
in Py, and in Py,oy in the fertilizers were also positively
associated with proportion of P taken up by the plant. The
molar ratios Fe/P and Al/P in the applied fertilizer per pot were
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highest for the sewage sludge with direct precipitation of P (S2
DirAD) (arithmetic means 7.8 and 0.9, respectively), which had
little plant-available P, and the ratios were lowest (arithmetic
means between 0 and 0.2), along with NPK, for manure and
struvite (S4 BioADStr), which had high P availability. The
molar ratio Caaguaregia/ Paquaregia Was highest for lime-stabilized
AD sewage sludge (S1 ADLime; arithmetic mean 4.75) and
Canp)ac204/P(nayrc204 for composted manure (Man AD-
Comp; arithmetic mean 0.03).

3.2.2. Other Factors. At the end of the experiment, at 0.8 g
Ppotentially plant-available P€T pot, the high mean proportion of P in
the plant for a fertilizer tended to accompany a high mean soil
pH (Supporting Information Figure S6). The exceptions were
especially the control and S2 DirAD as well as S1 AD and S1
ADLime to a lesser extent; they had a lower mean proportion of
P in the plant than expected based on the magnitude of soil pH.
Mean conductivity at 0.8 g P oentially plant-available PEI POt Was not
related to the mean proportion of P in the plant among the
tertilizers. At this P level, the mean conductivity in the soils was
lowest (0.7 mS cm™) for S1 AD and highest for NPK and Man
AD (3.4-3.5 mS cm™) (Supporting Information Figure S6).

Chloride ions (mg kg, ™" soil) were observed in the manures
(ranges Man 180—990, Man ADComp 230—1100, Man AD
200—1200) more than in the sewage sludge (150—900) and
NPK (190—740). Among the potentially phytotoxic metals, the
most abundantly observed elements were Zn, Cu, and Mn (mg
kgg, ' soil) in the sewage sludge (ranges 0.02—27.6, 0.01—9.96,
and 0.04—14.7, respectively); these elements were present at
rates many times higher than in the manures (ranges 0.23—2.69,
0.04—0.46, and 0.17—2.32, respectively). In the maturity test for
the organic fertilizers, the highest CO, production, which
reflects a low maturity, was evident for S1, S1 ADKem, Man,
and Man AD. Germination occurred only with composting
(Man ADComp, in S1 ADComp to a lesser extent) as well as
with biological precipitation of P in sewage (S3 BioAD).

4. DISCUSSION

4.1. Generality and Validity of the Findings. Dairy
manure and sewage sludge cover the range of plant-availability
of P in agrifood residues,”® and the sewage sludge used covers
the range of the current wastewater processes in Europe. The
Fe/P molar ratios in P capture in sewage varied between 0.49
and 9.8, covering the European range up to the highest ratio
used in Norway only; the Fe/P 1.6 is representative for
Northern Europe. The corresponding ratios for 10 random
European plants average 0.89, with a median of 0.81 (max. 2.2,
min. 0.03) (primary source). The manure and sludge treatments
applied are currently the most commonly used. Regarding the
amounts used, the rate allowed in Finland for establishment of
grassland with a “poor” soil P supply is within the range used for
all the fertilizers, corresponding to the lowest rate for most of
them. The sandy P-deficient soil ensured that the fertilizer
properties were the primary determinants of P behavior.*’
Because NK was supplied in excess, no nutrient deficiency was
identified, and the responses by P uptake and growth were
similar. Consequently, the differences in plant P can be
attributed to the plant-availability of fertilizer P. A controlled
pot experiment with a wide range of application rates was
required to detect the mechanisms and the probable impacts in
a cumulative use, but the practical significance of the differences
among organic fertilizers can only be confirmed in long-term
experiments in the field.*’
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4.2. Determinants of Recyclability of P. 4.2.1. Manure,
Sewage Sludge, and NPK. The higher recovery of P in manure
at higher rates relative to the sewage sludge is due to the water-
extractability of the manure P.***' Only a small fraction of P in
the sludge was extractable by water. The fully water-extractable
inorganic P in NPK was, however, rapidly retained by iron
oxides and hydroxides in the low-P soil. In the organic residues,
P may be mineralized in step with plant uptake and/or be
protected by organic substances from sorption to sparingly
available forms, even in the long term.>>>*'7 In addition, the
high conductivity and low pH in the soil caused by NPK has
obvious negative effects on the plant P uptake.

In contrast, Huang et al.'” and Frossard et al.>® observed a
lower use of sludge P by ryegrass in pots than P derived from a
water-soluble fertilizer. These disparities may be attributed to
differences in the soils or in the sewage treatments. Phytotoxic
concentrations of chlorides or heavy metals have been
observed,**** and the reported metal concentrations were 10
to 100 times higher than in the present study. A review of the
recent literature by Singh and Agrawal®® concluded that in
adequately sludge-amended soil, the crop yield is generally
greater than that of well-fertilized controls.

4.2.2. P Capture in Sewage. The precipitation procedures
were crucial for the plant-availability of P. The biological P
removal, previously found to generate bioavailable P,** and the
secondary precipitation treatment by a Fe-coagulant (Fe/P 1.6)
found to adsorb P onto freshly formed Fe-hydroxides,®” were
both superior to direct precipitation (Fe/P 9.8) regarding P
recycling. Fe/P 9.8 led also to the highest (though not critical)
concentrations of potentially phytotoxic metals. Even an
adverse effect on the plant-availability of soil P has been
observed, emphasizing the dosing when promoting the
recyclability of P.'”*

4.2.3. Hygienization of Manure and Sewage Sludge. The
decomposition of organic substances by AD increased the
sorption of P, as also observed by Frossard et al.** for sludge.
The conductivity increased by AD in manure contributed to the
reduced plant-availability. The marked enhancement in the
plant-availability of P in the AD manure through composting, as
also observed by Mata-Alvarez et al,'® is explained by the
increased proportion of water-extractable inorganic P that
remains protected from sorption by the organic humic and
fulvic acids formed by composting. The less clear positive
impact of composting on AD sewage sludge at high application
rates may be an implication of complexation of the substances
with metals released by AD,*® as indicated by the increase in the
soil Py,on- The lime stabilization practiced in some European
countries retained P as an amorphous Ca precipitate at high pH
values.'”?”

4.3. Rate and Time Dependence. The soil conductivity
may explain the negative rate effect of AD on the recyclability of
P in manure and of NPK. The rate-induced decrease in plant-
availability was clearest if sewage P was captured by Fe
coagulants in accordance with the findings of Huang et al.'” For
the lime-stabilized sludge, the added Ca and high pH (still at the
end of the experiment at the highest rate) most likely
precipitated the soil P, as indicated by a lower plant P uptake
than for the unfertilized control. The slower P release induced
by hygienization apart from composting indicates that a longer-
term study might find different P availabilities.*> Consequently,
the impact of rate, duration, and cumulation of agrifood residue
applications deserve critical attention.
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4.4. Role of Organic Matter. Organic substances are an
important determinant for P recovery from residues in soils that
sorb P.***® Organic amendments in soil with high P content can
even lead to net desorption*"** through competition between
the dissolved organic carbon, humic, and fulvic acids and P for
soil sorption sites. The direct release of P through
decomposition in pace of plant uptake may play an even
greater role®®* in protecting P from sorption. These factors
seem to explain the positive association between the organic
fractions and plant-availability of P in the fertilizers. Research is
needed to elucidate the relation of plant-availability and
susceptibility of P toward leaching during the cumulative use
of fertilizers. The factors that determine which combination
provides the highest recovery with the least nutrient leaching
must be understood.

The assumed knowledge regarding the limited recyclability of
P in agrifood residues and the importance of water-extractability
as the key determinant are not supported by our findings. While
the function of organic matter in preventing P sorption is
grounded on rigorous theory, the quantitative significance of
this function for the overall bioavailability of P such as
highlighted by our results appears to be generally under-
estimated. Our results indicate important potential of recycled
organic residues for counteracting the “P legacy”"" both in field
soils and in the sediments of water systems which are major
drivers of eutrophication.*** Even small quantities of organic
substances in fertilizers play a substantial indirect role through
hindering sorption. The plant-availability of P in agrifood
residues, if properly treated, is superior to that of soluble
inorganic fertilizers. Technologies for enabling recycling of
sewage P currently exist. The efficient use of the recyclable
residue P should be incentivized while minimizing problematic
compounds in sewage upstream to enable the full benefits from
the recyclability of residue P.
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