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Abstract

Estimation of variance components by Monte Carlo (MC) expectation maximization (EM) restricted maximum likelihood
(REML) is computationally efficient for large data sets and complex linear mixed effects models. However, efficiency may be
lost due to the need for a large number of iterations of the EM algorithm. To decrease the computing time we explored the
use of faster converging Newton-type algorithms within MC REML implementations. The implemented algorithms were: MC
Newton-Raphson (NR), where the information matrix was generated via sampling; MC average information(AI), where the
information was computed as an average of observed and expected information; and MC Broyden’s method, where the
zero of the gradient was searched using a quasi-Newton-type algorithm. Performance of these algorithms was evaluated
using simulated data. The final estimates were in good agreement with corresponding analytical ones. MC NR REML and MC
AI REML enhanced convergence compared to MC EM REML and gave standard errors for the estimates as a by-product. MC
NR REML required a larger number of MC samples, while each MC AI REML iteration demanded extra solving of mixed
model equations by the number of parameters to be estimated. MC Broyden’s method required the largest number of MC
samples with our small data and did not give standard errors for the parameters directly. We studied the performance of
three different convergence criteria for the MC AI REML algorithm. Our results indicate the importance of defining a suitable
convergence criterion and critical value in order to obtain an efficient Newton-type method utilizing a MC algorithm.
Overall, use of a MC algorithm with Newton-type methods proved feasible and the results encourage testing of these
methods with different kinds of large-scale problem settings.
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Introduction

Estimation of variance components (VC) by restricted maxi-

mum likelihood (REML) [1] via a Monte Carlo (MC) expectation

maximization (EM) algorithm has proven a computationally

attractive choice for large data sets and complex linear mixed

effects models [2–4]. In such cases, it is often impossible to

calculate the exact inverse of the coefficient matrix using direct

methods, but it can be estimated by MC sampling methods

instead. Although the idea of MC EM REML is simple, its

convergence is slow, like typical for the EM algorithm. There are

different ways to enhance the convergence. One possibility is to

use observed information obtained by Louis’ method [5], which

also gives standard errors for the estimates. The MC technique can

be adapted to Louis’s method as well [6]. Other possibilities

include Aitken’s acceleration and quasi-Newton EM acceleration,

as used in [7] and discussed, e.g., in [8]. However, both Louis’

method and the acceleration methods require complicated

calculations which may be difficult with the large-scale problems

often occurring in animal breeding evaluations.

Newton-type methods are based on second derivatives and reach

fast convergence in the neighbourhood of the maximum. Second

derivatives with respect to all the parameters yield the information

matrix, which can be used to calculate standard errors for the

parameters. The Newton-Raphson (NR) method is based on the

observed information matrix while Fisher’s scoring uses the

expected information matrix. Other Newton-type methods include

average information (AI) REML, which utilizes the average of the

observed and expected information matrices [9]. This is currently

the most common VC estimation method used in animal breeding.

Quasi-Newton methods [10], which rely on approximation of

second derivatives based on the direction of the most recent step,

have also been suggested and used, e.g [11]. These methods usually

result in faster convergence compared to linear methods but slower

convergence compared to Newton-type methods because the

information matrix is replaced by an approximation.

MC techniques are useful for analyses involving complex

likelihoods. Thus, the MC method has been used in the NR

algorithm for generalized linear mixed effects models, e.g., by Kuk

and Cheng [12], and for incomplete data, e.g., by Gauderman and

Navidi [13]. More complicated models related to these examples

require simulations from the conditional distribution of the missing

data given the observed data with methods like Gibbs sampling.
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However, the problem in animal breeding is not necessarily the

complexity of the model, but rather the need to analyze large-scale

data sets to obtain sufficiently accurate genetic parameter

estimates. In such cases, the simple sampling method presented

in Garcı́a-Corts et al. [14] has shown to be practical for VC

estimation in linear mixed effects models by MC EM REML [4].

Its use is also possible in Newton-type methods.

The aim of this study is to compare MC algorithms in different

Newton-type methods for VC estimation of linear mixed effects

models. We first introduce the AI REML and Broyden’s method

with MC. These methods are then compared with a sampling-

based NR method (MC NR REML), where a simple approxima-

tion of second derivatives is possible from independent and

identically distributed samples. Finally, we evaluate the perfor-

mance of these Newton-type methods using the MC algorithm in

an analysis of simulated example data.

Materials and Methods

Model
Consider a bivariate linear mixed effects model

y~XbzZuze, ð1Þ

where y is a vector of observations, b is a vector of fixed effects, u
is a vector of random effects, e is a vector of random error terms or

residuals, and X and Z are design matrices for fixed and random

effects, respectively. Assume that u*N (0,G) has a covariance

structure G~A6G0, where A is a numerator relationship matrix

and G0 is a 262 covariance matrix. Similarly, e*N (0,R), where

R~I6R0 and R0 is a 262 covariance matrix. Thus,

y*N (Xb,V), where V~ZGZ0zR. We assume that either both

or no traits are observed.

Methods
Let the parameter vector of covariances be h~½ hG

0 hR
0 �’,

where hG~vech(G0), hR~vech(R0) and vech is an operator

changing unique elements of the matrix argument into vector

form. In our case, h is a 661 vector which contains three unique

elements from both the random effect and residual covariance

matrices. Newton-type methods rely on first and second deriva-

tives of the REML likelihood function L(h) with respect to h. For

example, the NR algorithm uses the observed information matrix

H(h)~ {
L2 log L(h)

LhiLhj

" #
i,j~1,...,6

ð2Þ

and the gradient vector

J(h)~
L log L(h)

Lhi

� �
i~1,...,6

ð3Þ

in calculating new estimates of parameters q̂q at iteration round k:

ĥh(k)~ĥh(k{1){H(h){1J(h),

where information matrix H(h) and gradient vector J(h) are

computed at current VC estimate ĥh(k{1).

First derivatives of the REML log-likelihood log L hð Þ with

respect to elements in G0 or R0 can be considered simultaneously

[13]. Thus, L log L(h)=LG0 can be written as a 262 matrix which

has diagonal elements L log L(h)=LG01,1
and L log L(h)=LG02,2

and

off-diagonal elements
1

2
L log L(h)=LG01,2

and
1

2
L log L(h)=LG02,1

:

L log L(h)

LG0
~{

1

2
qG{1

0 {G{1
0 (SGzDG)G{1

0

� �
,

where q is the number of levels in random effect u, and SG and DG

are 262 matrices with elements SGi,j
~tr A{1Cuiuj

� �
and

DGi,j
~ui

0A{1uj , respectively. Here ui is a subvector of u

corresponding to the ith trait in the model, and Cuiuj is the part

of the inverse of the coefficient matrix of the mixed model

equations (MME) corresponding to ui and uj , i,j~1,2. Similarly,

L log L(h)

LR0
~{

1

2
nR{1

0 {R{1
0 (SRzDR)R{1

0

� �
,

where n is the number of observations, and SR and DR are 262

matrices with elements SRi,j
~tr WiC

ijWj
0� �

and DRi,j
~ei

0ej .

Now Wi is a submatrix of W~½X Z � and ei is a subvector of e

corresponding to the ith trait, and Cij is the part of the inverse of

the coefficient matrix of MME corresponding to traits i and j.

Matrices SR and SG are difficult to compute for large data sets

and complex models because they require elements of C, the

inverse of the coefficient matrix of MME. These matrices can be

approximated by simulating s MC samples of data, i.e.,

~yyh~Z~uuhz~eeh, h~1, . . . ,s [14] where ~yyh is a vector of MC

simulated observations at MC sample h, and ~uuh and ~eeh are

simulated from their assumed normal density models using current

values of the variance parameters. When the full model (1) is fitted,

i.e., when MME are solved using the simulated data to obtain

estimates ~̂uu~uu, element (i,j) in SG can be approximated by method 1

or 2 in Garcı́a-Corts et al. [16]:

SGC1
Gi,j

~qG0i,j
{

1

s

Xs

h~1

(~̂uu~uuh)i

0
A{1~̂uu~uuh

j ð4Þ

or

SGC2
Gi,j

~
1

s

Xs

h~1

(~uuh{~̂uu~uuh)i

0
A{1(~uuh{~̂uu~uuh)j , ð5Þ

respectively. These formulas are also convenient for multivariate

models, as shown in Matilainen et al. [4]. An increase in MC sample

size s will give more accurate estimates of the C and Cuu matrices

and, subsequently, more accurate estimates of the gradient.

Elements in the observed information matrix (2) require more

complex calculations than those needed to calculate the gradient

vector (3). Approximations are used here to avoid calculations of

exact second derivatives. In the following section we present three

methods applying the MC sampling scheme. The first method,

which is named MC NR REML, is based on calculation of the

observed information matrix by sampling. The second method,

named MC AI REML, uses MC sampling in the AI REML

algorithm. Finally, the third MC sampling method, named MC

BM REML, is based on Broyden’s method.

MC NR REML. By definition, the expected information matrix

at convergence is

E H(h)ð Þ~E J(h)J(h)’ð Þ~Var J(h)ð Þ:

Monte Carlo Algorithm for REML
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Use of the MC algorithm with independent and identically

distributed samples enables approximation of the information

matrix by the variances of the gradients over the samples within

each NR REML round. Note, however, that (4) needs to be used

to compute the sampling variance of the gradients, because (5)

only gives the variances of prediction error variances. Now, the

information matrix is approximated by

H(h)&Cov J1(h) � � � Js(h)
� 	� �

,

where

Jh(h)~
1

2

G{1
0 ~̂uu~uuh

1 ~̂uu~uuh
2

� 	
A{1 ~̂uu~uuh

1 ~̂uu~uuh
2

� 	
G{1

0

� �
1,1

2 G{1
0 ~̂uu~uuh

1 ~̂uu~uuh
2

� 	
A{1 ~̂uu~uuh

1 ~̂uu~uuh
2

� 	
G{1

0

� �
1,2

G{1
0 ~̂uu~uuh

1 ~̂uu~uuh
2

� 	
A{1 ~̂uu~uuh

1 ~̂uu~uuh
2

� 	
G{1

0

� �
2,2

R{1
0 ~̂ee~eeh

1 ~̂ee~eeh
2

� 	
~̂ee~eeh

1 ~̂ee~eeh
2

� 	
R{1

0

� �
1,1

2 R{1
0 ~̂ee~eeh

1 ~̂ee~eeh
2

� 	
~̂ee~eeh

1 ~̂ee~eeh
2

� 	
R{1

0

� �
1,2

R{1
0 ~̂ee~eeh

1 ~̂ee~eeh
2

� 	
~̂ee~eeh

1 ~̂ee~eeh
2

� 	
R{1

0

� �
2,2

2
6666666666664

3
7777777777775

is a gradient vector calculated based on sample h, h~1, . . . ,s. For

a s66 matrix J, Cov Jð Þ returns a 666 matrix, where the diagonal

has variance within each column in J, and the off-diagonals

contain the covariances between each two-column combinations

in J.

MC AI REML. Johnson and Thompson [17] and Gilmour et

al. [9] presented AI REML noting that computation of the average

of the observed and expected information matrices is easier than of

either of the components:

H(h)&
1

2
y0P

LV

Lhi

P
LV

Lhj

Py,

where

P ~V{1{V{1X(X0V{1X){1X0V{1

~R{1{R{1WCW0R{1:

Define F~½ f1 . . . f6 �, where f i~1,...,6 is

f i ~
LV

Lhi

Py

~Z
LG

Lhi

G{1ûuz
LR

Lhi

R{1êe

~Z
LG0

Lhi

6A


 �
G{1ûuz

LR0

Lhi

6I


 �
R{1êe

Then

y0P
LV

Lhi

P
LV

Lhj

Py~F0PF

~F0R{1F{(CW0R{1F)’W0R{1F

~F0R{1F{T0W0R{1F,

where

T~CW0R{1F:

Hence, in MC AI REML, MC sampling is needed only for

estimation of first derivatives in F, while the average information

can be calculated based on current VC estimates. However, the

algorithm requires additional computations to form F, which

necessitates solving T from the MME with data replaced by

f i,i~1, . . . ,6. Thus, MME needs to be solved for each VC

parameter.

MC BM REML. Broyden’s method is a quasi-Newton method

for numerical solution of non-linear equations [18]. It is a

generalization of the secant method to multiple dimensions.

Broyden’s method updates the inverse of the information matrix

(instead of the information matrix itself) within each round:

H(h){1&B(k)~B(k{1)z
(Dh{B(k{1)DJ)Dh0B(k{1)

Dh0B(k{1)DJ
,

where

Dh~h(k{1){h(k{2)

DJ~J(h(k{1)){J(h(k{2)):

Instead of using true gradients J(h) for both the update of the

inverse information matrix and the update of new estimates, we

used the round-to-round changes in the EM estimates [19]:

DJ& h(k{1){h
(k{1)
EM

� 
{ h(k{2){h

(k{2)
EM

� 
,

where h
(k{1)
EM is a vector of EM REML solutions computed from

the estimates from round (k{1). Apart from scaling, they are

relative to the original gradients. In the beginning, B(0) is identity

matrix I. The first update of the inverse of the information matrix

is made at round k = 2 based on estimates from the first round

k = 1 and initial values at k = 0.

This method leads to superlinear convergence although

sequence fB(k)g does not converge to the observed information

matrix at the maximum [20]. Like with MC AI REML, MC

sampling is not used to estimate the information matrix directly.

Instead, the sampling variation comes in through the gradients

which are used to update the inverse of the information matrix

within each round.

Analysis of test data
For this study we simulated a small data set which mimics a

typical set-up in dairy cattle breeding. The two study traits

resembled 305-day milk and fat yield records in 20 herds. The

base generation comprised 146 unrelated sires, each of which had

1 to 10 daughters with unknown and unrelated dams. Each

daughter had one observation of the two traits, and the data

contained 569 observations for both traits. The pedigree

comprised a total of 715 animals. Fixed herd effects and random

genetic animal effects were included in the study model. Table 1

shows genetic and residual VC in G0 and R0 used to simulate 305-

day milk and fat records. The simulation of observation was based

on the assumed linear mixed effects model and VCs.

All the algorithms used for analyzing the data were implement-

ed in R software [21]. First we applied analytical EM REML, NR

Monte Carlo Algorithm for REML
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REML, AI REML and BM REML. For these analytical analyses

we used convergence criteria based on relative squared changes in

consecutive estimates, with 10210 as the critical value. Each MC

REML algorithm was tested with 20, 100 and 1000 MC samples

per REML iteration round. The MC EM REML algorithm with

20 MC samples per REML round was used as a reference [4].

Estimates from round 2 of MC EM REML analysis were set as

initial values for the Newton-type analyses (Table 1). For cases

where Newton-type algorithms yielded estimates outside the

parameter space, crash recovery was implemented by weighting

the Newton-type and EM REML estimates with a weighting factor

sequentially from 0.1 to 1.0 by 0.1 until the estimated VC matrices

were positive-definite [15].

Convergence of an MC algorithm is difficult to identify, and so

we examined the convergence performance of MC REML

algorithms by continuing an additional 10 REML rounds more

than required by corresponding analytical analyses. The obtained

mean and relative standard deviations of the parameter estimates

over the additional REML rounds are shown in Table 2. Three

convergence criteria presented in the literature were then

calculated for the MC AI REML algorithm. The first is a

commonly used criterion, presented by Booth and Hobert [22],

which is based on a change in consecutive parameter estimates

relative to their standard errors. A value of 0.005 can be used as

the critical value. The second criterion, by Kuk and Cheng [12],

relies on the gradient vector and its variance-covariance matrix.

Their stopping criterion is 90-percent quantile of a chi-square

distribution with the number of parameters as degrees of freedom.

This criterion attempts to stop the iteration as soon as possible.

Finally, from MC AI REML round 5 onwards, convergence was

also checked by a method similar to the one in Matilainen et al.

[4], where the approach was to predict the parameter estimates of

the next round using linear regression on previous iteration

rounds. Here we took the same approach but applied the

prediction method to the gradients instead of the estimates.

Analyses were continued until the critical value of 10210 as a norm

for predicted round-to-round change in the gradient was reached.

Results

Analytical EM REML converged in 401 rounds, analytical NR

REML and AI REML in 5 rounds, and analytical BM REML in

11 rounds. Estimates by analytical algorithms differed by less than

3% across algorithms, as seen in Table 1. The mean and relative

standard deviation for the MC REML estimates obtained from the

additional 10 REML rounds after reaching the convergence point

determined by corresponding analytical algorithms are given in

Table 2. Due to convergence problems in MC BM REML, only

results with 1000 MC samples per REML rounds are reported

here(Table 2). Almost all VC estimates were in good agreement

with the analytical estimates, their means deviating less than 2.5%

from the analytical ones. The exceptions were estimates by MC

NR REML with 20 samples and those for genetic effect by MC AI

REML with 20 samples. The variability of the estimates can be

seen in the relative standard deviations over the last 10 REML

rounds. Round-to-round variation in the MC EM REML

estimates after assumed convergence was only 0.5% for genetic

VC, while MC NR REML and MC AI REML with 100 samples

per REML round would still have relative standard errors of 5%–

8% and 4%–5%, respectively, in the corresponding estimates.

MC REML round-to-round convergence in the genetic

covariance component G1,2 is illustrated in Fig. 1. The straight

lines in the figures represent the estimated genetic covariance (solid

line) and estimated standard error (dashed lines) by analytical AI

REML. Fig. 2 describes the relative absolute difference between

estimates obtained by MC AI REML with different numbers of

MC samples and the true estimate by analytical AI REML.

The standard error of the genetic covariance estimates were

7996 and 8274 by the analytical NR REML and AI REML

algorithms, respectively. Standard errors were not calculated by

analytical EM REML and BM REML. When calculated by MC

NR REML, standard errors for the genetic covariances at REML

round 10 was 11360, 8056 and 8495 with 20, 100 and 1000 MC

samples per round, respectively. Corresponding, standard errors

by MC AI REML at REML round 10 were 8857, 8185 and 8294

with 20, 100 and 1000 MC samples per REML round. However,

it should be noted that these actual numbers of standard errors

may vary from round to round due to sampling.

Of the three different convergence criteria studied for the MC

AI REML algorithm, the convergence criterion presented by

Booth and Hobert [22] gave average values of 0.35, 0.15 and 0.05

with 20, 100 and 1000 MC samples per MC AI REML round,

respectively. This indicates the need for a huge increase in MC

sample size before the critical value of 0.005 proposed by Booth

and Hobert [22] can be reached. Kuk and Cheng [12], in turn,

suggest stopping the iteration at MC AI REML rounds 2, 1 and 1

with 20, 100 and 1000 MC samples per round, respectively. Their

criterion implies relatively small gradients after 1 or 2 steps which

is probably due to large standard errors of the estimates.

According to the convergence criterion in Matilainen et al. [4]

using a critical value of 10210, iteration would stop at MC AI

REML rounds 101, 70 and 44 with 20, 100 and 1000 MC samples

per round, respectively. Because this criterion may be too strict for

practical purposes in MC REML analyses, we also checked

stopping at points when the criterion gave values less than 1028.

This would mean that analyses would be stopped at MC AI

REML rounds 28, 27 and 10 with 20, 100 and 1000 MC samples,

respectively.

Discussion

Whereas the MC NR REML method is easy to implement, it

may require a large number of MC samples to accurately

approximate the variances of first derivatives over samples. MC AI

REML, in contrast, works better even with small MC sample sizes,

because the AI matrix has no extra sampling noise as it depends

only on variance parameters estimated in the previous round. MC

AI REML rounds are computationally more demanding than MC

NR REML, however, because the MME system needs to be solved

Table 1. Variance components used for the simulation, initial
values used for the analyses and estimates by analytical EM
REML.

G01,1
G01,2

G02,2
R01,1

R01,2
R02,2

Simulation value 500.0 14.00 0.800 750.0 29.00 1.400

Initial value 350.3 12.18 0.599 615.8 21.34 1.061

EM REML 511.9 18.11 0.747 842.6 29.10 1.590

NR REML 512.1 18.20 0.730 842.3 29.02 1.607

AI REML 512.1 18.20 0.730 842.3 29.02 1.607

BM REML 512.6 18.08 0.751 841.9 29.13 1.586

The model includes three unique genetic (G0) and three unique residual (R0)
(co)variance components. All values are presented in thousands.
doi:10.1371/journal.pone.0080821.t001

Monte Carlo Algorithm for REML
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at each MC AI REML round as many times as there are VC

parameters to be estimated.

MC BM REML is computationally the least expensive of the

considered methods when the number of REML rounds and the

number of MC samples are kept the same. To circumvent

evaluation of the information matrix, BM REML corrects the

approximation of the inverse of information matrix from round to

round based on the gradients. While the analytical BM REML

worked reasonably well, the small data set in our study required a

large MC sample size for the method to work, which indicates its

sensitivity to changes in gradients from round to round.

Furthermore, MC BM REML is efficient even with a fairly poor

approximation to the information matrix, but extra computations

are needed for standard errors after convergence has been

reached.

The performance of MC NR and MC AI REML was quite

similar to analytical NR and AI REML. The only clear difference

was that, with small MC sample sizes, estimates by MC NR

REML varied more than those by MC AI REML. With 20 MC

samples, the relative standard deviations from the last 10 REML

rounds by both methods were unacceptably high, although MC AI

REML was better. With 100 MC samples per REML round, the

standard deviations were acceptable, and estimates by MC NR

REML showed approximately as much variation as the estimates

of MC AI REML. Thus, the information matrix appears to be

quite accurately estimated in this case. With 1000 MC samples,

variation in MC NR REML and MC AI REML estimates was

almost equal. Genetic covariance estimates by both methods

differed on average from the true value by 5% and 2% with 100

and 1000 MC samples, respectively. Interestingly, such variation

diminished when MC BM REML was applied (Fig. 1c). Why this

did not happen with MC NR or MC AI REML analysis may be

because the diagonals in the approximation of the inverse of the

information matrix were close to unity throughout the analysis,

leading to more like MC EM REML parameter estimates.

For analytical REML analysis, Newton-type REML algorithms

provide much faster convergence than EM REML, leading to

shorter overall solving times with small data sets. The use of MC in

the algorithms speeds up convergence of Newton-type methods,

but sampling variation in the estimates increases compared to MC

EM REML analysis. This is due to multiplication of the gradients

by the inverse of the information matrix, as seen in the increase of

MC noise. If each round of iteration in Newton-type methods

requires many more samples than MC EM REML, overall solving

time will reduced only in case the Newton method can enhance

the convergence dramatically. The solving times were not

recorded in this study because they would only apply to the

model and implementation used. With respect to the total number

of times to solve MME along the analysis, results showed that MC

EM REML with 20 MC samples and 401 EM REML rounds

corresponded to MC NR REML with 100 MC samples and 80

NR REML rounds or MC AI REML with 100 MC samples and

75 AI REML rounds. Thus, the number of times required to solve

MME within a REML round is s+1 for MC NR REML but

sz1zNp for MC AI REML, where s is the number of MC

samples and Np is the number of VC parameters. Hence, in our

example with six parameters, MC NR and MC AI REML clearly

outperformed MC EM REML, especially if we consider that the

analytically implemented NR REML and AI REML needed 5

REML rounds to reach convergence but EM REML needed 401

rounds.

Obtaining a fast algorithm for REML estimation requires

development of a practical convergence criterion for Newton-type

methods. Although convergence is the same regardless of MC

sample size, MC variation affects the values of the convergence

criteria. Further study is therefore needed to define a suitable

critical value for genetic evaluations. Identification of a feasible

convergence criterion also requires deciding which values to use as

the final solutions: the average of estimates over several REML

rounds or simply the estimates at the last REML round.

The performance of MC-based algorithms is the better the

larger the data to be analyzed. With a large data set, the averages

of the gradients for MC AI REML are more accurate also with a

smaller MC sample size, which leads to more accurate moves in

the EM steps of MC BM REML. Most probably the amount of

MC samples needed for sufficiently accurate gradient variances in

MC NR REML will also decrease somewhat. As models grow

larger and more complex, the efficiency of different methods

becomes more difficult to predict. Further experience is especially

needed on the behaviour of MC BM REML in VC estimation of

complex models. A shortfall with respect to MC AI REML is that

the number of times needed to solve MME increases along with

increase in the number of estimated VCs. This fact does not

change even with a large data set, and so MC NR and MC EM

REML may become more efficient than MC AI REML. For

instance, in [4], MC EM REML was used to estimate 96 VCs in a

model describing daily milk yields of dairy cows. Estimation by

MC EM REML with 5 MC samples per REML round required

565 rounds. The same analysis by MC AI REML with 20 MC

samples per REML round should converge in less than 25 rounds

Table 2. Means (relative standard deviation) of estimates over the last 10 rounds by MC REML.

Method G01,1
G01,2

G02,2
R01,1

R01,2
R02,2

EM 20 519.3 (0.5%) 18.30 (0.5%) 0.752 (0.4%) 843.3 (1.1%) 28.98 (1.0%) 1.578 (1.0%)

NR 20 446.8 (60.8%) 15.54 (71.8%) 0.653 (67.5%) 877.3 (32.4%) 30.70 (35.4%) 1.655 (25.3%)

NR 100 509.8 (5.4%) 17.91 (6.4%) 0.712 (7.7%) 842.3 (2.6%) 29.20 (3.4%) 1.620 (3.3%)

NR 1000 510.9 (1.6%) 18.18 (2.1%) 0.730 (2.5%) 843.3 (0.8%) 29.04 (1.0%) 1.607 (0.9%)

AI 20 495.5 (7.2%) 17.44 (8.1%) 0.689 (8.4%) 855.3 (3.4%) 29.57 (4.5%) 1.632 (4.0%)

AI 100 513.4 (4.2%) 18.20 (4.7%) 0.729 (5.2%) 839.9 (2.6%) 28.93 (2.8%) 1.602 (2.4%)

AI 1000 513.8 (1.6%) 18.28 (1.9%) 0.734 (1.9%) 840.3 (0.9%) 28.92 (1.1%) 1.603 (0.8%)

BM 1000 502.1 (3.2%) 17.73 (3.5%) 0.758 (1.1%) 852.7 (1.9%) 29.48 (1.9%) 1.581 (0.5%)

The model includes three unique genetic (G0) and three unique residual (R0) (co)variance components. Values were calculated over REML rounds 402 to 411 for MC EM
REML, 6 to 15 for MC NR and MC AI REML, and 12 to 21 for MC BM REML with 20, 100 or 1000 MC samples. Mean values are presented in thousands.
doi:10.1371/journal.pone.0080821.t002
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to be computationally superior over MC EM REML, given that

the MME solving time is the same for both algorithms.

The estimates of the analyses presented here were weighted by

corresponding EM REML estimates whenever they fell outside the

parameter space. Yet, this does not guarantee convergence to the

true solutions, especially with respect to Broyden’s method. To

avoid divergence, Broyden [18] suggested choosing a scalar

multiplier, i.e., a step length that decreases the change in some

gradient norm and ensures the ascent of likelihood at each step.

Convergence is also guaranteed by the Wolfe conditions [10],

which ensure that steps make a sufficient ascent. However, if the

search direction in BM REML approximates the Newton direction

well enough, the unit step length will satisfy the Wolfe conditions,

as the iterates converge to the solution [10]. Based on our study,

this may mean that the required MC sample size may become

enormous. One way to increase the robustness of VC estimation

algorithms is reparametrization of the VC matrices by Cholesky

decomposition [11]. The performance of this option is worth

considering in future studies.

Conclusions

Our results show that the use of MC algorithms in different

Newton-type methods for VC estimation is feasible, although there

was variation in efficiency between the implementations. An

efficient MC method can achieve fast convergence and short

computing times for VC estimation in complex linear mixed

effects models when sampling techniques are used. However,

Figure 1. Estimates of the genetic covariance component by
Newton-type methods. Analyses by MC NR REML (Figure A), MC AI
REML (Figure B) and MC BM REML (Figure C) with 20, 100 and 1000 MC
samples (green, blue and red line, respectively). MC EM REML with 20
MC samples is plotted as a reference (grey line). The straight lines in the
figures are the estimated genetic covariance (solid line) and plus/minus
one standard deviation (dashed lines) based on standard errors by
analytical AI REML.
doi:10.1371/journal.pone.0080821.g001

Figure 2. Relative difference between MC AI REML estimates
and the true estimate obtained by analytical AI REML. The
relative difference (%) is plotted for MC AI REML estimates with 20, 100
and 1000 MC samples (green, blue and red line, respectively) along the
iteration. MC EM REML with 20 MC samples is plotted as a reference
(grey line).
doi:10.1371/journal.pone.0080821.g002
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analysis of our small simulated data implies that the number of

MC samples needed for accurate estimation is dependent on the

used method. This work encourages testing the performance of the

presented methods in solving large-scale problems.
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