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Abstract
Background: Genomic resources for the majority of free-living vertebrates of ecological and evolutionary
importance are scarce. Therefore, linkage maps with high-density genome coverage are needed for progress in
genomics of wild species. The Siberian jay (Perisoreus infaustus; Corvidae) is a passerine bird which has been subject
to lots of research in the areas of ecology and evolutionary biology. Knowledge of its genome structure and
organization is required to advance our understanding of the genetic basis of ecologically important traits in this
species, as well as to provide insights into avian genome evolution.

Results: We describe the first genetic linkage map of Siberian jay constructed using 117 microsatellites and a
mapping pedigree of 349 animals representing five families from a natural population breeding in western Finland
from the years 1975 to 2006. Markers were resolved into nine autosomal and a Z-chromosome-specific linkage
group, 10 markers remaining unlinked. The best-position map with the most likely positions of all significantly
linked loci had a total sex-average size of 862.8 cM, with an average interval distance of 9.69 cM. The female map
covered 988.4 cM, whereas the male map covered only 774 cM. The Z-chromosome linkage group comprised six
markers, three pseudoautosomal and three sex-specific loci, and spanned 10.6 cM in females and 48.9 cM in males.
Eighty-one of the mapped loci could be ordered on a framework map with odds of >1000:1 covering a total size
of 809.6 cM in females and 694.2 cM in males. Significant sex specific distortions towards reduced male
recombination rates were revealed in the entire best-position map as well as within two autosomal linkage groups.
Comparative mapping between Siberian jay and chicken anchored 22 homologous loci on 6 different linkage
groups corresponding to chicken chromosomes Gga1, 2, 3, 4, 5, and Z. Quite a few cases of intra-chromosomal
rearrangements within the autosomes and three cases of inter-chromosomal rearrangement between the
Siberian jay autosomal linkage groups (LG1, LG2 and LG3) and the chicken sex chromosome GgaZ were
observed, suggesting a conserved synteny, but changes in marker order, within autosomes during about 100
million years of avian evolution.

Conclusion: The constructed linkage map represents a valuable resource for intraspecific genomics of Siberian
jay, as well as for avian comparative genomic studies. Apart from providing novel insights into sex-specific
recombination rates and patterns, the described maps – from a previously genomically uncharacterized
superfamily (Corvidae) of passerine birds – provide new insights into avian genome evolution. In combination with
high-resolution data on quantitative trait variability from the study population, they also provide a foundation for
QTL-mapping studies.
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Background
Under various completed or ongoing projects, rapid
progress has been attained in the generation of genomic
resources for model organisms and domestic animals of
medical, economic, or agricultural importance (e.g. [1-
3]). However, genomic resources for the majority of free-
living vertebrates of ecological and evolutionary impor-
tance are still scarce. For instance, in wild birds, develop-
ment of genomic resources are still in their infancy, and
only few initial efforts in linkage mapping [4-8], estima-
tion of the extent of linkage disequilibrium [9,10], and
syntenic comparison between related species [7,8,11-14] ]
have been conducted. Hence, very limited information on
the genome structure of wild bird species is available for
further synthesis, as well as to study and characterize
molecular underpinnings of phenotypic traits. Since wild
passerine birds are important 'model' organisms in ecol-
ogy and evolutionary biology, and in studies of life history
evolution (e.g. [15]), behaviour (e.g. [16,17]) and evolu-
tionary quantitative genetics in particular (e.g. [18-20]),
knowledge of their genome structure and organization is
vital to advance our understanding of the genetic basis of
ecologically important traits [21].

Genetic maps constitute essential and powerful organiza-
tional tools for genomic research [22]. Among the most
important applications of genetic maps in genomic anal-
yses is in that they provide a platform to support studies
utilizing or aiming to apply candidate gene approaches
[21,23], QTL mapping [24], comparative genomics [25],
and genome annotation [26]. However, construction of
genetic linkage maps for non-model organisms is compli-
cated by several factors [27,28]. One of the major obsta-
cles for the construction of linkage maps in passerine
birds (but see [4]) is the scarcity of informative genetic
markers. Among a variety of molecular makers previously
employed in linkage mapping in different organisms,
microsatellite markers have often proven most useful due
to their hypervariability, fast evolutionary rates, codomi-
nance, wide distribution throughout the genomes, and
the relative ease with which they can be developed and
genotyped using the polymerase chain reaction (PCR; e.g.
[29]). While genetic maps exist in one form or another for
various species, it is worth noticing that the studies are so
far generally limited to domestic animals or natural pop-
ulations of wild species that can easily be bred in captivity,
or where sufficiently large litter sizes are being produced
in natural settings and are accessible to sampling to allow
the establishment of the pedigree necessary for linkage
analysis [9]. Unfortunately, the characteristics that make
populations practical for linkage mapping [9] are found
only among a small fraction of species studied by ecolo-
gist and evolutionary biologists. Linkage maps have now
been constructed in four populations of non-model ani-
mals for which long-term individual-based datasets are

available (see also: [8]), and where natural long-term ped-
igrees (rather than experimental breeding programmes)
have been used to follow the co-segregation of marker
alleles [28]. Two of these mapping populations are in
ungulate species (soay sheep, Ovis aries [24]; red deer, Cer-
vus elaphus [27]) and two are in passerine birds (great reed
warbler, Acrocephalus arundinaceus [4,6,13]; collared fly-
catcher, Ficedula albicollis [5,9,11]).

The Siberian jay (Perisoreus infaustus) is a passerine bird
which has been subject to considerable ecological and
evolutionary research during the past decades. Studies in
its breeding biology [30-33], mating system [34,35], for-
aging behaviour [36], reproductive success [37], parental
care and dispersal pattern [38,39], family structure [40],
phenotypic plasticity [41] and levels of inbreeding [42]
have been conducted. Thus, these previous studies form
an appropriate setting in an initiative to explore the inte-
gration of genomics with the domain of ecology and evo-
lutionary biology [43], provided that at least some basic
knowledge of the species' genome can be obtained. With
an access to detailed pedigrees of a Siberian jay popula-
tion monitored over 30 years [40,42], as well as access to
a novel set of polymorphic microsatellites developed for
this species [44], construction of a linkage map is now
realistic. In an evolutionary context, the chicken genome
sequence [45] released recently facilitates genomic studies
in other bird species by comparative genomic approaches
[13,25]. Moreover, given the early divergence of avian lin-
eages between passeriforms and galliforms (≈ 100 million
years ago; [46]) and the high level of phylogenetic diver-
gence between jays belonging to the Corvidae family and
the other passerines for which linkage maps have been
published (e.g. [47,48]), a linkage map of the Siberian jay
may provide new insights into avian genome evolution,
and thereby also to the extensive morphological, life his-
torical and behavioural diversification within the order
Passeriformes (see [47]).

The aim of this study was to develop a first-generation
genetic linkage map for a wild population of Siberian jays
on the basis of 117 microsatellites, including a novel set
of 108 markers. To this end, a framework map was con-
structed to identify markers whose local relative orders
were statistically well supported with an unambiguous
location in the map. Since heterochiasmy has been
observed in previous studies of many species (e.g.
zebrafish [49]; and great reed warbler [4]), sex-specific
variation in the recombination rate and the genetic map
distance were also investigated. Furthermore, to provide a
comparative perspective to address the evolution of
genome organisation the extent of synteny and locus
order conservation between Siberian jay and chicken was
evaluated by a BLAST analysis against the chicken genome
sequence.
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Results
Characteristics of polymorphic microsatellites
Of the 117 microsatellites scored, six loci (SJ009, SJ046,
SJ048, SJ069, SJ083 and SJ108) were assigned to the Z-
chromosome by observation of complete cosegregation
with sex and the observation of heterozygosity in some
males but none of the females in the pedigrees. None of
the markers examined appeared to be situated in W-chro-
mosome since all the markers had alleles in the males. The
number of informative meioses varied from 33 (SJ047) to
474 (CKL5) with an average of 284.63 informative mei-
oses per locus. More details about levels of genetic varia-
bility (HO, HE and PIC) are shown in Additional File 1.

Genetic linkage maps
An overview of the linkage data is given in Figures 1, 2 and
Table 1 depicting the best-position and framework link-
age maps and their characteristics. Of the 117 microsatel-
lites, 107 loci (91%) were assembled into 9 autosomal
linkage groups (LG1 – LG9) and one Z-chromosome link-
age group (LGZ), and the other 10 polymorphic microsat-
ellites (SJ002, SJ003, SJ005, SJ020, SJ030, SJ034, SJ118,
MJG1, PER1 and LTML8) appeared to be unlinked to any
other marker by two-point analysis with LOD scores < 3.0.
Of the ten unmapped markers, six had less than 60
informative meioses while four had more than 200
informative meioses. Of the nine autosomal LGs, seven
comprised of six or more loci and the remaining three LGs
each contained two or three loci, with an average of ca. 11
microsatellites per LG. For the sex-average autosomal LGs
in the best-position map (Figure 1), the meiotic lengths,
evaluated as the distance between the outermost markers
on each LG, ranged from 10.6 cM (LG09) to 185.6 cM

(LG01) spanning in total 862.8 cM of the Siberian jay
genome. The average marker interval was 9.69 cM calcu-
lated as the arithmetic mean of the map distances between
adjacent markers (Table 1). On the maps, 35.9% (33/92)
of the intervals between markers varied from 0 to 5 cM,
31.5% (29/92) ranged from 5 to 10 cM, and 20.7% (19/
92) from 10 to 20 cM, and 12% (11/92) were > 20 cM.

Sex-specific autosomal maps were also constructed (Fig-
ure 1). The sum of the length of all autosomal LGs was
774.0 cM in males and 988.4 cM in females, with an aver-
age intermarker spacing of 8.6 cM and 12.1 cM, respec-
tively. The male map comprises LGs ranging in length
from 7.7 cM to 171.1 cM while the female map contains
LGs with a length from 9.2 cM to 229.2 cM (Table 1). Out
of the nine pairs of male and female LGs, seven were larger
in the female map and two were larger in the male map.
In total, the autosomal LGs were smaller in males as com-
pared to females with a female-to-male map ratio of 1.28.
The sex-average map was intermediate in length between
sex-specific maps, and 1.12 times longer than the male
map.

Framework markers, which could be ordered with LOD
score of 3.0 or greater (indicating odds of 1000:1), are
indicated in bold fonts in the best-position map (Figure
1). Of the total 107 mapped markers, 81 loci were signif-
icantly ordered in the framework map and most (16/24)
of the remaining loci could be placed with significant sup-
port in either of two alternative intervals. When only the
framework markers were considered, the total size of
autosomal linkage groups was 692.1 cM in the sex-average
map, 649.4 cM in the male map, and 799 cM in the female

Table 1: Characteristics of the best-position and framework maps for Siberian jay

LG Best-position map (cM) Framework map (cM)

No. of loci Sex 
average

� � Average 
inter-
marker 
distancea

Ratio of �/
� maps

No. of loci Sex 
average

� � Average 
inter-
marker 
distancea

Ratio of �/
� maps

LG1 29 185.6 213.6 168.3 6.87 1.27 20 167.0 182.8 156.7 8.35 1.17
LG2 27 181.5 229.2 141.3 6.72 1.62 21 141.3 212.1 116.8 6.73 1.82
LG3 13 182.6 197.9 171.1 16.6 1.16 10 170.2 175.5 171.3 17.02 1.02
LG4 11 98.2 110 86.7 9.82 1.27 9 76.0 88.3 63.8 8.44 1.38
LG5 8 85.2 92.9 82.1 12.17 1.13 7 83.9 93.4 78.4 11.99 1.19
LG6 6 78.2 98.9 65.4 15.64 1.51 3 14.4 15.5 13.2 4.80 1.17
LG7 3 26.4 24.3 32.3 13.2 0.75 2 14.2 9.8 22.4 7.10 0.44
LG8 2 14.5 9.2 19.1 15.5 0.48 2 14.5 9.2 19.1 7.25 0.48
LG9 2 10.6 12.4 7.7 10.6 1.61 2 10.6 12.4 7.7 5.30 1.61
LGAb 101 862.8 988.4 774 9.69 1.28 76 692.1 799 649.4 9.11 1.23
LGZ 6 23.8 10.6 48.9 4.76 0.22 5 22.1 10.6 44.8 4.42 0.24

� Female-specific linkage groups
� Male-specific linkage groups
a The average inter-marker distance is based on the sex-average map
b total autosomal linkage groups
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The best-position linkage groups (male-specific, M; sex-average, A; and female-specific; F) in Kosambi centimorgans for the Siberian jayFigure 1
The best-position linkage groups (male-specific, M; sex-average, A; and female-specific; F) in Kosambi centi-
morgans for the Siberian jay. The markers in boldface font are framework loci with unambiguous relative position between 
each other.
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The framework linkage groups (male-specific, M; sex-average, A; and female-specific; F) in Kosambi centimorgans for the Sibe-rian jayFigure 2
The framework linkage groups (male-specific, M; sex-average, A; and female-specific; F) in Kosambi centimor-
gans for the Siberian jay.
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map (Figure 2 and Table 1). We compared recombination
distances between adjacent framework markers that were
mapped on both the best-position map and the frame-
work map and overall the female-to-male ratio for the
framework map was 1.23, slightly lower than the ratio of
1.28 observed above in the best-position map.

Among the Z-linked microsatellites, all six markers
showed highly significant linkage between each other
with LODs > 37.0. This linkage group spanned 23.8 cM in
the sex-average map, 48.9 cM in the male map and 10.6
cM in female map, which corresponds to a female-to-male
ratio of 0.22. The female linkage map indicates the posi-
tion and approximate extent of a pseudoautosomal region
(PAR) from SJ069 to beyond SJ048. In females, no recom-
bination was observed between SJ083 and SJ046 and no
heterozygosity was observed for these markers; therefore
they must lie outside the pseudoautosomal region, sug-
gesting that the pseudoautosomal boundary lies between
SJ048 and SJ046. As expected, there is considerable differ-
ence in male and female recombination rates for the pseu-
doautosomal region of the Z-chromosome, with the male
distance between SJ108 and SJ069 being 41.7 cM as com-
pared to the female distance of 5.1 cM. This increased sex-
specific recombination rate between the three pseudoau-
tosomal loci was similar to the observations in the pseu-
doautosomal regions of the mammalian sex
chromosomes, for example in humans [50], ovines [51]
and bovines [52]. In the sex-average map, the map density
was 4.0 cM/marker among all Z-linked markers and 3.3
cM/marker among the five framework loci.

Differences in recombination rate between sexes
In addition to a much shorter total length of autosomal
linkage maps in males than in females, the maps allowed
comparison of meiotic recombination rate between sexes.
The sexes show significant differences in recombination
rates, both in general and for specific pairs of linked mark-
ers (Wilcoxon's signed-rank test, P = 0.037; Figure 3 and

Table 2). In the best-position map (Figure 1), the propor-
tion of intervals in the autosomal linkage groups that
demonstrated a higher recombination fraction in females
was 54.3%. Among all adjacent autosomal markers the
recombination fraction was 1.28 times higher in females
than in the males. However, there were exceptions to this
in some LGs, and in some specific intervals within LGs.
For instance, LG7 and LG8 exhibited higher recombina-
tion fractions in males than in females (Table 2). The
number of intervals that show higher recombination frac-
tions in the male map relative to the female map was less,
but not negligible (Figure 3). When investigating the dis-
tortions over the autosomal linkage groups, two of the
nine linkage groups showed significant (P < 0.05) differ-
ence in recombination rate between the sex-specific maps
(Table 2). This was also observed when the overall map
length was investigated for sex-specific difference. All in
all, these results suggest that overall recombination is sig-
nificantly suppressed in male meiosis as compared to
female meiosis.

Comparative mapping
The BLAST searches under both settings generated the
same set of significant hits at 1e-10. We found 25 homolo-
gous (21.4%, 25/117) zebra finch sequences using a
cross-species MEGABLAST search in NCBI's zebra finch
genome database (Table 3). By BLAST searching using two
methods, in total 22 mapped (20.5%, 22/107) and three
unlinked loci for which a homologous sequence could be
identified in chicken were assigned to a chromosomal
location in the chicken genome (Table 3). The 10 Siberian
jay LGs corresponded to five different autosomal and one
Z chromosome in chicken. Loci from the same Siberian
jay LG matched sequences on a single chicken chromo-
some in the BLAST analysis (Figure 4 and Table 3), with
the exception of loci SJ039, SJ101 and SJ076 on the auto-
somal LGs (LG1, LG2, and LG3, respectively) that
mapped to chicken chromosome Z (GgaZ), whereas the
other loci on these LGs mapped to the chicken autosomes.

Table 2: The Wilcoxon's signed-rank test results for recombination fraction (θ) between sexes with linkage groups

Linkage groups Na Average θF
b Average θM

c θF/θM Wilcoxon's signed-rank test (P)d

LG1 28 0.071 0.055 1.29 0.174
LG2 26 0.085 0.054 1.57 0.046 *
LG3 12 0.152 0.133 1.14 0.323
LG4 10 0.101 0.077 1.31 0.038 *
LG5 7 0.127 0.110 1.15 0.687
LG6 5 0.178 0.126 1.41 0.192
LG7 2 0.115 0.145 0.79 0.5
LG8 1 0.09 0.18 0.5 -
LG9 1 0.12 0.08 1.5 -
Total autosomal 92 0.101 0.079 1.28 0.037 *
LGZ 5 0.02 0.094 0.21 0.025*

a number of intervals; b average recombination fraction in females; c average recombination fractions in males; d *, significant, P < 0.05.
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Likewise, most loci on the same chicken chromosome
matched sequences on a single Siberian jay LG, with the
exceptions of three unlinked loci (SJ005, SJ020 and
SJ034) and loci SJ009, SJ039, SJ101 and SJ076 on GgaZ
that mapped to four different LGs, LGZ and LG1, LG2,
and LG3, respectively.

The relative order of the markers mapped to the Siberian
jay LGs was compared with the same loci on chicken chro-
mosomes in Figure 4. The chicken-Siberian jay compari-
son indicated that the order of loci was strikingly different
between the chicken macrochromosomes Gga1, Gga2 and
Siberian jay LG1, LG2 in the best-position map, respec-
tively. Although some loci shared the same relative order
in the two species, large rearrangements of the chromo-
some would have been necessary to give rise to the differ-

ent orders found here. The cases of inter- and intra-
chromosomal rearrangements were involved mostly in
the framework loci and represented a large proportion of
Gga-LG1 that spanned around a 120-cM Siberian jay/20-
Mb chicken interval. The three unlinked loci, SJ005,
SJ020, and SJ034, were located at the distal ends of two
chicken macrochromosomes, Gga1 and Gga2.

Discussion
This study constitutes the first mapping effort of the Sibe-
rian jay genome, and is among the first ones to present a
preliminary linkage map for any entirely natural verte-
brate species from the wild (reviewed in [28]). The linkage
map was composed using 107 polymorphic microsatellite
loci typed on ca. 350 animals, making it one of the most
detailed linkage maps available for natural animal popu-

Female vs. male recombination fraction for 97 pairs of adjacent markers from the 10 linkage groups in the Siberian jayFigure 3
Female vs. male recombination fraction for 97 pairs of adjacent markers from the 10 linkage groups in the 
Siberian jay.
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lations [28]. In fact, it is one of only a few genetic linkage
maps of wild bird species to date. Apart from the revealing
evidence for sex differences in recombination rates, the
constructed maps represent an excellent resource from
which the markers may be selected for future mapping
projects in this and related species, as well as for compar-
ative genomic studies of genome organisation. In what
follows, we will discuss the salient features of the con-
structed linkage maps in comparison to similar maps and
results from earlier studies. In particular, we will pay
attention to sex-specific differences in recombination
rates, map coverage and some other issues deserving
future attention.

Genotyping in the mapping population
The constructed map contains 107 microsatellites, of
which 101 are autosomal, three Z-chromosome-specific
and three pseudoautosomal loci (see below). The ideal set
of molecular marker data for linkage mapping has no
missing values, no genotyping errors and the markers seg-
regate in the expected ratio for the specific type of popula-
tion [53]. In practice, however, mapping data is
compromised in all of these respects. However, as simu-
lated and concluded in previous research [53], the effect
of missing genotypes depends greatly on the sample size:
the smaller the sample, the more severe the effects are
likely to be. In comparison to published simulations, in

Table 3: The homologous loci of microsatellites mapped in Siberian jay on the chicken and zebra finch genome assigned using BLAST 
analyses of the clone sequences of the microsatellites and the homologous zebra finch WGS sequences.

Locus Linkage group Zebra finch Ensemble ID Chicken Ensemble ID Gga a Chicken genome start position (bp)

SJ010 LG1 gb|AC188472.1 NW_001471554.1 Gga1_WGA51_2b 1 9,129,918
SJ016 LG1 - NW_001471545.1 Gga1_WGA43_2b 1 9,256,107
SJ022 LG1 - NW_001471526.1 Gga1_WGA26_2b 1 2,462,620
SJ025 LG1 gb|AC188472.1 NW_001471534.1 Gga1_WGA33_2b 1 20,407,077
SJ057 LG1 - NW_001471554.1 Gga1_WGA51_2b 1 7,801,901
SJ094 LG1 - NW_001471554.1 Gga1_WGA51_2b 1 22,042,793
SJ113 LG1 - NW_001471545.1 Gga1_WGA43_2b 1 8,757,200
SJ020 unlinked - NW_001471529.1 Gga1_WGA29_2b 1 1,098,266
SJ005 unlinked gb|AC188184.3 NW_001471513.1 Gga1_WGA14_2c 1 2,080,202
SJ036 LG2 - NW_001471639.1 Gga2_WGA66_2b 2 20,469,429
SJ072 LG2 - NW_001471633.1 Gga2_WGA60_2b 2 32,273,874
CK.1B5D LG2 gb|AC225878.2 NW_001471639.1 Gga2_WGA66_2b 2 23,539,833
SJ026 LG2 gb|AC206427.2 NW_001471639.1 Gga2_WGA66_2c 2 21,465,630
SJ054 LG2 gb|AC188186.2 NW_001471633.1 Gga2_WGA60_2c 2 6,229,425
SJ116 LG2 gb|AC148379.2 NW_001471633.1 Gga2_WGA60_2c 2 22,279,892
SJ034 unlinked - NW_001471654.1 Gga2_WGA81_2b 2 2,075,856
SJ015 LG3 gb|AC188188.2 NW_001471673.1 Gga3_WGA106_2c 3 3,458,567
SJ032 LG7 - NW_001471681.1 Gga4_WGA107_2b 4 8,679,773
SJ087 LG7 gb|AC155211.2 NW_001471681.1 Gga4_WGA107_2c 4 4,015,500
SJ117 LG7 - NW_001471681.1 Gga4_WGA107_2b 4 8,679,607
SJ049 LG4 - NW_001471710.1 Gga5_WGA136_2b 5 9,314,084
SJ009 LGZ - NW_001488876.1 GgaZ_WGA457_2b Z 1,412,682
SJ101 LG2 gb|AC213969.2 NW_001488849.1 GgaZ_WGA430_2b Z 1,097,987
SJ039 LG1 gb|AC231254.2 NW_001488882.1 GgaZ_WGA463_2c Z 1,315,022
SJ076 LG3 gb|AC188376.1 NW_001488862.1 GgaZ_WGA443_2c Z 825,441
SJ050 LG1 gb|AC189030.1 - - -
SJ051 LG1 gb|AC189030.1 - - -
SJ055 LG1 gb|AC189030.1 - - -
SJ064 LG1 gb|AC206426.2 - - -
SJ112 LG1 gb|AC192320.2 - - -
CK.2A5A LG1 gb|AC188469.1 - - -
SJ029 LG4 gb|AC188184.3 - - -
SJ033 LG4 gb|AC188469.1 - - -
SJ106 LG4 gb|AC188184.3 - - -
SJ017 LG5 gb|AC192320.2 - - -
SJ041 LG9 gb|AC210531.1 - - -
SJ069 LGZ gb|AC188466.2 - - -
SJ083 LGZ gb|AC229626.2 - - -

a Chicken chromosome number; b Via the clone sequences of the Siberian jay microsatellites; c Via the homologous zebra finch WGS sequences
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Comparison of the whole of all sex-average linkage groups in the Siberian jay and the whole of chicken chromosomesFigure 4
Comparison of the whole of all sex-average linkage groups in the Siberian jay and the whole of chicken chro-
mosomes. The homologous loci on linkage groups and chromosomes are presented with their genetic positions (cM) on the 
best-position map or their genomic locations (Mb) in the chicken genome. Siberian Jay marker names in bold font indicate 
framework loci.
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which the results were found to be quite robust with 150
individuals and 10% of missing values, our data had
much less missing values (4.5%) and a larger sample size
(349 individuals). Hence, the potential biases in our map
due to missing values are unlikely to be severe.

Map construction and genome coverage
The resulting linkage map of 107 microsatellites spans a
total sex-average length of 886.6 cM, with 10 LGs. The
number of markers within the data that showed signifi-
cant linkage (LOD > 3.0) with at least one other marker
was very high (107/117, 91.5%), a phenomenon
observed also in a linkage mapping study of the great reed
warbler [53]. Of the 10 unlinked markers (LOD < 3.0),
four demonstrate sufficiently informative meiosis, sug-
gesting that these four unlinked markers were most likely
located on unique chromosomes or chromosome arms.
The haploid number of ca. 40 chromosomes is typical for
passerine birds (e.g. 7 macro-, 32 micro-, and a pair of sex-
chromosomes in the zebra finch genome [54]) and the
chicken genome is composed of 39 haploid chromo-
somes (8 macro and 30 micro, and a pair of sex chromo-
somes [54]). Thus, the presence of small groups and
unlinked markers indicates that appreciable gaps of at
least 29 additional linkage groups should be filled to con-
solidate the Siberian jay map. The discrepancy between
the number of LGs and the haploid number of chromo-
somes has been commonly reported when constructing
linkage maps in avian species (see [4]). These results could
be explained in terms of the non-random distribution of
microsatellites in the avian genome, where microchromo-
somes – typically scarce of microsatellites [55] – consti-
tute a large proportion (ca. 80%) of the total number of
chromosomes.

Considering the avian order Passeriformes, the current
sex-pooled map of the Siberian jay at 887 cM is larger than
recent maps in the great reed warbler (155 – 237 cM [4];
707 – 858 cM [6]), but smaller than those in the collared
flycatcher (1787 cM [7]) and the zebra finch (1068 cM
[8]). The maximum genome coverage of the markers
described in this study was estimated to be 1187 cM (887
+ 200 + 100 cM) (see[56,57]), covering about a third of
the Siberian jay genome of ~3800 cM, if estimated by
assuming a similar genome size as in chicken [54]. It is
clear that some of the microchromosomes are poorly rep-
resented, or not represented at all, in the current map. This
poorer coverage of the microchromosomes, as well as of
the Z-chromosome, is in good agreement with the obser-
vations in chicken [56], Japanese quail [58], duck [3], and
great reed warbler [4,6]. However, it was argued in [8] that
for the whole-genome map of the zebra finch using 876
SNPs the shorter length of linkage map relative to that of
the chicken is ascribed to its unusually lower recombina-
tion rates. Similarly, lower recombination rates and

smaller length of linkage map were also revealed in the
collared flycatchers based on 147 gene markers and 64
microsatellites [7]. Since it has been suggested that passer-
ines generally have lower recombination rates than the
chicken [8], the small map sizes here may also be partly
due to reduced recombination rates in the Siberian jays.
Nevertheless, the first-generation linkage map will
undoubtedly evolve as more markers are added, with
some additional linkage groups forming and some pairs
of now described linkage groups coalescing into a single
group. As linkage maps continue to develop, future work
on the genetic map will increase the genome coverage by
adding more novel genetic markers, for example, 1000's
of SNP loci and additional markers will improve the
resolving power of the map. A more saturated map should
give more information about the genome size, exact kary-
otype number and chromosomal rearrangement of Sibe-
rian jay.

The constructed framework map was comprised only of
loci with unambiguous positions relative to each other. As
shown in Table 2, only a slight expansion of the frame-
work map size was detected when the non-framework
markers were included in the analysis. Non-significant (P
> 0.05) difference in the interval distances between frame-
work markers was found in the sex-specific maps when
non-framework markers were included or not, which can
be due to the fact that most (19/26) of the non-framework
loci still can be placed with significant (LOD = 2; odds of
100:1) support in either of two alternative intervals at
LOD = 3 (odds of 1000:1). However, on the sex-average
maps, a significant (P < 0.05) difference in distances
between framework markers was revealed when including
or excluding the non-framework markers from the analy-
sis. This is probably due to the overall effect of the recom-
bination heterogeneity between the sexes on estimates of
sex-average map distances between framework and non-
framework markers [49]. Thus, our results indicate that
the framework maps can serve as the backbone of the best-
position maps with a high level of confidence. Moreover,
the framework map should also therefore provide a
robust basis with which to apply to other pedigrees and
for comparing genomic rearrangements with closely
related species.

Z-chromosome
By assigning six genetic markers to the Z-chromosome on
the basis of Mendelian inheritance and additional two-
point analysis tests, we found that the recombination
rates in the Z-chromosome linkage group differed sub-
stantially among the sexes. In particular the ratio of
recombination fraction in females (θF) and males (θM),
θF/θM, in the LGZ (θF/θM < 1) contrasted markedly with
those in seven of the nine autosomal linkage groups (θF/
θM > 1). These results conform to the Z-chromosome link-
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age results from the chicken [56] and the great reed war-
bler [4,6], suggesting significant sex-specific heterogeneity
in recombination rate on the avian Z-chromosome.
Between markers SJ046 and SJ069, a small amount of
recombination (recombination fraction θ = 0.02–0.05)
was found to occur between Z and W chromosomes in the
mapping pedigree. Z-W recombination has only once
been previously reported in previous mapping efforts of
birds based on SNPs (see [8]), but equivalent X-Y recom-
bination has been observed in linkage mapping studies of
sex chromosomes in many other species such as in salmo-
nid fishes [59], rainbow trout [60], cattle [61], sheep
[51,62], oyster [63], and humans [64]. However, in con-
trast to increased recombination rates in heterogametic
sex (male, XY) as observed in the pseudoautosomal
regions of above mentioned studies, an overall 8-fold
lower recombination rates between SJ048 and SJ069 were
found in female (ZW) as compared to male (ZZ) Siberian
jays. In addition, it seems as the pseudoautosomal region
is extensive in Siberian jay (15.8 cM/23.8 cM, 66.4%).
While in other species, 13.3% (20.1 cM/151 cM) were
reported for the PAR in the bovine sex-average consensus
map [52], 6.3% (3.5 cM/55.8 cM) in the male-specific and
45.1% (54.2 cM/121 cM) in the female-specific map of
the sex chromosomes in sheep [51], and a very small pro-
portion of PAR in the chicken sex chromosomal maps
[56]. It is unclear why these are so, but potential explana-
tions include the evolutionary strata [65], patterns of
genome variability [66], distribution of sex-biased loci
[67,68], chiasma interference [69] and selection [70] on
the avian Z-chromosome. Since the difference was found
in the recombination rates and the change of genome
structure during the avian evolution between Siberian jay
and other wild bird species, we would like to speculate
that the pattern of genome variability and distribution of
sex-biased loci may have contributed more to this obser-
vation. Further investigations using more pseudoauto-
somal markers are needed to verify this result and
understand its origin and significance.

Recombination heterogeneity
When testing for sex-specific differences in recombination
rates in different linkage groups and over the total auto-
somal map, we found evidence for statistically significant
distortions towards reduced male recombination frac-
tions only in two autosomal LGs, rather than in each of
the nine autosomal LGs. This indicates that the sex-related
differences in recombination rates are confined to certain,
specific parts of the genome. This result is not unexpected
given that in many species there is a large variation in the
recombination rates within and among chromosomes
(see [71,72]). Similar situations of linkage group sex-spe-
cific distortion have also been observed in other species
for example in marsupials (e.g. [73,74]) and in various

aquatic organisms (the pacific oyster [63]; the tiger puffer-
fish [75]; and the turbot [76]).

Sex-specific differences in recombination rates have been
found in a diverse range of organisms from molluscs (e.g.
[77]) and fish (e.g. [49]) to mammals (e.g. pig [78]; cattle
[79]; and human [80]). However, in birds various patterns
have been reported: little evidence of heterochiasmy in
chicken (Gallus domesticus, [54]) and zebra finch (Taen-
iopygia guttata [8]); higher rates of recombination in males
than in females in linkage maps of blue tit (Parus caeruleus
[81]) and collared flycatcher (Ficedula albicollis [7]); and
higher rates of recombination in females than in males in
maps of great tit (Parus major [81]), great reed warbler
(Acrocephalus arundinaceus [4,6]) and house sparrow (Pas-
ser domesticus [14]). The sex-bias (females > males)
observed in Siberian jay conforms to the last pattern
opposing the Haldane's prediction [82] according to
which the heterogametic sex should show lower recombi-
nation rates than the homogametic sex. So far the compar-
ative data suggest a divergence between the genetic maps
of the chicken (higher recombination rate and little differ-
ence in recombination rate between sexes) and the passer-
ines (lower recombination rate and significant difference
in recombination rate between sexes). Interestingly, on
the one hand, we note the pronouncedly different pat-
terns of recombination observed in collared flycatcher
[11], zebra finch [8] and Siberian jay here, all of which are
passerine birds. It has been proposed that heterochiasmy
is the result of sexual selection, with the sex experiencing
the greater variance in reproductive success exhibiting the
lower recombination rate [83]. However, this explanation
may not be relevant here because both collared flycatchers
[84] and zebra finches [85] are polygamous, whereas the
Siberian jay is a monogamous species [34,37], so that the
reproductive success should be very similar between the
sexes. On the other hand, we found that the female:male
recombination rate (1.21) in the best-order map was
much smaller than that observed in the great reed warbler
where it varied from 2.15 (microsatellites[4]) to 1.86
(AFLP markers [6]). This difference is not necessarily bio-
logically meaningful as it could be attributable to less
informative and smaller number of loci (albeit larger
number of individuals) in the earlier studies. Further-
more, since marker density in both Siberian jay and great
reed warbler maps is relatively low and the sex-specific
recombination rates heterogenous among and within
linkage groups, the estimated female:male recombination
rates among the maps may vary if different genomic
regions are mapped

The observed sex-specific recombination rates are poten-
tially influenced by numerous factors, and at the moment,
there is no consensus in respect to the relative importance
of mechanisms accounting for the recombination differ-
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ences (see [63,73]). For example, numbers of hypotheses
including sexual selection [83]), haploid selection [86],
sex differences in the internal or external environment [4]
and sex differences in gene expression [67] have been
evoked to explain the heterochiasmy pattern in birds. In
this long-term isolated population studied here, we
assume that the heterochiasmy could be more or less
attributed to the sexual selection and the sex differences in
the internal environment. However, irrespectively of the
proximate mechanisms, the significant sex differences in
recombination rates in the Siberian jay have obvious prac-
tical implications for future work. For instance, the lower
average rate of recombination in males than in females
should be advantageous for QTL-mapping of genetic traits
in initial low resolution analysis [87].

Conserved synteny, but changed marker order, in a 
genomic comparison with the chicken
The study confirms the remarkable degree of conserved
synteny between passerines and chicken (see [4,6-
9,13,14]), albeit based on only a small number of compa-
rable chromosomes. Surprisingly, loci SJ039, SJ076 and
SJ101 on autosomal LGs were mapped to GgaZ, which
was known to be homologous to Z chromosome in pas-
serines [this study, [8,9,13]]. As argued in [12], this obser-
vation may suggest chromosome fusions/fissions, a
spurious match, or a more complex history of the loci.
Future mapping studies may help to elucidate this. Locus
SJ009, which was identified within the PAR region for the
Siberian jay, was found to be conserved between LGZ and
GgaZ. This is consistent with previous reports of cytoge-
netic and genetic mapping of the Z chromosome that the
PAR region was conserved between chicken and passer-
ines [8,88]. However, this is not the case for the other
three loci (SJ039, SJ076 and SJ101) on the autosomal LGs
in Siberian jay. Thus, there are more inconsistencies than
consistencies in the Z-chromosomal genomic comparison
between Siberian jay and chicken in this study, which is
different from previous results of Z-chromosomal synteny
between the passerines and chicken [9,12,13]. Further
studies to explore the potential explanations are needed in
the future. The BLAST analysis located three unlinked loci,
SJ005, SJ020 and SJ034 on Gga1 and Gga2. This can be
explained by the fact that these three markers had few
informative meioses and therefore low power in linkage
analysis and/or that these loci are located in telomeric
region, which may have a higher recombination rate.
Indeed, as indicated in Figure 4, these three loci are
located to the end of Gga1 and Gga2 in chicken (SJ005 at
2.0 Mb of Gga1, SJ020 at 1.1 Mb of Gga1; SJ034 at 2.1 Mb
of Gga2).

Although synteny was conserved, there were multiple
cases of inter- and intra-chromosomal rearrangements.
Similar patterns have also been observed in other passer-

ine birds on both sex and autosomal chromosomes (see
[9,14]). As a contrast to the previous studies, the extent of
chromosomal rearrangements as observed in the Gga1-
LG1 and Gga2-LG2 comparisons has not previously been
reported. For example, in the comparative mapping anal-
ysis between the zebra finch and the chicken, only a few
instances of inversions and translocations were found for
chromosome 1 [8]. Of the total 22 homologous loci
between chicken and Siberian jay found here, 12 loci (12/
22, 55%) were involved in inter- or intra-chromosomal
rearrangement, while a lesser proportion of the rearrange-
ments were observed in the chicken/collared flycatcher
(26/159, 16.4%) [7] and chicken/great reed warbler (7/
44, 15.9%) comparisons [13]. There are several possible
explanations for the different rates of genome evolution,
e.g. the species-specific differences in rate of mutations
and/or genome evolution could have contributed to the
more or less genetic similarity of different passerines to
the chicken; also, it has been suggested that population
structuring in species with otherwise large population
sizes facilitate chromosomal rearrangements. However,
the scenario outlined here should be considered with cau-
tion because (i) a small number of comparable chromo-
somes (n = 6) was identified here between the Siberian jay
and the chicken; (ii) most of the chromosomal rearrange-
ments are only from three chromosomes (chromosomes
1, 2 and Z). Thus, further extensive comparative mapping
of genomes and genetic linkage maps of the chicken,
zebra finch, great reed warbler and Siberian jay with more
and denser genome coverage should provide a more
detailed picture of marker order rearrangement between
passerines and chicken during avian evolution. Also,
more sequence data to make the genome comparison
between the chicken and the zebra finch, whose genomes
are only currently sequenced in birds, is worthwhile. At
any rate, the important message from our comparative
analyses is that a high level of observed synteny does not
necessarily mean conserved marker order. If the internal
rearrangements tend to occur frequently across the
genome, then map information derived from one species
will not be readily transferable to another.

Conclusion
A salient feature of genetic linkage maps is that they
improve with use. The described linkage maps of Siberian
jay genome presented here, based on a large number of
informative meioses, will serve as a basis for a future high-
resolution map. In particular, the framework map should
enable the rapid construction of the next generation of
higher-density linkage maps. From the evolutionary infer-
ence point-of-view, the linkage maps constructed here
have potential to contribute to our understanding of pat-
terns of genome evolution in birds, and that of passerines
in particular. In addition, despite the need for increased
density of markers, the maps will be also potentially use-
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ful for identifying QTLs and genomic regions related to
traits of ecological importance. Furthermore, because the
maps are constructed with codominant markers, they
should be transportable to other pedigrees in this species,
as perhaps also to closely related species where the micro-
satellites are conserved. Hence, the map will serve as a ref-
erence map for genomic analyses in the Siberian jay, as
well as a useful resource for comparative genomic studies
in birds. Last but not least, given the access to individual
level fitness data from this pedigreed population, the map
might prove useful for more detailed studies in genetics of
fitness and inbreeding depression in this small isolate
population [42].

Methods
Study species and pedigree
The Siberian jay (Perisoreus infaustus) is a medium sized
(body mass ca. 85–90 g) and relatively long-lived (average
generation time ca. 4 years) oscine passerine bird from the
Corvidae family [89,90]. It has a wide geographical distri-
bution range in northern Eurasia where it occurs in the
taiga forests from Fennoscandia to Siberia [40,91]. The
Siberian jay has a stable socially monogamous breeding
system and a prolonged brood care in which the dispersal
of the young is delayed [34,37]. Hence, it lives in small
territorial groups consisting of a breeding (alpha) pair,
their retained offspring and/or unrelated immigrants
[34,39,92]. Genetic diversity and structuring of the species
has been investigated with mitochondrial DNA sequence
analyses [91] and with a few available microsatellite
markers [40,93]. However, its karyotype and genome
structure remain undescribed. So far, 2n = 80 chromo-
somes is common in the order Passeriformes (e.g.
[13,88,94,95]. Likewise, as in all avian species with
heteromorphic sex chromosomes, the sex-determination
in the Siberian jays conforms to the ZW female-ZZ male
system [96].

The material for this study comes from a Siberian jay pop-
ulation breeding at Suupohja (ca. 66°18'N, 29°29'E),
western Finland. Annual individual-level monitoring of
the population began in 1974 and has continued ever
since. More details concerning the study population and
field monitoring activities can be found from
[40,42,93,97]. To obtain DNA, all animals used in this
study were sampled for approximately 200 μl of blood
from the wing vein, or for tail feathers. Pedigrees for the
population were established through direct field observa-
tion in combination with molecular parentage verifica-
tion using microsatellite markers [40,93,97].

The mapping population analysed here was selected from
a large Siberian jay data set comprising more than 1000
individuals. Five major families consisting of 349 animals
(172 males and 177 females) from the years 1975 to 2006

were identified. In the total pedigree, 169 different male
and 142 different female offspring were fathered by 85
males and mothered by 95 females. The five family pedi-
grees used for linkage analysis varied in depth from four
to six generations and ranged in size from 72 to 97 ani-
mals. These family pedigree configurations yield large
numbers of pairwise relationships, which include, but are
not limited to, parent-offspring, full-sibs, half-sibs, grand-
parent-grandchild, great grandparent-great grandchild,
avuncular, half-avuncular, and the first cousin relation-
ships. The complex nature of the pedigree is mainly
ascribed to two properties of the species. One is that the
Siberian jays are philopatric, and some of the young
remain in their natal territories up to the age of three years
[98], such that the offspring occasionally enter the pedi-
gree as parents in subsequent years. The other is that a few
birds in one family are also involved as parental animals
in another family and that several birds are present in
more than one family pedigree. A more thorough descrip-
tion of the structure of the mapping pedigree can be found
from [40,42,93].

Microsatellite markers and genotyping
Genomic DNAs were extracted from blood samples or
from the tail feather shafts using the DNeasy Blood & Tis-
sue Kit (Qiagen, Helsinki, Finland) following the manu-
facturer's instructions as described earlier in [44]. A total
of 117 polymorphic microsatellite loci were used, includ-
ing nine markers previously described in [93], 92 loci in
[44] and 16 developed in this study. Development of the
16 new microsatellites reported in this study was carried
out as described in [44] and sequence data from the loci
have been deposited with EMBL/GenBank Data Libraries
(see Additional File 1). Detailed information of all these
loci including their names, primer sequences, Genbank
accession numbers, repeat motifs and the size range of the
detected alleles is available in Additional File 1. All PCRs
were multiplexed by combining 3 – 4 primer pairs in each
reaction. The amplifications were performed in 10 μl reac-
tions with 2 pm of each primer, 1× Quiagen multiplex
mastermix, 0.5 × Q-solution, and approximately 30 ng of
template DNA. The general temperature profile was 15
min at 95°C, 30 cycles of 30 sec at 94°C, 90 sec at 56°C
and 60 sec at 72°C, followed by a final extension step at
72°C for 10 min. PCR products were analysed on Mega-
BACE™ 1000 capillary sequencer (GE Healthcare Life Sci-
ences, Little Chalfont, UK) and genotypes were
determined using program Fragment Profiler version 1.2
(GE Healthcare Life Sciences, Little Chalfont, UK). In
addition to the studied samples, one negative control and
a reference DNA were included in all the amplifications in
order to exclude the contaminant in the solutions and
standardize the size of allele fragments of samples from
different plates, respectively.
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Genotype cleaning
Identification and elimination of genotyping errors is a
critically important task in genome mapping projects (see
[53]). Several strategies have been applied to identify and
eliminate any latent genotyping errors in this study. Ini-
tially, all individual genotypes were checked manually
before export to Microsoft Excel worksheets. In addition,
genotypes were analysed for Mendelian inheritance in the
known pedigree using the "PREPARE" option in CRIMAP
program version 2.4 [99] and incompatible genotypes
were blanked. These blanks were either refilled with the
correct genotypes after rechecking within Fragment Pro-
filer or after running new PCRs where necessary. If these
'refill's did not work out, genotypes were scored as miss-
ing. In some cases, genotypes that were consistent with
the Mendelian segregation, but highly improbable due to
low relative allele frequencies in the pedigree, were also
eliminated. Moreover, after preliminary alignment, the
CHROMPIC option of the CRIMAP was used to identify
unlikely double crossovers. Data contributing to double
crossovers were re-examined and, if suspect, regenerated
for second analysis. The overall genotype call rate was
95.5% and when possible, missing data (mostly due to
missing DNA samples) were inferred from the genotypes
of parents/offspring.

Linkage analysis and microsatellite characterization
Genetic linkage maps were constructed using the program
CRIMAP version 2.4 [99]. In the analyses, autosomal and
Z-linked loci were evaluated separately. First, the
TWOPOINT option of CRIMAP was used to obtain an
estimated recombination fraction and a logarithm of the
odds (LOD) score for every pair of markers. A widely used
two-point LOD score threshold of three was set as a crite-
rion for significant linkage and was used for configuration
of a linkage group. Then linked markers were ordered
within group following a procedure similar to that
employed in [6]. For multipoint analysis of larger linkage
groups we used the option BUILD to select loci to be used
as a framework for the continuing ordering of them,
beginning with the most informative pair of markers and
positioning additional markers one at a time in order of
decreasing informativeness; the order of selected markers,
also called framework loci, was supported by a LOD score
of three or higher. The remaining markers were added to
the framework map by lowering the LOD threshold value
to 2.0 or 1.0 and were represented as accessory markers in
their most likely or best position. Finally, the options
FLIPS n and FIXED were used to evaluate the statistical
support of the proposed order and the distance between
markers, respectively. With the FLIPS n (n = 3 – 6) option,
it is ensured that the odds in favour of the final order of
each set of three to six markers were at least 1000:1 over
alternative orders. Sex-average and sex-specific linkage
genetic distances were estimated for each linkage group.

Relative mapping distance was further tested within group
using the FIXED option. All map distances are expressed
as Kosambi centiMorgans (cM).

The measures of microsatellite variability, including the
observed number of alleles (AE), observed heterozygosity
(HO), Nei's [100] unbiased estimates of expected hetero-
zygosity (HE) and polymorphic information content
(PIC), were estimated with the Excel Microsatellite Toolkit
3.1 [101].

Comparative analysis
Comparisons of clone sequences of the microsatellites in
Siberian jay with the chicken genome sequence http://
www.ncbi.nlm.nih.gov/genome/guide/chicken/ were
conducted using MEGABLAST http:www.ncbi.nlm.nih.go
v/genome/seq/BlastGen/BlastGen.cgi?taxid=9031. The
orthologous zebra finch sequence was identified by per-
forming another cross-species MEGABLAST search in
NCBI's zebra finch genome resource http://
www.ncbi.nlm.nih.gov/projects/genome/seq/BlastGen/
BlastGen.cgi?taxid=59729. Further, the homologous
zebra finch sequences identified above (including their
flanks) were matched against the chicken genome assem-
bly using the same method as the BLAST analysis between
the microsatellites in Siberian jay and the chicken genome
sequence. The searches were performed following a proce-
dure as detailed in [7,12,13]. At the Expect value E = 1e-5,
initial searches were performed under the default setting
and later searches were under a less stringent set of param-
eters (the so called 'the relaxed setting' in [12]). A locus
was assigned to a specific location in the chicken genome
if (i) it provided a unique hit at E ≤ 1e-10, or (ii) it provided
multiple hits at E ≤ 1e-10 and within the hits the best hit
had an E value at least 10 decimal places lower than the
next best hit (see [12]). All the graphic maps were gener-
ated using MapChart version 2.2 [102].
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