University of Huddersfield Repository

Brice, Heloise, Gill, Duncan M., Goldie, Laura, Keegan, Phillip S., Kerr, William J. and Svensson, Per H.

Stereocontrolled access to optically-enriched oxabispidines

Original Citation

This version is available at http://eprints.hud.ac.uk/13599/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Stereocontrolled access to optically-enriched oxabispidines†

Heloise Brice,a Duncan M. Gill,†ab Laura Goldie,b Philip S. Keegan,a William J. Kerr*ab and Per H. Svenssonac

Received 2nd February 2012, Accepted 22nd March 2012
DOI: 10.1039/c2cc30761h

A range of chiral, optically-enriched bicyclic oxabispidines were prepared from (S)-(-)-2,3-epoxypropylphthalimide using an efficient sequence featuring a stereocontrolled intramolecular Mannich reaction as the key transformation.

Over recent years, molecules possessing both the bispidine (1; X = CH₂; Fig. 1) and oxabispidine (1; X = O) unit have been shown to display a range of biological properties that have made them attractive targets for the pharmaceutical industry. For instance bispidines have been employed in (i) relatively lengthy synthetic pathways, and (iii) a lack of flexibility relating to the substituent groups that can be engaged with a range of higher aldehydes would potentially open expedient access to a series of optically-enriched and further functionalised oxabispidines. According to this strategy and as depicted in Scheme 2, commercially available (S)-(-)-2,3-epoxypropylphthalimide 6 provided the key chiral starting material. This species underwent ring opening with amine 7; following a solvent swap to toluene and addition of catalytic acid, heating at reflux the chiral induction within such asymmetric processes (vide infra). In contrast, chiral oxabispidines (1; X = O) have been the focus of significantly less attention as ligands for use in enantioselective organic reactions, despite the potentially similar chiral environment predicting that these species could act as effective surrogates for the bispidine-based, sparteine 2. Although some stereoselective routes to oxabispidines have emerged recently, the available methods tend to be limited by (i) the requirement for more than one pre-formed chiral substrate, (ii) relatively lengthy synthetic pathways, and (iii) a lack of flexibility relating to the substituent groups that can be introduced around the oxabispidine core.

As part of a search for efficient methods of preparing oxabispidines, we disclosed11 the intramolecular Mannich cyclisation of oxazine 3 shown in Scheme 1.12,13 Based on this established precedent, we envisaged that preparation of chiral amine 11 and engagement with a range of higher aldehydes would potentially open expedient access to a series of optically-enriched and further functionalised oxabispidines. According to this strategy and as depicted in Scheme 2, commercially available (S)-(-)-2,3-epoxypropylphthalimide 6 provided the key chiral starting material. This species underwent ring opening with amine 7; following a solvent swap to toluene and addition of catalytic acid, heating at reflux

Fig. 1 Bridged bicyclic diamines 1 and 2.

Indeed, the rigid and central 3,7-diazabicyclo[3.3.1]nonane backbone within (−)-sparteine 2 is believed to be crucial to

† Current Address: Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK. E-mail: d.m.gill@hud.ac.uk; Fax: +44 (0)1484 473337.

a Pharmaceutical Development, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough LE11 5RH, UK
b Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK. E-mail: w.kerr@strath.ac.uk; Fax: +44 (0)141 548 4822; Tel: +44 (0)141 548 2959
c Pharmaceutical Development, AstraZeneca R&D Södertälje, S-151 85 Södertälje, Sweden
d Applied Physical Chemistry, Department of Chemistry, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
resulted in cyclisation to form acetal 8.14 Prolonged exposure to these conditions did not result in any further elimination of methanol to give the oxazine. Consequently, conversion of the benzylamine to the corresponding CBz protected amines 9 was secured in a single step by treatment with benzylchloroformate.15 Exposure of 9 to refluxing toluene/catalytic acid resulted in smooth elimination to deliver oxazine 10 in 67% yield over 4 steps after silica gel chromatography. Whilst deprotection of the phthalimide with hydrazine16 liberated 11 in an acceptable 70% yield, use of a more practically convenient procedure17 with the less toxic methyamine delivered this key chiral unit 11 in a more appreciable 87% yield without recourse to chromatography.

With amine 11 now readily accessible on scale, appropriate conditions to allow a chemo- and stereoselective annulation process were investigated.6 Initially, the key chiral substrate 11 was coupled with a range of aldehydes to give imines 12, generally as a single geometric (E) isomer. Following the screening of a range of Lewis and Brønsted acids, under a series of conditions, treatment of 12 with 1 molar equivalent of trifluoromethanesulfonic acid (TfOH) at $-$20°C resulted in immediate consumption of the imine substrate. Although isolation and characterisation of intermediate species so formed was not possible, analysis by 1H NMR spectroscopy indicated that neither the imine, nor the oxazine olefinic protons were present at this stage. Accordingly, addition of 1 molar equivalent of methanol resulted in formation of the oxabispidine hemiaminal ether 13 (Scheme 3; Table 1), as a single diastereomer in generally good to excellent yields.

![Scheme 3](image)

Scheme 3 Formation of imines 12 and Mannich cyclisation to give oxabispidine acetals 13.

The 1H NMR spectrum of 13\textsubscript{a} (which is typical of the series) gives the appearance of a mixture of two isomers; variable temperature studies showed that this is, in fact, due to restricted rotation between stable conformations of the carbamate.

![Fig. 2](image)

Fig. 2 The molecular structure of 14 with the thermal displacement ellipsoids set at 50% probability and hydrogen atoms as spheres of arbitrary radius.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Methoda</th>
<th>Acetal Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>A</td>
<td>13\textsubscript{a} 92</td>
</tr>
<tr>
<td>2</td>
<td>ω-Br\textsubscript{C}\textsubscript{H}_4</td>
<td>A</td>
<td>13\textsubscript{b} 96</td>
</tr>
<tr>
<td>3</td>
<td>ρ-MeO\textsubscript{C}\textsubscript{H}_4</td>
<td>B</td>
<td>13\textsubscript{c} 93</td>
</tr>
<tr>
<td>4</td>
<td>ω-CF\textsubscript{3}\textsubscript{C}\textsubscript{H}_4</td>
<td>A</td>
<td>13\textsubscript{d} 76</td>
</tr>
<tr>
<td>5</td>
<td>3Bu</td>
<td>A</td>
<td>13\textsubscript{e} 90</td>
</tr>
<tr>
<td>6</td>
<td>$^\epsilon$-Hex</td>
<td>A</td>
<td>13\textsubscript{f} 76</td>
</tr>
<tr>
<td>7</td>
<td>3Bu</td>
<td>A</td>
<td>— 0</td>
</tr>
<tr>
<td>8</td>
<td>3Bu</td>
<td>C</td>
<td>16 75</td>
</tr>
</tbody>
</table>

a Method A: CF\textsubscript{3}SO\textsubscript{3}H, MeOH, CH\textsubscript{2}Cl\textsubscript{2} to r.t.; B: ρ-TSA (10 mol%), MeOH, 65°C; C: CF\textsubscript{3}SO\textsubscript{3}H, BtH, CH\textsubscript{2}Cl\textsubscript{2} to $-$20°C to r.t.

Table 1 Scope of cyclisation and summary of oxabispidines prepared

Additional, although steric bulk does not appear to compromise reactivity (entries 5 & 6), aldehydes bearing more than one α-hydrogen did not work well (entry 7). This is attributable to the propensity of amine 11 to catalyse competing aldol-type polymerisation of the aldehyde. This drawback was overcome by utilising Katritzky’s technique of stabilising reactive aldehydes as the benzo triazole adduct.19 As shown in Scheme 5, addition of one equivalent of benzo triazole, followed by the aldehyde, led to formation of an intermediate with a complex 1H NMR spectrum assigned as 15. Pleasingly, cyclisation to the oxabispidine acetal 16 occurred smoothly upon treatment with TfOH, although full conversion required that the reaction be run for 18 h at r.t. Additionally, within this revised protocol we discovered that the liberated benzo triazole was a competent nucleophile, leading to direct formation of the stable adduct 16.

With a view to accessing compounds of this class which would have application in asymmetric synthesis, the further functional manipulation of the product oxabispidines was targeted. In this regard and as shown in Scheme 6, compounds 13\textsubscript{a}, c, and e, and 16 were treated with benzyl chloroformate, followed by LAH to give the corresponding N,N'-dimethyl...
oxabispidines 18a, c, e, and g (R = Ph; p-MeOC\textsubscript{6}H\textsubscript{4}; 13Bu; and tBu, respectively) in good yields over two steps.

Compound 13a was chosen as a vehicle to demonstrate the inherent flexibility of this class of intermediate and, as shown in Scheme 7, was efficiently converted to bis-24 amine 19, and both complementary monomethyl compounds 20 and 21.

Crystallographic data for the compound reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC 835119. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk). Further crystallographic information is available within the ESL.
