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Abstract: Sensor networks are increasingly being implemented for environmental 

monitoring and agriculture to provide spatially accurate and continuous environmental 

information and (near) real-time applications. These networks provide a large amount of 

data which poses challenges for ensuring data quality and extracting relevant information. 

In the present paper we describe a river basin scale wireless sensor network for agriculture 

and water monitoring. The network, called SoilWeather, is unique and the first of this type 

in Finland. The performance of the network is assessed from the user and maintainer 

perspectives, concentrating on data quality, network maintenance and applications. The 

results showed that the SoilWeather network has been functioning in a relatively reliable 

way, but also that the maintenance and data quality assurance by automatic algorithms and 

calibration samples requires a lot of effort, especially in continuous water monitoring over 

large areas. We see great benefits on sensor networks enabling continuous, real-time 
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monitoring, while data quality control and maintenance efforts highlight the need for tight 

collaboration between sensor and sensor network owners to decrease costs and increase the 

quality of the sensor data in large scale applications. 

 

Keywords: Sensor networks, agriculture, environmental monitoring, data quality, network 

maintenance. 

 

 

1. Introduction 

 

The rapid development of sensor and wireless communication technologies has increased the use of 

automatic (wireless) sensors in environmental monitoring and agriculture [1]. The availability of 

smarter, smaller and inexpensive sensors measuring a wider range of environmental parameters has 

enabled continuous-timed monitoring of environment and real-time applications [2,3]. This was not 

possible earlier, when monitoring was based on water sample collection and laboratory analyses or on 

automatic sensors wired to field loggers requiring manual data downloading. During the previous 

decades, environmental monitoring has developed from off-line sensors to real-time, operational 

sensor networks [4] and to open Sensor Webs. These are based on open, standard protocols, interfaces 

and web services [5-7].  

Varying terminology, such as wireless sensor networks, environmental sensors networks [4] and 

geo-sensor networks [8], are used interchangeably to describe more or less the same basic concept of 

collecting, storing and sharing sensor data, but employing different technologies or having different 

functional focus [2]. All of these terms refer to a system comprised of a set of sensor nodes and a 

communication system that allows automatic data collection and sharing through internet based 

databases and services [2,4]. The sensor webs are also seen as an advanced part of sensor networks by 

some authors [4,8], while others differentiate between sensor networks and sensor webs. They 

emphasize that the latter are based on open Sensor Web enablement (SWE) standards and web 

services, and that sensor nodes are able to communicate with each other. This makes sensor webs 

interoperable and intelligent systems that can react to changing environmental conditions [2,5,6].  

Along with developments in sensor and communication technology, complex environmental 

problems such as eutrophication and climate change have rapidly increased the need for temporally 

and spatially accurate data [4]. Adaptation to more variable weather and environmental conditions 

increases the importance of (near) real-time information that is valuable in better timing and control of 

agricultural management practices such as irrigation and pesticide spraying, monitoring algae bloom, 

and developing flood and frost warning systems [1,3]. The agricultural and food sector has also faced 

growing demands for traceability and quality of products in terms of environmental impacts of food 

production and food safety. This means optimizing cultivation inputs so that high yields are obtained 

and environmental effects are minimized. Several multinational and national initiatives aiming to 

improve quality of sea, lake and river water need more accurate information on effective means to 

decrease contaminants and nutrient discharges to waters and lower their effects, such as cyanobacteria 

blooms [9-11].  
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In order to function properly, sensor networks for water monitoring and agriculture normally 

require a relatively dense deployment of sensors. This leads to applications that monitor mostly local 

weather and soil characteristics [4]. Agricultural sensor networks have been developed for frost [3] or 

crop pest warning [12]. They are also an essential component in more advanced decision support 

systems (DSS) for crop protection [13,14]. In precision agriculture the studies have been concentrated 

on spatial data collection through mobile, vehicle embedded sensors or in-situ sensors deployed in the 

field [1]. Precision irrigation and fertilization and husbandry monitoring systems based on sensor 

networks have also been developed [1,15]. In water monitoring sensor networks are used for 

monitoring water quality and hydrology of rivers, lakes and reservoirs and for flood warning [4,5,16-

19].  

Although sensor networks still struggle with technical problems, such as energy-consumption, 

unreliability of network access and standard or software mismatches [20- 22], they have already been 

used for long-term monitoring under harsh outdoor conditions. They allow monitoring remote, 

hazardous, dangerous or unwired areas, for instance in the monitoring and warning systems for 

tsunamis, volcanoes, or seismologic phenomena. The sensor webs, in turn, are an emerging 

technology, that is not yet in operational use outside the test beds [6].  

The sensor networks and sensor webs have a profound effect on the collection and analysis of 

environmental data. The data is very heterogeneous and may come from different in-situ, mobile or 

satellite sensors that have different temporal and spatial resolutions that may vary in accuracy and 

content [8]. Furthermore, the user has less control over data quality, and information needs to be 

extracted from a large amount of heterogeneous data. This highlights the importance of comprehensive 

metadata describing the sensors, data, and data quality, as well as the need for effective tools for data 

mining or other data gathering [4]. 

We present here a wireless sensor network (WSN), called SoilWeather, which aims to provide 

temporally and spatially accurate information, data services and (real-time) applications for water 

monitoring and agriculture on river basin and farm scales. We evaluate the performance of the network 

from the data user and network maintainer perspectives, and thus, focus on maintenance and data 

quality issues as well as applications. The technological development, solutions and standards are 

already comprehensively discussed in review articles of Yick et al. [21] and Akyildiz et al. [22]. We 

also discuss the challenges facing the SoilWeather WSN and the opportunities it has provided. Finally 

we conclude with the lessons learned from deployment and 1.5 years of running of network. 

2. SoilWeather sensor network and applications 

2.1. Karjaanjoki river basin 

SoilWeather is an operational river basin scale in-situ wireless sensor network that provides 

spatially accurate, near real-time information on weather conditions, soil moisture and water quality 

with a high temporal resolution all-year round. The network was established in Southern Finland 

during the years 2007 and 2008 and it covers the entire 2,000 km2 Karjaanjoki river basin which is 

located in south west Finland (Figure 1). The catchment is mainly covered by forest (63%) and 

agricultural areas (17.7%). In the north part of the area the River Vanjoki and River Vihtijoki bring 

waters to Lake Hiidenvesi (area 29 km2, mean depth 6.7 m) from which waters flow via River 
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Väänteenjoki to Lake Lohjanjärvi (area 92 km2, mean depth 12.7 m). Finally, the Mustionjoki river 

transports water from the river basin to the Gulf of Finland. In the northern parts of the river basin 

geology is dominated by quartz and feldspar. In the south the bedrock is granite. The soil is mainly 

clay, silt and glacial till [23]. 

Figure 1. Location of the Karjaanjoki river basin in Finland and the intensive measuring 

areas of Lake Hiidenvesi, the Hovi farm and the Vihtijoki sub-catchment. 
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The weather stations are evenly distributed around the catchment (Figure 2). They serve the 

purposes of catchment wide run off modeling. The turbidity and soil moisture sensors are scattered 

around the catchment as well, still majority of them are placed on the areas of different applications, 

which are explained later. Specific nutrient measurement stations are placed totally on the local 

application areas. 

Figure 2. The location of the different SoilWeather WSN stations and sensors in the 

Karjaanjoki river basin. (a) Nutrient measurement stations. (b) Water turbidity sensors. (c) 

Weather stations. (d) Soil moisture sensors.  
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There are three intensively measured areas within the river basin: Hovi farm, Vihtijoki sub-

catchment and Lake Hiidenvesi (Figure 1). The sensors are mainly located on land owned by private 

farmers, who are also the main users of the data. Eleven of the weather stations are placed in or close 

to potato crops for potato late blight warning. In addition data from one weather station close to a 

potato late blight control experiment at Jokioinen outside the SoilWeather network was used to 

evaluate the validity of potato late blight forecasts. The water measurements are obtained mainly in the 

rivers, but also in relatively small ditches and in constructed wetland within the Hovi intensive 

measurement area.  

In the Hovi farm (25 ha) we measured soil moisture, weather and water quality at a field parcel 

level. The Hovi farm in Vakola is owned by the governmental MTT Agrifood Research Finland 

research institute. The soils are mainly clay, silt and glacial till and altitudinal variation is low (up to 

130 m). Crops include barley, grass, turnip rape and wheat. Constructed wetland was built at Hovi 

farm in 1998 for water treatment, biodiversity and landscape purposes. The catchment of the wetland 

(12 ha) is under cultivation. It is a relatively large constructed wetland, ca. 5 % of the whole catchment 

[24]. One turbidity sensor is installed in the middle of the wetland and two spectrometers measuring 

nutrient concentration are located in the inflow ditch and close to the mouth of the outflow ditch of the 

constructed wetland to monitor its effectiveness in nutrient retention. Additionally, there are five 

weather stations in the area of the Hovi farm. (Figure 3).The spatially dense instrumentation of Hovi 

enables monitoring and testing of water protection methods and management practises and studying 

nutrient leaching from agricultural land in varying weather conditions at the field parcel level.  

Figure 3. The locations of the SoilWeather WSN's weather stations, soil moisture sensors, 

nutrient stations and turbidity sensors in the area of Hovi farm.  

  
 

The Vihtijoki sub-catchment, located in the north-west of the Karjaanjoki river basin, is 

instrumented with 25 weather stations and six water turbidity sensors. The turbidity sensors are located 

in the upper, middle and lower parts of River Vihtijoki to obtain validation data for the modelling 
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efforts on transport of phosphorus (P) and total suspended solids (TSS) at a catchment level. Here, the 

SWAT (Soil and Water Assessment Tool) model will be used. SWAT is a catchment-scale model that 

operates on a daily time step [25, 26] and simulates water and nutrient cycles. SWAT model needs 

time series of many weather parameters as a part of input data. We intend to test the sensitivity of the 

model to the frequency of weather stations, i.e. if, and how much, will the results improve when the 

number of the weather stations will be increased in the model-setup, which will be established in the 

Vihtijoki sub-catchment (Figure 1).   

Lake Hiidenvesi is one of the largest lakes in Southern Finland. It has recreational importance and it 

serves as a backup drinking water reserve for the inhabitants of the Finnish capital area. Restoration of 

the lake was started already in 1995 due to low water quality but improvements in water quality have 

not been gained so far [41]. The SoilWeather WSN has been used to monitor the water quality of the 

inflow and outflow of the lake using two nutrient measurement stations and one turbidity sensor.  

2.2. Sensors, sensor network and infrastructure 

The Soil Weather WSN hosts 70 sensor nodes altogether; 55 compact weather stations, four nutrient 

measurement stations, and 11 turbidity measurement stations. Six of the turbidity stations have water 

level pressure sensors as well.  The typical setup of a weather station includes a weather station core 

and sensors for air temperature, air humidity, precipitation, wind speed and wind direction. Connected 

to the weather station cores there are also sensors for soil moisture and for water turbidity so that the 

network observes in its entirety soil moisture in 30 sites, turbidity in 18 sites and water level in eight 

sites.  

 

Table 1. The sensors used and the parameters measured in the SoilWeather WSN. 

Sensor node Sensors  Parameters  Producer's web page 

a-Weather station basic core Pt1000 Temperature www.a-lab.fi 

AST2 Vaisala HMP50   Humidity www.vaisala.com 

Davis Rain Collector II Precipitation www.davisnet.com 

Davis Anemometer Wind direction  

Davis Anemometer Wind speed  

Additional parameters  Decagon ECHO  
(capacitance) 

Soil moisture www.decagon.com 

FDR 
(Frequency Domain 
Reflectometry) 

Soil moisture www.a-lab.fi 

OBS3+ Water turbidity www.d-a-instruments.com/ 

Keller 0.25 bar Water level www.keller-druck.ch 

Nutrient measurement station s::can spectrometer  Nitrate conc. www.s-can.at/ 

Water turbidity  

Water level  

Water temperature  
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Nutrient measurement stations measure water turbidity and nitrate concentration with spectrometers 

employing ultraviolet and visible (UV-Vis) wavelengths. The setup includes also sensors for water 

level and temperature. All the sensor nodes have been geo-located in the field using a hand-held GPS 

device Trimble GeoXT. The sensor nodes, sensors and parameters measured are shown in Table 1.  

SoilWeather WSN uses off-the-shelf sensors, nodes and server services provided by various sensor 

vendors.  Each sensor node has a central processing unit with a GSM modem and SIM-card installed 

either into a weather station core or into a nutrient measurement station. The weather station cores can 

be controlled remotely by SMS messages or locally by connecting sensor nodes to the computer. The 

cores can also be programmed to produce automatic SMS alerts e.g. on drought, frost or moisture 

conditions predisposing to plant diseases. 

The network uses time-based data collection. The frequency for nutrient measurements is once 

every hour, all the other sensors measure once every 15 min. Each sensor node collects and transmits 

the data independently to the database server, either as a SMS message (a-Weather station cores) or as 

a data call (nutrient measurement stations). The weather station cores are wireless and automatic; GSM 

and GPRS techniques are used in the data transfer and storing. GSM modems receive SMS messages, 

GPRS messages are transferred through HTTP interface. These messages are written to a message 

database and decoded with a parser program to measurements and timestamps. This information is 

then written to the final database. 

The near real-time data is available as graphs and downloadable tables in two different internet-

based data services provided by the sensor vendors. One of the services also supports XML-based data 

transfer. Diagram of the data flow in SoilWeather WSN is presented in Figure 4.   

Figure 4. The data flow (white arrows) and communication system with main data services 

of SoilWeather WSN. a-Lab sensor nodes refer to nodes employing a-Weather station 

cores, Luode sensor nodes refer to nutrient measuring stations. 
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The SoilWeather WSN functions all-year round.  Due to freezing of the sensors, measurements are 

less accurate in cold winter times, as there is no heating in the rain gauges or wind sensors. Also, the 

sensors located in rivers may be temporally removed during winter, as moving ice might break the 

sensor probes.  

The weather stations are compact devices including all the sensors installed and they are easy to 

deploy. The weather stations are programmed to connect to the server automatically. For water 

turbidity and nutrient measurements, the easiness of deployment is very much dependent on 

environmental conditions, such as the ground material of the river bank and river bed, the river run-off, 

and existence of constructions. The sensor nodes are transferring data independently, and network is 

flexible to some extent; it does not demand reprogramming or updating of the existing nodes when 

new node or sensor is added. The sensor nodes use a battery package of two 6 V batteries.  

At the moment, the data for the whole network is available only for participants of the project. The 

weather measurements are, however, freely available for the previous month through the open 

interface at the web site http://maasaa.a-log.net/ (in Finnish) and through the web site of Helsinki 

Testbed (http://testbed.fmi.fi/) after registration to researcher’s interface.  

2.3. Data quality control and network maintenance 

We see data quality as a broad concept including aspects of deployment, maintenance, cleaning, 

calibration and automatic data quality control algorithms. Careful deployment of sensor probes is the 

basis for ensuring good data quality. The location of the probe should be representative, considering 

the parameter measured. Weather stations are located in open and relatively flat areas and water 

turbidity sensors in the main run-off in location with no nearby discharging ditches or tributaries. The 

probes are mainly deployed by the same experienced field assistants from nearby MTT Vakola farm 

and by following sensor specific procedure. However, the final location of the sensor probes was 

always decided by the application, and negotiations with the land owners. The probes are also located 

so that they do not hamper cultivation practices or the recreational use of the river. 

All the water and soil sensors are calibrated against water or soil samples, respectively. For weather 

stations no calibration in the field is done. Calibration samples for water measurements are taken once 

a month to ensure the quality of the sensor measurements and the correct functioning of the sensors. 

River discharges are available close to the location of the water measurements. Soil moisture 

calibration samples were taken soon after the deployment. 

Reliable functioning of the sensors requires maintenance often enough. We maintain sensors on a 

regular basis, twice a year, but also occasionally when additional maintenance is needed. The 

maintenance procedure is sensor type specific. For weather stations the batteries are changed once a 

year, the fixation of instruments is checked and fixed if needed, and the equipment is cleaned. The 

water turbidity sensors and nutrient measurement stations need extra care because the optical lenses 

get contaminated in the water. The spectrometers are cleaned automatically with air-pressure and in 

addition manually once a month. Some of the water turbidity sensors are equipped with automatic 

wipers. The wipers were not available during the first deployments so the sensors were manually 

cleaned in regular basis: in winter time every month and in summer time when needed, approximately 

once a week.  
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Automatic data quality control system, that warns when suspicious data is received, was developed 

during the project to notify on maintenance needs. Different kinds of data quality problems that can 

occur in the SoilWeather WSN data are shown in Figure 5. In the first chart (a) there are two 

suspicious spikes in the temperature data. Rather common situation of missing data is shown in the 

second chart (b) and in the third chart (c) the wind speed is for some reason measuring the same value 

(0 m/s) all the time. In the beginning of the project there were only a few stations providing data to be 

checked and the quality control was carried out manually. As the amount of stations, and therefore the 

amount of the data, grew, it was essential to develop an automatic quality control and warning system. 

At the moment the system checks the data from all the a-Lab sensor nodes. For the four nutrient 

measurement stations Luode Consulting handles the quality control manually using their strong 

expertise and experience in this field.  

Figure 5. Problems that have occurred in SoilWeather WSN data. Y-axis denotes different 

parameters and the x-axis denotes time (approx. 1 week). (a) Suspicious spike in air 

temperature data.  (b) Gaps in the air temperature data. (c) Wind speed is constantly 0 m/s 

(no variation). 
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The missing data test checks if the data has been sent correctly. If no observations have come from 

the sensor within the period after the last check, the system saves an error report. Meanwhile the 

missing data test checks long periods of missing data, the second test searches for occasional missing 

values. The third test is for checking if the measurements vary over time. Presumably there is 

something wrong with the station or the sensor if the sensor measures the same value consistently (for 

24 hours in this case). Finally, the range test tests if the measurement lies between predetermined 

range values. For meteorological parameters limit values were configured based on seasonal climate 

extremes and limit values vary according to the month and the climatic zone. The climatic zone of the 

Karjaanjoki river basin is hemiboreal and the range values in this case for air temperature are shown in 

Table 2. Limit values for meteorological parameters are provided by the Finnish Meteorological 

Institute (FMI). Soil humidity, turbidity and water level ranges are defined for every sensor separately, 

depending on the characteristics of soil, riverbed and river hydrology. For every observation the 

system gives an information label (flag) that indicates the quality level of the observation according to 

the range test. The flag value indicates whether the observation is correct (between the range values), 

suspicious (differs slightly from the range value) or wrong (differs dramatically from the range value). 

The range test and the flagging follows the system used in FMI [28].  

Table 2. The monthly range limits (ºC) for air temperature in hemiboreal climatic zone. 

Warning_low and warning_high denotes the range limits for suspicious values, error_low 

and error_high the range limits for meteorologically impossible values.  

MONTH WARNING_LOW WARNING_HIGH ERROR_LOW ERROR_HIGH

1 -37 11 -47 17 
2 -35 11 -45 17 
3 -31 15 -41 22 
4 -19 23 -29 27 
5 -7 29 -17 31 
6 -2 32 -12 36 
7 2 33 -8 36 
8 0 32 -10 36 
9 -7 26 -17 31 

10 -16 19 -26 28 
11 -23 12 -33 20 
12 -35 10 -45 16 

 

All the error messages from the past 24 hours are collected and sent automatically by e-mail to the 

data controller every morning. After the notification, the controller checks the data manually and 

makes the decision weather to inform the maintenance team or not. All the maintenance and the 

cleaning activities are stored in the log file of the sensor node and the log file is available for users 

through the data services. 

2.4. Applications  

SoilWeather WSN is designed to be a multi-functional network.  During the two-year pilot project, 

it has been utilised in the following applications:  
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 in predicting potato late blight risk  

 in developing interpolation methods for weather parameters into 30 m resolution grid  

 in monitoring water quality and nutrient retention in rivers and in constructed wetland 

 in improving hydrological model at river basin scale 

 in leaching model in sub-catchment scale 

 in soil moisture model at field parcel level 

 in precision agriculture.  

It has also been used to study the relationship between local weather conditions and nutrient 

leaching. The network enables monitoring weather-related phenomena, such as heavy rains and the 

nutrient load peaks they induce. The SoilWeather WSN is used in research and in governmental 

monitoring tasks, but also by private farmers, who can use local data in planning and executing 

management practices. Here we present and analyze two applications in detail: predicting potato late 

blight risk in the farms, and the monitoring of constructed wetland. 

Potato late blight caused by an oomycete, Phytophthora infestans, is one of the most devastating 

potato diseases worldwide. The potato crop can be completely destroyed within a few days if the 

weather is conducive for disease progress (Figure 6).  In modern conventional potato production late 

blight can be effectively controlled with a range of chemical fungicides. The potato crop must be 

protected from emergence to harvest for each single day when weather enables late blight infection. 

Fungicide applications are necessary at 3 – 10 days intervals throughout the growing season resulting 

in 4 – 10 consecutive sprays in Nordic production and more than 20 sprays in the most intensive potato 

production regions in Western Europe [29, 30].  

Figure 6. Potato late blight can totally destroy potato crop. Consecutive fungicide 

applications (green area in the front) are needed for effective control of blight. (Photo: 

MTT.) 

 
 

To optimize the number of fungicide applications per season numerous weather based blight 

forecast models have been developed since the 1950s [31]. In the Nordic countries a late blight 

forecast model (NegFry) developed by Fry et al. [32] has been widely used since the 1990s [13]. 

Dramatic changes in the epidemiology of potato late blight pathogen have made the old NegFry model 

unreliable in certain occasions [33, 31]. Therefore a more recent potato late blight model (LB2004) 
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introduced by Andrade-Piedra et al. [34] has been modified for use in the Nordic climate [35]. The 

characteristics of current Nordic potato late blight populations for the model development were studied 

in detail [36] and essential epidemiological parameters needed in the model were updated [37]. Sub-

model calculation periods when the temperature is over 8 °C and relative humidity is over 90 % [35] 

was used to predict blight risk in this study. 

The blight risk was calculated for the 11 weather stations at the potato fields and at the weather 

station at late blight control experiment at Jokioinen. The potato fields were visited twice a week from 

the last week of June to the first week of August. The occurrence of potato late blight was recorded 

and the onsets of blight epidemics were reported in the Web-Blight warning service (www.web-

blight.net). The severity of blight as a percentage of defoliated leaf area was assessed at the experiment 

at Jokioinen three times a week.  

Constructed wetland studies were made during 1999–2002 at the previously mentioned Hovi 

wetland [24]. As for the monitoring of water quality of inflow and outflow, the measurements were 

based on water sampling. Although the sampling earlier was flow-proportional and rather frequent, 

most of the days were left unmonitored. However, these days may include short-termed peaks of high 

runoff, which remain unknown. Typically, the gaps between the sampling days have been filled by e.g. 

linear interpolation, but the loading estimates tend to be more or less erroneous. Flow variations and 

thus also the error is particularly significant in small, agricultural, high-sloped catchments like the 

Hovi farm. For this defect, automatic sensors providing non-interrupted data offer a revolutionary 

improvement. To test this new monitoring approach in wetland research, s::can -sensors (Table 1) were 

installed in October 2007 for monitoring of the water entering and exiting the Hovi wetland at 1-hour 

interval. The first full 1-year results (from November 2007 through October 2008) on the retention 

performance of the wetland were compared with the previous, water-sampling –based results [38]. 

3. Results and discussion 

3.1. Performance of the network 

Several authors have discussed the reliability problems of WSNs. However, reliability is normally 

discussed from a technological perspective. Thus, diagnostic and debugging as well as communication 

protocols are analyzed in relation to the application and power-consumption [1, 21, 22]. These studies 

are important for recognizing missing measurements due to unreliable communication or sensor 

failure, but normally are unable to identify erroneous measurements. Sensor calibration and means to 

recognize and discard data from wrongly calibrated sensors has been also important aspect in ensuring 

data quality [8, 4].  

We analyze the performance of SoilWeather WSN by analyzing both missing and erroneous 

measurements, as well as the maintenance needed. The number and types of the maintenance visits are 

clarified and the problems with certain sensors are examined. The performance of the quality control is 

estimated by analyzing the number of erroneous and missing measurements. The better quality of the 

turbidity data is ensured by installing automatic cleaning wipers. The performance of turbidity wipers 

is analyzed by comparing turbidity values before and after the installation.  

There are several factors related to the communication network, the stations or sensors themselves 

and the outdoor conditions that can interfere with the data. The improper functioning of the 
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communication network can obstruct the data transfer and battery consumption. Under normal 

circumstances, the batteries should function properly for almost a year. However the strength of the 

signal within the GSM network can affect the battery age: a weak signal consumes more power from 

the station than a strong signal. Communication network problems can be seen as missing data or 

delayed data delivery. 

Different problems can occur depending on the location of the station, weather conditions, nearby 

forest stand or the characteristics of the river. For example rain gauges tend to fill with leaves, tree 

needles and bird droppings thus distorting the precipitation data. In winter time the turbidity sensors 

might get broken due to moving ice. The first winter of the project was warmer than usually allowing 

the turbidity sensors to stay in the water for the whole winter without problems of freezing. In normal 

winter (as the second winter was) majority of the turbidity sensors has to be picked up for the coldest 

months.  

Another problem concerning the turbidity measurements is the bio fouling of the optical lenses. 

Especially in summer time this is a big problem and the sensors would require cleaning on a regular 

basis, even daily in the most turbid waters. Also water plants, fish, gastropods or other objects in the 

water may affect the sensors. During the project we have discovered that almost without exception all 

the turbidity sensors need some kind of automatic cleaning system. At this point the wipers have been 

installed on the six sensors that have had most problems with biofouling or on sensors that are a long 

way from the MTT Vakola farm. The drastic effect of a wiper installed to a place that has normally 

very turbid water can be seen in Figure 7.  

 

Figure 7.  An example of the effect of a turbidity wiper installed to one of the SoilWeather 

WSN's turbidity sensors. Turbidity measures a month before and after the wiper has been 

installed. The mean and standard deviation before and after installation. 

 
 

 After the wiper has been installed, the level of turbidity has decreased dramatically. In addition 

there is no sign of the growing trend caused by the gradual contamination of the sensor. The real 

increase and level of the turbidity can now be seen in the data. The single spikes still remain in the data 

as they are caused by occasional disturbances. Obviously the mean value and standard deviation have 

decreased significantly in the study period. The cleaning of the turbidity sensors has probably been the 
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most laborious maintenance task during the project. Furthermore the contamination of the turbidity 

sensors has caused most drastic errors to the data. With the help of the wipers these problems can 

partly be overcome. 

In addition to maintenance of the turbidity sensors, battery problems have been quite major ones as 

well. Before the right composition of the battery package had been discovered, the gaps in the data 

were due to battery voltage decreasing or problems with battery contact. There have been five 

mysterious malfunctions of the stations as well. These stations had to be sent back to vendor and 

wholly repaired and reprogrammed. The main reasons for maintenance, how they occur in the data and 

how many occasions there has been during 1.5 years period are shown in Table 3.  

Table 3. Maintenance intensity of SoilWeather WSN during 6/2007-12/2008.  

  

The automatic quality control and warning system developed for detecting the most drastic errors 

has worked relatively well. Here we analyze the suspicious and erroneous measurements for period of 

four months, from July 2008 to October 2008. Only very small fraction (0.06 %) of the measurements 

was outside the range of the limit values. The total numbers of suspicious and erroneous measurements 

defined by the range test are shown in Table 4.  

 

Table 4. Number of the suspicious and erroneous measurements by range test during 

7/2008-10/2008.   

Parameter Number of suspicious 

measurements 

Number of  erroneous 

measurements 

Air temperature 114 - 

Water level 900 30 

Air pressure  250 - 

Turbidity  323 80 

 

Air temperature was over the range limits for one station in one occasion due to few cold summer 

nights as the temperature decreased under the range value of 0 °C. Air pressure measurements have 

been below threshold value because of the decreasing battery voltage. In this case the problem was 

detected and solved fairly quickly. There have been 900 suspicious and 30 erroneous water level 

measurements. One of the water level sensors was for some reason pulled to the shore and another one 

Problem Manifestation in the data 
Number of 

occasions 

1. Battery voltage decreasing  Missing data and/or air humidity decreases too much  48 

2. Turbidity sensor contaminated  Turbidity values too high and increasing  64 

3. Problems with battery contact Missing data or station down Ca. 40 

4. Organisms on the turbidity sensor Saw tooth pattern in the data several 

5. Rain gauge clogged up No accumulation of the precipitation despite of the nearby rain  18 

6. Station fell down Possible problems with wind data and/or no precipitation 12 

7. Station malfunction Missing  data or station down regardless of battery condition 5 



Sensors 2009, 9                            

 

 

2876

was installed in a place whose water level decreased so much that it had to be moved to another spot. 

The total number of suspicious and erroneous turbidity measurements was ca. 400. These (mostly too 

high) turbidity measurements were caused by single spikes in the data.    

In general the sensor nodes and data transfer have been working well with regards to the missing 

values. At this point we only report the total number of problem occasions. Detailed analysis of lost 

data and their time span will follow later.  For the weather stations the median of the proportion of the 

missing values was 0.6 % and for turbidity measurement stations 1.4 %. Due to different problems 

described earlier the variation was quite high: for some stations there have been missing values for 

over 10 % of the measurements. These missing values have usually been due to battery problems and 

therefore we have not found any differences according to the latitude component for example.  

For good network functioning, it is essential that we are informed as soon as possible if some of the 

sensors or stations are not working at all. Altogether we still see the need to develop further the data 

checks and this way reach an optimal data flow and quality of the data. The present ability to detect the 

most obvious problems is a good start for this.  

3.2. Performance of applications  

Weather stations at the potato fields have been functioning relatively well. In the beginning of the 

season there were some technical errors in the measurement of relative humidity at some stations. The 

problems were solved and correct measurements were obtained during the critical period for potato 

late blight development. Blight risk at all potato fields was low until 9th of July. Between 10th and 25th 

of July there were 10 – 15 days when the temperature was over 8 °C and the relative humidity over 90 

% for more than 10 hours. Blight risk was low from 26th July to 2nd August. From 3rd of August blight 

risk was very high until the end of August. 

Figure 8. Duration of periods (hours), when relative humidity was more than 90 % and 

temperature over 8 °C and progress of potato late blight epidemic (percentage of defoliated 

leaf area) at Jokioinen in non-protected susceptible potato cultivar in 2008.  
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Blight was found at one field at the beginning of the high risk period 12th of July. After the high risk 

period the late blight was present in all fields at the end of July. During August the disease spread 
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rapidly causing severe damage to three fields, where fungicide applications were started too late. In the 

rest of the fields blight was adequately controlled by fungicide applications. Blight risk estimated by 

duration of moist periods was relatively well in line with the observed blight epidemics. 

In the field trial at Jokioinen blight progress was very similar to the potato fields at the SoilWeather 

network. Blight was found the 11th of July but the epidemic developed very slowly until August due to 

rather low blight risk. An epidemic exploded in the middle of August after several successive days 

when relative humidity was over 90 % more than 10 hours (Figure 8). 

In wetland monitoring the turbidity sensors and the weather stations were used. In order to be 

accurate and reliable, automatic monitoring with sensors needs water samples for calibration of 

sensors for the specific conditions of the measurement place. Moreover, concentrations of some 

important substances –such as dissolved P– can not be measured with commonly available sensors 

thus leaving the laboratory analyses of the sampled water as the only option. In this study, a total of 75 

samples  were taken from the inflow water (24 manually and 51 with a refrigerator-equipped sampler). 

As for the outflow, 21 samples were taken manually during the 1-year study period. All water samples 

were analyzed for turbidity and the concentrations of TSS, total P (TP), dissolved reactive P (DRP) 

and nitrate (with nitrite). 

The s::can sensors deployed in the Hovi wetland were calibrated using linear regression equations 

between the sample-based values and the simultaneous recordings of the sensors ("raw data"). Each 

recording of the raw data was then multiplied with the coefficient obtained by the regression equation 

of respective substance (turbidity or nitrate). Such calibrated values were used in the calculations of 

material fluxes. The final data curves were found to correspond well the sampled values [38], which 

suggested that the sensors functioned reliably. 

Because turbidity does not represent an amount of substance in water it can not, like nitrate 

concentration, be directly used in the calculation of material fluxes. Fortunately, in the case of Hovi, 

correlations between turbidity and the concentrations of TSS and TP were very high with a coefficient 

of determination (R2) of 0.86 or more. Thus, we could reliably transform the calibrated turbidity values 

into TSS and TP concentrations by multiplying them with the coefficients obtained from the linear 

regressions. 

TSS and TP retentions in wetland (70 and 67%, respectively) were at a similar or slightly higher 

level than in the previous measurements. Meanwhile the value for nitrate retention (67%) was strongly 

increased. The improved nitrate retention suggests the positive effect of the vigorously expanded 

vegetation during the unmonitored time between the two study periods in the Hovi wetland.  

Wetland measurements with sensors have been thus far successful. The information obtained with 

new technology has not only provided more accurate retention figures, but also given new insight on 

the behavior of TSS and nitrogen in a CW. 

3.3. Benefits and challenges    

Due to the high temporal resolution of the measurements, SoilWeather WSN provides significantly 

more accurate information on nutrient leaching in different weather conditions at parcel level than can 

be achieved by regular sampling. Figure 9 shows turbidity measured with the spectrometer. The 

turbidity measured from water samples during the same time period indicates that most of the nitrate 
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leaching peaks remains unnoticed highlighting the efficiency of sensor networks to monitor irregular, 

short events. The in-situ sensor networks provide point measurements that can be used as input in 

leaching models and, thus, improve the estimates of nutrient leaching at different scales. 

Figure 9. Turbidity samples (dots) and turbidity measured by spectrometer (solid line) 

from the constructed wetland of Hovi.  

 
 

The potato late blight forecast can be applied to justify precise timing of fungicide applications. In 

the future, forecasts for other crops and pests should be developed. Relatively good models that predict 

Sclerotinia diseases of oil seed crops exist [39]. More effort is needed to develop applications for 

cereal diseases while there is clear demand for such forecasts among farmers and advisors. 

On the other hand, as the SoilWeather WSN provides over 30,000 measurements per day and data 

accumulates progressively over time, this poses significant data processing challenges. Due to the 

large amount of data erroneous or missing measurements need to be tracked and when possible, also 

corrected by automatic algorithms. Protocols for error diagnostics and debugging of WSNs have been 

developed that notify when measurements are missing due to communication, device or software faults 

[21, 40]. Determination on erroneous measurements, in turn, is sensor and environment specific, and 

base on statistical calculation and regular calibration samples.  

Good sensor data quality is a critical factor for data users. Evolving standardising and increasing 

joint use of sensor data has been seen to lead to unforeseen data availability in the future [4]. It is also 

more and more critical for data user combining different data sources to be informed of the quality of 

data by providing quality estimates for measurements and documenting data quality and the control 

procedure. Joint use of sensor networks and webs requires development of open standard protocols and 

interfaces as well as open source software products to discover and analyse sensor data from different 

sources [7, 4]. The internet based data services enable easy access to data and metadata by users and 

applications in the case of single sensor network. At the moment SoilWeather data is collected in two 

different servers and respectively in two web services provided by sensor vendors used. In addition, 

the download of the data tables needs to be done station by station. In the next phase of SoilWeather 

WSN, it is important to develop web services so that they support easy data access and use. Also data 

flows from sensors and calibration samples need to be integrated and easily available. 
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If the large amount of data poses challenges to the user of sensor networks, the maintenance of the 

large sensor network is a challenge for the data provider. The monitoring over a large area and 

especially the continuous sensing of water requires maintenance resources. The amount of the field 

work and maintenance costs may be the same as in field logger based sensing. The sensors measuring 

water quality need regular cleaning in the field and calibration samples need to be taken. Depending on 

the locations of the sensor nodes, one field worker can maintain 5-10 sensors per day. Total 

maintenance costs of the whole SoilWeather network including also laboratory analyses of water and 

soil samples, data transfer costs, and costs of replacement parts and batteries are not available yet. Still 

they should not be underestimated, because it plays a key role in ensuring the quality of sensor data.  

Major strength of the SoilWeather WSN is the tight collaboration between three governmental 

research institutes, Agrifood Research Finland, the Finnish Environment Institute and the Finnish 

Meteorological Institute. This way we have been able to establish a multipurpose network requiring a 

wide range of expertise and to develop a wide range of potential applications. The network is also 

established in collaboration with private enterprises including sensor vendors, data users and service 

developers. The low costs of the weather stations make it possible for individuals, such as farmers, and 

for small organizations to participate in the sensor networks in the future. Admittedly, data provided 

by the network would be interesting for other sectors such as tourism and traffic as well. 

Considering the maintenance efforts, increased collaboration, open standard protocols and 

interfaces are seen as being important in the future development of SoilWeather WSN. By 

collaboration it is possible to create a cost-effective monitoring system that covers wide areas, 

provides data of good quality from different types of sensors and encourages joint use of data. 

Maintenance costs are decreased if the work is done close to the sensor location, whereas synergy is 

obtained if data quality procedures and algorithms are defined and developed, and employed together 

over the large group of data providers. When the number of data providers becomes larger, the control 

over data quality decreases. Therefore it is important to ensure that the data collection, processing and 

data quality is well documented and delivered to the users. 

However, this collaboration requires open and widely used technology and standards that enable 

integration of different sensors and sensor data and flexible integration of new sensor nodes as well as 

tools for storing, archiving and delivering of data. The Sensor web enablement (SWE) of Open 

Geospatial Consortium (OGC) provides the needed standards and tools. It is also increasingly tested in 

a range of applications from earth observation through satellites to delivery of hydrological data [7]. If 

this technology shifts to operative use, it would also enable the discovery and exchange of data on a 

larger scale, through organizations, sectors and countries. 

In addition to challenges in data processing and field maintenance we see data sensitivity and the 

attitudes of data providers as a third challenge. Especially if data is to be made freely available through 

web services. In the SoilWeather network, data on water quality is available only for the participants 

of WSN, while the weather data is already publicly available. This is because we want first to ensure 

the good quality of water measurement data by fully operational quality control procedures. However, 

aquatic measurements are also considered more sensitive data than meteorological data. In the case of 

SoilWeather WSN, farmers often do not want nutrient leaching rates available for anybody to follow if 

there is even a minor risk that high rates could cause changes to the management practices of the farm. 

One should, however, notice that the aims of the authorities and farmers are more or less congruent: 
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both of them benefit from low nutrient leaching to the rivers. Thus, it is also a question of attitudes that 

hinder collaborative monitoring of water quality. The water quality data is also sensitive from the 

perspectives of other potential private data providers than farmers. These could be enterprises 

providing drinking water for example. The public sector, in turn, is already opening their large 

environmental databases and supporting joint use of data. For example, the Finnish Environment 

Institute has recently opened a web service, Oiva, which provides most of the hydrological and water 

quality data collected by the environmental authorities in Finland (http://www.ymparisto.fi/oiva, in 

Finnish).  

4. Conclusions 

The SoilWeather network is still in the initial phase of the operation. Thus, not all the maintenance 

and sensor calibration procedures (particularly for soil) are fixed and data quality control algorithms 

for water and soil measurements are under the development. It is already clear that relatively high 

maintenance resources and effective data quality control are needed. However the maintenance efforts 

of the SoilWeather WSN can be decreased to some extent by the efficient organization of work, with 

good collaboration and by technical development of sensors and automatic cleaning systems. The 

amount of field work needed in aquatic data collection is higher than in meteorological and terrestrial 

data collection and the amount of fieldwork needed is expected to be no less than on the conventional, 

sampling based monitoring. 

At the moment, the automatic quality control tests run on the SoilWeather WSN reveal the most 

drastic errors in the data, and warn of missing data. However, there is a need for more sensitive tests. 

Tests that compare the values of neighboring stations would be effective in detecting the faults in 

precipitation data for example. Consistency tests, on the other hand, would test if different parameter 

values of the same station are physically and climatologically consistent. For example the values of 

turbidity and precipitation or turbidity and water level depend on each other.  

In the future development of SoilWeather WSN, we have to address three major challenges: 1) a 

large amount of data, 2) cost-effective maintenance of WSN and 3) the sensitivity of the data and the 

attitudes of data-owners towards data sharing. These challenges from user and data provider 

perspectives need to be considered when building operational environmental monitoring systems over 

a large area. However, we see the benefits of continuous environmental monitoring, and the increased 

accuracy of provided data, large enough to motivate overcoming the challenges. Furthermore, 

challenges may be partly overcome by good collaboration and development of tools for data quality 

control and data processing. To ensure the quality of data and decrease the heterogeneity of 

measurements, there is a need for handbook for WSN data providers on how to carry out automatic 

monitoring of environment, particularly related to the water measurements. 

SoilWeather WSN is currently functioning and funded on a project basis. A great challenge will 

then be to find sustainable longer term funding. The obvious options are governmental funding or 

funding through beneficial business models that are developed on the WSN.  
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