
ABSTRACT

Magnitude-frequency relationships of natural hazards
can be expressed in a visual form through a dartboard
model. The rings of the dartboard can be drawn to repre-
sent magnitude, exceedance probability, average recur-
rence interval, or any other relevant statistic. Dartboards
can be constructed from magnitude-frequency functions
or from historical data, making it possible to model a wide
variety of hazards. The dartboards can be used to engage
students at different levels of preparation, in different con-
texts, and for different lengths of time: “playing” the dart
game may consist of conducting a thought experiment, ac-
tually throwing at a physical dartboard, or simulating
events based on a computer program. Playing the dart
game helps students to understand how a magni-
tude-frequency relationship results from a sequence of
events. Dartboards mitigate the misconception that pro-
cesses occur periodically (e.g., “the 100-year flood”) by
emphasizing the random nature of hazards. The dart
game also helps students to visualize the long-term conse-
quences of living in a hazardous location. Dart games pro-
vide a context in which geoscience students can learn
about statistics, simulations, and the testing of models
against data.

Keywords: Education - Geoscience, Engineering and Envi-
ronmental Geology, Miscellaneous and Mathematical Geology,
Education - Computer Assisted

INTRODUCTION

The migration and changing pattern of human habitation
without knowledge of, or regard for, geologic hazards is a
serious problem around the world. For example, coastal
populations in the U.S. have grown to the point where
Federal Emergency Management Agency consultants re-
port that evacuation in advance of a hurricane in some ar-
eas is impractical (Hampson, 2000). It is ironic that during
the same time period in which U.S. coastal populations
grew, satellite, buoy, and computer technologies were
giving us unprecedented abilities to monitor and model
the oceans. This example suggests that scientific under-
standing of hazardous phenomena needs to be more effec-
tively communicated to citizens, policy makers, and
planners. Thus, an important outcome for geoscience ed-
ucation at all levels and in all forums should be an im-
proved understanding of geologic hazards, including the
ability to understand risk. To take steps to avoid or miti-
gate hazards, people need to be able to correctly visualize

the long-term consequences of inhabiting a hazardous lo-
cation, and hazard recurrence statistics are the basis for
long-term visualization.

Undergraduate textbooks and laboratory manuals
typically seek to develop students’ understanding of haz-
ard recurrence by simplifying information that a profes-
sional might describe in terms of a mathematical
probability distribution. For example, the “average recur-
rence interval” (ARI) is “the length of time that can be ex-
pected between events of a given magnitude” (Pipkin &
Trent, 1997). The ARI often appears in introductory text-
books in the form of the “100-year flood” (e.g., Keller,
1999, Montgomery, 1997; Pipkin & Trent, 1997). The ARI
suffers from a weakness that many averages do: it is fine
for summarizing the past, but is of limited use in visualiz-
ing the future. For example, the fact that the average daily
precipitation in Philadelphia in July is 0.14 inches could
not possibly prepare one for the actual dry days, brief
showers, heavy thunderstorms, and occasional hurricane
that comprise that average. The inadequacy of an average
is particularly great when the distribution it applies to is
highly skewed and this is the case for the distribution of
intervals between random events.

Without an accurate way to visualize how the ARI
translates into future outcomes, people tend to rely on an
intuitive — and inaccurate — interpretation of the “100-
year flood”: a flood that happens every 100 years. Thus,
the ARI engenders a quasi-deterministic notion of hazard
recurrence and is responsible for statements sometimes
made in the aftermath of 100-year floods that “we don’t
have to worry again for another 100 years.” Such a faulty
model of recurrence makes it difficult for students to ap-
preciate risk as a quantity that depends on the probability
of an event and the consequences of that event. In class-
room discussions, some students opt to not mitigate the
risk posed by hazards with ARIs greater than 150 years,
regardless of the magnitude of the consequences, because
they believe an event will not occur during their lives or
the lives of their immediate family. Others insist that miti-
gation should entirely eliminate the risks posed by dan-
gerous hazards, regardless of expense, to achieve an
“infinite” recurrence interval. We must challenge these
extreme attitudes about risk so that our students can play
more constructive roles in societal decision-making.

Margolis (1996) points out that intuitive misconcep-
tions (i.e., hazard recurrence following a fixed interval)
cannot be displaced merely by providing a logical and
technically “correct” alternative: “it takes a cognitively ef-
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fective rival intuition to challenge an intuition” (Margolis,
1996, p. 52). Thus, verbal warnings to students about mis-
interpreting the ARI (e.g., Montgomery, 1997, p. 134) are
not likely to be effective. Educational activities that in-
volve students in calculating ARIs from data (e.g.,
Saini-Eidukat, 1998; Dupre & Evans, 2000) are valuable for
building computational skills but do not challenge stu-
dents’ intuitions about the ARI statistic. Mattox (1999) has
suggested that students simulate the random aspects of
the recurrence of volcanic eruptions by drawing aces from
a deck of cards. This idea has merit because it provides
students with a means to generate easily visualized “fu-
tures” and it might be generalized to other types of haz-
ards. On the other hand, it simulates the timing of
eruptions without taking into account differences in their
magnitude (e.g., eruptive volume). Hall-Wallace (1998)
shows that a laboratory-based sliding block model of
earthquakes can simulate realistic aspects of actual earth-
quake sequences, including differing magnitudes of slip.
This approach also provides students with “futures” but
requires apparatus, extended lab time, and is not easily
generalized to other hazards.

In this paper I present a pedagogical tool, the risk
dartboard, that can help to displace the inaccurate concep-
tion of hazard recurrence fostered by the ARI. The design
of a dartboard embodies the magnitude-frequency rela-
tionship that underlies a hazardous phenomenon:
“throwing” a dart at random “selects” the magnitude of
the largest event likely to occur within a given time inter-
val; a sequence of throws simulates recurrence over time.
A dartboard’s simple geometry— a set of concentric cir-
cles— uses the fact that circular areas scale as the square of
their radius to make a larger range of magnitudes visible
than a linear model (e.g., a probability line) could.

Like the exercises developed by Mattox (1999) and
Hall-Wallace (1998), throwing darts at a risk dartboard
lets students visualize “futures” through simulation.
Most students have thrown darts at a dartboard and most
can appreciate the strong influence of randomness on
their throws, particularly if from a distance. Students also
intuitively understand that the chances of a random throw
hitting an area on the board is proportional to that area; for
example, the bull’s eye is unlikely to be hit because it has
such a small area. Students also know that darts is a game
in which throws are made repeatedly. The dartboard
model is predicated on repeated throws at the board at
regular intervals without end, just as in real life we can’t
just stop playing the “hazard game” (although we might
change the odds, say through hazard mitigation or by re-
location).

This paper provides numerical methods for con-
structing dartboards as well as some examples. Dart-
boards can be customized to model the recurrence of
particular hazards. For example, phenomena local to the
user could be modeled to make students more aware of
hazards in the nearby environment. The model can be
used to engage students in classes at different levels of
preparation, in different contexts, and for different lengths
of time: “throwing” may consist of conducting a thought

experiment, actually throwing at a physical dartboard, or
simulating hits based on a computer program.

DERIVATION OF DART MODEL CONCEPTS

Depending on the hazard considered, the information
about recurrence needed to construct a dartboard may be
available in different forms. To be concrete, suppose we
are dealing with earthquakes, characterized by magni-
tude, m. A magnitude-frequency relationship of the form

Log[N(M)] = a - bM (1)

typically describes recurrence data well. N(M) is the frequency,
or rate of earthquake recurrence, (number of quakes/year) with
magnitude greater than a specified magnitude M, and “a” and
“b” are constants determined empirically from data within a
given region. Normalizing N(M) to the number of earthquakes
which exceed some lower limit, mLOWER, yields a function which
describes the probability of an event with a magnitude, m,
greater than a specified value M. This probability distribution is
referred to as the exceedance function (or survival function;
Hastings & Peacock, 1975), S(M).

For earthquakes,

S(M) = 10(a - bM) / 10(a - bml) (2)

Log[S(M)] = b(mLOWER-M) (3)

The solid line in Figure 1A is a graph of Equation 3 us-
ing the b-value for earthquakes occurring worldwide
(Turcotte, 1992) and with ml = 5. Dashed lines X, Y, and Z in-
dicate M = (5, 6, 7), respectively. The graph shows that the prob-
ability of an earthquake with m > 5 is 1, with m > 6 is 0.1, and
with m > 7 is 0.01.

On a risk dartboard, the probabilities are converted to
areas relative to the area of the entire dartboard. For ex-
ample, line X on Figure 1B corresponds to ml, defines the
margin of the board, and thus encloses the entire area in
which throws may land. Line Y encloses an area 0.1 of the
entire area; line Z encloses 0.01 of the entire area. A dart
landing inside line X (m > 5) but outside line Y (m � 6) falls
in the ring labeled “m = 5 to 6.” The area of that ring is (1.0
- 0.1) = 0.9 of the entire area. The number of rings on the
board can be selected to satisfy any need but experience
shows that fewer rings (< 5) are better because the differ-
ences between areas are easier to see.

To generate the circles that make up the dartboard al-
gorithmically, define a vector of magnitudes starting with
mL and ending with the maximum magnitude, mmax,
which will define the bull’s eye M: = (mLOWER,…,mmax ).
The corresponding vector of radii of circles is

r = (R,…,rmin) = [S(M)]1/2 R (4)

where R is the radius of the edge of the dartboard and rmin

is the radius of the bull’s eye circle. Values of radii could
easily be calculated from Equation 4 using formulas in a
spreadsheet.
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It is important to note that the choice of a value for mL

not only establishes the size of the circles on the dartboard
but also the rate at which darts are thrown at it. For the
case in which ml = 5, 1000 earthquakes with m > 5 occur
worldwide in a year, using a = 8 and b = 1 (Turcotte, 1992)
in Equation 1. Thus, the dartboard in Figure 1B represents
the magnitude-frequency distribution of earthquakes
worldwide if 1000 throws are made in one year. The value
of ml should be selected so that the rate of throwing can
help students understand hazard recurrence. For exam-
ple, suppose that one dart is thrown each day, so that the
rate at which earthquakes will be generated is one per day
or 365 earthquakes per year. Students can imagine that
the throw “determines” the magnitude of the largest
earthquake for that day. To construct a dartboard to make
use of this rate for worldwide earthquakes, Equation 1 is
rewritten to find the value of mL that is consistent with the
specified frequency, NL:

mLOWER = [a - log(Nl)]/b (5)

Using a = 8, b = 1 (Turcotte, 1992) and NLOWER = 365 per
year, yields mLOWER = 5.4. Figure 1C shows a dartboard
constructed for daily simulations of worldwide earth-
quakes using these values.

Risk dartboards can be constructed for any measure
of hazard magnitude x (e.g., volcanic eruptive volume,
tsunami run-up height) provided that the magni-
tude-frequency relationship, N(x), can be solved for xl.
Equation 4 is valid for any S(x). In my experience, N(x) can
often be written in either exponential (e.g., Equation 1) or
power law form.

The decision that throws should be made at regular
intervals, along with a model that places a lower limit on
magnitude (the edge of the dartboard), means that the
dartboard models only approximate the distribution of
the largest events within an interval. Consider the situa-
tion in Figure 1C in which one dart is thrown daily. The
smallest earthquake which is modeled has a magnitude
greater than 5.4. In reality, days do go by without an
earthquake exceeding that magnitude. In effect, the dart-
board censors part of the allowed distribution of magni-
tudes to achieve simplicity in form and use. This
simplification can be justified on the basis of improved un-
derstanding for students at the introductory level. Only
the distribution of the smallest events, which are likely to
be of the least interest, is affected. For students at an ad-
vanced level, discovering and analyzing the inaccuracies
of the model may provide another learning experience.

Figure 1. A. (top left) Survival probability plot for
worldwide earthquakes. Solid line is the survival func-
tion based on a = 8 and b = 1 (Turcotte, 1992), and mL =
5. Dashed lines X, Y, and Z plot as circles in B. B. (top
right) Dartboard for worldwide earthquakes based on
1000 throws per year. C. (Bottom left) Dartboard for
worldwide earthquakes based on daily throws.



DARTBOARDS IN CLASS

It is important that students understand that the dart-
board is not a purely theoretical construction but is a way
to model the future based on the past. Students could
search the internet or other sources for historical data, but
a simple classroom exercise can be used to let them con-
struct their own data. For example, each student in class
could flip a coin 12 times and record the number of heads.
The absolute deviation of the number from the expected
value (e.g., 4 and 8 both have an absolute deviation of 2
relative to the expected value of 6) provides a “magni-
tude,” and large deviations are more rare than small ones.
Table 1 shows data from a random simulation of the coin
flip experiment that might result if performed by 50 stu-
dents. The data in Table 1 are used to construct the dart-
board in Figure 2. In this case, where the magnitudes are

integers, the rate function, N(x), and survival function,
S(x), are modified slightly to include values greater than or
equal to the given magnitude. The skill level of the stu-
dents and the course objectives will determine how much
of the calculation and dartboard construction is carried
out by the students and how much by the instructor.

Once the dartboard is constructed, using it will help
students deepen their understanding. For example, if the
dartboard rings were constructed on a Velcro surface, stu-
dents could throw a light fuzzy ball to simulate the out-
come of flipping a coin 12 times, and they could build up a
record of outcomes over time. The same process might be
carried out using a computer program that displays ran-
dom hits on the dartboard. Students could use their re-
sults to make the point that random throws at the
dartboard will reproduce in a statistical sense the data that
went into making it. However, they also could learn that
simulations are subject to the limitations of the data. For
example, comparison of their dartboard with theoretical
values of the circle radii based on the binomial distribu-
tion (Table 1, Column G) would show that the recurrence
model is not perfectly accurate, particularly for the larger
events because they were rare or absent in the data. In a
class of 50, it will be unusual for magnitudes as large as 5
or 6 to occur. Thus, there is no information to construct
circles for those outcomes, even though knowledge of the
recurrence of large magnitude events may be most impor-
tant.

Using local hazards - Dartboards can be used to make
the meaning of local hazards more clear. Annual peak
flows, Qann, for Brandywine Creek, a stream near West
Chester University, were obtained online from the USGS
for the Chadds Ford, PA, gaging station. ARIs were found
using the ranking method (e.g., Keller, 2000), and survival
(or exceedance) probabilities were calculated from the re-
ciprocals of the ARIs. The survival function for the data
was determined using least squares procedures, as shown
by the best fit line (Figure 3). Note that the equation for
S(Qann) is only valid as a survival function for S(Qann) � 1,
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A B C D E F G

X Description n(x) N(x) S(x) r(x) r*(x)

0 Inconsequential 11 50 1.00 1.000 1.000

1 Very minor 16 39 0.78 0.883 0.880

2 Minor 14 23 0.46 0.678 0.623

3 Moderate 6 9 0.18 0.424 0.382

4 Severe 3 3 0.06 0.245 0.196

5 Very severe 0 0 0.00 0.080

6 Catastrophic 0 0 0.00 0.022

Table 1. Simulation of coin toss experiment by 50 students. A. Absolute deviation, x, used as hazard magnitude.
B. Descriptors to motivate connection of coin toss to hazards. C. Frequency, n(x). D. Cumulative rate, N(x). E.
Survival function, S(x). F. Radii of circles, r(x), calculated from values of S(x) and plotted in Figure 2. G. Exact
radii of circles, r*(x), from the binomial distribution model of the coin toss experiment.

Figure 2. Dartboard for the sample coin-toss data in
Table 1. Labels indicate size of deviation in Table 1,
Column A.
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which corresponds to Qann � 3300 cfs. For annual peak
flows, it is not valid to construct a dartboard to simulate
throws on any interval less than a year: each datum is the
largest flow within a water year and thus these data pro-
vide no information about floods on a time scale shorter
than a year. If data for all flows above base were used,
dartboards for shorter throwing intervals could be con-
structed.

Using the dartboard to simulate flood flows for
Brandywine Creek by yearly throws (Figure 4A) is based
on the survival relationship shown in Figure 3, with the
rings on the dartboard marked in terms of Qann values. Al-
ternatively, the dartboard can be constructed in terms of
stage to make it easier to visualize the height of the water
and its possible effects on the area around Chadds Ford.
Stages were found by using a present-day flow-stage rela-
tionship (i.e., rating curve) for the Chadds Ford station to
convert the survival function from flow to stage. Figure
4B shows the dartboard with the rings calibrated in feet
above flood stage. Students at West Chester University
may remember the damage caused in September 1999
when precipitation from Hurricane Floyd caused the
Brandywine to crest near 8.1 feet above flood stage. A dot
(F) on the graph marks a possible dart “hit” that would
simulate a flood of that height.

Average recurrence intervals - The significance of ARIs
can be demonstrated neatly using risk dartboards. Figure
5A shows a dartboard based on yearly throws that could
be used for comparison with the flood flow and flood
stage dartboards (Figures 4A & 4B, respectively). The cir-
cles on the dartboard in Figure 5 are annotated using ARIs
(top half) and exceedance probabilities (bottom half).
Playing the dart game in Figure 5A immediately exposes
the misconception that a 100-year flood occurs “every 100
years”: every region on the board is accessible to a hit on

every throw. Another misconception is that the 100-year
flood is an event of a specific magnitude. The dartboard
shows that such a “model 100-year event” is not expected
to occur: it would result only if a dart would hit the circle
itself, which is in theory infinitesimally thin. Rather, the
100-year event is any flood that exceeds the flood magni-
tude that defines the outer limit of the bull’s-eye area.

It is important to realize that the dartboard in Figure
5A pertains generally to all hazards to which dartboard
models apply. This is because the circles are defined
based on probability points of a distribution (e.g., the 1%
exceedance probability) rather than on a specific value of
the distribution (e.g., 10000 cfs), which might correspond
to very different probabilities for streams of different
sizes. The circle that encloses 1% of the area of the dart-

Figure 3. Survival probability plot for annual peak
flow in Brandywine Creek at Chadds Ford, PA based on
data obtained online from the USGS (). The survival
function (solid line) is based on least squares regres-
sion of the exceedance probabilities.

Figure 4. A. (top) Dartboard for annual peak flow (103

cfs) in Brandywine Creek at Chadds Ford, PA based on
annual throws. B. (bottom) Dartboard for annual peak
stage (feet above flood stage) in Brandywine Creek at
Chadds Ford, PA based on annual throws. Point F rep-
resents a dart throw that would yield a flood equiva-
lent to that caused by Hurricane Floyd in 1999.



board represents an exceedance probability of 1% for any
hazard. The exceedance probability and ARI are related
through the frequency of throws. For a throw every year,
the exceedance probability of 10% corresponds to an ARI
of 10 years (1 year/10 years = 10%); for a throw every 10
years, the exceedance probability of 10% corresponds to
an ARI of 100 years (10 years/100 years = 10%).

An ARI-based dartboard can easily be used to stimu-
late thought about how risk is aggregated over periods of
time longer than a year. For example, 10 years of occu-
pancy on the 100-year flood plain is riskier than living
there one year. The ARI dartboard drawn for one throw
every 10 years (Figure 5B) simulates the largest magnitude
flood one would experience from living on a 100-year
flood plain for 10 years. The 100-year bull’s eye is now 10
times larger and makes up 10% of the area, emphasizing
the increased risk that results from long-term (10-year) oc-
cupancy in a hazard-prone area. It also shows that the risk
each decade is independent of preceding decades. Note
that Figure 5B cannot be used to assess the risk of flooding
on an annual basis.

Simulations as a scientific tool - Modeling the future by
repeated throws at a dartboard makes an investigative
tool used by scientists-simulation-understandable and ac-
cessible to students. In my Introduction to Geology
course, oriented toward the general student population, I
use dartboards and computer-generated simulations of
flood and earthquake sequences. As a result, I can expect
students to discuss hazard recurrence in a much more
thoughtful manner than I could previously. For example,
a question on a recent exam presented a dartboard for
earthquake recurrence and asked students to discuss the
idea that if a large earthquake has occurred, another large
one will not recur for a long time. Students’ answers rou-
tinely referred to the relationship between the area of a
ring and the probability of an event and to the idea that

consecutive, random throws are independent of one an-
other to make the point that a large quake might (with low
probability) recur at any time and that average recurrence
intervals cannot be used to predict future events. A ques-
tion eliciting this level of understanding of probability and
randomness in relation to hazards was not practical until
dartboards were used.

In my Environmental Geology course for geoscience
majors I use the dartboard as the conceptual basis for an
extended study of risk using a computer-based model to
develop ensembles of “futures” that result from stochastic
simulations. Such futures reveal the variability that is in-
herent in random hazardous processes and that limits our
ability to make statistical predictions. More advanced stu-
dents can explore the ways in which dartboard models
might fail to capture the behavior of hazards and ways in
which models could be improved. For example, how
would decade-scale changes in climate, or urbanization,
affect the ability of the dartboards in Figure 4 to model fu-
ture floods? Suppose earthquakes are not really inde-
pendent but are clustered or dispersed in time? Students
could compare the statistics of computer-generated se-
quences of events motivated by dartboard models with
the statistics of historical data. They could model events
that are not independent of previous events by making the
size of the rings on the dartboard dependent on the ring in
which the previous dart hit. These are just some examples
of how dartboard concepts can be used as a framework to
build deeper understanding of the uses of models and
simulations.

CONCLUSION

This paper describes how dartboard models are con
structed and used in the classroom. Dartboard models:
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Figure 5. A. (left) Dartboard based on annual throws; labels in top half are average recurrence intervals (ARI); la-
bels in lower half are exceedance probabilities. B. (right) Dartboard based on one throw each decade; labels in
top half are average recurrence intervals (ARI); labels in lower half are exceedance probabilities.
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• Are applicable to any sequence of events that can be de-
scribed by random sampling of a magnitude-frequency
distribution.

• Provide a means for presenting hazard recurrence in-
formation in an easily visualized form that helps people
understand risks and the need for long-term planning
to avoid or mitigate hazards.

• Challenge misconceptions about risk and average re-
currence intervals.

• Are easily adapted to modeling locally significant haz-
ards to increase awareness of risks near-by.

• Provide a conceptually simple way to motivate thought
experiments or exercises on data collection, model con-
struction, and modeling in the introductory classroom
or lab.

• Provide a basis for teaching probability concepts with-
out the use of sophisticated mathematical symbolism.

• Provide the conceptual background for computer-
based simulations of hazards and testing of probability
models in more advanced classes.

ACKNOWLEDGMENTS

I would like to thank: LeeAnn Srogi and Len Vacher for
discussions and editorial comments; the organizers of the
NAGT workshop “Building Quantitative Skills of Stu-
dents in Geoscience Courses” held at Colorado College in
July 2000, especially Heather Macdonald, for inviting me
to present dartboards as a classroom strategy; the work-
shop participants for their encouraging and constructive
comments; and the students in my Introduction to Geol-
ogy and Environmental Geology courses since 1998 who
helped me “test drive” dartboard models. The manu-
script benefited from reviews by Associate Editor Robert
Corbett and two anonymous referees.

REFERENCES

Dupre, W.R., and Evans, I., 2000, Attempts at improving
quantitative problem-solving skills in large
lecture-format introductory geology classes: Journal
of Geoscience Education, v.48, p.431-435.

Hall-Wallace, M.K., 1998, Can earthquakes be predicted?:
Journal of Geoscience Education, v. 46, p. 439-449.

Hampson, R., 2000, So many people— and nowhere left
to run: USA Today, 25 July 2000.

Hastings, N.A.J., and Peacock, J.B., 1975, Statistical
Distributions: New York, NY, Halsted Press, 130 p.

Keller, E.A., 1999, Introduction to Environmental
Geology: Upper Saddle River, NJ, Prentice-Hall Inc.,
383 p.

Keller, E.A., 2000, Environmental Geology (8 th edition):
Upper Saddle River, NJ, Prentice-Hall Inc., 562 p.

Margolis, H., 1996, Dealing with Risk: Why the Public
and the Experts Disagree on Environmental Issues:
Chicago, University of Chicago Press, 220 p.

Mattox, S.R., 1999, An exercise in forecasting the next
Mauna Loa eruption: Journal of Geoscience
Education, v. 47, p. 255-260.

Montgomery, C.W., 1997, Environmental Geology (5 th

edition): Boston, WCB/McGraw-Hill, 546 p.
Pipkin, B.W. and Trent, D.D., 1997, Geology and the

Environment (2nd edition): Belmont, CA, Wadsworth
Publishing Company, 522 p.

Saini-Eidukat, B., 1998, A WWW and spreadsheet-based
exercise on flood-frequency analysis: Journal of
Geoscience Education, v. 46, p. 154-156.

Turcotte, D.L., 1992, Fractals and chaos in geology and
geophysics: New York, Cambridge University Press,
221 p.


