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ABSTRACT 

 

HIV-1 reverse transcriptase uses the host tRNA3
Lys  as a primer for the synthesis of the 

minus DNA strand. The first event in viral replication is thus the annealing of tRNA to the 

primer binding site (PBS) in the 5’ UTR of the viral RNA. This event requires a major RNA 

rearrangement which is chaperoned by the viral NC protein. The binding of NC to nucleic 

acids is essentially non-specific, however, NC is known to bind selectively to hairpins located 

in the 5' region of the viral RNA. In a previous study, using an NMR approach in which the 

reaction is slowed down by controlling temperature, we were able to follow details in this 

RNA unfolding/refolding process and to uncover an intermediate state. We showed that 

annealing initiates at the junction between the acceptor and the TΨC stems, and that, at 

physiological temperature, complete annealing is reached only in the presence of NC, 

probably when the zinc fingers contact the TΨC/D loops.  

In the present work, we have refined our model of the formation of the tRNA3
Lys/PBS 

duplex. First, we show that annealing can initiate both from the single-stranded CCA 3’-end 

bases of the acceptor stem and from the bases in the TΨC stem. Secondly, by NMR and 

fluorescence spectroscopy, we have studied the complex between the NC protein and RNA 

hairpins that mimic the D and T-arms of the tRNA3
Lys . Interestingly, the NC protein shows 

strong and specific binding to the D-arm of tRNA3
Lys, which could explain the overall 

annealing mechanism. 
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ABBREVIATIONS : BME : 2-mercaptoethanol, HIV: Human Immunodeficiency Virus, 

HSQC: Heteronuclear Single Quantum Correlation, NC : nucleocapsid, PBS: Primer Binding 

Site, TROSY: Transverse Relaxation Optimized Spectroscopy.  

 



INTRODUCTION 

 

In retroviruses, initiation of reverse transcription is primed by a cellular tRNA that is 

encapsidated in viral particles. tRNA3
Lys  is the natural primer of all immunodeficiency 

viruses, including the type 1 human immunodeficiency virus (HIV-1) [1-3]. The HIV-1 

nucleocapsid protein (NC) is a short, basic, nucleic-acid binding protein with two zinc finger 

domains, each containing the invariant CCHC metal-ion binding motif. The mature protein 

(55 amino acid residues) is produced by proteolytic cleavage of the Gag precursor and is 

found in the interior of the virus particle, where it is tightly associated with genomic RNA. 

NC or the NC domain in Gag is involved in multiple functions during the virus replication 

cycle, including genomic RNA packaging, primer placement on viral RNA, reverse 

transcription, and integration. Many of these functions rely on the nucleic acid chaperone 

activity of NC, i.e. its ability to catalyse nucleic acid conformational rearrangements that lead 

to the most thermodynamically stable structure (for recent reviews [4-6]).  

In a previous study [7], we were able to observe the progressive formation of the HIV-1 

reverse transcription initiation complex using heteronuclear NMR of RNA-RNA-protein 

complexes under controlled temperature conditions. In particular, we have identified a 

nucleation site, at the end of the acceptor stem, where the viral RNA starts invading the 

tRNA3
Lys  structure. In addition, we were also able to characterize the different roles of the 

nucleocapsid protein during the formation of the initiation complex. In our model, the viral 

NC protein plays a key role by “unlocking” stable 3D structure of the primer tRNA through 

specific interaction with the D/TΨC loops. Therefore, at the end of this study, the question of 

the involvement of the 3’-end unpaired CCA bases of tRNA3
Lys  primer in the annealing 

process was still open. In addition, the mechanism of the specific 3D structure opening was 

still not clearly understood.  

In the present report, we show that the annealing can proceed from two starting points in 

the tRNA3
Lys primer, one at the beginning of the acceptor stem and the second at the end of 

the T stem. Both sites can be used by the viral RNA to begin its annealing with the 18 

complementary bases of tRNA3
Lys  acceptor and T stems. The presence of NC protein is not 



necessary at this step, at least in vitro, but is essential to open the 3D structure of tRNA. The 

melting of the interaction at the level of the D/TΨC loops that locks the structure of the tRNA 

is possible through a specific interaction between the D loop and the NC protein.  



MATERIALS AND METHODS 

 

Samples 

The PBS (18 nucleotides) was 15N-labelled on its guanine nucleotides by in vitro 

transcription from an oligonucleotide template containing a 2’-O-methyl-G in position 2 

(DNA template: 5’-G(2’OmeG)TCCCTGTTCGGGCGCCACTATAGTGAGTCGTATT-3’) 

[8]. Labelled nucleotides were purchased from Spectra Gases Inc. The 20nt RNA obtained 

was then purified by electrophoresis. After electroelution and ethanol precipitation, the RNA 

was resuspended, micro-dialysed against a first buffer (10mM sodium phosphate, pH 6.4) and 

then against a second buffer (2mM sodium phosphate, pH 6.4) and freeze dryed. The NMR 

sample (0.2 mM) was finally prepared by dissolving in 300 μL H2O containing 10% 2H2O 

The recombinant 55-residue NC protein (HIV-1 strain NL4-3) was overexpressed from the 

bacterial expression vector pRD2, which contains the NC coding region from HIV-1 strain 

NL4-3 subcloned into pET-3a (Novagen, WI). This plasmid was kindly given by M. F. 

Summers group [9, 10]. pRD2 was transformed into Escherichia coli strain BL21(DE3) 

pLysE and the overexpressed protein was purified as previously described [9, 10]. 

The small RNAs oligonucleotides (figure 2) were purchased from Dharmacon Research 

with 2'-o-bis (acetoxyethoxy)-methyl (ACE) protection. The samples were deprotected by 

following manufacturer recommendations and dialyzed several times against deionized water. 

The pH was adjusted between 6 and 6.5 before freeze-drying.  

Human tRNA3
Lys  was expressed in vivo from a recombinant plasmid and purified as 

previously described [11].  

 

Fluorescence titrations 

Fluorescence measurements were performed at 30.0°C on a JASCO spectrofluorimeter. 

Excitation and emission wavelengths were 295 nm and 345 nm respectively. The excitation 

and emission bandwidths were 5 nm. 

Fluorescence titrations experiments were performed by adding increasing concentrations of 

nucleic acid to a fixed amount of NC protein (1μM) in buffers with different ionic strength 



(25 mM Na-acetate pH 6.5, 0.1 mM BME, 0.1 mM ZnCl2 for two salt concentrations, 25 mM 

and 100 mM NaCl, respectively). Fluorescence intensities were corrected for dilution and 

were fitted using equation (1) assuming that the n binding sites on the protein are totally 

independent and have the same dissociation constant Kd. Confidence limits on the Kd were 

estimated by Monte-Carlo sampling using the MC-Fit program [12].  

 

I = I0 −
I0 − I∞

2nNt

Kd + Lt + nNt − Kd + Lt + nNt( )2 − 4LtnNt
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟   (1) 

where I0: Fluorescence intensity without RNA, I: fluorescence intensity at a given 

concentration of RNA, I∞: fluorescence intensity at the plateau, n: number of RNA binding 

sites on the protein, Lt: total concentration of RNA, Nt: total concentration of protein.  

 

NMR Spectroscopy 

NMR data were recorded on a Bruker Avance DRX600 spectrometer equipped with a 

standard triple resonance probe and z-axis gradients, processed with NMRPipe/NMRDraw 

[13] and analyzed with SPARKY (T. D. Goddard and D. G. Kneller, SPARKY 3, University 

of California, San Francisco). 

The formation of the tRNA3
Lys/PBS duplex was followed in a 1H-15N TROSY experiment 

[14] carried out with 256 t1 increments and 1024 t2 data points. The spectral widths were 

4194 Hz and 700 Hz in the proton and the nitrogen dimensions, respectively. Assignments of 

imino groups of the tRNA3
Lys/PBS duplex were previously performed [7].  

Footprint experiments of small RNAs on the uniformly 15N-labeled NC protein were 

performed using echo-anti echo HSQC experiments [15] at 30 °C, at a concentration of 0.5 

mM of each species in NMR buffer (25 mM Na-d3-acetate pH 6.5, 25 mM NaCl, 0.1 mM 

BME, 0.1 mM ZnCl2, 10 % 2H2O). Each partner was prepared at a concentration of about 2 

mM in NMR buffer, and the required volumes of each sample were mixed together, 

immediately vortexed and incubated at 30 °C for 30 min before NMR data acquisition. 

Assignment of NC amide cross-peaks was determined using standard 15N-based strategy.  

 



RESULTS AND DISCUSSION 

 

- Where are the nucleation sites for tRNALys3/PBS duplex formation ? 

In a previous study [7], we showed that the melting process starts at the junction between 

the acceptor and T stems, at the level of weak AU and GU base pairs which can be easily 

disrupted and hence allow subsequent invasion of the tRNA3
Lys  structure by the viral RNA. 

However, our experimental approach, which relied on the NMR observation of imino protons, 

did not allow observation of PBS binding to the unpaired 3’-end of the tRNA, since the imino 

protons of the three first base pairs are carried by the viral RNA and only tRNA3
Lys was 15N-

labelled. To further describe the very first event in the tRNA3
Lys /PBS annealing, we have thus 

performed the reciprocal experiment where, this time, the PBS is 15N-labelled and the tRNA 

is unlabelled. The annealing process is then followed by monitoring the imino groups of the 

PBS (Figure 1) for which the assignment of proton NMR signals was already performed [7]. 

Figure 1b shows the first base pairs that are stable enough to be observed in TROSY 

experiment, namely G183 and G194. The imino group signals of the free PBS are still mostly 

present, and only a small part of the PBS has begun to anneal to tRNA3
Lys . In addition, after 2 

hours at 25°C, in one dimensional 1H spectrum where we can further observe non-labelled 

signals and more labile protons, the signals of U64, U66, G180, G192 and G193 in the duplex 

can be observed (Figure 2b) and are rather broad, explaining that G192 and G193 are not yet 

observed in the TROSY spectrum (Figure 1b). In addition, in NOESY experiment carried out 

at 25°C, the NOE connections between U64 and G192, and between G192 and G193 are 

unambiguously observed (data not shown). After heating to 70°C and cooling back to 15°C 

(Figure 1c), all guanine signals corresponding to the duplex are present in TROSY experiment 

and their chemical shifts are identical to those previously assigned through a NOESY / 

TROSY strategy [7].  

This shows that two distinct parts of tRNA3
Lys  are used by the viral RNA to grip its reverse 

transcription primer: G183 and G194 respectively contact C72 and C61 on tRNA3
Lys , at 

either end of the acceptor stem. This result reconciles apparently conflicting data, ours [6] and 

those of Hargittai et al. [16], which suggested two different initiation sites for annealing, 



either the centre of the cloverleaf structure or the 3’end unpaired bases of the primer tRNA. 

Our current data indicates that apparently both sites are being used for annealing. It remains to 

be established whether the same viral RNA molecule can simultaneously invade the tRNA 

acceptor stem from both ends or whether some initiate at center of the tRNA while others 

“zip-in” from the 3’-end, in a statistical manner. Interestingly, within the tRNA3
Lys  tertiary 

structure [17], C72 and C61 are distant from each other by eleven nucleotides, i.e. exactly one 

A-helix turn apart and are thus located on the same side of the tRNA acceptor-TΨC helix, i.e. 

in a favourable orientation for simultaneous invasion.  

 

 

- NC protein binds specifically to the D-arm of tRNALys3.  

We have previously shown that the presence of NC protein is necessary to promote the 

complete melting of the TΨC/D loop-loop interaction that is required to obtain a full 

annealing [7] of tRNA3
Lys  on the PBS. Indeed, the NMR signals of the T54 and Ψ55 N3H 

that make hydrogen bonds with A58 base and phosphate, respectively, are conserved until the 

later stages of the annealing process. Heating to 80°C in the absence of NC or NC-mediated 

annealing at 37°C is required to destroy these interactions. This activity is nucleocapsid-

specific and cannot be reproduced using poly-L-lysine, suggesting that the zinc knuckles 

could play an important part in this essential step of the viral cycle. This also strongly 

suggested that there existed an NC-specific binding site in the TΨC/D loop region of the 

primer tRNA3
Lys . To investigate this hypothesis, we have studied the interaction of the NC 

protein with RNA hairpins mimicking the D and the T arms (Figure 3) by NMR and 

fluorescence spectroscopy. Indeed, the multiplicity of NC binding sites on tRNA3
Lys  rendered 

analyses using the full length molecule intractable, even when stringency was raised by 

increasing salt concentration (data not shown). This is a result of the binding dynamics, as we 

previously showed that the NC protein slides from one site to another [18]. Reducing the 

target RNA length prevents this process. Binding assays to the various RNA using the 

intrinsic fluorescence of NC tryptophan 37 are summarized in Table 1. As a reference, the 

same experiments were also carried out on the SL3 HIV-1 genomic packaging signal that 



makes specific interaction with NC [9]. As previously described for packaging domain loops 

of HIV-1 RNA [19-21], tightly bound RNA quenched nearly all the fluorescence of NC. The 

NMR and fluorescence analyses were initially performed at 25 mM NaCl, i.e. conditions 

similar to those used by Summers and co-workers to resolve the NMR structure of the 

SL3/NC complex [9]. Ionic strength was then increased to investigate the binding specifity. 

TΨC hairpin bound to NC, however, increasing salt concentration strongly destabilised this 

interaction (figure 4d and Table 1). We also tested TΨC hairpins of alternate lengths (15 and 

21 nucleotides) to investigate whether the number of NC binding sites or the stability of the T 

stem could play a role. The dissociation constant increased by a factor of two when the 

hairpin size was shortened from 21 nucleotides to 15 (Table 1). Longer stems thus improve 

the affinity and also increase the apparent number of NC binding sites. One can notice that the 

stoechiometry at low salt concentration for TΨC2 (Table 1) is quite unusual, but it was 

previously showed that non-specific interactions at low ionic strength between highly charged 

RNA molecule and NC can bias the number of binding site [21]. 

In contrast to what is observed with the TΨC hairpins, NC binding to the D arm was 

tighter and much less sensitive to the salt concentration (Figure 4d). This behaviour is in line 

with what was observed for the specific binding of NC to the SL3 hairpin, for which a similar 

affinity and salt independence are seen (table 1). All these results show that the NC 

specifically binds to the D arm, whereas binding to the T arm is weaker and dominated by 

electrostatic effects, as evidenced by the salt dependence. 

This different behaviour in NC binding of these two hairpins is observable in the 

corresponding NMR footprints on 15N-labelled NC, even at 25 mM NaCl. At this ionic 

strength, the dissociation constant for the NC binding on T arm only differ from that on the D 

arm by a factor two. On the NMR spectra (Figure 4 a and c), only half of amide peaks are 

observed for the T footprint. This is typical of chemical exchange in the μs-ms time scale, 

where NMR signals can disappear due to severe line broadening [22]. This is not surprising as 

it is known that the binding of NC on nucleic acids is very dynamic and NC is mobile on 

them especially when the binding is not specific. Contrary to the T arm, approximately 40 

amide cross-peaks are still observed for the D arm. That means, chemical exchange reaches 



almost the slow exchange regime, which is caracteristic of tight binding. As previously 

described for the interaction with the packaging sequence [9, 23], the NC structure is 

significantly modified upon RNA binding and the NMR spectrum of the complex needs to be 

completely re-assigned. Taken together, these fluorescence and NMR observations indicate 

that there exists a specific binding site of NC on tRNA3
Lys  in the TΨC/D core and it is 

located in the D hairpin. 

Based on both fluorescence and NMR structural studies performed to date [9, 19-21, 23], it 

appears that the CCHC-type zinc knuckle domains of NC contain specifically positioned 

hydrophobic residues that form an ideal binding surface for exposed G residues within nucleic 

acid sequences. More accurately, stacking interactions between Phe16 in the N-terminal 

finger and Trp37 in the C-terminal zinc finger and nucleic acid bases have been detected by 

fluorescence spectroscopy and have been proposed to be a major driving force for NC-nucleic 

acid interactions [19, 24]. Indeed, NMR structures of SL2/NC and SL3/NC complexes [9, 23] 

show close interactions between Phe16 and Trp37 and guanine residues in single-stranded 

regions of SL2 and SL3 RNAs. In addition to the preferential binding of NC’s zinc fingers to 

the single-stranded hairpin loop regions, the cationic N-terminal domain of NC binds to the 

double-stranded stem of the hairpin. From these data, the NC’s zinc fingers are likely to 

interact with the guanine residues in the D loop whereas the N-terminal residues would 

interact with the D stem. The D loop contains three guanine nucleotides (G15, G18 and G19) 

whereas the T loop contains only one (Figure 3). G15 makes a base pair with C48 and is 

rather buried within the 3D structure of tRNA3
Lys  [17]. G19 makes a rather weak base-pair 

with C56, as two alternate conformations are observed in the crystal structure and, as a 

consequence of this mobility, could be readily accessible to interactions with  NC. G18 makes 

a hydrogen bond with Ψ55 (O6) and interestingly, the presence of NC in the annealing 

process is required to induce disappearance of the Ψ55 (N3H) signal. Moreover, bases 16, 17 

and 20 that surround G18 and G19 are completely exposed to the solvent that render 

nucleotide in the D-loop easily accessible. Therefore, within the D loop, G18 and G19 appear 

as likely candidates as being part of the specific NC binding site. Moreover, in the context of 

the annealing process between the PBS and the primer tRNA3
Lys , it makes more sense to bind 



to the D-loop rather than the TΨC-loop, where the annealing to the PBS is taking place.  

 



CONCLUSION 

 

In this paper, the use of selective labelling of the primer binding site allowed us to 

characterize the nucleation points of the annealing process between the PBS and the 

tRNA3
Lys . Moreover, we used small hairpins to mimic the D and T arms of tRNA3

Lys  to 

determine the specific role of NC in the formation of tRNA3
Lys /PBS duplex recognized by the 

HIV reverse transcriptase. Studying separate hairpins cannot obviously mimic the entire 

tRNA, in particular at the level of the TΨC/D loops interaction. However, in the annealing 

process, there is a step where the TΨC/D loops interaction are broken and where the NC 

protein plays a crucial role. By stabilising this open state, NC will pull the equilibrium toward 

the “open state”. In this context, the study of separate hairpins makes perfect sense, since they 

are likely to be an intermediate state in the unfolding pathway. We previously demonstrated 

that unless NC is added to the primer-PBS mixture, complete melting of tRNA3
Lys  cannot be 

obtained. The specific interaction between NC and the D-loop that we observed here could be 

the key factor driving the unfolding process, thereby allowing complete annealing of 

tRNA3
Lys  to the PBS. The NMR structure determination of the NC protein/D hairpin complex 

is under investigation and should provide useful information on the NC-mediated annealing 

process of tRNA3
Lys  and on the design of anti-NC or anti-annealing drugs.  
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FIGURE LEGENDS 

 

Table 1: Binding Parameters of NC55 to RNAs stem-loop measured by fluorescence 

spectroscopy titration.  

a: The dissociation constant Kd is indicated with the 96% confidence interval in parenthesis.  

b: number of sites for NC55 on the RNA stem loop.  

c: maximum extent of fluorescence quenching. 

 

Figure 1: a) Secondary structure of the PBS (left), TROSY experiment of the 15N-PBS alone 

at 15°C (right), b) Secondary structure of tRNA3
Lys /PBS complex (left): in black, base pairs 

for which the imino groups is observed in TROSY experiment, in pink, base pairs for which 

the imino proton is observed in the 1D spectrum, TROSY experiment of a 1/1 tRNA3
Lys / 15N-

PBS at 15°C after heating the sample to 25°C (right). Gx cannot be assigned and probably 

belong to an intermediate structure. c) Secondary structure of tRNA3
Lys /PBS complex (left), 

TROSY experiment at 15°C after heating the sample to 70°C (right).  

 

Figure 2: One dimensional  proton NMR spectra at 15°C: a) just after the mixture between 

tRNA3
Lys  and the PBS, b) after heating the sample for two hours at 25°C and cooling it back 

to 15°C to recorder the spectrum, c) after heating the sample to 70°C and cooling it back to 

15°C.  

 

Figure 3: Secondary structures of tRNA3
Lys  and of hairpins that were designed to mimic 

tRNA3
Lys  D and T arms. The hairpins that mimic tRNA3

Lys  T-arm carry the T and Ψ base 

modifications whereas the D hairpin is not modified. 

 

Figure 4: HSQC experiments at 30°C of 15N-labelled NC with the D (a) and TΨC2 (c) 

hairpins, in blue the reference spectrum and in red the spectrum of the equimolar 1/1 mixture. 

Fluorescence titrations of NC protein/D hairpin (b) and NC protein/TΨC2 hairpin (d) 

obtained by adding increasing concentrations of nucleic acid to a fixed amount of NC protein 



(1 μM) in buffers with two ionic strength: 25 mM and 100 mM NaCl.  

 

 



  


