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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

Human tRNALys3 is used by HIV virus as a primer for the reverse transcription of its

genome. The 18 nucleotides of at the 3'-end of the tRNALys3 are hybridized to a

complementary sequence of the viral RNA called the primer binding site. A screen against the

human tRNALys3 over a peptide library designed to target RNA has been performed. Of the

175 hexapeptides tested, three were found to bind to the D-stem of tRNALys3. Alanine-

scanning was used to define the determinants of the interaction between the peptides and

tRNALys3. They also bind to two other tested tRNAs, also at the level of the D-stem and

loop, although the nucleotide sequence of the stem differs in one of them. These short

peptides thus recognize specific structural features within the D stem and loop of tRNAs.

Associated with other pharmacophores, they could be useful to design optimised ligands

targeting specific tRNAs such as retroviral replication primers.

Keywords: screening, tRNA, peptide, NMR

Abbreviations: NOE: Nuclear Overhauser effect, trNOE, tranfer NOE
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1. Introduction

The essential role of RNA in many biological processes makes RNA an attractive target in

drug discovery. There are many potential RNA targets, including RNA that is involved in

cellular proteins interaction such as transcription, splicing, and translation and, RNA that is

involved in viral infection such as human immunodeficiency virus (HIV). Several systematic

screens have been performed against fragments of the HIV-1 genomic RNA, but in all cases,

the high affinity hits were strongly cationic [1-3] and their recognition was dominated by

electrostatic effects that are often poorly selective. There is thus a need for strategies based on

high selectivity rather than on high affinity. In this context, interaction screening by NMR can

be an attractive technique, as it can both detect weak interactions and provide structural

information on ligand-binding modes (for reviews on NMR-based screening, see [4-9]).

Using flow-injection NMR, we have screened against the human tRNALys3 over a peptide

library designed to target RNA [10]. tRNALys3 is used by HIV-1 as a primer to the reverse

transcription of its genome. The 18 nucleotides at the 3’ end of tRNALys3 are hybridized to a

complementary fragment of the viral RNA called the primer binding site (PBS). The aim of

this study was to find molecules that bind specifically to tRNALys3 and that could provide

leads for inhibitors of the formation of the HIV-1 reverse transcription initiation complex. In a

first approach, a chemical library of short peptides was used, since these can be easily

obtained and provide a rich variety of pharmacophore models for further development.

Peptidomimetic modification of active peptides could then provide biostable analogs [11].
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2. Materiels and Methods

2.1 Sample preparation

Human tRNALys3 was expressed in vivo from a recombinant plasmid and purified as

previously described [12]. tRNAfMet and tRNAmMet were expressed and purified similarly

[13, Wallis, 1995 #370]. The peptide library has been described [10], for NMR analyses, the

peptide stocks (100 mM in DMSO-d6) into 5mM imidazole-HCl, pH7, prepared in 90%

H2O/10% 2H2O.

2.2 NMR experiments

Experiments were recorded on a Bruker Avance DRX 600 spectrometer equipped with a

3mm triple-resonance flow-injection probe. The probe was connected to a Gilson 215 liquid

handler controlled by the NMR console (Bruker BEST system). For tRNA:peptide mixtures,

solvent suppression was achieved by using the ‘jump-and-return’ sequence to avoid the

saturation of imino protons [14]. Samples for 1D NMR screening contained 0.3 mM of tRNA

and 1.2 mM of peptide in 5mM imidazole buffer pH 7, in a total volume of 200 µl in 96-well

plates. The injected sample volumes were 160 µl. As imino chemical shifts in RNA are

sensitive to pH, we used the spacing between the two aromatic NMR signals as an internal pH

probe, which enabled us to eliminate false positives resulting from  the pH shifts induced by

ligand addition. For ligands identified in the primary screen, 1H-15N JR-HMQC spectra [15]

were recorded using a sample containing 0.4 mM 15N labelled tRNA and 1.6 mM peptide in

10mM phosphate buffer pH 6.5.

For the measurement of the dissociation constant (Kd) between peptide P1 and tRNALys3,

a sample containing 0.7 mM of tRNALys3 in 10mM phosphate buffer pH 6.5 was titrated by

increasing concentrations of P1 : 0.2, 0.4, 0.8, 1.5, 3, 4 and 7 mM. Kd values were extracted

by non-linear least square fitting of the variation of imino proton chemical shifts to a single-

site binding hyperbolic function. Confidence limits on the Kd were estimated by Monte-Carlo

sampling using the MC-fit program [16].
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3. Results and Discussion

The human tRNALys3 is used by HIV-1 as a primer for the reverse transcription of its

genome. Indeed, the 18 nucleotides at the 3’ end of tRNALys3 are complementary to the

primer binding site in the viral RNA (for reviews, see [17-19]). This tRNALys3-viral RNA

duplex is then recognised by the reverse transcriptase (for reviews [17, 20]) which can start

the elongation of the minus DNA strand. In order to prevent the formation of the initiation

complex (tRNALys3/viral RNA), an attractive strategy would be to isolate ligands that bind

to tRNALys3 and that could then hinder its recruitment by viral factors : the nucleocapsid

protein, the reverse transcriptase or the viral RNA. For this purpose, we previously designed a

library of hexapeptides to screen RNA ligands [10]. Briefly, we used a heuristic algorithmic

approach to select in silico a set of 175 peptides, which simultaneously satisfies a set of

physico-chemical constraints (charge, solubility, amino acid composition) and performs an

optimised sampling of the peptide sequence space. In particular, strongly basic sequences (pI

> 9) were systematically eliminated in order to avoid non-specific electrostatic binding to

RNA.

In order to reduce the amounts of target tRNA used in the screening process, we first

followed the 1D imino proton spectrum of the tRNA, since this only requires about 1mg (≈40

nmoles) of tRNA per point to obtain a decent quality spectrum in 20 minutes. The 1D imino

proton spectrum offers two main advantages: (i) It is quite simple since it contains

approximately one peak per base pair, ie about 25 peaks for tRNAs, and the corresponding

protons are evenly distributed over the structure. (ii) The corresponding spectral region is

essentially devoid of any signals originating from the peptides. In a second step, a more

precise view of the interaction site of selected peptides was obtained using 2D heteronuclear

experiments on 15N-labelled tRNA. Indeed, we have previously reported the sequence-specific

NMR assignments of 15N and 1H imino resonances involved in the secondary and tertiary base

pairs of tRNALys3 [21]. Therefore, this second step enables us to define the binding footprint

of the selected peptides at the level of each base pair in the tRNA. Over the peptide library

previously designed to screen RNA ligands [10], three peptides were found to induce

significant changes in the imino proton 1D spectra of tRNALys3. The sequence of the three
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peptides are YHSRNN (P1), GDWHVR (P2) and WRHPDV (P3). Interestingly, all three

peptides contain both arginine and aromatic residues, P1 and P2 have partially homologous

sequences, ie ArHXR (Ar: aromatic residue, X: any residue). Figure 1 shows the binding

footprint of peptide YHSRNN. The imino groups whose chemicals shifts are changed upon

binding of the peptide are those of guanines 10, 22 and 24, the 7-methylated guanine 46, the

4-thiolated uridine at position 8 that forms a reverse Hoogsteen base pair with A14 and

uridine 12. Interestingly, all the nucleotides in the D-stem of tRNALys3 appear involved in

the binding of this peptide, plus m7G46 that makes a base triplet with the Watson-Crick G22-

C13 base pair, also in the D-stem. Overall, similar footprints are observed for the three

peptides, they all bind in the D-arm of tRNAlys3. For P2, the binding involves a

supplementary base, G15, in the D-loop of tRNALys3 and the chemical shift variation for

G24 and G10 upon binding of P2 is rather small. Therefore, P2 seems to bind near the D-loop

and close to the three bases in the D-arm adjacent to the D-loop. Since P1 induces the

strongest variation of chemical shift of the imino group of tRNALys3 upon binding, its

interaction with tRNALys3 was extensively studied by NOE, trNOE, Kd measurement and

alanine scanning. As a result, a dissociation constant (Kd) of 2mM was extracted from the

measurement of the variation of the U8 imino proton NMR signal as the concentration of P1

increases. These magnitude of Kd are of the same order of one found for a peptide that bind to

TAR RNA [22]. No NOE can be directly observed between the protons of the peptide and the

imino groups of tRNALys3, probably due to the low affinity of P1 for tRNALys3. In the same

way, no trNOE has been observed. In order to characterize the residues crucial to the binding

to tRNALys3, each residue of the peptide P1 was sequentially mutated by an alanine. Then,

the impact of the mutation for the binding to tRNALys3 was analysed by the observation of

the 1D NMR spectra of the tRNALys3 imino region in presence of each modified peptide.

Interestingly, the mutation by an alanine at position 1 or 4, ie AHSRNN and YHSANN, is

sufficient to prevent the binding to tRNALys3. Therefore, both the tyrosine and the arginine

are key residues for the binding to the D-arm of tRNALys3, possibly by contributing stacking,

hydrogen bonding and electrostatic interactions. Finally, to test the specificity of the

interaction of the peptides with tRNALys3, we have studied the binding of these three
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peptides to two others tRNA, E. coli tRNAfMet that has the same sequence as human

tRNALys3 in the D-arm and E. coli tRNAmMet that has a different sequence (see [23] for the

sequences). All three peptides were found to bind to tRNAfMet and tRNAmMet (data not

shown) and the binding also occurs in the D-arm of these tRNAs. Therefore, these peptides

appear to be specific for the structure of the D stem and loop of tRNA, independently of the

nucleotide sequence within the D-stem.
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4. Conclusion

The present study demonstrates that flow injection NMR screening of a small optimized

library of short peptides is a viable approach for isolating weak but specific ligands of a

structured RNA. The three identified peptides are structure-specific, and could provide leads

for the design of high affinity ligands. Such short peptides could be further optimised and/or

coupled with other RNA-binding pharmacophores, such as polyamines, aminoglycoside

fragments or intercalating groups and provide useful tools for studying the structure or

interfering with the metabolism of such structured RNA.
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Figure Legends

Figure 1 : Superimposition of two HMQC experiments in the region of the imino groups of

the 15N labelled tRNALys3 with (blue) and without (black) the peptide YHSRNN. The bases

that are indicated on the spectra and that are in blue in the secondary structure of tRNALys3

are those for which the chemical shifts of the imino proton change of more than 0.04 ppm.




