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Somatic hypermutation is a specifi c mutagenic 
process that can diversify the Ig genes at several 
stages of the B cell diff erentiation pathway: ei-
ther outside an immune response, leading to 
repertoire diversifi cation, or during antigen 
driven responses, leading to affi  nity maturation 
through the selection of B cells displaying bet-
ter antigen-binding capacities (1).

Hypermutation is initiated by activation-
 induced cytidine deaminase (AID) through an 
enzymatic process that deaminates cytidines 
into uracils and is essentially, but not exclu-
sively, targeted at the heavy and light chain V 
genes of the Ig locus (reference 2; for review 
see references 3, 4). However, mutations at the 
Ig locus are equally distributed at G/C and A/T 
bases, which requires that specifi c error-prone 
repair pathways process this C-focused lesion to 
broaden its mutation spectrum (5). In spite of 

the large number of repair factors able to handle 
uracils within the eukaryotic cell, only two of 
them have been shown to contribute to hyper-
mutation: uracil N-glycosylase (UNG) and the 
DNA-binding moiety of the mismatch repair 
complex (MSH2–MSH6) (6–14). When these 
two factors are missing, the mutation pattern 
becomes the imprint of the sole AID action, the 
replication of uracils generated on both DNA 
strands resulting in C to T and G to A transi-
tions at the sites of AID deamination (14).

Error-prone DNA polymerases, in particu-
lar those involved in the replicative bypass of 
DNA lesions, have been considered as prime 
candidates to generate mutations at A/T base 
pairs from the initial deamination event. The 
Ig gene mutation pattern of patients aff ected 
with the variant form of the xeroderma pig-
mentosum syndrome, a genetic disease corre-
sponding to inactivation of DNA polymerase η 
(pol η) (15), was shown to be markedly, albeit 
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Mutations at A/T bases within immunoglobulin genes have been shown to be generated by 

a repair pathway involving the DNA-binding moiety of the mismatch repair complex consti-

tuted by the MSH2–MSH6 proteins, together with DNA polymerase 𝛈 (pol 𝛈). However, 

residual A/T mutagenesis is still observed upon inactivation in the mouse of each of these 

factors, suggesting that the panel of activities involved might be more complex. We reported 

previously (Delbos, F., A. De Smet, A. Faili, S. Aoufouchi, J.-C. Weill, and C.-A. Reynaud. 

2005. J. Exp. Med. 201:1191–1196) that residual A/T mutagenesis in pol 𝛈–defi cient 

mice was likely contributed by another enzyme not normally involved in hypermutation, 

DNA polymerase 𝛋, which is mobilized in the absence of the normal polymerase partner. 

We report the complete absence of A/T mutations in MSH2–pol 𝛈 double-defi cient mice, 

thus indicating that the residual A/T mutagenesis in MSH2-defi cient mice is contributed 

by pol 𝛈, now recruited by uracil N-glycosylase, the second DNA repair pathway involved 

in hypermutation. We propose that this particular recruitment of pol 𝛈 corresponds to 

a profound modifi cation of the function of uracil glycosylase in the absence of the 

 mismatch repair complex, suggesting that MSH2–MSH6 actively prevent uracil glycosylase 

from error-free repair during hypermutation. pol 𝛈 thus appears to be the sole contributor 

of A/T mutations in the normal physiological context.
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variably, reduced in A/T mutagenesis  (16–18). Inactivation 
of pol η in the mouse confi rmed this phenotype and resulted 
in a more homogeneous reduction in A/T mutations (19–21). 
Similarly, inactivation of the MSH2 protein (or of its MSH6 
and exonuclease-1 partners) in the mouse has been shown 
to result in a decreased mutation load at A/T bases (7–13). 
These observations have led to a model of hypermutation in 
which UNG-mediated repair would be responsible for most 
mutations at G/C bases, whereas the MSH2 pathway would 
generate the major part of A/T mutations (14).

But how is the residual A/T mutagenesis observed in 
both pol η or MSH2-defi cient animals generated? We previ-
ously reported that, in Polh−/− mice, the A/T mutation pat-
tern bears the signature of a diff erent enzyme (19), most 
probably pol κ, which has an unusual bias toward transver-
sions (22, 23). The absence of eff ect of pol κ defi ciency on 
the Ig mutation pattern (24–26) strongly suggested that this 
enzyme is probably not a normal actor in hypermutation but 
would rather be recruited only in the absence of the regular 
polymerase partner. We show in this report that the residual 
A/T mutagenesis observed in MSH2-defi cient mice is con-
tributed by pol η, now driven by the UNG pathway, thus 
establishing pol η as the sole polymerase generating A/T mu-
tations during the physiological mutation process. The re-
cruitment of pol η by UNG is discussed in the context of the 
striking modifi cation of the mutation pattern observed in 
MSH2-defi cient animals, which leads us to propose a com-
petitive function of mismatch repair that prevents uracil gly-
cosylase from normal, error-free repair.

RESULTS AND D I S C U S S I O N 

The residual A/T mutagenesis observed in MSH2-defi cient 
animals harbors the same overall pattern as the one observed 
in Ig genes of normal mice, which raises the possibility that it 
could be generated by pol η, recruited outside the mismatch 
repair pathway.

We therefore generated Polh−/−Msh2−/− animals and 
collected a large mutation database from four to seven mice 
of the single- or double-defi cient genotypes. We observed 
rather large interindividual variations in the mutation fre-
quency, notably between two groups of wild-type mice orig-

inating from two separate rooms of the same animal facility 
(Table I and Fig. 1 A). Taking into account the mutation fre-
quency of the pool of mice constituted by the wild-type lit-
termates of the Polh heterozygous breeding, the mutation 
frequency was reduced at least two times in either MSH2- or 
pol η–MSH2–defi cient mice. This reduction is mainly caused 
by the absence of highly mutated sequences (Fig. 1 C).

Previous studies have concluded, based on [3H]thymidine 
incorporation after diff erent mitogenic stimulations, that 
MSH2 defi ciency did not result in a signifi cant in vitro prolif-
erative defect of splenic B cells, although isotype switching 
was reduced by two thirds (7, 27–30). Using carboxyfl uores-
cein diacetate succinimidyl ester (CFSE) labeling during 
in vitro stimulation of splenic B cells with either LPS or LPS plus 
IL-4, we observed no diff erence in proliferation of pol η–de-
fi cient B cells compared with controls, and only a marginal 
eff ect of MSH2 defi ciency, which was, however, not manifest 
in the double Pol η–Msh2−/− context (Fig. S1, available at 
http://www.jem.org/cgi/content/full/jem.20062131/DC1).

pol η–MSH2–defi cient mice show the same altered dis-
tribution of mutation along the Ig sequence as Msh2−/− mice 
do, with a striking clustering at a few G/C hotspot positions: 
seven hotspots concentrate more than half of the mutations in 
a sequence of 490 bp (Fig. 2). Most of them (except one, 
TGTT, at position 38 in the JH4 intronic sequence, whose 
targeting is, however, less pronounced in the double-defi -
cient background) correspond to a WGCW sequence, as de-
scribed previously (W = A or T) (12), with either or both 
internal G and C bases targeted. One major hotspot present 
in wild-type mice (AGTT, at position 46) disappears in the 
absence of MSH2. Similar again to the MSH2-defi cient gen-
otype, a strong increase in transitions within G/C mutations 
is observed in the double-defi cient context (Table II).

The main diff erence between MSH2 and pol η–MSH2– 
defi cient animals resides in A/T mutations: whereas they rep-
resent 10% of mutations in Msh2−/− mice, they are totally 
absent in the double knockout mice, with the 4 A/T changes 
collected in a sample of 310 mutations corresponding to the 
background of the enzyme used for amplifi cation (Fig. 1 B). 
It should be noted that the low mutation frequency linked 
with the MSH2 genetic defect (in the 2 × 10−3 range) 

Table I. Somatic mutations in JH4 intronic sequences (490 bp) from normal and mutant mice

Controls pol 𝛈−/− Msh2−/− pol 𝛈−/− × Msh2−/−

1 

(4 mice)

2 

(4 mice) (7 mice) (7 mice) (4 mice)

Number of sequences 112 89 193 208 331

Total length sequenced (bp) 54,880 43,610 94,570 101,920 162,190

Unmutated sequences (percentage) 25 48 31 50 60

Total number of mutations 624 251 508 242 310

Number of deletions and insertions 8 3 6 4 5

Mutation frequency per total sequences 

  (per 100 bp)

1.15 0.58 0.54 0.24 0.19

Mutation frequency per mutated sequences 

  (per 100 bp)

1.54 1.13 0.78 0.48 0.48
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Figure 1. Analysis of mutations in rearranged JH4 intronic 

 sequences isolated from Peyer’s patches of controls and pol 𝛈–, 

MSH2- and pol 𝛈–MSH2–defi cient mice. (A) Average mutation 

frequency per individual mouse, expressed relative to total sequences 

(left) or to mutated sequences (right). The mean values are represented 

by a horizontal bar. Controls (2) represent wild-type littermates of the 

Polh heterozygous breedings, whereas controls (1) come from a differ-

ent module from the same animal facility (the dotted bar is the mean 

between the two sets of controls). These mean values differ slightly from 

the ones listed in Table I, which represent the average mutation frequency 

of pooled sequences. (B) Pattern of nucleotide substitution in the four 

 different genotypes of mice. Values are expressed as the percentage of 

total mutations after correction for base composition. (C) Accumulation 

of mutations in individual JH4 intronic sequences. The number of se-

quences harboring a defi ned number of mutations relative to the total 

number of sequences is represented. MSH2-profi cient (top) and MSH2-

defi cient (bottom) backgrounds are shown. All mutations are listed 

along the JH4 intronic sequence in Fig. S2, available at http://www.jem.org/

cgi/content/full/jem.20062131/DC1.
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 obviously requires high fi delity enzymes to collect mutation 
samples in which the contribution of the amplifi cation step 
does not exceed a few percent (2–3% in this experiment, 
with �60% of them being As or Ts) (31).

It thus appears that pol η is responsible for the residual 
A/T mutagenesis observed in MSH2-defi cient animals by 
being involved in a mutagenic DNA synthesis that now ap-
pears to be driven by the UNG pathway. Taking into ac-
count our previous data suggesting that, in pol η–defi cient 
mice, the A/T mutations observed are likely contributed by 
pol κ recruited in a back-up function, we therefore con-
clude that, in the normal physiological situation, pol η is 
the sole polymerase required for A/T mutagenesis at the Ig 
locus. pol η probably generates some G/C mutations as 
well, as its mutation spectrum in vitro aff ects G/C bases in 
a proportion of �20%, with two thirds of them being tran-
sitions and one third being transversions (32). These num-
bers fi t remarkably well with the 3% of transversion mutations 
at G/C positions observed in UNG-defi cient mice (6); in-
deed, this suggests that 10% of G/C mutations could be 
generated by pol η via the MSH2 pathway, with one third 

of them being discernable as transversions in the UNG-
 defi cient context.

Is the small contribution of pol η via the UNG pathway 
observed in MSH2-defi cient animals a physiological process? 
Although this question might not be easily answered, we 
would like to argue that the overall mutation pattern of 
MSH2-defi cient animals corresponds to a major alteration of 
the repair pathways involved, a situation for which, surpris-
ingly, no comprehensive explanation has been brought so 
far. The seminal work of Rada et al. (14) has shown that the 
mutation pattern of UNG–MSH2–defi cient animals refl ects 
the simple footprint of AID deamination and that it is close, 
in terms of targeting, to the G/C mutation pattern of wild-
type animals. It is also quantitatively similar, at least at the V 
locus, and this striking observation that suggests that both 
UNG and MSH2 pathways are processing uracils mainly in 
an error-prone mode. It thus follows that the large decrease 
in mutation frequency, as well as the increased targeting of 
specifi c hotspots observed in the MSH2-defi cient back-
ground, must be caused by an increased error-free repair of 
deaminated cytosines by the UNG pathway rather than by 

Figure 2. Hotspot clustering of mutations in MSH2-defi cient 

backgrounds. The distribution of mutations at G/C bases along the JH4 

intronic sequence is represented for the four different genetic back-

grounds analyzed. The percentage of total mutations represented by 

the seven major hotspots observed in the Msh2−/− background (defi ned 

arbitrarily as a position mutated in 5% or more of sequences) is calculated 

for each genotype (marked by asterisks). These seven mutation hotspots 

 occur in the following sequence context (described in their 5′ to 3′ 
order along the JH4 sequence, with the mutated base underlined and 

the position of the first base of the motif numbered from the JH4 

 intronic border): TGTT (position 38), AGCA (position 55), TGCA (position 

60), TGCT (position 251), and AGCA (position 362). One hotspot marked 

with an open triangle (AGTT, at position 46) is restricted to the MSH2-

profi cient background.
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modulation of AID targeting by the MSH2–MSH6 com-
plex, as proposed (12, 33). The mutation hotspots that 
emerge could correspond to deamination sites at which the 
residence time of AID would be increased (possibly through 
their symmetrical WGCW structure that would result in a 
stronger binding and/or an ineffi  cient displacement by the 
sole UNG enzyme), thus preventing repair at those sites. 
The AGTT hotspot whose occurrence is restricted to the 
MSH2-profi cient background would not provide such 
strong binding and would be more easily repaired. Error-free 
repair or ignorance would then be the two major outcomes 
of AID-induced cytidine deamination in the MSH2-defi cient 
background, resulting in the drop of mutation frequency and 
the increase in transitions at G/C bases. A small fraction of 
lesions handled by the UNG pathway would generate abasic 
sites, leading to transversions when replicated over, or would 
recruit pol η in an error-prone short patch repair (Fig. 3).

Collectively, these data emphasize the very dissymmetri-
cal role that the UNG and MSH2 pathways play in the hy-
permutation process. UNG defi ciency aff ects mainly the 
nature of G/C mutations, which are biased almost exclu-
sively toward transitions, while having only a moderate im-
pact on the A/T mutagenesis driven by MSH2 (6, 34) and 

none on the mutation frequency. In contrast, the absence of 
mismatch repair leads to a stronger modifi cation of the Ig gene 
mutation pattern, aff ecting not only mutations at A/T bases, 
as would be expected from a function symmetrical to the one 
of UNG, but also the overall mutation frequency and, within 
G/C mutations, the proportion of transitions as well as their 
distribution along the Ig sequence. Overall, this suggests that, 
although the function of MSH2–MSH6 is  relatively inde-
pendent from UNG, the mismatch repair  complex strongly 
impinges on the role of UNG during hypermutation by pre-
venting it to perform its natural error-free repair function.

The behavior of UNG in the mismatch repair–defi cient 
context strikingly mirrors the eff ect of the deliberate over-
expression of another uracil glycosylase, SMUG1, in a 
UNG–MSH2–defi cient background, which results in a  major 
error-free repair accompanied by a smaller error-prone activity 
generating A/T mutations and G/C transversions (35).

In conclusion, the exclusive formation of A/T mutations 
by pol η allows the formulation of a simplifi ed scheme for the 
role of translesional polymerases in hypermutation (Fig. 3). 
pol η would be recruited by the MSH2–MSH6 complex 
outside of the S phase to permit U/G mismatch recognition, 
and would mostly generate A/T but also a small amount of 

Figure 3. Impact of the MSH2–MSH6 complex on UNG activity 

during Ig gene hypermutation. (A) A simplifi ed scheme of hypermutation. 

UNG would be prevented from performing error-free repair in the 

 presence of MSH2–MSH6 and would generate mainly abasic sites upon 

uracil recognition. These DNA lesions would be copied by a set of transle-

sional DNA polymerases (among which are Rev1, Rev3, and possibly pol θ 

[references 36–40], albeit the contribution of this latter enzyme was 

 recently shown to be less likely [reference 41]), acting in S phase in their 

function of lesion bypass. MSH2–MSH6 would recruit pol η in an 

error-prone short patch synthesis of the uracil-containing strand, most 

likely in G1 (reference 42). (B) Outline of a possible altered behavior of 

UNG in the absence of MSH2 and of its consequences on hypermutation 

in Msh2−/− mice. (left) Increase of error-free repair (resulting in a reduced 

mutation frequency). (middle) Recruitment of pol η for an error-prone 

short patch repair (residual A/T mutagenesis). (right) Ineffi cient displace-

ment of AID (increase in transitions at G/C), in particular at WGCW sites 

(increased focusing of mutations at specifi c hotspot positions).

Table II. Pattern of nucleotide changes in JH4 intronic sequences of normal and mutant mice

Within G/C Within A/T

Trans. Transv. Trans. Transv.

  GC:AT

Transitions: 

transversions

G/A

  C/T

G/T

C/A

G/C 

C/G

A/G

  T/C

A/T

T/A

A/C

T/G

Controls 49.3:50.7 54.3:45.7 59.1 15.6 25.3 49.5 27.0 23.5

pol η−/− 84.4:15.6 53.0:47.0 59.3 11.7 29.0 18.8 24.7 56.5

Msh2−/− 89.7:10.3 75.1:24.9 79.6 9.2 11.2 35.6 37.8 26.6

pol η−/− × Msh2−/− 99.2:0.8 84.6:15.4 85.3 5.0 9.7 0 75.0 25.0
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G/C mutations in an error-prone short patch repair process 
that appears thus far restricted to B cells. In contrast, most 
G/C mutations would be generated by several translesion 
DNA polymerases (33–38), whose exact number remains to 
be established, acting during replication in their function of 
lesion bypass by copying abasic sites generated by UNG, 
which is diverted by MSH2 from its error-free function. In 
such a model of hypermutation, and in contrast to their phys-
iological repair function, UNG would trigger a translesional 
process at the replication fork, whereas MSH2–MSH6 would 
induce a base excision repair outside replication, most probably 
in the G1 phase of the cell cycle. The involvement of pol η 
in an error-prone process, whether driven by MSH2 during 
physiological hypermutation or by uracil glycosylases in spe-
cifi c experimental settings, thus appears to be a B cell–specifi c 
event whose biochemical basis remains to be established.

MATERIALS AND METHODS
Generation of gene-targeted mice. Polh-Msh2 double knockout mice 

were obtained by breeding the previously described Polh−/− mouse strain 

(19) with Msh2−/− animals provided by Hein te Riele (The Netherlands 

Cancer Institute, Amsterdam, Netherlands). Both genes are located distantly 

enough on chromosome 17 to allow the effi  cient recovery of their combined 

inactivation by mouse breeding. All MSH2-defi cient animals selected for 

analysis were devoid of overt tumors. Generation of gene-targeted mice and 

breeding was performed by the Service d’Expérimentation Animale et de 

Transgénèse. Experiments were performed according to the Institut national 

de la santé et de la recherche médicale guidelines for laboratory animals and 

were approved by the Scientifi c Committee of the Necker Animal Facility.

B cell proliferation assays. Splenic B cells were isolated from individual 

2–3-mo-old mice by negative selection using the Mouse B Cell Isolation Kit 

(Miltenyi Biotec). Purifi ed B cells were labeled with 5 μM CFSE, according 

to the manufacturer’s instructions (Vybrant CFDA SE Cell Tracer Kit; Invi-

trogen), before stimulation with either 20 μg/ml Escherichia coli LPS (sero-

type 055:B5; Sigma-Aldrich) or 20 μg LPS plus 10 ng/ml IL-4 (Preprotech). 

CFSE-labeled cells were analyzed after 3 d of stimulation, with forward scat-

ter gating on live cells.

Sequence analysis. B220+PNAhigh B cells were isolated from Peyer’s 

patches of 4–6-mo-old animals as previously described (8). The JH4 intron 

fl anking rearranged VH sequences was amplifi ed using a mixture of fi ve VH 

primers designed to amplify most of the mouse VH families and a down-

stream primer allowing the determination of 490 bp of noncoding sequences, 

as reported previously (19).

Online supplemental material. Fig. S1 shows in vitro proliferation of 

splenic B cells from wild-type, Polh−/−, Msh2−/−, and Msh2−/−Polh−/− 

mice. Fig. S2 depicts the distribution of mutations along the JH4 intronic se-

quence in Peyer’s patch PNAhigh B cells from wild-type, Polh−/−, Msh2−/−, 

and Msh2−/−Polh−/− mice. Online supplemental material is available at 

http://www.jem.org/cgi/content/full/jem.20062131/DC1.
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