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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

Genome mosaicism in temperate bacterial viruses (bacteriophages) is so great that it obscures their phylogeny at the
genome level. However, the precise molecular processes underlying this mosaicism are unknown. Illegitimate
recombination has been proposed, but homeologous recombination could also be at play. To test this, we have measured
the efficiency of homeologous recombination between diverged oxa gene pairs inserted into l. High yields of recombinants
between 22% diverged genes have been obtained when the virus Red Gam pathway was active, and 100 fold less when the
host Escherichia coli RecABCD pathway was active. The recombination editing proteins, MutS and UvrD, showed only
marginal effects on l recombination. Thus, escape from host editing contributes to the high proficiency of virus
recombination. Moreover, our bioinformatics study suggests that homeologous recombination between similar lambdoid
viruses has created part of their mosaicism. We therefore propose that the remarkable propensity of the l-encoded Red and
Gam proteins to recombine diverged DNA is effectively contributing to mosaicism, and more generally, that a correlation
may exist between virus genome mosaicism and the presence of Red/Gam-like systems.
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Introduction

Bacterial viruses (bacteriophages) are the most abundant and

diverse life form and exhibit high levels of evolvability and

adaptability [1]. Moreover, bio-informatic studies suggest that they

contribute substantially to bacterial genome evolution. For

example, in c Proteobacteria, most genes unique to a particular

bacterial species or to a taxonomic group of species, are relatively

short and AT-rich–two hallmarks of phage genes [2].

A particularity of temperate virus genome evolution is their

extensive sequence mosaicism [3] due to exchange of DNA

sequences, facilitated by the frequent encounter inside the same

bacterial host, for example between an invasive and a resident

virus [4,5]. However, most of the time, this mosaicism does not

perturb the general gene order (synteny), probably due to

counterselection of suboptimal gene combinations [6].

Little is known about the precise molecular processes underlying

this viral genome mosaicism. In the case of fully sequenced

lambdoid viruses isolated from enterobacteria, genomes are on

average 50% identical, except for DNA sequence patches showing

more than 90% identity. The apparent absence of any particular

signals at the borders of sequence-similar patches has led to the

proposal that they have probably been acquired by illegitimate

recombination [7,8]. In some cases however, exchange of

sequence modules can be explained by homologous recombination

involving flanking, short and conserved sequences shared by a

subset of related viruses [9]. But it is also possible that some

regions flanking the most similar shared sequences have

undergone homeologous recombination, i.e. recombination be-

tween related but diverged DNA sequences [10].

The temperate virus l has been a major model system in

classical molecular genetics, including in the study of homologous

recombination, which occurs at high rates in the l genome

(reviewed by [11]). l encodes its own homologous recombination

genes reda, redb (the Red system) and the gam gene, all belonging

to the pL-operon. Reda is a double strand specific 59 to 39

exonuclease [12] and Redb mediates strand annealing and

exchange reactions starting from DNA extremeties [13]. The

lGam protein inactivates the E. coli exonucleaseV (RecBCD),

thereby protecting the ends of its linear genome from

degradation (reviewed by [14]). Furthermore two other genes

in the nin region participate in Red-mediated recombination: the

orf gene product can replace the three proteins RecFOR involved

in the E. coli RecF recombination pathway, and the rap gene

codes for a Holliday junction resolvase [15–18]. Intracellular l
DNA is substrate for both virus-encoded and E. coli host

recombination machineries, i.e., l+ recombines well in a recA host

and so does l red gam in the Rec+ host if it contains a Chi site to

resist RecBCD degradation. In both cases, most events are non-

reciprocal [19,20]. For both RecA-dependent and Red-depen-

dent recombination, the required minimal homology is around

30 bp [21,22].
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To test the efficiency of recombination between diverged

sequences in viruses, we have investigated the capacity of l to

recombine pairs of homeologous oxa genes, starting from a l strain

initially described by the group of Kleckner [23] and later

examined in greater detail by Ennis et al. [24]. In this system,

recombination between inverted repeats framing the pL promoter

leads to its inversion, which is accompanied by a phenotypic

switch. We observed that the Escherichia coli RecABCD pathway

recombined 22% diverged genes with a frequency of 1026 per

virus generation. Interestingly, the l Red pathway showed a 100-

fold higher efficiency. The recombination editing proteins MutS

[25], UvrD [26] and RecQ [27] had only marginal, if any, effect

on l recombination. Sequences of genes resulting from home-

ologous recombination revealed a broad spectrum of hybrids, and

some differences between the products generated by the Rec and

the Red proteins which may reflect intrinsic properties of the two

recombination pathways. Therefore this l system provides an

efficient ‘‘gene machine’’ to create large libraries of hybrid

sequences for biotechnology applications. In an attempt to assess

the contribution of homeologous recombination between diverged

sequences to phage mosaicism, we undertook a systematic

bioinformatic analysis of mosaic flanking sequences, in three

families of lambdoid phages. We found that half of them had at

least one moderately diverged flanking region. This suggests that

homeologous recombination within such flanking sequences may

facilitate the reshuffling of phage genome modules and underlines

the important role of virus recombination proteins in their genome

evolution.

Results

l Promotes Efficient Recombination between Diverged
Sequences

To test the efficiency of homeologous recombination in virus

genomes, we studied recombination between pairs of sequence

diverged genes inserted into the genome of l. The experimental

system is based on a genetic switch in l resulting from homologous

recombination between two identical inversely oriented IS10

sequences flanking the promoter pL [23]. Recombination between

such inverted repeats is accompanied by the inversion of the pL

promoter, leading to a phenotypic switch used to score

recombinants (Figure 1). In the normal pL orientation the red

and gam genes are transcribed such that l grows on a recA mutant

host, but not on a P2 lysogen. In the opposite orientation of pL, red

and gam are not expressed, and l grows on a P2 lysogen, but not

on a recA strain.

Starting from the construct with the inverted pL orientation, the

two IS10 sequences were replaced with approximately 800 bp oxa

genes having different levels of divergence [28]. A properly

oriented Chi site was introduced rightward from the recombina-

tion cassette, to allow for stimulation of RecBCD-promoted

recombination (see Figure 1, alignments of oxa genes are shown in

Figure S1). Recombinant frequencies at 0%, 4%, and 22%

divergence were measured during single step growth on C600(P2).

In this background, homologous recombination occurs via the host

RecABCD pathway only, because the l-encoded pathway

mediated by Red is repressed, due to the inverted pL promoter,

and the Chi site protects l rolling-circle forms from pure RecBCD

degradation. Similarly, using l with the native pL orientation,

frequencies were measured during single step growth on a recA

host. This time, recombination occurs via the phage-mediated Red

pathway only, as the recA gene is mutated, and RecBCD is

Author Summary

Temperate bacterial viruses alternate between a dormant
state, during which viral DNA remains integrated in the
host genome, and a lytic state of phage multiplication.
Temperate viruses have a characteristic genome organisa-
tion known as ‘mosaic’ – they contain ‘foreign’ segments
that originate from related viruses. In pairwise alignments
between a given virus and its relatives, the overall
nucleotide sequence identity is around 50%. In contrast,
the mosaic segments are 90% to 100% identical. How
mosaics are generated is largely unknown, but it is likely
that related viruses meet in the same bacterium and
undergo random recombination, with emergence of the
most robust recombinatory viruses. The prevalent hypoth-
esis is that mosaics are formed by illegitimate recombina-
tion. We propose and demonstrate that an alternative
driving mechanism, homologous recombination, is used
for mosaic formation between similar but diverged viral
sequences. Using the well known Escherichia coli l virus as
a paradigm, we show that such homeologous recombina-
tion is remarkably efficient. This finding has important
implications in the field of virus genome evolution, as it
may explain the high plasticity of viral genomes. It is also
applicable to the field of biotechnology, and reveals
viruses to be promising vectors for shuffling genes in vivo.

Figure 1. Recombination between the two homeologous oxa sequences flanking the l pL promoter leads to a phenotypic switch. In
l red- gam-, transcription from the pL promoter proceeds rightward and the red and gam genes are not transcribed. Recombination between the two
homeologous sequences leads to inversion of the pL-N segment causing a selectable phenotype (see Text for details). Not drawn to scale.
doi:10.1371/journal.pgen.1000065.g001

Homeologous Recombination in Lambda
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inactivated by Gam. We verified that in both backgrounds, l
replicated by a rolling circle mode (see Methods).

In the RecABCD pathway, maximum inversion frequency was

361024 for identical sequences, whereas the minimum measured

was 361026 for 22% divergence (Figure 2). Unexpectedly, the

recombinant frequency was as high between 4% diverged

sequences as between identical sequences, and this effect persisted

in the mutS background (see Table 1). A 4% divergence was

reported to reduce by 1000 fold homologous recombination in the

E. coli chromosome [29]. No obvious sequence stimulating

recombination, such as a Chi site, is present in the oxa11 sequence

used to construct the 4% diverged substrate. Rather than being a

stimulation of recombination between 4% diverged sequences, it

could be that some process inhibits recombination between the

strictly identical sequences in l.

Recombination by the phage Red pathway was more efficient

than recombination by the RecABCD pathway, especially for 22%

divergence (1,561024 versus 3,561026, Figure 2). However, no

recombinant was obtained by the Red pathway within 52%

diverged sequences (less than 1028).

Host Recombination Editing Functions Have Little Impact
on Virus Homeologous Recombination

In order to measure recombinant frequencies in various genetic

backgrounds, a protocol involving growth of bacteria on agar

plates rather than single cycle liquid growth was chosen. Bacteria

were infected with phages at a multiplicity of infection of 0.1 and

grown to confluence, in the non-permissive host for growth of

recombinants. This counteracted selection effects and revealed

recombinants produced at the last generation. Recombinant

frequencies in the wild type hosts were found to be consistent

with the single step experiments (compare Table 1 with Figure 2).

The methyl-directed mismatch repair (MMR) MutL and MutS

proteins, and to a lesser extent MutH and UvrD, inhibit home-

ologous recombination by preventing DNA exchange between

diverged repeated chromosomal sequences [30–32] and among

entire genomes of related species [25,33]. In our system, mismatch

repair deficiency (mutS) had an eight-fold stimulating effect on

RecABCD promoted recombination for 4% diverged sequences

(Table 1, 4% divergence set, lane ‘mutS’, RecABCD pathway). This

effect was less pronounced (two-fold) for 22% divergence. No

stimulating effect of the mutS mutation was detected for recombi-

nation catalyzed by the phage Red system (Table 1, Red pathway,

‘mutS’ lanes). Thus in this virus assay, mismatch repair operates a

modest control on the fidelity of the bacterial, RecABCD pathway,

and not at all on the phage Red pathway.

In addition to its role in MMR, UvrD helicase has a distinct

activity in preventing homologous recombination, such that in a

uvrD mutant, recombination between identical sequences is

increased, generally by a factor of 10 [25,34–36]. UvrD appears

to act directly as an ‘‘antirecombinase’’ by dismantling RecA

Figure 2. Frequency of recombinants in the RecABCD and the
Red pathways, at different levels of sequence divergence,
determined by single step growth of phages. Every bar shows the
mean and standard deviation deduced from at least three experiments.
doi:10.1371/journal.pgen.1000065.g002

22% divergence

RecABCD pathway
fold/
WT Red pathway

fold/
WT

WT 8,761027 61,361027 9,061025 62,461025

mutS 1,961026 61,061027 2,2* 1,061024 65,061025 1,1

uvrD 6,861027 64,661027 0,8 1,961024 64,361025 2,1

recQ 2,361027 63,961028 0,3* 8,361025 62,161025 0,9

ruv 2,561028 61,161028 0,03* 3,961025 61,461025 0,4

aUnless otherwise stated, average and standard deviation for at least three
experiments is shown.

bAverage and standard deviation of six experiments.
*Difference relative to the wild type (WT) significant at 1% level with a Student
test.

doi:10.1371/journal.pgen.1000065.t001

4% divergence

RecABCD pathway
fold/
WT Red pathway

fold/
WT

WT 4,261024 61,861024b 1,161023 61,561024

mutS 3,461023 62,761024b 8,1* 3,961024 63,561024 0,4

uvrD 2,061023 66,361024 3,7 8,061024 62,661024 0,7

recQ 6,661024 63,861025 1,2 7,961024 63,361025 0,7

ruv 5,061024 66,761025 0,9 NT

Table 1. Recombinant frequency between 0%, 4% and 22%
diverged sequences present in l, in the RecABCD and the Red
pathway.

0% divergencea

RecABCD pathway
fold/
WT Red pathway

fold/
WT

WT 3,561024 62,861024 7,361023 62,261023

mutS 3,361024 62,761025 1,0 5,561023 64,361023 0,8

uvrD 9,861025 61,261025 0,3 4,061023 61,261023 0,6

recQ 1,461024 65,561025 0,4 5,361023 67,961024 0,7

Homeologous Recombination in Lambda
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nucleoprotein filaments [26]. In yeast, homeologous recombination

is increased in a sgs1 mutant, a member of the RecQ helicase family

[37,38], and in E. coli, RecQ prevents illegitimate recombination

[27]. We therefore tested E. coli uvrD and recQ mutants for a hyper-

recombination phenotype both in RecA-mediated and Red-

mediated events. The uvrD mutation had no effect on the

recombination between identical sequences. However, similarly to

mutS, it conferred a four-fold increase in recombinant frequency only

at 4% divergence and only in RecA-dependent recombination. This

suggests that it does not exert its distinct anti-recombinase activity on

the l substrates (Table 1, lanes ‘uvrD’). RecQ did not prevent

recombination in any of our substrates. Rather, recombination

appeared slightly decreased in the recQ mutant, on 22% diverged

sequences (Table 1, lanes ‘recQ’).

Sequence Analysis of Recombination Products Reveals
Different Recombination Mechanisms Operating in the
Different Substrates

In our l constructs, the set of chosen diverged sequences were

pairs of oxa genes, encoding different beta-lactamases. Depending

on recombination end-points, different gene combinations should

form. A total of 152 phages scored as recombinants were used for

sequencing the hybrid oxa copies. In all 304 oxa genes sequenced, a

hybrid was found. This indicates that recombination indeed took

place within the 800 bp of partial homology. Among these, a total

of 136 new gene combinations were obtained.

The presence of 32 and 176 sites of polymorphism for the oxa7-

oxa11 and oxa7-oxa5 pairs, respectively, allowed us to map precisely

strand exchanges and to class recombination events into two main

categories: the ‘‘non-symmetrical’’ ones, for which the two joints

are present in different intervals, and the ‘‘symmetrical’’ ones, for

which the two joints occur in the same interval. Category

‘‘complex’’ includes more complex sequence patterns. Bacterio-

phage l recombines essentially in a non-reciprocal mode, but in

our recombination assay, only the events that terminate as

reciprocal at the DNA level can yield viable recombinants.

However, such ‘final’ reciprocity can be reached by two successive

non-reciprocal events [39,40], as shown on Figure 3, left panel.

The two events being independent, most products are expected to

be of the non-symmetrical category. If, under some conditions, l
recombines in a reciprocal mode at the molecular level, by a

simple crossing-over, as shown in Figure 3, right panel,

approximately half of the products, those derived from the

RuvC-cut strand, are expected to be of the symmetrical category

(see Discussion).

For the RecABCD promoted recombination between 4%

diverged sequences, most events were non-symmetrical (81%),

whereas only 17% were symmetrical (Table 2). Similarly, for the

Red promoted events between 22% diverged sequences, a

majority (81%) of all events were non-symmetrical and only

17% were symmetrical. In contrast, for the RecABCD promoted

recombination between 22% diverged sequences, 55% were

symmetrical events, whereas 40% were non-symmetrical events.

The difference in the proportions of non-symmetrical events

promoted by RecABCD between 4% and 22% diverged

sequences was statistically significant as determined by a Chi2 test

(p,0.0001). Precise positions of the joints in each pair of oxa

sequence for the 22% diverged DNA are given in Table S1.

Complex recombination products, involving (formally) more

than two non-reciprocal events, were observed at similar but low

frequencies under all conditions tested.

To test whether the symmetrical events were processed by the

RuvABC enzymes, that resolve Holliday junction in a symmetrical

way, recombination frequencies were measured in a ruvABC mutant

strain (Table 1, lanes ‘ruv’). Efficiency of recombination between 22%

diverged DNA via the RecABCD pathway, was decreased by a

factor of 50 in the ruv mutant. In contrast, this mutation had no effect

on the Red-mediated events for 22% diverged DNA, nor did it affect

4% diverged, RecABCD mediated recombination. Therefore, most

of the recombination events observed between 22% diverged DNA

in the RecABCD pathway are resolved by Ruv.

Inspection of the location of all recombination joints relative to

the length of shared identical sequence blocks revealed, for the

22% diverged sequences, that the joints can occur in regions of

homology as small as two bp, but in most cases they were located

in the longer identical blocks (Figure 4, A and C). Positions of

joints along the oxa gene were inspected (Figure 4, B and D), and

revealed two preferential blocks for the RecABCD pathway. The

first hot spot (nt 266–281, 28% of joints) is 16 nt long and contains

two RuvC cutting sites (one on each strand). It may correspond to

Figure 3. Generation of an inversion between the oxa
sequences. Left panel: two successive, non reciprocal events: Oxa
sequences are shown with oriented boxes, dark and light gray. Step 1, a
broken piece containing the rightward copy of oxa recombines with
intact DNA, and generates an unviable molecule (step2), which in turn
recombines its leftward oxa copy with another oxa sequence (step 3).
This other broken piece eventually, but not necessarily, consists of the
rest of the broken piece shown in step 1. Recombination gives rise to a
viable product where the intermediate sequences have been inverted,
and the two oxa genes are hybrids (step 4). A and R designate the
leftmost and righmost genes of l. Right panel: one reciprocal event. A
crossing over is initiated intra-molecularly between the oxa sequences
(step 1), and gives rise to the inverted configuration (step 2).
doi:10.1371/journal.pgen.1000065.g003

Table 2. Typology of the pairs of recombination products
recovered for 4% and 22% diverged sequences from
RecABCD- and Red-dependent events.

RecABCD pathway Red pathway

4% divergence 22% divergence 22% divergence

% (number) % (number) % (number)

non-symmetrical 81 (44) 40 (15) 81 (34)

symmetrical 17 (9) 55 (21) 17 (7)

complex 2 (1) 5 (2) 2 (1)

total 100 (54) 100 (38) 100 (42)

doi:10.1371/journal.pgen.1000065.t002

Homeologous Recombination in Lambda
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a preferred resolution site. The second (nt 661–677, 18% of joints)

is 17 nt long, does not contain RuvC cutting site, but it is

separated by only one mismatch from a 12 bp interval, so that the

sum of the two segments is 30 nt, with a 60% GC content, which

may help stabilizing the recombination intermediate.

In contrast, the Red pathway did not exhibit such marked hot

spots (Figure 4D; the maximal occurrence of a joint was 10%). In

both pathways, an overall deficit of joints in the first 260 bp of the

gene was observed. It is most likely due to its higher divergence

(30% in this segment, versus 18% for the remaining part of the

gene, the curve reporting local % identity is drawn above the joints

locations in Figure 4 B and D).

In summary, the characteristics of homologous recombination

promoted by l suggest that it may constitute an ideal vector for in

vivo gene shuffling.

Detecting Regions of Putative Homeologous
Recombination Events in the Natural History of
Bacteriophage Genomes

To explore the potential role of homeologous recombination in

the evolution of virus genomes, we looked for hallmarks of such

events by a comparative bioinformatics analysis of a variety of

lambdoid phage genomes. Consider ancestral viruses A and B

sharing overall 60% identity except for two 80% identical segments

(I, in Figure 5). Homeologous recombination within the 80% identity

segments would give rise to phage C consisting of the A sequence

with a patch of B. If so, one would expect to find, in the virus C to B

alignment, two regions of 80% identity, called hereafter ‘‘shoulders’’,

flanking a patch of 100% identity, called ‘‘hit’’ (II, in Figure 5).

Subsequent divergence between ancestral phages B and C would

finally lead to 90% identical hits, flanked by 70% shoulders, over a

background of 50% identical sequences (III, in Figure 5).

An analysis of ten lambdoid bacteriophages from enterobacteria

was performed. It showed that of 83 hits sharing more than 90%

identity between any two members of the family, six had two

flanking shoulders and 35 a single shoulder. For the remaining 42

hits there was no detectable shoulder (Table 3, first series of data,

see Table S2 for the complete data set). To determine the

significance of the observed number of shoulders, an estimate of

their number expected at random was made. Only seven should

have been detected under the random hypothesis, which is six-fold

lower than observed and highly significant (p,0.001). The average

identity of shoulders was 64% (+/26.9%) and their lengths were

unevenly distributed, with the median of 200 bp (Table 3).

To extend the analysis, hits and shoulders were looked for in 15

lambdoid phages from lactic acid bacteria and 20 lambdoids from

Staphylococcus aureus (Table 3, last two series, see Tables S3 and S4

for complete data sets). Shoulders were found again in approx-

imately 50% of all hits tested, with a frequency significantly greater

than expected at random (p,0.0001 in both cases).

Discussion

Red Efficiently Recombines the 22%-Diverged Sequences
The remarkable efficiency of the Red promoted recombination

between 22% diverged sequences (1024), in contrast with

RecABCD promoted events (1026), can be interpreted in two

Figure 4. Sequence analysis of recombinant products between 22% diverged oxa. A and C: size distribution of the strictly conserved
segments (blocks) of the oxa7/oxa5 alignment (see figure S1, panel B, for the alignment), and number of joints in each size category for recombinants
formed in the RecABCD (A) or the Red (B) pathway. B and D: Positional organisation of the joints formed in the RecABCD (B) or the Red (D) pathway
along the oxa ORF alignement, 1 is the start position. The upper curve (and the rightward y axis) describes the local percentage of identity along the
two sequences, using a sliding window of 40 bp.
doi:10.1371/journal.pgen.1000065.g004

Homeologous Recombination in Lambda
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ways: (i) Reda and Redb may be less sensitive to sequence

divergence during heteroduplex DNA formation than RecABCD,

and (ii) Reda and Redb may escape host factors that prevent

RecA-mediated recombination. In support of the first option,

Redb promotes efficient annealing and integration of single strand

oligonucleotides containing mismatches, a technique known as

recombineering [41]. Redb is a single strand annealing protein,

and has no ATPase activity [42]. It appears therefore as a simpler

form of pairing protein as compared to RecA, which may explain

its greater tolerance for sequence divergence. It could be also that

the two-strand annealing process in Red-promoted events

generates mismatched intermediates more readily than the

three-strand RecA-promoted D-loops, due to the competition in

the latter case with the displaced, and perfectly matched, strand.

Interestingly, the related RecE-RecT recombination proteins of

prophage rac (in a recBC sbcA host background) were used successfully

to recombine 30% diverged recA sequences [43]. Furthermore,

recombination between 32% diverged DNA during virus crosses was

reported [44]. Finally, RecET promotes recombination between

very short sequences (5–13 bp), in a process that may not be very

different from the homeologous recombination reported here, albeit

less efficient (1028)[45]. Interestingly, in yeast, microhomology-

mediated end-joining (MMEJ) depends on Rad52 [46], a protein

that has definitely some structural and functional similarities with

Redb and RecT [47].

l Escapes from Host Recombination Editing Functions
In support of the other alternative, i.e. the escape from the host

recombination editing systems, we have observed that the MutS

protein, which prevents RecA-mediated homeologous recombina-

tion, is ineffective in the Red pathway. However, MutS can act on

Red-mediated single strand annealing [41] excluding the possibil-

ity that MutS simply does not detect mismatches generated by

Redb. Actually, even the inhibition by MutS of RecA-mediated

homeologous recombination in l was low (eight fold effect for 4%

diverged sequences). In a different but comparable assay, where

4% diverged sequences are recombining in the E. coli chromo-

some, a much more profound, 60 fold inhibiting effect of MutS

was reported [29]. It may be that some of the unknown gene

products encoded within the l genome ensure ‘‘immunity’’ against

mismatch repair proteins, for instance by inhibiting MutS or

MutL. Alternatively the high copy number of l during the lytic

cycle might titrate MutS and/or MutL.

Neither of the helicases UvrD and RecQ showed inhibitory

effects on homologous or homeologous recombination, in either

the RecABCD or the l Red pathway (Table 1). Whereas bacterial

editing systems act to prevent promiscuous recombination events

that cause genome instability, l virus, and perhaps other

lambdoids, appear to evade such editing thereby accelerating the

rate of their genome evolution.

Non-Reciprocal versus Reciprocal Recombination Events
Decades of work and careful analysis of the recombination

products in l crosses have led to the conclusion that in most cases,

recombination is non-reciprocal at the molecular level, whether it

occurs by the RecABCD pathway, or by the Red pathway

[19,20,48]. This means in molecular terms that most often,

recombination intermediates are not double Holliday junctions

Figure 5. Evolutionary history of event between diverged
viruses A and B, produces virus C which is similar to A but for a
patch of DNA (hit) coming from B. Alignment of phage B to C
reveals at the border of the patch two regions of intermediate similarity
(shoulders, here drawn in grey). Below is shown the % identity profile of
the B to C virus alignment.
doi:10.1371/journal.pgen.1000065.g005

Table 3. Analysis of homeologous regions (shoulders) at the border of recombination tracks (hits) in three lambdoid families.

lambdoids growing on number % identity median size (bp) n exp. shoulders

enterobacteria hits 83 95 62,2 400

(10 genomes) shoulders 47 64 66,9 200 7

hits having 0/1/2 shoulders 42/35/6

Lactic acid bacteria hits 193 94 62,6 500

(15 genomes) shoulders 89 66 66,3 200 27

hits having 0/1/2 shoulders 113/71/9

Staphylococcus aureus hits 1321 94 62,4 500

(20 genomes) shoulders 661 68 66,7 200 249

hits having 0/1/2 shoulders 745/491/85

doi:10.1371/journal.pgen.1000065.t003
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resolved by a break-join, RuvABC-dependent process, giving the

classical crossover product (as depicted Figure 3, right panel), but

are rather one of the three following cases: i) half crossovers

resolved by break-join, using either RuvABC or the l encoded

Rap protein [49], ii) D-loops dealt by a break-copy, replication-

dependent process, also called BIR [49,50], or iii) single-strand

annealing (SSA) intermediates. The two first situations are

compatible with the sketch depicted Figure 3, left panel. The last

situation is mostly described for the Red pathway [51,52].

In the case of our present study, where the recombining

sequences are present in l in inverted orientation in the same

molecule, two non-reciprocal events are needed to produce a

viable inverted product (Figure 3, left). When the two recombining

sequence are diverged, the position of the junction can give a hint

of the underlying recombination process. Sequence analysis of

pairs of recombinant genes revealed that, in most cases, the

junction between the two partner sequences is not at the same

position. Thus the hybrid sequence of the two recombined genes is

called non-symmetrical, something expected for l which recom-

bines essentially non-reciprocally. However, half of all RecABCD-

promoted recombination between 22% diverged genes showed

symmetrical products, i.e. the junctions occurred in the same

interval in both copies (Table 2). Because of the abundance of

nucleotide polymorphism that define 137 possible intervals for

strand exchange, it appears unlikely that two successive events

occurred by chance in the same place (probability of 1/

137 = 0.7%), and suggests rather that in these cases, recombination

occurred by a single crossing-over event. Holliday junction

Table 4. Strains and plasmids used in this study (All E. coli strains, unless specified otherwise, are derivatives of C600).

Strain Genotype Source/construction

E. coli

C600 thr1 leuB6 thi1 lacY1 supE44 rfbD1 fhuA21 E. coli Gen. Stock Cr

NK5196 P2 prophage [23]

GSY 579 AB1157 lysogen for lcI857ts S. Sommer

GSY5902 AB1157 DrecA306 srl::Tn10 (miniF recA) S. Sommer

MAC 49 AB1157 mutS215::Tn10 G. Walker

NK7085 AB1157 mutS104::Tn5 N. Kleckner

NEC58 AB1157 recQ61::Tn3 Laboratory collection

FR189 AB1157 uvrD::Tn5 Laboratory collection

MAC833 AB1157 uvrD::PhleoR [26]

JJC754 AB1157 ruvABC:CmR B. Michel

JTM93 DrecA306 srl::Tn10 P1 GSY5902*C600

MAC999 mutS104::Tn5 P1 NK7085*C600

JTM304 recQ61::Tn3 P1 NEC58*C600

JTM322 uvrD::Tn5 P1 FR189*C600

MAC 1256 ruvABC:CmR P1 JJC754 * C600

JTM94 P2 prophage mutS215::Tn10 P1 MAC49*NK5196

JTM159 mutS::Tn5 recA306srl::Tn10 P1 GSY5902*MAC999

JTM334 P2 prophage recQ61::Tn3 P1 NEC58*NK5196

JTM335 recQ61::Tn3 recA306srl::Tn10 P1 GSY5902*JTM304

JTM336 P2 prophage uvrD::PhleoR P1 MAC833*NK5196

JTM337 uvrD::Tn5 recA306srl::Tn10 P1 GSY5902*JTM322

MAC1259 P2 prophage ruvABC::CmR P1 JJC754*NK5196

MAC 1266 ruvABC::CmR recA306srl::Tn10 P1 GSY5902*MAC1256

JTM146 AB1157 (lcI857ts) pKD46 pKD46 into GSY579

l strains

1390 b221 red3 ea10:IS10 rexA:Tn10 del 267 inv (pL-N) cI857ts x+C [24]

Nec1 ea10:oxa7 rexA:oxa7-CmR inv (pL-N) x+ cI857ts Dorf28-ral This work

Nec2 ea10:oxa7 rexA:oxa11-CmR inv (pL-N) x+ cI857ts Dorf28-ral This work

Nec3 ea10:oxa7 rexA:oxa5-CmR inv (pL-N) x+ cI857ts Dorf28-ral This work

Nec4 ea10:oxa7 rexA:oxa7-CmR x+ cI857ts Dorf28-ral This work

Nec5 ea10:oxa7-11 rexA:oxa11-7-CmR x+ cI857ts Dorf28-ral This work

Nec6 ea10:oxa7-5 rexA:oxa5-7-CmR x+ cI857ts Dorf28-ral This work

Nec8 ea10:oxa7 rexA:oxa1-PhleoR x+ cI857ts Dorf28-ral This work

Plasmid

pKD46 l red gam expressing plasmid [61]

doi:10.1371/journal.pgen.1000065.t004
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resolution is not expected to give more than 50% symmetrical

products in our assay, because the progeny of the two strands of

the recombination product is slightly different, due to the

difference between the invasion step (not necessarily strictly

symmetrical) and the resolution step (symmetrical due to the

RuvC action). The high proportion of symmetrical products,

combined with the 100-fold lower efficiency of recombination for

22% as compared to 4% diverged sequences, may suggest the

existence of two recombination mechanisms inherent to the

RecABCD pathway: one being prominent at low sequence

divergence (non-reciprocal), and the other at high levels of

divergence (crossover). In line with this, we found that

RecABCD-promoted recombination was independent of RuvABC

at low divergence, but depended on RuvABC for the 22%

diverged DNA. The prevalence of crossovers at high divergence

might result from a combination of two favouring conditions: i) the

requirement of a single event, rather than two for the non-

reciprocal recombination, ii) the relative higher stability of highly

mismatched heteroduplexes within Holliday junctions, as com-

pared to the non-reciprocal recombination intermediates.

This reasoning, in turn, underlines again the different activity of

Red proteins, which produce mainly (81% of cases) non-

symmetrical recombinants between 22% diverged sequences. Still,

the probability that the observed 17% symmetrical products were

generated by chance during two successive non-reciprocal

exchanges occurring in the same of the 137 possible intervals is

very low. We propose that a fraction (,2617% = 34%) of all Red

promoted events in our experimental set up are indeed cross-overs.

Biochemical studies of the RecT protein, which belongs to the

same family as Redb, have suggested that it might be able to

generate three-strand intermediates [53]. In vivo, both reciprocal

and non-reciprocal events are promoted by Red enzymes, and the

balance is given by the length of homology available at the broken

extremity: the longer the homology, the more non-reciprocal

events are made [52].

Furthermore, the detailed analysis of joints produced via the

Rec and Red pathways between 22% diverged DNA suggests

again mechanistic differences which are compatible with the

biochemical properties of the two systems: two hot spots are

observed for the Rec products. RecA-promoted homologous

recombination is expected to act more or less equally on all DNA

sequences, but the absence of any single identical interval large

enough to accommodate a MEPS (minimal efficient pairing

sequence, [22]) may force the appearance of preferred regions

where the three strand intermediate had a better stability. Indeed,

a detailed study of the effect of mismatches on RecA-mediated

joint molecule formation has shown that the position of

mismatches relative to the identical regions can have different

effects, depending on the stability of the heteroduplex progres-

sively formed as exchange proceeds [54]. In contrast, no such hot

spot is seen with Red products, which may well correspond to a

‘sandwich-like’ mode of action of single-strand annealing enzymes,

rather than the progressive invasion process mediated by RecA.

l Recombination as a Tool for Biotechnology
Applications

We demonstrate that, starting from pairs of similar genes,

irrespective of their origin, phage genetic promiscuity can be

exploited to generate large new gene families creating potentially

interesting new biochemical entities. Even at 22% divergence, the

Red recombination pathway can routinely create 105 to 106

recombinant genes (and viruses) per single Petri dish, 40% of

which represent different new genes. The yield of recombinant

genes is orders of magnitude higher than when the same genes

were carried in E. coli plasmids [55]. It is also possible to lead this

system through unlimited iterative cycles of inversion recombina-

tion, which should yield even more diverse gene products. As such,

l is therefore a convenient genetic vector for evolutionary

biotechnology.

Homeologous Recombination and the Origin of
Temperate Virus Genomic Mosaicism

Can we relate our experimental results on homeologous

recombination in l to the evolutionary history of lambdoid virus

genomes? Our bioinformatic analysis showed that among all

detected blocks of highly similar sequences (hits), about one half

showed no flanking ‘‘shoulder’’ of moderate divergence, about

40% showed only one shoulder and the remaining hits were

clearly framed by two shoulders. Even a single shoulder is

compatible with an involvement of homeologous recombination.

For example, a sequence block can be acquired by an home-

ologous recombination event (shoulder) at one junction, accom-

panied by an homologous event between identical sequences [9] or

an illegitimate event at the second junction (no shoulder, [45]).

When shoulders were detected, their identity was in the range of

64% to 68%, and the hit sequences were on the average 94%

identical. The 6% divergence of the hit sequence suggests that, at

the time of recombination, the shoulders identity was about 70 to

74% (Figure 5). This is close to the 78% identity that was tested in

our assay and found as substrate for homeologous recombination.

Because never more than 50% of the detected hits were flanked by

at least one recognizable shoulder, illegitimate recombination and

homeologous recombination appear to contribute to phage

genomic mosaicism to a similar extent.

If virus mosaicism is really related to the presence of Redb-like

recombination enzymes, it should be possible to verify that all virus

genomes exhibiting mosaicism encode such a function. Among the

ten lambdoids from enterobacteria that were analysed here, only

two encoded a Redb ortholog. However at least one other family

of virus recombinases, of which Erf is the best studied member, has

been described [47]. It may act similarly to Redb, as it forms

similar ring structures [56], and cross-complementation has been

observed [57]. Four among the ten lambdoids from enterobacteria

encode an Erf ortholog, and eight among the fifteen lambdoids

from lactic acid bacteria as well. Whether this type of recombinase

promotes efficient homeologous recombination remains to be

tested. None of the S. aureus virus analysed encode either a Redb or

Erf ortholog. It may be that one or more virus recombinase

families remain unknown at present. Interestingly, viruses

belonging to the family of T4, composed exclusively of virulent

members, appear not to have a mosaic structure, but to consist

rather, like bacteria, in a common backbone genome, interrupted

by a few large variable regions [58]. These viruses do not encode

proteins of the Redb nor Erf family, but a UvsX protein which has

ATPase activity like RecA. Also, among dairy viruses, a different

genomic structure for virulent and temperate viruses has been

reported [59]. This scattered evidence is therefore compatible with

the possibility that the mosaicism of lambdoid genomes is

connected with the particular type of homologous recombination

enzymes they encode, which may be fit to provide, in a short time,

large gene repertoires and therefore bring about an extraordinary

evolvability.

Materials and Methods

Strains
All Escherichia coli and l strains used in this study are described in

Table 4.
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General Phage Manipulations
Lysogenization was performed as described by Cromie and

colleagues [60]. Primary phage stocks, which all contained the

thermosensitive cI857ts mutation, were obtained by shifting

cultures of lysogenic bacteria at a OD600 0.4 for 10 minutes to

45uC, followed by further incubation (up to 4 hrs) at 37uC. These

primary stocks usually contained 1010 plaque forming units per ml.

l Phage Construction
The l 366 described by N. Kleckner [23] contained a copy of

IS10 inserted into the ea10 gene (our unpublished observation),

and a copy of Tn10 inserted into the rexA gene. A derivative

obtained by G. Smith, l 1390, in which the pL promoter is

inverted, was used as the starting material for our constructions

[24]. Our goal was to replace the IS10 and Tn10 copies by a set of

related oxa genes which diverge by 4% (between oxa7 and oxa11),

22% (between oxa7 and oxa5), or 52% (between oxa7 and oxa1,

[55]). A fragment of the l1390 genome was cloned onto plasmid

pACYC184, and successive cloning steps allowed to substitute part

of the IS10 with oxa7, and the totality of Tn10 with three elements:

i) either oxa7, oxa11, or oxa5, inverted relative to the copy of oxa7

inserted into ea10, ii) the chloramphenicol-resistance (cmR) gene of

pACYC184, and iii) a Chi site [24]. Integration of these cassettes

into lcI857ts was done using the protocole of Datsenko and

Wanner [61], with strain JTM146 as a recipient. This permitted to

obtain lNec1, 2, 3, in which the pL promoter is inverted. To get

the inversed orientation of pL, recombinants obtained starting

from l Nec1, 2, and 3 constructions were selected, and a clone in

which the recombinant product was symmetrical was kept. The

construction to test 52% diverged sequences in the Red pathway

(lNec8) was done by replacing the rightward oxa7-CmR cassette

of lNec4 by an oxa1-phleoR cassette. Construction details are

available in Text S1 and Figure S3.

The construction to test 52% diverged sequences in the Red

pathway (lNec8) was done by replacing the rightward oxa7-CmR

cassette of lNec 4 by an oxa1-PhleoR cassette. To do this, a

plasmid containing the cI to N region of l, in the native

orientation of the pL promoter, interrupted by the oxa5-CmR

cassette (pMAP189) was used to substitute a different cassette,

made of the oxa1 gene flanking a PhleoR gene, giving plasmid

pMAP195. The 3.2 kb AvaII-SapI fragment of pMAP195 was then

gel purified and used to transform a C600 derivative lysogenic for

l Nec4 and containing pKD46, and selecting phleomycin resistant

transformants (1 mg/ml), in which the rightward oxa7-CmR

cassette had been replaced by the oxa1-phleoR cassette.

Recombination Measurements
Single Step Experiments. Phages were adsorbed on the

selective host at an m.o.i. of 0.1 for 30 minutes at 37uC. Infected

cells were diluted 100-fold in pre-warmed TB (10 g/L Bacto-

Tryptone, 0.5% w/v NaCl) supplemented with 0.1% maltose and

1 mg/ml thiamin, and grown at 37uC for 3.5 h when the first peak

of phage production occurred. The supernatant was collected,

filter-sterilized, and phage stocks were titrated on C600 recA and

C600 P2. Recombinant frequency was calculated by determining

the ratio of phages growing on the lawn selective for recombinants,

over total phage count estimated by the sum of titers obtained on

P2 and recA lawns.

Confluent Phage Growth. Recombination frequencies were

estimated on phage stocks grown on plates to confluence, starting

with an m.o.i. of 0.1. As Red2 Gam2 phages have lower burst

sizes compared to Red+Gam+ phages in a wild type host, growth

was performed under restrictive conditions, such that recombined

phages could not propagate. This prevented possible enrichment,

allowed us to measure the yield of recombinants produced during

the last burst before phage harvest, and to deduce a recombinant

frequency per generation. 100 ml of an over night (ON) culture of

the respective host bacteria (i.e. C600 recA or its mutS, uvrD, ruvABC

or recQ derivatives for Red-mediated recombination of l; and

C600 (P2) or its mutS, uvrD, ruvABC or recQ derivatives for

RecABCD-mediated recombination of l) were mixed with 100 ml

of primary stock phages in 5 ml of top agar (10 g/l Bacto-

Tryptone, 4.5 g/l Bact-Agar, 0.25% w/v NaCl, 10 mM MgSO4),

and the mixture poured on LB plates. The plates were incubated

ON at 37uC. Top agar was harvested and mixed with 3 ml

Suspension Medium (SM: 50 mM Tris?Cl, pH 7.5 at RT; 0.1 M

NaCl; 8 mM MgSO4; 0.01% gelatin). The mixture was

centrifuged and the supernatant titrated as for single step

experiments.

Background level of gam2 phages due to mutation was measured

by plating a lcI857ts strain on a P2 lysogen, and found to be

561027. Therefore, contribution of mutagenesis to the scoring of

Red-dependent, gam- recombinants was considered negligible.

l replicates by two distinct modes, theta type and rolling-circle

type, which may be different substrates for recombination.

However, all derivatives analysed in this work contain a Chi site,

so they should produce rolling circle intermediates, even in the

absence of Gam, as is the case when pL is inverted. We verified by

Southern analysis that both types of constructs, with pL inverted

or not, produced rolling circle intermediates in our growth

conditions. To do so, phages were adsorbed to 1 ml of C600 cells

grown to an OD of 0.5 (in TB medium supplemented with 0.1%

maltose and thiamin 1 mg/ml), at an MOI of 1, at 37uC without

agitation. Samples were withdrawn 0, 30 and 60 minutes after

adsorption, cells were pelleted and resuspended in 100 ml of SET

buffer (20% sucrose, 50 mM Tris pH 7.5, 50 mM EDTA,

0.5 mg/ml lysozyme), and incubated 10 min at 37uC. Lysis was

then completed by adding 100 ml of SET supplemented with 5%

SDS and bromophenol blue. Crude extracts were vortexed

1 minute, and loaded (30 ml) on a 15 cm-long, 0.5% TBE agarose

gel supplemented with 40 mg/ml ethidium bromide. To achieve

best separation, electrophoresis proceeded in TBE buffer with

40 mg/ml ethidium bromide for 3 h at 150 volts. This high

migration voltage heated considerably both buffer and gel, and

this appeared necessary to achieve best resolution, as the same gels

run in the cold room did not allow to separate l from the bulk of

chromosomal DNA as nicely. Under such conditions, the dimer

and trimer of l, prepared by partial ligation, migrated faster than

the rolling-circle intermediates, which co-migrated with the upper

limit of the bulk of chromosomal DNA. Transfer, and hybridisa-

tion, followed classical protocols (the whole l genome was taken as

a probe). Results on Figure 6, right panel, show that both lNec3

(Gam2) and lNec6 (Gam+) produce rolling circle intermediates as

a function of time, with the Gam- phage producing less than the

Gam+ phage, as expected. Monomeric molecules migrate ahead

of rolling-circle products, and dimer molecules of l are absent. A

similar result was obtained when phages were adsorbed to the

strains used for recombination scoring (P2 lysogen for Nec3, and

recA mutant for Nec6).

Sequencing of Recombinants
Single plaques of recombinants were purified by streaking,

purified plaques were toothpicked and resuspended in SM. These

crude phage particles were directly used for PCR amplification

with oligonucleotides flanking the oxa gene to be sequenced. When

the same pairs of oligonucleotides were used on the starting, non-

inverted phages, no PCR product was obtained, ensuring that the

recombinants analysed were not generated during the PCR itself.
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Computational Analysis
Shoulder Detection Strategy. A flowchart is given as Figure

S2. For each pair of bacteriophage genomes, a blast allowing gaps

was run, and all hits longer than 200 bp, having an E value lower

than 1028 and exhibiting more than 90% nucleotide identity, were

kept for further analysis. For each hit, the pairs of left- and right-

flanking DNA fragments were aligned using the Needleman-

Wunsch algorithm. The size of the analyzed flanking region was

2 kb, with an additional 200 bp-long ‘‘anchor’’ inside the hit. In

cases where two hits were closer than 2 kb apart on one or both

genomes, the flanking fragment size was set to the size of the

smaller inter-hit intervals, and alignment was calculated only if

fragments were longer than 100 bp. The alignment result was

converted into a vector storing the percentage of identity (idperc)

in each 100nt-long interval. The hit idperc value (called h) was the

integer value of the blast output. The background level of idperc

(called b) for a given genome pair was estimated by pooling values

obtained in all vectors of this pair, and extracting the one third

median. A shoulder was then defined as any interval of the vector

(at least 100 nt long), directly flanking the hit, and in which all

idperc values s, were such that b+10,s,h210. Some flexibility

was added to this rule, so as to permit any of the s values to be less

than b+10, provided that its two neighbors were more than b+10.

Calculation of Shoulder Number Expected at

Random. Vectors calculated as described above were used to

detect regions similar to the shoulders in terms of idperc, but not

placed at the flanking side of the hit. These heterogeneities will be

called tentatively ‘‘bumps’’. Cumulated bump length found at the

vicinity of all hits, divided by the total length scanned (over all

vectors of all hits), allowed to estimate the bump density. This

density was then multiplied by the cumulated shoulder lengths, to

give an estimation of the number of shoulders that correspond in

fact to the background ‘‘noise’’ of heterogeneity of all alignments.

Construction of Phages Families and Informatic

Tools. Ten genomes of lambdoid phages from enterobacteria

were used: l, HK022, HK97, P22, 933W, HK620, N15, P27, D3,

APSE. The set of 15 lactic acid bacteria infecting phages was

selected according to Proux et al. (Proux et al., 2002): A2,

Tuc2009, BK5-T, TP901-1, r1t, bIL67, c2, sk1, bIL170, bIL309,

bIL285, bIL286, 7201, sfi19, sfi21. The set of 20 S. aureus

bacteriophages was selected according to Kwan et al. (Kwan et al.,

2005): 187, 69, 53, 85, 2638A, 77, 42e, 3A, 47, 37, EW, 96,

ROSA, 71, 55, 29, 52A, 88, 92, X2. Scripts were written in

Python, using the Biopython parser for genbank files. BLAST

2.2.10 was downloaded from the NCBI.
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Figure S1 Nucleotide sequence alignment of oxa genes used as

recombination substrates. (A) oxa7 to oxa11 (4% divergence). (B)

oxa7 to oxa5 (22% divergence). Alignments were performed with

the Needleman-Wunsch algorithm.
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Figure S2 Flowchart of the shoulder detection strategy.

Found at: doi:10.1371/journal.pgen.1000065.s002 (0.02 MB
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Figure S3 Sketch of the different steps of the Lamda Nec

contructions.

Found at: doi:10.1371/journal.pgen.1000065.s003 (0.21 MB

DOC)

Table S1 Joints positions in recombinants obtained with 22%

diverged DNA.

Found at: doi:10.1371/journal.pgen.1000065.s004 (0.02 MB XLS)

Table S2 Position of the mosaics detected among the entero-

bacteria bacteriophages.

Found at: doi:10.1371/journal.pgen.1000065.s005 (0.03 MB XLS)

Table S3 Position of the mosaics detected among lactic acid

bacteria bacteriophages.

Found at: doi:10.1371/journal.pgen.1000065.s006 (0.04 MB
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Table S4 Positions of the mosaics detected among Staphylococ-

cus aureus bacteriophages.
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Text S1 Construction of the Lambda Nec series.

Found at: doi:10.1371/journal.pgen.1000065.s008 (0.03 MB
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Figure 6. Both l Nec3 and l Nec6 produce rolling circle intermediates. DNA extracted during a kinetics of l infection was loaded on a gel
(30 ml), besides a l ladder size marker (shown as L, 1 ng in the middle lane, 10 ng on the right side lane). UV photograph of the gel is shown in the
left panel, and Southern blot in the right panel (the last lane was omitted for blotting). Mo, Di and RC: monomer, dimer and rolling-circle forms of l
respectively. C: E. coli C600 chromosomal DNA.
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