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ABSTRACT

We propose a new computer aided detection framework for tumours acquired on DCE-MRI (Dynamic Contrast
Enhanced Magnetic Resonance Imaging) series on small animals. In this approach we consider DCE-MRI
series as multivariate images. A full multivariate segmentation method based on dimensionality reduction,
noise filtering, supervised classification and stochastic watershed is explained and tested on several data sets.
The two main key-points introduced in this paper are noise reduction preserving contours and spatio temporal
segmentation by stochastic watershed. Noise reduction is performed in a special way that selects factorial axes
of Factor Correspondence Analysis in order to preserves contours. Then a spatio-temporal approach based on
stochastic watershed is used to segment tumours. The results obtained are in accordance with the diagnosis of
the medical doctors.

Keywords: classification, DCE-MRI series, multivariate mathematical morphology, segmentation, stochastic
watershed, tumours.

INTRODUCTION

DCE-MRI (Dynamic Contrast Enhanced MRI)
time series is a medical imaging modality useful to
characterise the process of tissue vascularisation. As
tumours correspond to zones of angiogenesis, where
the vascularisation is increased, DCE-MRI series are
a convenient way of identifying or characterising
potential tumours. Hence, DCE-MRI provides an
additive and functional information to more current
morphological images. Due to the increasing amounts
of images, the creation of tools to assist medical
doctors is of great interest for the analysis of these
images and the detection of candidate tumour regions.
In this paper, our goal is to supply an automatic
tool to help users to localise tumours, based on this
vascular information. An automatic process is required
to limit operator variability during tumour delineation.
In current morphological images such question is very
challenging because, currently, gray level differences
between tumour and adjacent tissues are not sufficient
for a confident and stable separation between
tissues. Conversely DCE imaging provides potential
richer information to determine this difference.
However this information is distributed among all
the sequence of images, requiring mathematical
development. Here we show the results on DCE-
MRI images of recent developments in mathematical
morphology segmentation for multivariate images.

Our developments are particularly useful for a visual
evaluation of the tumour extension, but also as a
pre-processing step before pharmacokinetic modeling,
evaluated then on images with less noise. The
corresponding evaluation of functional parameters
such as blood flow, blood volume, permeably-surface
of capillaries, etc. (Sourbron and Buckley, 2012)
should be improved accordingly.

The considered images are DCE-MRI series of L=
512 channels of size N×N, N = 128, pixels acquired
at a regular step of t = 1 second, in time, on mice
presenting tumours (Balvay et al., 2005). In DCE-
MRI imagery, tumours are regions corresponding
to the accumulation of the contrast product. This
accumulation is characterised by an increasing kinetics
of the temporal signal for each pixel of the tumour.
Our aim is to show the potential of a new method for
segmentation purpose in medical imagery. The tests,
made on 25 different series, were used to develop
the new method based on hyperspectral mathematical
morphology. The objective is to achieve computed
aided diagnosis of tumours.

From an image processing point of view, DCE-
MRI images are time series which fulfil a fundamental
temporal coherence hypothesis: at each time step, the
MRI image is acquired on the same object of interest
and the images are registered, i.e., any pixel has the
same spatial position for every time step (i.e., for every

1



NOYEL G ET AL: Multivariate Mathematical Morphology for DCE-MRI images

image channel). In our case, in each experiment the
channels are registered.

Due to these assumptions, the sequences of DCE-
MRI images may be interpreted as multivariate,
i.e., hyperspectral images, of the time evolution of
the scene observed. Some images of the sequence,
interpreted as channels of a series, are shown in Fig. 1.
The tumours (PC3 – human prostatic) are characterised
by an hyper-vascularised ring and an hypoxic centre
or even a necrotic centre which is due to the distance
of the afferent vessels from the centre. This vessels
are repulsed from the centre by tumoural proliferation.
More details about acquisition conditions are given on
the appendix section.

fλ1
fλ12

fλ13

0 s 11 s 12 s

fλ256
fλ512

255 s 511 s

Fig. 1. Five channels of hyperspectral image of a
mouse “serim447” which is a temporal series (128 ×
128 × 512 pixels) with 512 channels acquired every
second.

In order to get a better understanding of the
images, several portions are labeled in Fig. 2 : i) a
portion of the tumour is in green, ii) a portion of the
heart cavities is in blue, iii) a portion of the background
is in red and iv) a portion of the lungs is in white.

Fig. 2. Labeled portions of DCE-MRI series.

Hyperspectral images are multivariate discrete
functions with several tens or even hundreds of
spectral bands. In a formal way, for each pixel of
a 2D (or a 3D), hyperspectral image is viewed as a
vector, with values associated with a given wavelength,
time or any index j. Each wavelength, time or
index has a corresponding image, named channel,
in two (or three) dimensions. In the text below, we
use the term of spectrum and spectral channel to
describe temporal phenomena. The segmentation of
hyperspectral images by hyperspectral mathematical
morphology has been used for remote sensing
images (Benediktsson et al., 2005; Noyel et al., 2011).
However, we show here the generality of our approach
since the methods are also useful for DCE-MRI series
analysis.

STATE-OF-THE-ART ON DCE-MRI
SERIES ANALYSIS

Dynamic Contrast Enhanced Imaging (DCE-
Imaging) is an increasingly used non-invasive imaging
strategy to analyse tissue micro-vascularisation and
perfusion. This technique is based on 1) an injection
of a bolus of contrast agent, 2) an imaging modality
(CT, MRI or Ultrasound imaging) in a sequential mode
(Ivancevic et al., 2001), and 3) a method to analyse
the kinetics of tissue enhancement over time (Brix
et al., 2012; Sourbron and Buckley, 2012). DCE-
Imaging has been widely demonstrated to be useful
in detection and characterisation of lesions such as
ischemia and tumours, in a variety of tissues such as
brain, heart, breast and liver (Van Dijke et al., 1996),
as well as in prediction and evaluation of the effects
of therapies (Zahra et al., 2007; O’Connor et al.,
2008; Leach et al., 2012). DCE-Imaging is especially
useful in analysing tumour angiogenesis, i.e., the fast
growth of a new and chaotic capillary network in
tumours induced by growing factors secreted by the
fast multiplying tumour cells (Brasch et al., 2000).
This functional imaging field is therefore growing
rapidly an constitutes a valuable addition to traditional
morphological imaging, signal intensity, shape and
size of the lesions. However, several meta-analyses
(Zahra et al., 2007; O’Connor et al., 2008) have
underlined the difficulties in comparing DCE imaging
results between different centres due to differences in
data acquisition and analysis of this technique, as well
as to signal to noise limits. Signal to noise limits are
due to fast dynamic acquisitions and due to motion
artefacts induced by breathing, heart beating, bowel
movements as well as involuntary patient movements.
To improve reproducibility, the challenge consists in
minimising the influence of the local experimental
conditions on data.
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In Ding et al. (2009), a method based on Karhunen
Loeve Transform has been presented in order to reduce
noise on cardiac cine MRI. The factorial axes are
selected according to the autocorrelation function of
each eigenimage. The axes are retained in a contiguous
way by an automatic criterion based on half-maximum
height of the autocorrelation peak. In Ding et al.
(2010), an extension of this method for spatially
variant noise has been presented. It is based on the
eigenvalue distribution of random matrices.

In Balvay et al. (2011), an improvement of
Signal to Noise Ratio for Dynamic Contrast-Enhanced
Computed Tomography and Magnetic Resonance
Imaging with PCA is explained. A new criterion,
the fraction of residual information, is proposed to
automatically select the factor axes. It takes into
account the temporal order of the images in the series.

In this paper we present the most interesting results
on DCE-MRI series of a method that reduces the
noise by Factor Correspondence Analysis, followed
by a classification and a segmentation stage. Readers
interested in more details and proofs on our method are
invited to consult (Noyel, 2008c). A short overview of
some of the results of this study has been presented in
(Noyel et al., 2008b).

PAPER ORGANISATION
The first part of this paper introduces some

pre-requisites on hyper-spectral image processing.
The second part is focused on filtering and data
reduction of hyperspectral images. In the third part the
classification step is explained and in the fourth part
the segmentation by standard and stochastic watershed
of DCE-MRI series is presented. The full image
analysis process is illustrated and validated by an
application to the automatic detection of tumours on
animals.

PRE-REQUISITES

NOTATIONS
In order to analyse DCE-MRI series with methods

based on multivariate image processing, we use a
specific notation for hyperspectral images. By using
this generic notation, we consider the temporal
dimension of the image as the “spectral dimension”.
Let :

fλ :
{

E → T L

x → fλ (x) =
(

fλ1(x), fλ2(x), . . . , fλL(x)
)
(1)

be an hyperspectral image, where:

– E ⊂ R2, T ⊂ R and T L = T ×T × . . .×T

– x = xi \ i ∈ {1,2, . . . ,P} is the spatial coordinates
of a vector pixel fλ (xi) (P is the number of pixels
in E)

– fλ j \ j ∈ {1,2, . . . ,L} is a channel (L is the number
of channels)

– fλ j(xi) is the value of vector pixel fλ (xi) on
channel fλ j .

Several approaches exist to analyse DCE-MRI:

1. spatial analysis: channel fλ j by channel fλ j′

2. spectral analysis: vector fλ (xi) by vector fλ (xi′)

3. spatio-spectral analysis: simultaneous use of both
approaches fλ .

The methods are illustrated in Fig. 3. Generally, the
spatio-spectral approach gives the best results.

(a) Spatial (b) Spectral

(c) Spatio-spectral

Fig. 3. Three ways to analyse DCE-MRI sequences: (a)
spatial, (b) spectral and (c) spatio-spectral approach.

NECESSITY OF DATA REDUCTION

DCE-MRI images are time series composed of
several hundreds of time channels. As channels are
not statistically independent, the reduction of spectral
dimension is necessary:

1. to reduce “Hughes phenomenon” (Hughes, 1968)
also called the “curse of dimension”

2. to reduce the amount of data and therefore to
reduce the computational time.
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Hughes phenomenon has been studied in the
case of hyperspectral images, among others in
Landgrebe (2002) and Lennon (2002). To tackle
this problem several data reduction methods exist,
e.g., Correspondence Analysis, Principal Component
Analysis, Independent Component Analysis, etc.
Modeling the spectrum is also useful for reducing the
spectral dimension as the example shown in this paper.

METHODOLOGY TO SEGMENT
DCE-MRI TIME SERIES

The overall proposed methodology to segment
DCE-MRI time series is composed of three steps
(Fig. 4):

1. a filtering of the images and a reduction of their
spectral dimension

2. a classification of the vector pixels to a given
number of classes

3. a segmentation step based on a function to flood
by a watershed transform. This function combines
the spatial and spectral information. It consists of
a probability density function of contours

The first two steps are included in the pre-
processing step, which in this paper is based
exclusively on the spectral information.

Fig. 4. Framework to segment DCE-MRI time series as
hyperspectral images.

The spectral approach is actually a global analysis
on the image, because we compare all the vector pixels
between them. On the other hand spatial approach is
more local, because a given vector pixel is mainly
compared to its nearest neighbours.

FILTERING AND DATA REDUCTION

Multivariate image denoising and dimensionality
reduction is addressed in this study with Factor
Correspondence Analysis (FCA; Benzécri, 1973). A
factorial space of reduced dimension is obtained with

respect to the spectral dimension of the original image
space. This reduced space is composed of factor pixels
cf

α of the hyperspectral image fλ .

Factor Correspondence Analysis is useful to
reduce spectrum dimension (Noyel et al., 2007c).
Similar results can be obtained with other methods
such as Principal Component Analysis (PCA) or
Independent Component Analysis (ICA), etc. We
have given priority to FCA because it is efficient in
segmenting multivariate images with positive pixels
values.

The original image fλ can be reconstructed
from a limited number of factors leading to a
good approximation f̂λ of this original image fλ .
The reconstructed image contains, under certain
conditions, a spectral noise that is smaller than the
noise on the original image. Therefore, a method
which reduces the noise on the factor pixels cf

α will
be explained in this section.

Additionally, the reduction of the spectral
dimension of the image fλ by fitting a spectrum model
on the filtered image f̂λ will be presented. This is to
take advantage of the prior knowledge of the spectrum.
By modeling the spectra, some maps of the parameters
of the model are obtained. These maps constitute a
reduced space which is useful for further classification
and segmentation.

DENOISING AND DIMENSIONALITY
REDUCTION BY DATA ANALYSIS

Introduction to FCA
Data analysis is a transformation ζ of the space

of the original image fλ , with a dimension L, into a
space of another hyperspectral image cf

α , of reduced
dimension K < L, and a set of parameters:

ζ :



T L → T K such that K < L

fλ (x) →



cf
α(x) =

(
cf

α1
(x), . . . ,cf

αK
(x)
)

df
αλ

=
(

df
α1λ

, . . . ,df
αKλ

)
{µα}α=1...K
{νi.}i=1...P
{ν. j} j=1...L
f = ∑i ∑ j fi j


(2)

with:

– cf
α the factor pixels of the hyperspectral image. It is

the coordinates of the vector pixels on the factorial
axes.

– df
αλ

the factors of the channels. They are the
coordinates of the channels on the factorial axes.
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– µα is the inertia of factorial axis α .

– νi. the marginal frequency of the vector pixel

fλ (xi): νi. = ∑
L
j=1

fλ j
(xi)

∑
L
j=1 ∑

P
i=1 fλ j

(xi)
.

– ν. j the marginal frequency of the channel fλ j :

ν. j = ∑
P
i=1

fλ j
(xi)

∑
L
j=1 ∑

P
i=1 fλ j

(xi)
.

– f = ∑i ∑ j fi j = ∑i ∑ j fλ j(xi) the sum of all the
values fλ j(xi) of the image fλ .

For data analysis, a limited number K of factors
is usually selected. Therefore, data analysis is a
projection of the pixels of the original image fλ into
a space of smaller dimension K < L and often K� L.

The reconstruction ζ̂−1 of the image f̂λ is a
pseudo-inverse transform. It is an exact transform if all
the axes are kept (K = L− 1). It consists in partially
reconstructing the image fλ from the pixels factors
cf

α and some other parameters. The reconstructed
image f̂λ , with a limited number of factors, is an
approximation of the original image:

ζ̂
−1 :



T K → T L / K < L
cf

α(x)
df

αλ

{µα}α=1...K
{νi.}i=1...P
{ν. j} j=1...L
f = ∑i ∑ j fi j

 → f̂λ (x)
(3)

with f̂λ (x) =
(

f̂λ1(x), . . . , f̂λL(x)
)

.

Selection of the factor axes

The number of factorial axes to be kept needs to be
chosen. It depends of:

– the part of inertia (or variance) that they explained
in the data cloud. Several tests, based on inertia,
exist that allow one to choose the correct number of
axes such as the “Kaiser criterion” (Kaiser, 1960)
or the “scree test” (Cattell, 1966).

– the amount of information contained in the factor
pixels. We have introduced a new criterion based
on the signal to noise ratio of the factor pixels.

Fig. 5. Part of inertia of the thirty first factorial axes.

cf
α1

14.63% cf
α2

5.73% cf
α3

3.91%

cf
α4

3.33% cf
α5

2.27% cf
α6

2.12%

cf
α7

1.78% cf
α8

1.71% cf
α9

1.19%

Fig. 6. The factor pixels on the 9 firsts axes and their
inertias. The factors pixels typeset upright are kept;
those italicized are rejected due to a signal to noise
ratio which is below a given threshold.

In Fig. 5 one can notice that the first 5 axes contains
the main part of the total variance or inertia (about
30%). However, by observing (Fig. 6) the images of
the factor axes cf

αk
we notice that the factor pixels cf

α7

and cf
α8

contain mainly noise while the factor pixel
cf

α9
contains mainly signal. In order to quantify the

amount of information contained in the factor pixels,
their signal to noise ratio is estimated by the method
proposed in Noyel et al. (2008a).

The channel cf
αk

(or fλ j ) is considered as a
realisation of a random function. For each factorial
axis, the centred spatial covariance is estimated by
assuming that cf

αk
(x) is a stationary function:
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gαk
(h) = E[cf

αk
(x)cf

αk
(x+h)] , (4)

with cf
αk

the centred channel αk: cf
αk
(x) = cf

αk
(x)−

E[cf
αk
(x)] and E[Y ] the expectation of the random

variable Y . E[cf
αk
(x)] corresponds to the mean of the

channel cf
αk
(x).

It is known that the covariance of a noisy random
function shows a discontinuity for h → 0. This
discontinuity, equal to the variance of the noise, is
called the “nugget” effect (Matheron, 1970; 1975).
This is illustrated in Fig. 7, where the covariance is
plotted for a channel without much noise and for a
noisy channel. In the latter case, a peak at the origin
of the covariance can be noticed. The variance of
the signal can be estimated by the difference between
gαk

(0) and the nugget effect. It can be computed by
an automatic extraction of the peak at the origin of the
covariance image after a morphological opening γ . The
structuring element is chosen as small as possible. It
is a square of size 3× 3 pixels. From this extraction,
a signal to noise ratio is estimated, according to the
following definition:

SNRαk =
Var(signal)
Var(noise)

=
γgαk

(0)
gαk

(0)− γgαk
(0)

, (5)

with g the centred covariance and γ the morphological
opening.

By observing the signal to noise ratio (SNR) of the
different factors in Fig. 7, it appears that the channels
cf

α7
and cf

α8
are noisier than others. In what follows,

we propose channels with a SNR greater than 0.3 are
retained for reconstruction.

covariance covariance opening

0

xraws
ycolumns

0

xraws
ycolumns

cf
α1

gα1
γgα1

0

xraws
ycolumns

0

xraws
ycolumns

cf
α100

gα100
γgα100

Fig. 7. Covariance before (g) and after a
morphological opening (γg) on the factor pixels
channels cf

α1
(without much noise) and cf

α100
(noisy

channel).

Fig. 8. Signal to noise ratio of the factor pixels cf
α of

the image and a threshold for a SNR of 0.3.

Table 1. The SNR of the factor pixels (greater than 0.3
for those kept) and their inertia part. The 16 factorial
axes which are kept are typeset upright and the 3
rejected are italicized.

Axes 1 2 3 4 5
SNR 3.91 1.02 0.99 1.07 0.79

Inertia (%) 14.63 5.73 3.91 3.33 2.27
Axes 6 7 8 9 10
SNR 0.58 0.15 0.08 0.52 0.51

Inertia (%) 2.12 1.78 1.71 1.19 1.15
Axes 11 12 13 14 15
SNR 0.52 0.51 0.39 0.29 0.33

Inertia (%) 1.08 1.01 0.92 0.82 0.78
Axes 16 17 18 19
SNR 0.38 0.32 0.35 0.33

Inertia (%) 0.75 0.67 0.57 0.54

The pixels factors typeset upright in Table 1 and in
Fig. 6 are kept for data analysis, while those italicized
are rejected. We notice that the selected factorial
axes, are not contiguous in terms of inertia, as only
components with a SNR > 0.3 are kept.

Reconstruction

In Fig. 9, some channels of the image fλ are
displayed before and after reconstruction. On channel
fλ12 , we notice that one ventricle of the heart appears
dark while the other appears bright. This opposition
is preserved after the reconstruction of the channel
fλ12 using the selection of axes by SNR. One can
also notice, that the image f̂λ is a good reconstruction
of the image fλ and that a part of the noise, in the
original image fλ , is removed by FCA reconstruction.
Therefore, the denoising has been made by a spectral
filtering of FCA, which preserves the spatial structures
of the image. This is a crucial improvement before
segmenting the images by mathematical morphology.
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fλ1
fλ12

fλ13

f̂λ1
f̂λ12

f̂λ13

fλ256
fλ512

f̂λ256
f̂λ512

Fig. 9. Five channels of the hyperspectral image
(i.e., the DCE-MRI series) before ( fλi) and after
reconstruction ( f̂λi) from 16 axes of a FCA.

Noise reduction
Like Principal Component Analysis, FCA is useful

to perform a spectral filtering of the data. In Benzécri
(1964; 1973) and in Orfeuil (1973), FCA is used to
filter arrays of “Euclidean data marred with errors”.
The use of PCA to filter hyperspectral data was
primarily illustrated in Berman (1985) and in Green
et al. (1988).

A study about noise reduction by FCA on
hyperspectral images is available in Noyel (2008c). In
the following text, only the interesting results obtained
in this previous study are used.

In Noyel (2008c), we have shown two sequences
of FCA and reconstruction steps reduce the noise more
than just a single sequence.

A sequence of one FCA and a reconstruction f̂(1)
λ

is
equal to the reconstructed image. It is written:

f̂(1)
λ

= ζ̂
−1 ◦ζ (fλ ) . (6)

Two sequences of FCA-reconstruction are defined as:

f̂(2)
λ

= tε ◦ ζ̂
−1 ◦ζ ◦ t−ε ◦ ζ̂

−1 ◦ζ (fλ ) , (7)

with tε a spectral translation of the data. Actually we
add the constant ε to the value of the image fλ in order
to recover positive values, as required for FCA:

tε :


T L → T L

fλ → tε(fλ ) such as
∀i = 1 . . .P , ∀ j = 1 . . .L
tε(fλj)(xi) = fλj(xi)+ ε , ε ∈ R .

(8)

Therefore the second sequence of FCA-
reconstruction is not identical to the first one because
the data have been modified by the translation tε .

For ε we propose to use the minimum of all the
data in the first reconstructed image f̂(1)

λ
:

ε = min
i, j

f̂ (1)
λ j

(xi) , i = 1 . . .P , j = 1 . . .L . (9)

More details about the two sequences of FCA-
reconstruction are given in the appendix.

Notice that the inertia is evaluated on the axes of
the original, i.e., first, FCA.

In order to compare the original DCE-MRI
series fλ with the series after 2 sequences of FCA-
reconstruction with 16 axes f̂λ = f̂(2)

λ
, the residues are

computed channel by channel:

∀i ∈ [1 . . .P] , ∀ j ∈ [1 . . .L] :

rλ j(xi) = | fλ j(xi)− f̂λ j(xi)| . (10)

An hyperspectral image of residues rλ may be
defined:

rλ = |fλ − f̂λ | , (11)

of which the channels rλ j are equal to:

∀ j ∈ [1 . . .L] : rλ j = | fλ j − f̂λ j | . (12)

The centered spatial covariance grλ j
is also

measured on the residues of the channels:

∀ j ∈ [1 . . .L] : grλ j
= E[rλ j rλ j ] , (13)

with rλ j =
1
P ∑

P
i=1 rλ j(xi).

In Fig. 10, some channels after 2 FCA
reconstructions and their residues are presented.
Notice that some noise has been removed. This noise
is due to the acquisition process and is mainly located
at the centre of the image. The centered covariances
grλ j

contains a peak at their origin, which means that

the residues correspond to noise.
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fλ1
fλ12

fλ512

rλ1
rλ12

rλ512

f̂ (2)
λ1

f̂ (2)
λ12

f̂ (2)
λ512
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grλ1
grλ12

grλ512

Fig. 10. Three channels of the DCE-MRI series before,
fλi , and after 2 FCA-reconstructions with 16 axes f̂(2)

λ
,

their residues rλ and the covariances on the residues
grλ

. The histogram of the residues has been normalised
for visualisation.

Fig. 11. 5 spectra before and after 2 FCA-
reconstructions (with 16 axes) and the corresponding
residues.

Some spectra of the reconstructed image after 2
FCA are plotted in Fig. 11. The filtered spectra by 2
sequences of FCA-reconstruction f̂λ (xi) have a smaller
variability than the original spectra. Moreover after
the filtering stage the general trend of the spectrum
is enhanced. For example, the signal of the spectra
corresponding to the tumour signal is increasing. This
corresponds to the accumulation of the product of
contrast inside the tumour.

In conclusion we propose a noise reduction method
which consists in applying two series of FCA-
reconstructions. This approach reduces the temporal
(spectral) noise while preserving the contours. This is
an important point for a further segmentation.

STRONG DIMENSIONALITY
REDUCTION BY SPECTRUM MODELING

Following the noise reduction which preserves the
spatial information by data analysis, an additional
dimensionality reduction by spectrum modeling is
proposed.

In this approach, a parametric model is fitted
to each spectrum and consequently, the images of
parameters can be seen as maps. These maps are useful
for classification and morphological segmentation.
We notice that the set of these maps of parameters
(p1(x), . . . , pM(x)) constitutes a multivariate image
with a reduced dimension:

p(x) = (p1(x), . . . , pM(x)) . (14)

The fitted model may take into account the
physical phenomena, such as the physiological
pharmacokinetic model used in Brochot et al. (2006).
Their model is based on differential equations on six
compartments: arterial and venous plasma, tumour
(split into capillaries and interstitium), and the rest of
the body (also split into capillaries and interstitium).
However, in the current study we adopt a simpler linear
model. More precisely, for each spectrum (time series)
of the filtered image f̂λ , a line model is fitted after
removing the first 20 values which correspond to a
transitory phenomenon (Fig. 12):
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Image Anal Stereol 2015;34:1-25

f̂λ (xi)∼ a(xi)λ +b(xi) ,

∀i = 1 . . .P ,with λ = λ j1 . . .λ512 , (15)

with j1 the first value after the peak ( j1 = 21 for our
images).

This model is made with two parameters: the slope
p1 = a and the intercept p2 = b.

In order to take into account some information
contained in the transitory part of the time series, a
third parameter is used. It corresponds to the amplitude
of the signal over the twenty first values of the
spectrum. This transitory part is characteristic of the
injection of the contrast agent used in this imaging
modality. This parameter is called the rise p3 = m and
it is defined by:

m(xi) = max
j∈[1; j1−1]

( f̂λ j(xi))− min
j∈[1; j1−1]

( f̂λ j(xi)) ,

∀i = 1 . . .P . (16)

� �
�

�������	

��
����� � �����

Fig. 12. Model fitting on a spectrum fλ (xi).

Hence, by fitting the model for each spectrum
fλ (xi), three maps of parameters are obtained (Fig. 13).
We remark that the dimensionality reduction is very
important because the original multivariate image with
512 channels is transformed into another multivariate
image with only 3 channels. Even with this reduced
amount of information, the main morphological
structures of the mouse (the heart cavities, the tumour
and the lungs) are clearly apparent.

To conclude, spectrum modeling is very efficient
in reducing the number of channels for tumour
segmentation. It could be interesting in further studies
to fit a a model taking into account physical properties
of the injection of the contrast agent.

slope a intercept b rise m

Fig. 13. Parameters maps of the linear model fit for
each pixel.

TEMPORAL CLASSIFICATION OF
DCE-MRI TIME SERIES

After performing a denoising step and a
dimensionality reduction, the classification of pixels
is made in the temporal dimension. Supervised and
unsupervised methods are considered.

UNSUPERVISED APPROACH:
REGIONAL IMPROVED K -MEANS
For the unsupervised approach, a k-means

classification and a model classification are compared.

A k-means classification of pixels is based on the
Euclidean metric (Diday, 1971; Hartigan and Wong,
1979). This classifier must be used in a space in
which the associated metric is Euclidean. It is the case
for the factor space of FCA or of PCA. However,
using k-means in the image space would overweight
channels with large dynamics. So classifying is done
in the factor space instead. For DCE-MRI series, the k-
means classification is performed with 5 classes in the
factor image space cf

α of the second sequence of FCA-
reconstruction. In Fig. 14 some anatomical parts of the
mouse have been classified into 5 classes. The number
of classes has been empirically defined. The classes are
as follows: (1) the green class corresponds largely to
the tumour - see top right corner of the image, (2) the
red class corresponds mainly to the background, (3)
the blue class corresponds to the heart cavities, (4) the
black class corresponds to the lung and (5) the cyan
class is an intermediate class.

reference k-means model

Fig. 14. (a) Reference re f , (b) k-means classification
in 5 classes κ

kmeans,5
cf

α

, (c) model classification κ
mod,5
f̂λ

in 5 classes on the filtered image f̂λ .
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The results have not been completely satisfactory,
so we have introduced an alternative approach
of classification, which clusters each spectrum in
comparison to some reference spectra obtained on the
k-means classification.

Fig. 15. Framework of the classification by model
approach.

For each class obtained by k-means, a mean filtered
spectrum is computed spkmeans

f̂λ

. On these mean spectra,

a line model is fitted δ
spkmeans

f̂
λ = {δ

spkmeans
f̂
λ

k }5
k=1. For

each spectrum f̂λ (xi) of the filtered image by two
sequences of FCA-reconstruction the line model is

fitted δ f̂λ = {δ f̂λ
xi }P

i=1. Then, each point xi is classified
by minimisation of the L1 distance between the model

of the mean spectra δ

spkmeans
f̂
λ

k and the model for each

pixel δ
f̂λ
xi . The class of the point xi is written C(xi)

(Eq. 17 and Fig. 16):

C(xi) = argmin
k

d1(δ
spkmeans

f̂
λ

k ,δ
f̂λ
xi )

= argmin
k

( L

∑
j=1
|δ

spkmeans
f̂
λ

k (λ j)−δ
f̂λ
xi (λ j)|

)
. (17)

Fig. 16. Minimisation of the L1 distance between the

model of the mean spectra δ

spkmeans
f̂
λ

k and the model of

the spectra at each pixel δ
f̂λ
xi .
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Fig. 17. Mean spectra of the k-means classification
κ

kmeans,5
cf

α

.

As one can notice in Figs. 14 and 24, the
classification κ

mod,5
f̂λ

by the model approach seems

to be more robust than the k-means classification
because a statistical noise filtering has been made
when fitting a model with 3 parameters. Then, the
k-means classification has been computed on 19
channels while the model classification has been
computed on 3 channels with few noise. Therefore,
the model decreases the entropy of the image by
introducing a prior information present in the shape of
the spectra. Nevertheless, the k-means classification is
necessary as a first step, in order to estimate the mean

spectra δ

spkmeans
f̂
λ

k .

SUPERVISED APPROACH: LDA WITH
HISTOGRAM NORMALISATION

A semi-supervised classification by Linear
Discriminant Analysis (LDA) is also considered for
the DCE-MRI series. In particular, LDA is based on a
train set composed of four distinct parts of the anatomy
of the mouse:

– the tumour in green train(green) = t1

– the heart cavities in blue train(blue) = t2

– the background in red train(red) = t3

– the lungs in black or white train(black) = t4.

Each class of the training set, T = train =
(t1, t2, t3, t4), is made of 80 vector-pixels , fλ (xi)
with 512 components, selected by an operator. By
measuring the mean spectra of the filtered image f̂λ

on these classes sptrain
f̂λ

, we notice that the kinetics of
train classes are different (Fig. 18).
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Fig. 18. Classes of the training set, train, and mean
spectra of these classes sptrain

f̂λ

on the filtered image f̂λ .

The LDA is performed into three different spaces:

– the filtered image space: {̂fλ (x)|x ∈ T}

– the PCA factor space of the spectra of the training
set: ζ ({̂fλ (x)|x ∈ T})

– the three parameters space: {p(x)|x ∈ T}

In Fig. 19, the classifications to three different
spaces are very similar. The LDA in the filtered image
space or the LDA in the PCA factor space of the
training set are a bit better than the LDA in the
parameters space. The training classification error and
the test errors are computed on 80 pixels vector of the
training set by a 5-fold cross validation (Hastie et al.,
2003). Both classification errors are equal to zero.

reference

LDA on f̂λ LDA on ζtrain(̂fλ (x)) LDA on p

Fig. 19. Semi-supervised classification LDA in 4
classes in 3 different spaces: the filtered image space,
the PCA factor space of the spectra of the training set,
the parameters space.

CLASSIFICATION ON SIMILAR
DCE-MRI SERIES

As we want to classify several DCE-MRI series
of large image databases, it is necessary to develop
classification methods which are robust in all series,
without the needs for a training set for each image
series.

By testing our methods on another series called
“serim460”, we can notice in Fig. 20 that the
unsupervised classifications (k-means and model) are
correct compared to the given reference. However, the
LDA classification on the new series is not correct
whatever the image space. In this case the training set
is from another series (“serim447”).

In the series “serim447” and “serim460”, some
mean spectra are measured into similar zones (tumour,
heart cavities, background and lung). In Fig. 21 we
notice that the range of the spectra are not the same for
both images. This is the origin of the problem of the
classification for a supervised method such as LDA.

re f κ
kmeans,5
cf

α

κ
mod,5
f̂λ

κ
LDA,4
ζ (̂fλ )|Ts447

κ
LDA,4
p|Ts447

Fig. 20. Classifications of the series “serim460”: by
k-means κ

kmeans,5
cf

α

, by model κ
mod,5
f̂λ

, by LDA into the

filtered image κ
LDA,4
ζ (̂fλ )|Ts447

and into the parameter space

κ
LDA,4
p|Ts447

. The training set of the LDA is from the series
“serim447”.
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“serim447” “serim460”

(a) (b)

Fig. 21. Selected areas and associated mean spectra
for the series “serim447” and “serim460” after a
sequence of 2 FCA-reconstructions (a zoom is made
on the series “serim447”).

In order to use LDA on other image series, using
the initial training pixels selected on the first image,
the range of the grey levels of the images must be
similar. Otherwise the projection of other series in the
classification space of the pixels would be incoherent.
Consequently, we introduced a range normalisation
method based on histogram anamorphosis. To get more
robust results, the multivariate image of parameters p
is used. For each parameter, the cumulative distribution
function (cdf) of the values is estimated. The cdf
is the primitive of the density function estimated by
an histogram. It is composed of 255 classes defined
on each map of parameters of the initial series. The
cdf of each image is transformed by a numerical
anamorphosis on the grey-tone values in order to
be similar to the reference cdf of the initial series
“serim447” (Fig. 22).

The LDA classification κ
LDA,4
p̃ on series

“serim460” after cdf normalisation (Fig. 23) gives
much better results than the same classification without
cdf normalisation (Fig. 20).
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Fig. 22. Cumulative distribution functions computed
on the parameters a, b and m of each series before
normalisation (top) and after normalisation (bottom).
The references are the cdf of the parameters of the
initial series “serim447”. To each colour is associated
the cdf of a series.

re f κ
LDA,4
p̃|Ts447

Fig. 23. LDA classification in 4 classes κ
LDA,4
p̃ on the

maps of parameters of the series “serim460” after
cdf normalisation. The training has been made on the
series “serim447”.
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Reference k-means model LDA

“serim406”

“serim415”

“serim450”

“serim457”

“serim461”

“serim1441”

Fig. 24. Classifications kmeans κ
kmeans,5
cf

α

, by model approach κ
mod,5
f̂λ

and LDA κ
LDA,4
p̃|Ts447

on various series

“serimxxx”.

For validation purposes, we compare the
classifications by k-means, model and LDA on other
series (Fig. 24). The classifications based on the model
approach are more robust than those obtained with k-
means. LDA classifications also give good results. The
heart cavities are correctly classified and the tumours
are characterised by extended classes in green.

In the case of tumours starting to die in their

centre, which would make them potentially smaller

than their real size, our method identifies viable

tissues (i.e., functional tissues). The central zones

which are not included inside the tumours are zones

of severe ischemia or necrosis. Currently, more and
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more DCE maps are analysed in the following way:
i) identification of the “necrosis” ratio (volume of the
necrosis divided by total volume); ii) characterisation
of viable tissues of the tumour. Without both analysis,
all the circulatory parameters are underestimated
during the growth of the tumour which leaves in its
centre more and more necrosis (or fibrosis).

SPATIO-TEMPORAL
SEGMENTATION BY
PROBABILISTIC WATERSHED

After having filtered the temporal noise and having
reduced the temporal dimension, the classification
produced a partition of the image into non connected
classes only based on temporal information. Our aim
is now to segment the series with smoother contours
and regular classes by combining the spatial and the
spectral dimension in the segmentation process.

In order to segment hyperspectral images, we
introduced a general method based on deterministic
watershed (WS) in Noyel et al. (2007c) and another
one based on stochastic WS in Noyel et al. (2007a;
2011). Based on previous work we want to present
the potential of application of our methods on DCE-
MRI series in order to segment regions to be tumour
candidates.

PRINCIPLE OF THE SEGMENTATION
OF MULTIVARIATE IMAGES BY WS
The watershed transformation (WS) is one of

the most powerful tools for segmenting images and
was introduced in Beucher and Lantuéjoul (1979).
According to the flooding paradigm, the watershed
lines associate a catchment basin to each minimum of
the landscape to flood (i.e., a scalar or greyscale image;
Beucher and Meyer, 1992). Typically, the landscape
to flood is a gradient function which defines the
transitions between the regions. Using the watershed
on a scalar image without any preparation leads to a
strong over-segmentation (due to a large number of
minima). There are two alternatives in order to get
rid of the over-segmentation. The first one consists in
first determining markers for each region of interest.
Then, using the homotopy modification, only the
local minima of the gradient function are imposed
by the markers of the regions. The extraction of the
markers, especially for generic images, is a difficult
task. The second alternative involves hierarchical
approaches either based on non-parametric merging
of catchment basins (waterfall algorithm) or based on
the selection of the most significant minima. These

minima are selected according to different criteria
such as dynamics, area or volume extinction values.
Extinction functions (Meyer, 2001) are used to remove
the non selected minima.

The general paradigm of WS-based segmentation
of multivariate images (Fig. 25) requires two different
inputs: (1) some markers for the regions of interest
mrk and (2) a landscape to flood g which describes
the “likelihood” of the frontiers between the regions.
The markers can be chosen interactively by a user, or
automatically by means of a morphological criterion
ξN (Meyer, 2001), or with the classes of a previous
spectral classification. The landscape to flood is a
scalar function (i.e., a greyscale image). For the
deterministic WS, it is usually a gradient (actually
its norm), or a distance function. For the stochastic
WS, the function to flood is a probability density
function (pdf) of the contours appearing in the image.
The extracted markers are imposed as sources of the
landscape to flood and the WS is computed. The results
denoted WS(g,mrk) or WS(g,ξN).

Fig. 25. General framework of multivariate image
segmentation

SPECTRAL DISTANCES AND GRADIENT
ON MULTIVARIATE IMAGES
A gradient image, actually its norm, is usually

chosen as a function to flood. After normalisation, the
norm of a gradient image is a scalar function with
values in the reduced interval [0,1], i.e., ρ(x) : E →
[0,1]. In order to define a gradient, two approaches
are considered: the standard symmetric morphological
gradient on each marginal channel and a metric-based
vectorial gradient on all channels (Noyel et al., 2007c).

The morphological gradient is defined for scalar
images f as the difference between a dilation and an
erosion by a unit structuring element B, i.e.,

ρ( fλ j(x)) = δB( fλ j(x))− εB( fλ j(x))

= ∨[ fλ j(y),y ∈ B(x)]−∧[ fλ j(y),y ∈ B(x)] .
(18)
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The morphological gradient can be generalised to
multivariate functions (Hanbury and Serra, 2001) with
the following metric-based gradient:

ρ
dfλ (x) = ∨[d(fλ (x), fλ (y)) / y ∈ B(x),y 6= x]

−∧[d(fλ (x), fλ (y)) / y ∈ B(x),y 6= x] .
(19)

Various metric distances d(fλ (x), fλ (y)) between
two vector pixels, useful for multispectral images, are
available for this gradient such as:

– the Euclidean distance:

dE(fλ (x), fλ (y)) =

√√√√ L

∑
j=1

( fλ j(x)− fλ j(y))
2

– the Chi-squared distance:

dχ2(fλ (xi), fλ (xi′)) =√√√√ L

∑
j=1

S
f.λ j

(
fλ j(xi)

fxi.
−

fλ j(xi′)

fxi′ .

)2

,

with f.λ j = ∑
P
i=1 fλ j(xi), fxi. = ∑

L
j=1 fλ j(xi) and

S = ∑
L
j=1 ∑

P
i=1 fλ j(xi).

– the Mahalanobis distance:

dM(fλ (x), fλ (y)) =√
(fλ (x)− fλ (y))tΣ−1(fλ (x)− fλ (y)) ,

where Σ is the covariance matrix between variables
(channels) of fλ . If channels are uncorrelated, the
covariance matrix is diagonal. The diagonal values
are equal to the channels variance σ2

λ j
\ j ∈

{1,2, . . . ,L}. Therefore, the Mahalanobis distance
becomes the distance inverse of variances:

d1/σ2(fλ (x), fλ (y)) =

√√√√ L

∑
j=1

(
fλ j(x)− fλ j(y)

σλ j

)2

An important point is to choose an appropriate distance
depending on the space used for image representation:
Chi-squared distance dχ2 and distance of inverse
variances d1/σ2 are adapted to the image space and
Euclidean distance to factorial space. More details on
multivariate gradients are given in (Noyel et al., 2007c;
2011). Another example of a multivariate gradient is
given in Scheunders (2002).

INTRODUCTION TO STOCHASTIC WS

In a classical watershed, small regions strongly
depend on the position of the markers, or on
the volume (i.e., the integral of the grey levels)
of the catchment basins, associated with their
minima. In order to improve segmentation results,
stochastic watershed aims at enhancing the contours
of significant regions which are relatively independent
of the position of the markers.

Stochastic WS method is described in Angulo
and Jeulin (2007) and Noyel et al. (2007a; 2011).
Starting from a series of M realisations of N uniform or
regionalized random germs (or markers) {mrki(x)}M

i=1,
series of watershed segmentation {sgmrk

i (x)}M
i=1 are

made on a landscape to flood (for example a gradient).
With these M segmentations, the probability density
function of contours pd f (x) is estimated by the Parzen
window method (Duda and Hart, 1973) with a gaussian
kernel (typically with a 3 pixels standard deviation
working on contours of one pixel width). Due to
the smoothing effect of the method, the WS lines
with a very low probability, which correspond to non
significant boundaries, are removed.

To obtain closed contours, the pdf image is
segmented by a watershed segmentation into R
regions. The stochastic WS needs two parameters:

1. M realisations of germs. The method is almost
independent on M if it is large enough (between
20–50).

2. N germs (or markers): if N is small, a segmentation
in large regions is privileged; if N is too large, the
over-segmentation of sgmrk

i leads to a very smooth
pdf, which looses its properties to select the R
regions.

As shown in Angulo and Jeulin (2007), it is
straightforward to use N > R.

The originality of our approach of stochastic WS
for DCE-MRI series is to condition the germs used to
build the pdf by a previous classification.

SEGMENTATION BY STOCHASTIC WS

Pre-processing of the temporal
classification

As the classification is based on temporal
information we want to introduce it by conditioning
the random markers used to generate the probability
density function of contours.

In order to do this, a pre-processing stage is
necessary for two reasons:
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– to reduce the “segmentation noise” appearing
as the smallest connected components of the
classification κ .

– to introduce the necessary degrees of freedom to
perform each WS used to build the pdf.

Therefore an anti-extensive transform is performed on
each class of κ by a morphological erosion with a
structuring element of size 3×3 pixels. An alternative
is to make an area opening (Soille, 1999). Then
an extensive transformation such as a closing by
reconstruction (Soille, 1999) is performed to fill the
holes inside the largest connected components. As
the classes of the transformed classification are not
anymore a partition of the image, a “void” class is
introduced. It corresponds to the class appearing in
place of the transformed connected components.

For the DCE-MRI sequences the complete
transform ϒ is processed on the LDA classification on
the parameters space κ

LDA,4
p (Fig. 26).

κ
LDA,4
p ϒ(κLDA,4

p )

Fig. 26. Classification by LDA on the parameters space
κ

LDA,4
p and pre-processing transform ϒ.

Extension of stochastic WS to multivariate
images

The extension of stochastic WS to multivariate
images was introduced in Noyel et al. (2007a) and
detailed in Noyel et al. (2011).

Segmentation of DCE-MRI series by a
standard WS on a distance-based gradient. Before
introducing the way to extend stochastic WS to
multivariate images, let us show that the segmentation
by a standard WS on a distance based gradient has
limited efficiency.

For the gradient based segmentations, a distance
adapted to the image space is used:

– the Euclidean distance for the image of the factor
pixels cf

α

– the distance of inverse variances for the image of
parameters p

– the Euclidean distance for the image of the PCA
factor space obtained from the spectra of the
training set ctrain

β
.

Comments: The distance-based gradient is
computed after a morphological leveling on each
channel of the considered image in order to get a
smoother gradient. A morphological leveling is a
morphological transformation that reduces the positive
and negative “peaks" according to a reference while
preserving the transitions of the objects. See Meyer
(2004) for more details. The reference for the leveling
is obtained by a gaussian filter of size 11×11 pixels.

A WS segmentation with a volume criterion is
performed in Fig. 27. A marker-controlled WS is
performed in Fig. 28. The markers are made by a
morphological opening on each connected component
of the classification with an hexagonal structuring
element of size 5.

We notice that the segmentation is not perfect,
especially for the tumour. However, the marker based
segmentation in the PCA factor space of the spectra of
the training set seems to be the best segmentation.

ρE(cf
α ) ρ1/σ 2(p) ρE(ctrain

β
)

sgR−vol(ρE(cf
α )) sgR−vol(ρ1/σ 2(p)) sgR−vol(ρE(ctrain

β
))

(a) (b) (c)

Fig. 27. Gradient-based distances and WS-
segmentations with a volume criterion in R = 20
regions : (a) in the factorial space cf

α , (b) in the
parameters space p and (c) in the PCA space of the
training set on the parameters ctrain

β
).
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mrkκ mrkκ mrkκ

sg(ρE(cf
α ),mrkκ ) sg(ρ1/σ 2(p),mrkκ ) sg(ρE(ctrain

β
),mrkκ )

(a) (b) (c)

Fig. 28. Segmentations by marker-controlled WS into
several spaces: (a) in the factorial space cf

α , (b) in
the parameters space p and (c) in the PCA space of
the training set on the parameters ctrain

β
. The gradient-

based distances are the same as in Fig. 27. The
markers come from the LDA classification for the
different image spaces.

Probability density function for multivariate
images In Noyel et al. (2007a), we studied two ways
to extend the probability density function of contours
to multispectral images:

1. the first one is a marginal approach (i.e., channel
by channel) called marginal pdf mpdf (algorithm
in Table 2)

2. the second one is a vectorial approach (i.e., vector
pixel by vector pixel) called vectorial pdf vpdf
(algorithm in Table 3).

Table 2. Algorithm: mpdf

1: For the morphological gradient of each channel
ρ( fλ j), j ∈ [1, . . . ,L], throw M realisations of
N uniform random germs, i.e., the markers
{mrk j

i }
j=1...L
i=1...M , generating M× L realisations. Get

the series of segmentations, {sg j
i (x)}

j=1...L
i=1...M , by

watershed associated to morphological gradients
of each channel ρ( fλ j).

2: Get the marginal pdfs on each channel by Parzen
method: pd f j(x) = 1

M ∑
M
i=1 sg j

i (x)∗Gσ .
3: Obtain the weighted marginal pdf:

mpd f (x) =
L

∑
j=1

w j pd f j(x) , (20)

with w j = 1/L, j ∈ [1, . . . ,L] in the image space
and w j equal to the inertia axes in the factorial
space.

Table 3. Algorithm: vpdf

1: For the vectorial gradient ρd(fλ ), throw M × L
realisations of N uniform random germs, i.e.,
the markers {mrki}i=1...M×L, with L the channels
number. Get the segmentation, {sgi(x)}i=1...M×L,
by watershed associated to the vectorial gradient
ρd(fλ ), with d = dχ2 in the image space or d = dE
in the factorial space.

2: Obtain the probability density function:

vpd f (x) =
1

M×L

M×L

∑
i=1

sgi(x)∗Gσ . (21)

A probabilistic gradient was also defined in
Angulo and Jeulin (2007) to ponder the enhancement
of the largest regions by the introduction of smallest
regions. It is defined as ρprob = mpdf + ρd : after
normalisation in [0,1] of the weighted marginal pdf
mpdf and the metric-based gradient ρd .

In order to obtain a partition from the mpdf, the
vpdf or the gradient ρprob, these probabilistic functions
are segmented, for instance by a hierarchical WS with
a volume criterion, as studied in Noyel et al. (2007a).
In such a case, the goal is not to find all the regions.
The stochastic WS addresses the problem of image
segmentation in few pertinent regions according to a
combined criterion of contrast and size. In the present
study, as we discuss below, the segmentation of the pdf
is obtained from the WS with a volume criterion.

CONDITIONING OF THE GERMS
OF THE PDF BY A PREVIOUS
CLASSIFICATION
The pdf of contours with uniform random germs

contains only spatial information. By conditioning
the random germs by the spectral classification, we
introduce a spatio-spectral pdf. These germs are going
to be regionalized by a pre-segmentation obtained by
a pre-processing of the spectral classification. Several
kinds of germs have been tested:

1. uniform random point germs mrki(x)

2. random germs regionalized by a pre-segmentation:

a) as point-germs mrkκ−pt
i (x)

b) as ball-germs where:

– each connected class may be hit one time
mrkκ−b

i (x)
– each connected class may be hit several

times and the union of balls is made in each
connected class of the pre-segmentation
mrkκ−∪b

i (x)
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– each connected class may be hit several
times and the union of connected balls is
made in each connected class of the pre-
segmentation mrkκ−∪b−conn

i (x).

The pdf of contours with uniform random germs
is constructed without any prior information about
the spatial/spectral distribution of the image. Spectral
information is introduced in the pdf by conditioning
the germs by the previous transformed classification
κ̂ . To do this, it is possible to use point germs or
random ball germs whose location is conditioned by
the classification. An exhaustive study of the germs is
presented in Noyel (2008c) and Noyel et al. (2010).
Below, we present random ball germs regionalized by
a classification where each connected class may be
hit one time, mrkκ−b

i (x). For the detection of tumours
in DCE-MRI series we prefer to use the last kind of
regionalized random balls germs mrkκ−∪b−conn

i (x).

The procedure is as follows: the transformed
classification κ̂ is composed of connected classes, κ̂ =
∪kCk with Ck∩Ck′ = /0, for k 6= k′. The new void class,
which appears after the transformation of κ , is written
C0. Then random germs are drawn conditionally to the
connected components Ck of the filtered classification
κ̂ . To do this, the following rejection method is used:
random point germs are uniformly distributed. If a
point germ m falls inside a connected component Ck
of minimal area S and not yet marked, then it is kept,
otherwise it is rejected. Therefore not all the germs
are kept. These point germs are called random point
germs regionalized by the classification κ . However,
these regionalized point germs are sampling all the
classes, independently of their prior estimate of class
size/shape. In order to address this limitation, we
propose to use random balls as germs.

The centres of the balls are the random point germs
and the radii r are uniformly distributed between 0
and a maximum radius Rmax: U [1,Rmax]. At each
step, only the intersection, B(m,r)∩Ck, between the
ball B(m,r) and the connected component Ck is kept
as a germ. Then the union is made with the previous
germs. At the end of the “fall” of the random germs,
the connected classes are considered as markers for the
watershed used to build the pdf of contours.

These balls are called random balls germs
regionalized by the classification κ and noted
mrkκ−∪b−conn

i (x).

The algorithm in table 4 sketches the process.
Note that if N is the number of random germs to be
generated, the effective number of implanted germs is
lower than N.

κ
LDA,4
ctrain

β

κ̂
LDA,4
ctrain

β

mpd f (p,mrkκ )

sgR−vol(mpd f ) sgR−vol(mpd f )
with R = 30 with R = 20

Fig. 29. Segmentations by stochastic pdf with a volume
criterion in R = 30 (or 20) regions. The pdf mpdf is
conditioned by the transformed classification κ̂

LDA,4
ctrain

β

on the parameters space p. The parameters used
to build the mpdf with regionalized random balls-
germs mrkκ−∪b−conn

i are N = 100 points, M = 100
realisations, area S = 2 pixels, Rmax = 30 pixels.

Table 4. Regionalized random balls-germs: each connected
class may be hit several times and the union of connected
balls is made in each connected class of the pre-
segmentation mrkκ−∪b−conn

i (x)

1: Given N the number of drawn germs m, {Ck}
the set of all the connected components of the
transform classification κ̂ , S the minimal area of
a connected component Ck, and a boolean array of
size equals to the number of connected component
Ck (the array values are equal to marked or not
marked)

2: Set the image of germs mrkκ−∪b−conn
i (x) equals to

zero
3: Set the background class and the void class C0 to

marked
4: Set the class Ck of which the area is lower than S

to marked
5: for all drawn germs m from 1 to N do

6: if Ck, such as m ∈Ck, is not marked then
7: r = U [1,Rmax]
8: mrkκ−∪b−conn

i (x) = (B(m,r) ∩ Ck) ∪
mrkκ−∪b−conn

i (x)
9: end if

10: end for
11: Label each connected regions in the image of

markers
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After computing the marginal pdf of contours mpdf
with random balls germs mrkκ−∪b−conn

i (x), from the
representation of pixels in the parameters space, the
pdf are segmented by a hierarchical WS with a volume
criterion (Fig. 29). The classification used to build the
pdf is the LDA classification in the PCA space of the
training set of parameters ctrain

β
.

In Noyel et al. (2010), the pdf built with these
germs seemed to give better results than others.
Therefore, the results shown use these germs.

In order to better understand the process to build
the regionalized random balls-germs mrkκ−∪b−conn

i ,
in Fig. 30 some realisations of germs and their
associated contours are presented. For the watershed
segmentation, a morphological gradient is used on
each channel of the PCA space of the training set of
parameters. The random balls-germs are conditioned
by the LDA classification in this space.

i = 1 i = 5 i = 9

κ̂
LDA,4
ctrain

β

Fig. 30. Top: some realisations of contours
necessary to build the mpdf and, second line:
the regionalized random ball-germs mrkκ−∪b−conn

i (x)
by the transformed classification LDA κ̂

LDA,4
ctrain

β

(with N

= 100 points, M = 100 realisations and Rmax = 30
pixels).

VALIDATION OF THE METHOD:
APPLICATION TO COMPUTER AIDED
DETECTION OF TUMOURS
After presenting the way to compute the stochastic

WS with regionalized random balls-germs, we are
going to apply it to computer aided detection of
tumours on several DCE-MRI series.

In order to detect potentially tumourous areas, the
DCE-MRI series are first segmented by stochastic WS.
Then the regions of the segmentation are classified in
potentially tumourous (or not tumourous) areas. The
whole analysis flowchart is presented in Fig. 31. It
combines the different parts introduced earlier in this
paper:

– pre-processing stage: a noise reduction by FCA
and model fitting

– training stage of the classifier: the LDA classifier
is trained on some reference pixels selected on a
reference image of the parameters.

– classification stage: a LDA after normalising the
histograms of the maps of the parameters which
model the spectra. The histograms are normalised
in order to match the histogram of the reference
image.

– segmentation stage: a stochastic WS with
regionalized random-balls germs mrkκ−∪b−conn

i (x)
conditioned by the classification.

Fig. 31. Flowchart of tumour detection.

Starting from the segmentation by stochastic
watershed, the detection of potential tumours
depends on two criteria which have been empirically
determined according to a prior knowledge on DCE-
MRI series:

1. a positive mean slope parameter a because the
contrast agent tends to accumulate in these areas
during the acquisition

2. a mean intercept b higher than given a threshold
(800) after histogram normalisation. With this
parameter, the areas of the background with a small
positive slope are removed from the detection.
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So that medical doctors can evaluate the
pertinence of the detected zones, confidence maps
on the parameters were built. For each zone, some
coefficients of variation were computed. These
coefficients β are defined as the ratio between the
standard deviation, σ , and the mean, mean, of the
parameters for the considered region:

βa =
σa

E[a]
and βb =

σb

E[b]
. (22)

Then, the confidence maps were thresholded: for
βa at 5 and for βb at 1. For coefficients close to
zero, the considered region is more likely classified as
cancerous. A look up table is applied on the confidence
maps: in blue is the highest risk (β = 0) and in red is
the lowest risk (βa ≥ 5 or βb ≥ 1).

The detection det(x) and the confidence maps for
the series “serim447” are in Fig. 32. We notice that for

κ
LDA,4
p κ̂

LDA,4
p = mrkκ mpd f (p,mrkκ )

sgR−vol(mpd f ) re f det(x)
�

�

�

�

βa βb

Fig. 32. Detection of potentially cancerous areas.
LDA classification in the parameter space κ̂

LDA,4
p ,

morphological transform of the classification used
to condition the germs of the pdf mrkκ , mpdf
with random balls germs regionalized by the
classification mpd f (p,mrkκ) (N = 100 points,
M = 100 realisations, area S = 10 pixels, Rmax = 30
pixels), segmentation by volumic WS in R = 20
regions sgR−vol(mpd f ), reference re f , detection
det(x) of potentially cancerous zones (mean(a) > 0
and mean(b)> 800), confidence maps for the slope βa
and for the intercept βb.

the largest potentially cancerous zone, the risk is high
(in blue). This corresponds to the tumour specified by
the medical doctors. On the other hand, the smallest
zone in red, for which the risk is low, is not a tumour.
Therefore, our detection method works.

The same approach has been applied to 25 series
of images. In the Fig. 33 some results are presented
for 6 series. The potentially cancerous detected zones
correspond to the references given by the doctors. In
the series “serim450” and “serim457” some potentially
cancerous zones with a higher risk are even detected
while they were not selected in the reference. In the
others series, similar results have been obtained. All
the tumours marked by clinicians have been detected.

CONCLUSION

In this paper, an automatic method of detection
of potentially cancerous zones on DCE-MRI series is
presented. The results have been tested on a limited
number of images. They are very promising and
in agreement with the references given by medical
doctors.

Our method is composed of four stages. In
the pre-processing stage, a dimensionality reduction
and a noise reduction are first performed with the
Factor Correspondence Analysis and the pixel-based
spectrum modeling. These operations preserve the
spatial contours of the image. Then in the classification
stage Linear Discriminant Analysis is performed on a
subset of training pixels. In the third stage, the image is
segmented by stochastic watershed with random-balls
markers regionalized by the previous classification.
The originality of this approach is the combination
of the spatial and temporal information to produce
a “multivariate gradient” representing the probability
density function of contours. These probability maps
are segmented by stochastic watershed which is very
useful when segmenting the low contrasted regions
corresponding to tumours, since it regularises the
contours. The last stage is a detection of potentially
tumourous zones by statistical criteria. A confidence
maps is associated to the selected zones. These maps
show the risk of the regions to be cancerous.

A method of computer aided detection of
potentially cancerous zones on DCE MRI sequences
of small animal has been detailed. It seems to be
very promising for low contrasted data sets. Further
systematic tests should be performed, in order to
validate the method on a larger data sets. In the future,
some physical models could be fitted on the temporal
series in place of the actual model.
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re f (x) mpd f (x) det(x) βa(x) βb(x)
�

�

�

�

“serim406”
�

�

�

�

“serim415”
�

�

�

�

“serim450”
�

�

�

�

“serim457”
�

�

�

�

“serim461”
�

�

�

�

“serim1441”

Fig. 33. Detection results: Reference re f , marginal pdf mpd f (p,mrkκLDA
)(x), detection det(x) of potentially

cancerous zones in the parameters space after histogram normalisation (mean(a) > 0 and mean(b) > 800),
confidence maps on the slope βa and on the intercept βb.
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APPENDIX

EXPERIMENTAL CONDITIONS

As explained in Brochot et al. (2006), here are the
details about experimental conditions: animals used
and MRI examination.

Animals. Experiments were performed on nude
nu/nu male mice (Laboratoire Iffa Credo, L’Arbresle,
France), in full compliance with the National
Institutes of Health recommendations for animal care.
Approximately 1.5× 106 PC-3 human tumour cells
were implanted subcutaneously into the flank of each
mouse, as described in Pradel et al. (2003). For
imaging, the animals were anesthetised by a peritoneal
injection of ketamine (Rompun, Bayer, Leverkusen,
Germany) and xylazine (Imalgène, Mérial, Lyon,
France).

MRI examination. MRI examination was
performed using a 1.5-T system (Sigma, General
Electrics, Milwaukee, WI, USA) and a custom small-
animal dedicated coil. A sagittal 2D T1-weighted
spin echo sequence (TE 11 ms, TR 400 ms, FOV
8×8 cm, 256×128 matrix, 1 NEX) was used to check
adequate positioning of the animal and to select the
axial plane level containing the left ventricle cavity
and one or two flank tumours. The dynamic acquisition
was performed using a single-slice T1-weighted 2D
fast spoiled gradient recalled (FSPGR) sequence:
TR 15 ms, TE 2.2 ms, flip angle of 608, bandwidth
31.25 kHz, 256×76 matrix for the asymmetric FOV of
7× 3 cm, 5 mm slice. The single slice was positioned
at the level selected by the previous sagittal sequence,
and dynamic acquisition was performed with 10
baseline images and after a caudal vein bolus injection
of 0.045 mmol Gd/kg of a macromolecular contrast
agent (Vistarem, Guerbet, Aulnay-Sous-Bois, France).

NOISE REDUCTION

In this section, more details are given about our
method of noise reduction based on two sequences of
FCA and reconstruction (see section “Noise reduction”
on page 7). This approach needs the subtraction of a
constant ε as shown in Eqs. 7, 8 and 9.

The idea of subtracting a constant from the data
is based on the fact that after one sequence of FCA-
reconstruction some values of the reconstructed image
f̂(1)
λ

turn out negative. This is due to the fact that only
a limited number of the factorial axes are kept for
the reconstruction. These negative values, however,
have no physical meaning. They are corrected in the
first reconstructed image. Then a second sequence
of FCA-reconstruction is applied because the data

set has been modified. In order to be consistent, the
constant is added after the second sequence of FCA-
reconstruction also.

The data are classified by k-means on the factor
pixels of the first FCA cf(1)

α and on the factor pixels of
the second FCA cf(2)

α . One can notice, in Fig. 34, that
the classification is better with two FCA than with one
FCA.

(a) (b)

Fig. 34. Classifications kmeans into 5 classes in the
space of the factor pixels (a) of FCA 1, cf(1)

α , and (b) of
FCA 2, cf(2)

α .

Starting from the sixteen retained factorial axes
of the first FCA (see section 3.1.2), the image is
partially reconstructed and a second sequence of FCA-
reconstruction is applied with a spectral translation
(equation 7).

In order to verify the importance of two sequences
of FCA-reconstruction, the SNR are estimated: on the
channels of the original image fλ , on the channels of
the first reconstructed image f̂(1)

λ
and on the channels of

the second reconstructed image f̂(2)
λ

. The SNR are also

estimated on the factor pixels of the first FCA cf(1)
α and

of the second FCA cf(2)
α (fig. 35). After performing the

first sequence of FCA-reconstruction, an improvement
of the SNR is noticed in the image space. However, the
second sequence of FCA does not improve the SNR in
the image space.

In the factor space, the SNR is improved after the
second FCA in comparison with the SNR, in the factor
space, after the first FCA.

Why is it necessary to apply two FCA to
filter the noise in the factor space, while only one
FCA is necessary in the image space? During the
reconstruction stage the factor pixels are weighted
by their inertia. Therefore the weight of the noise is
reduced because it appears on the factor pixels with
a small inertia. Moreover, the image reconstruction
is based on the product of the marginal frequencies,
νi.ν. j, which corresponds to the reconstruction of
the barycentre. This barycentre gives the general
appearance of the image. However, in order to remove
the noise on the factor pixels two FCA are necessary.
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(a)

(b)

Fig. 35. (a) SNR on the channels of the image. The red
curve and the blue curve are superimposed. (b) SNR
on the factor pixels for different sequences of FCA-
reconstruction.

A hyperspectral signal to noise ratio between the
original image (with noise) and the reconstructed
image (filtered) may be defined as the ratio between the
sum of the variance of the signal for each channel and
the sum of the variance of the noise for each channel:

SNRhyper(fλ ) =
∑

L
j=1 var( f̂λ j)

∑
L
j=1 var( fλ j − f̂λ j)

. (23)
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