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émanant des établissements d’enseignement et de
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Super-resolution microscopy reveals a preformed
NEMO lattice structure that is collapsed in
incontinentia pigmenti
Janine Scholefield1,2,*, Ricardo Henriques3,*, Anca F. Savulescu1,2, Elisabeth Fontan4, Alix Boucharlat4,

Emmanuel Laplantine5, Asma Smahi6, Alain Israël5, Fabrice Agou4 & Musa M. Mhlanga1,2,7

The NF-kB pathway has critical roles in cancer, immunity and inflammatory responses.

Understanding the mechanism(s) by which mutations in genes involved in the pathway cause

disease has provided valuable insight into its regulation, yet many aspects remain

unexplained. Several lines of evidence have led to the hypothesis that the regulatory/sensor

protein NEMO acts as a biological binary switch. This hypothesis depends on the formation of

a higher-order structure, which has yet to be identified using traditional molecular techniques.

Here we use super-resolution microscopy to reveal the existence of higher-order NEMO

lattice structures dependent on the presence of polyubiquitin chains before NF-kB activation.

Such structures may permit proximity-based trans-autophosphorylation, leading to

cooperative activation of the signalling cascade. We further show that NF-kB activation

results in modification of these structures. Finally, we demonstrate that these structures are

abrogated in cells derived from incontinentia pigmenti patients.

DOI: 10.1038/ncomms12629 OPEN

1 Faculty of Health Sciences, Division of Chemical Systems and Synthetic Biology, Institute of Infectious Disease and Molecular Medicine, University of Cape
Town, Anzio Road, Observatory, Cape Town, Western Cape 7925, South Africa. 2 Gene Expression and Biophysics Group, CSIR Synthetic Biology ERA,
Pretoria 0001, South Africa. 3 Quantitative Imaging and Nanobiophysics Group, MRC Laboratory for Molecular Cell Biology and Department of Cell and
Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK. 4 Chemogenomic and Biological Screening Core Facility, Institut
Pasteur, Center for Innovation and Technological Research (Citech), Departments of Cell Biology and Infection and of Structural Biology and Chemistry, 25/28
rue du Dr Roux, 75724 Paris cedex 15, France. 5 Laboratory of Signaling and Pathogenesis, CNRS, UMR 3691, Institut Pasteur, 75724 Paris cedex 15, France.
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T
he nuclear factor-kB (NF-kB) signal transduction pathway
plays important roles in mammalian immune and
inflammatory responses to injury and infection, as well

as cell proliferation, differentiation and survival1. Indeed, several
genetic diseases result from the functional alteration of key
components of NF-kB signalling2. Among these are the various
rare X-linked human diseases, including incontinentia pigmenti
(IP, OMIM # 308300) and immunodeficiency with or without
anhydrotic ectodermal dysplasia (ID OMIM# 300291).

On exposure to various stresses or external stimuli, cell surface
receptors activate the inhibitor of kB kinase (IKK) complex,
permitting nuclear entry of NF-kB and transcription of hundreds
of target genes3. This classical view of NF-kB signalling has
invoked the notion of sequential activation via posttranslational
and conformational modifications to individual proteins.
However, a shift in our understanding of the critical fine-tuning
of this pathway is emerging from increasing evidence of
‘open-ended’ higher-order structures4. The close proximity of
regulatory proteins in these structures would enable spatio-
temporal control of signal amplification enhancing efficiency of
subsequent catalytic reactions. Such cooperativity would be
greatly facilitated if a lattice-like structure pre-existed within the
cell, before signal induction5.

Higher-order structures have been shown for the tumour
necrosis factor receptor-associated factor 6, responsible for the
Toll-like receptor/interleukin (IL)-1-dependent signal transduc-
tion of NF-kB (ref. 6). By elucidating the crystal structure of
tumour necrosis factor receptor-associated factor 6, Wu and
colleagues revealed the presence of a scaffolding network of
oligomerized proteins at the plasma membrane. The authors
proposed that such higher-order oligomerization facilitates the
regulation of signal transduction by enhanced proximity-based
activation and autoubiquitination.

A similar model has been hypothesized for the IKK complex7,
which represents a critical checkpoint in the canonical activation
of NF-kB. A key factor in the IKK complex is the NF-kB essential
modulator protein (NEMO, also known as IKKg), responsible for
the regulation of the catalytic IKK subunits8,9. Indeed, hints of a
higher-order oligomeric structure emerged in a previous study
labelling NEMO following IL-1 stimulation10. However, confocal
microscopy revealed no evidence of a preformed higher-order
structure. Structurally, NEMO consists of an elongated and
flexible coiled-coil protein, which can form a stable dimer in
solution and putatively polyubiquitin-mediated higher-order
oligomers in vitro (trimer, tetramer and multimers) and in vivo
via its coiled-coil domains11–13. Furthermore, the catalytic IKKb
subunits from two different species were recently crystallized14,15

and both were shown to form a stable dimer with a trimodular
organization. Strikingly, crystallization studies demonstrated that
different oligomers of IKK kinases can be formed in the
asymmetric unit of the crystal lattice through specific contacts
between kinase domains, the predominant assembly forming
octameric (tetramer of IKK dimers), hexameric (trimer of IKK
dimers) and dimeric structures. The existence of these higher-
order oligomers, which are largely undetectable in solution, has
been proposed to provide a possible mechanism of cooperativity
for IKK activation via IKKb catalysed autophosphorylation7.
Their existence would implicate the higher-order structure
directly in NEMO function. Furthermore, the loss of this
higher-order structure could be a key mechanism by which
NEMO signalling could be compromised.

We and others have shown that hypomorphic mutations in
NEMO that lead to impairment, but not abolition of NF-kB
signalling, are associated with the less clinically severe anhydrotic
ectodermal dysplasia syndrome, whereas amorphic NEMO
mutations that completely abolish NF-kB activation are

associated with IP in females and in utero lethality in males16.
Most IP patients (70–80%) bear a complex genomic
rearrangement, leading to the deletion of exons 4–10 (ref. 17).
This recurrent NEMO rearrangement results in the synthesis of a
truncated non-functional protein, which is devoid of its two
carboxy-terminal ubiquitin binding domains (NOA/ubiquitin-
binding domains in ABIN and NEMO (UBAN) and zinc finger
(ZF)), but still able to interact with the IKKs. Other IP-associated
mutations, in contrast, appear more subtle, such as the A323P
missense mutation. Yet, this single base-pair change confers a
severe defect to the NEMO protein, affecting both its ability to
oligomerize and bind polyubiquitin18. An open question is
whether these IP causing mutations compromise the putative
higher-order structure of NEMO and thus interfere with the
essential mechanism required for functional NEMO signalling.

With several lines of evidence pointing towards a functionally
relevant higher-order structure of NEMO, it remains to be
identified in cellulo, due in part to the limited ability of
experimental techniques at our disposal.

The existence of a higher-order structure would be best
established by directly visualizing its nanoarchitecture in cells.
However, cryo-electron microscopy techniques involve complex
sample manipulations that may result in the collapse of
these fragile structures making the approach unsuitable for
visualization. In light microscopes, the diffraction limit of light
restricts the spatial resolution preventing the accurate observation
of molecular assemblies below 200 nm. However, recent advances
in super-resolution methods have allowed the classical limit to be
breached and resolutions of 10–20 nm to be routinely achieved
via fluorescent light microscopy19.

Here we use super-resolution microscopy to reveal the putative
higher-order structure of NEMO in non-stimulated cells, both in
live-cell and fixed conditions. We demonstrate that abrogation of
non-covalent polyubiquitin chains or IKK:NEMO binding leads
to the disruption of these higher-order structures. Surprisingly,
the largest structures represent a very small fraction of total
NEMO higher-order structures in cells, yet even a modest
removal of this subset results in defective NEMO signalling.
Furthermore, we provide quantitative evidence for the
modification of these structures on NF-kB stimulation. Finally,
we show that IP patient-derived cells lack such higher-order
lattices, providing a molecular understanding of their pathology.
Collectively, our data demonstrate the importance of higher-
order oligomerization of NEMO in the NF-kB signalling response
and emphasize how super-resolution microscopy can provide
novel insights into the single-molecule mechanisms of genetic
disorders.

Results
Super-resolution reveals a higher-order structure of NEMO.
Biochemical and structural data reveal that NEMO forms an
elongated dimer20, which can act as a regulatory scaffold to
activate the catalytic IKK subunits in a polyubiquitin binding-
dependent manner (Fig. 1a). X-ray crystallography data14 from
IKKb had further suggested that this higher-order NEMO-IKK
platform would form a lattice organization in the order of 500 nm
or greater, composed of B68 nm base units. We reasoned that
given the resistance of the proposed higher-order structure to
biochemical isolation, it would be best visualized directly using
super-resolution localization microscopy (SRLM) techniques
such as photoactivated localization microscopy (PALM)21 and
stochastic optical reconstruction microscopy (STORM)22-based
methods. SRLM has been used to reveal novel structural
information at the nanoscale level for a variety of biological
applications (reviewed in ref. 23), including disease
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Figure 1 | Depiction of higher-order NEMO lattice structure. (a) Functional domains and model of the full dimeric IKKb-NEMO complex showing the

highly elongated shape of the potential higher-order structure. All crystal and NMR structures of the NEMO domains are depicted in bright colours,

whereas those modelled are in grey. The two ubiquitin-binding domains (NOA and ZF) are shown as complexes with K63 di-Ub chains (red). The dimeric

structure of IKKb (light orange) consisting of its three sub-domains (KD, ULD and SDD) interacts via its C-terminal extremity (NBD, light orange) with the

N-terminal kinase binding domain (KBD, blue) of NEMO. The dotted lines denote the short IKKb fragment (residues 666–704) and the human NEMO

(1–48), which are lacking in the crystal structures as described in Methods. The structural model of full-length NEMO bound to IKK and polyubiquitin

chains is used to propose a higher-order lattice structure by accumulating repetitive base units. SRLM of NEMO in U2OS cells (b) and primary fibroblasts

(c) reveals extensive branching of NEMO lattice. Top left micrograph is an overlay of TIRF and SRLM images showing a yellow dotted outline of the cell

boundary. Box I and II are magnified from the left image and then shown with further boxed magnification. (All subsequent SRLM images follow the same

format, unless otherwise indicated.) Bottom left micrograph represents cells from the same coverslip imaged using conventional fluorescence microscopy.

Box III is representative of the equivalent widefield magnification shown in Box I and II above, as is the subsequent magnified inset. HLX2, helical domain 2;

KD: kinase domain; NBD, NEMO binding domain; NOA: NEMO, OPTINEURIN and ABIN domain; SDD, a-helical scaffold/dimerization domain;

ULD, ubiquitin-like domain; ZF, zinc finger.
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pathogenesis24. Therefore, we believed this to be the best
approach to investigate whether the NEMO-IKK unit is
assembled into higher-order structures. For high-precision fixed
cell super resolution, we opted for direct STORM (dSTORM)25

allowing us to survey endogenous NEMO proteins minimizing
possible structure anomalies when compared with overexpressed
fluorophore-tagged proteins that may hinder the natural
organization and interactions that form higher-order structures.
For live-cell super resolution, we opted for a super-resolution
optical fluctuation imaging (SOFI)-based method, enabling super
resolution at low-intensity illuminations—orders of magnitude
lower than comparable STORM methods—considerably reducing
cell phototoxicity when compared with live dSTORM approaches,
although providing a lesser resolution improvement (80–100 nm)
and relying on fluorescent protein fusion constructs26.

We used total internal reflection fluorescence (TIRF)-based
illumination in tandem with SRLM to super-resolve the
immunolabelled NEMO nanoarchitecture near the surface of
the cell membrane. This approach allowed us to observe the
presence of large lattice structures in the sub-membrane region of
U2OS cells (Fig. 1b). Consistent with a model of NEMO-IKK
assembly predicted from IKK X-ray crystallographic data, we
observed lattice-like structures composed of round clusters of
NEMO of 50–100 nm, connected to each other by elongated
bridges also composed of NEMO spanning over 400 nm in
maximum diameter. These structures could not be accurately
resolved using conventional methods including highly sensitive
TIRF approaches as well as maximum intensity projections in
widefield (Fig. 1b).

To ascertain whether these structures visible in fixed cells
represented bona fide structures in live cells, we performed SOFI-
based live super resolution using NEMO-defective cells17

transiently transfected with a GFP-NEMO fusion construct.
Video acquisition shows that cells positive for green fluorescent
protein (GFP) formed similar lattice structures (Supplementary
Movie 1), to those observed with endogenous NEMO labelling in
wild-type (WT) cells. In addition, SOFI high-speed acquisition
indicated that these structures are highly dynamic.

We sought to confirm the presence of the lattice structure in
primary cells. SRLM analysis revealed similar extensive lattice
structures in human dermal fibroblasts (HDFs) approaching
lengths of 1–3 mm (Fig. 1c). As with the U2OS cells, no
distinguishable structures were observed in corresponding
non-super-resolved TIRF or wide-field maximum intensity
projection images (Fig. 1c).

To eliminate the possibility of a technical artefact, several
control experiments were performed. An alternative antibody
targeting NEMO revealed lattice structures of highly similar
dimensions (Supplementary Fig. 1a,b). Potential artefacts due to
nonspecific staining were excluded by performing SRLM on cells
transfected with a small interfering RNA (siRNA) targeting
NEMO and on cells immunolabelled with the secondary antibody
alone. No structures of significant size were observed
(Supplementary Fig. 1c,d). Further modifications to fixation and
permeabilization showed no impact on the detected structures
(Supplementary Fig. 1e,f). Finally, SRLM on a control protein,
Calnexin, revealed no lattice-like structure (Supplementary
Fig. 1g). These data, together with similar observations in live
super-resolution microscopy convincingly indicated that the
identified lattice structures are not a technical artefact.

Inhibition of polyubiquitin chain binding abrogates lattices. In
addition to the structural evidence of oligomerization of the IKK
complex, further connections of oligomers may be facilitated by
non-covalent binding via polyubiquitin chains. Several studies
have revealed that the binding of K63 and Met1 (linear)

polyubiquitin chains to two ubiquitin-binding domains, the NOA
(also called UBAN) and ZF domains, located at the C-terminal
extremity, are essential for NF-kB activation27–34 (see Fig. 1a).
Although NEMO oligomerization and its binding properties to
ubiquitin oligomers have been shown to be essential in canonical
NF-kB signalling11,12,35,36, no report has yet demonstrated the
extent to which these oligomers may be linked to each other via
polyubiquitin chains to form a preformed higher-order structure
(see Fig. 1a).

As polyubiquitin chains are constitutively present in the cell
(reviewed in ref. 37) and NEMO contains ubiquitin-binding
domains, we theorized that NEMO would be able to co-opt
these polyubiquitin chains to facilitate the assembly of the
lattice structure before cytokine induction. To test this hypothesis
we performed SRLM on U2OS cells transfected with plasmids
expressing the de-ubiquitinases (DUBs) CYLD, (cylandromatosis
DUB) or OTULIN (ovarian tumour DUB with linear linkage
specificity; also known as FAM105B). Although CYLD has been
shown to hydrolyse both K63 and linear polyubiquitin
chains38,39, the specificity of OTULIN is solely targeted towards
linear polyubiquitin chains40.

SRLM imaging of the CYLD-transfected cells revealed the
removal of previously identified large lattice structures (defined as
those over 400 nm in length, unless specified otherwise), although
small clusters of NEMO were still apparent (Fig. 2a). As expected,
we observed no structural alterations using conventional
immunofluorescence at the same magnification (Fig. 2a, lower
micrographs, insets) compared with untransfected cells. SRLM
revealed a similar pattern of smaller structures in U2OS cells
expressing OTULIN (Fig. 2b). These data strongly suggest that
preformed higher-order NEMO structures are dependent both on
linear and K63 polyubiquitin chains. This result was further
validated by expressing CYLD in HDFs, which also revealed a
similar reduction of large lattice structures coupled with an
inability to translocate p65 to the nucleus following IL-1
stimulation (Supplementary Fig. 2).

Although every effort was made to remove bias in the
observation of higher-order lattice structures between conditions,
we sought to make our observations as quantitative as possible.
We therefore developed an algorithm to perform unbiased
analysis of the size of NEMO structures revealed by SRLM data
(Methods; Fig. 2c). We compared the number of larger lattice
structures (defined as those over 400 nm in length) per mm2 of
cell surface area in untreated cells and those transiently
transfected with DUBs. Quantitative analysis revealed the number
of large lattice structures is reduced fourfold in U2OS cells
transfected with DUBs, validating our observations.

The global catalytic removal of polyubiquitin chains by DUBs
may have additional effects on cellular machinery and therefore
contribute to an indirect loss of lattice structure. We therefore
sought to specifically obstruct the binding of polyubiquitin chains
to NEMO alone. The peptide A-UBI specifically blocks the
binding of polyubiquitin chains to the NOA domain of NEMO41.
Treatment of HDFs with A-UBI showed a loss of lattice structures
via super-resolution imaging (Fig. 2d). Quantitative analysis
revealed a threefold reduction in the prevalence of larger lattice
structures. This was consistent with our hypothesis that
polyubiquitin chain binding to the NOA domain was essential
for the assembly of higher-order NEMO structures.

Lattices provide a mechanism for proximity enhanced activation.
It is well established that IL-1 induction of the NF-kB pathway
requires the formation of a large signalosome at the receptor42.
Indeed, we have recently demonstrated that these activating
centres show recruitment of NEMO in the form of large
aggregates10, which can be visualized in live cells using
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diffraction-limited spinning disk fluorescence microscopy
(Fig. 3a). Therefore, to further investigate the functional
significance of the preformed NEMO lattice, we stimulated
U2OS cells with IL-1 and performed SRLM. On image
reconstruction, we were able to distinguish between preformed
lattice structures of NEMO and the more condensed
IL-1-induced NEMO aggregates (Fig. 3b), the latter being
absent in untreated cells (Fig. 1b). IL-1-induced aggregates were
observed by TIRF and shown to be in the range of 400 nm in
diameter after SRLM reconstruction. Magnified images shown in
Box I and Box II show examples of both an IL-1 aggregate (a) and
a preformed lattice (b) within the sub-membrane region. The
IL-1 aggregates appear more dense, thus explaining their

detection in conventional fluorescence imaging, whereas the
preformed NEMO lattice is detectable only by SRLM. This may
suggest a mechanism by which a preformed lattice compacts
on itself to form a dense IL-1-induced NEMO structure,
a consequence of cooperative activation of the high number of
enzymatic complexes present in close proximity. Indeed, we did
observe a slight reduction in the number of large lattice structures
per mm2 following IL-1 induction (Fig. 3c).

Catalytic IKK subunits are essential to lattice structure. Our
previous work has shown that IL-1-induced NEMO aggregates
visible using conventional microscopy colocalize with activated
IKK10. Here we sought to investigate the degree to which the
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catalytic IKK subunits contribute to the formation of the
preformed NEMO lattice. The Nemo-binding domain (NBD)
peptide is a well-established inhibitor of the NF-kB pathway,
which acts by preventing the interaction between NEMO and
catalytic IKK subunits43. SRLM of HDFs treated with NBD
peptide showed a dramatic reduction in the number of large

NEMO lattices (Fig. 4a). Similarly, we saw a threefold reduction
in preformed NEMO lattices in MEFs lacking IKKa and
b-subunits (Fig. 4b). Interestingly, both inactive and active
forms of the catalytic IKK subunits formed lattices resembling
that of the NEMO structure identified using SRLM (Supplemen-
tary Fig. 3). This motivated us to perform dual STORM to
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in diameter per mm2 of cell area. n is the number of whole cells analysed per condition. Error bars are s.e.m. *P-value of o0.05 after a two-tailed t-test.
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observe whether the IKK subunits were co-localized.
Unsurprisingly, preformed NEMO lattices appeared to co-
localize with IKKb but not the endoplasmic reticulum (ER)-
associated protein, Calnexin (Fig. 4c). Together, these data
strongly support an essential role for the IKKb subunits in
maintaining preformed NEMO lattices.

Lattice structures are absent in IP-derived patient cells. To
investigate the clinical relevance of the NEMO structures, we
performed super-resolution analysis on fibroblasts with NEMO
mutations acquired from samples with clinically defined IP.
Fibroblasts from IPGR contain a genomic rearrangement of exons
4–10 in NEMO, causative of the majority of IP cases17, resulting
in a truncated protein44. Because of the concern of reduced
binding sites available to the NEMO antibody in this mutant
protein, we acquired fibroblasts from a second IP patient with a
different disease-causing mutation in the NEMO gene. IPSS cells
contain a novel splice site mutation in NEMO resulting in the
deletion of exons 4–6, and a truncated protein (Supplementary
Fig. 4a and ref. 45). Significantly, the truncated version of NEMO
in IPSS cells retains the domains necessary to bind polyubiquitin
chains, yet NEMO signalling is deficient in these patients. On the
basis of structural modelling of the IPSS NEMO dimer, we
hypothesized that this mutation confers a different orientation
of the dimer of NEMO UBD domains relative to the IKKb
amino-terminal binding site. This change in the spatial
arrangement of UBDs is due to the modification of the
left-handed superhelix of the coiled coil (Supplementary
Fig. 4b). Importantly, the level of NEMO protein in cells from
the IPSS line is as high or higher than in WT control lines as
measured by western blotting (Supplementary Fig. 4c).

SRLM analysis on both these cell lines revealed the presence of
small clusters of NEMO with no significant higher-order lattice
structure observed (Fig. 5a,b) when compared with that of WT
HDFs. Indeed, we observed an almost complete absence of
preformed lattice structures over 1mm in length (uniquely
observed in HDFs compared with other cell types). Quantitative
analysis confirmed our observation showing a substantial
decrease in the frequency of large NEMO lattices in IP derived
cells compared with their WT counterparts (Fig. 5c).

Apart from the reduced immunolabelling in IPGR-derived
cells (expected from truncated proteins and thus reduced
antibody binding), neither conventional immunofluorescence nor
TIRF microscopy revealed any differences in NEMO staining
(Fig. 5a,b). Indeed, the only structural difference observed
between WT HDFs and IP-derived fibroblasts identifiable using
conventional fluorescent microscopy was that of an inability of
the IP-derived cells to form IL-1-induced NEMO aggregates
(Supplementary Fig. 5).

Quantitative analysis of NEMO lattice structures. Although we
had provided some quantification of our SRLM data, we sought to
further interrogate our algorithm data. We therefore assessed the
prevalence of the larger NEMO lattices relative to the total
number of structures in each cell type or condition, as well as the
density of each structure in IL-1-stimulated cells.

Analysis of the maximum diameter of NEMO structures in
U2OS cells across multiple conditions revealed smaller structures
of 50–300 nm to be the predominant species (Supplementary
Fig. 6a). Large lattice structures represented only 3.3% of the total
number of NEMO structures in untreated U2OS cells (Fig. 6a). In
contrast, cells treated with CYLD and OTULIN were revealed
to have only 1.1 and 1.5% of NEMO lattices over 400 nm.
This represents a three- and twofold decrease, respectively.
Interestingly, we observed that the fold decrease in structures was
more pronounced when comparing the largest higher-order order

structures over 550 nm between conditions. In restricting our
analysis to this size bin, we observed a ten- and fourfold decrease
of CYLD and OTULIN-treated cells respectively compared with
controls (Supplementary Fig. 6a). This reduction was enhanced in
CYLD-transfected cells compared with those transfected with
OTULIN. Indeed, overexpression of CYLD led to a significant
increase in the percentage of smaller structures of 20–50 nm,
possibly representing NEMO reduced to its basic dimer unit. The
more severe effect by CYLD is likely to be due to the combined
elimination of K63 and linear chains, whereby K63 linkage
represents the predominant species. Abrogation of polyubiquitin
chains should reduce the lattice to its multimeric IKK/NEMO
complex size of 128 nm. Although we did not observe a signifi-
cant increase in lattices in the range of 100–300 nm in DUB-
treated cells, this could well be explained by the transient nature
of the experiment, whereby only the largest structures have been
affected after 48 h. Importantly, the transient expression of either
CYLD or OTULIN lead to the functional disruption of the NF-kB
pathway. Thus, it appears that although large preformed higher-
order lattice structures represent only a small proportion of total
structures in the cell, they provide sufficient and essential higher-
order platforms for a functional signal transduction response.

Analysis of NEMO structures in IL-1-stimulated cells com-
pared with untreated cells revealed a small but general reduction
in larger lattice structures, although this only achieved
significance for a single bin size (500–550 nm; Supplementary
Fig. 6a and Fig. 6a). Given IL-1-induced NEMO aggregates can be
observed with conventional microscopy (Fig. 3), we asked
whether they were composed of a higher density of NEMO
particles. Quantitative analysis revealed that there was no
significant difference in the predominant species of low-density
structures (o2 particle detections per nm2; Supplementary
Fig. 6b). In contrast, high-intensity structures increased from
2 to 6% in IL-1-treated cells (Fig. 6b). This threefold increase was
more pronounced in comparisons of higher particle density
(Supplementary Fig. 6b). Taken together, the modest reduction in
large structures concurrent with the appearance of IL-1-induced
NEMO aggregates may suggest a structural rearrangement of
preformed lattices into IL-1 activation centres. Furthermore, the
increased density of NEMO structures in IL-1-stimulated cells
may lend further support to a model of proximity enhanced
activation and cooperativity.

Having identified that transient expression of DUBs could
significantly decrease the proportion of preformed NEMO
lattices, we asked whether cells lacking catalytic IKK subunits
showed a similar reduction. We found a threefold decrease in
lattice prevalence in MEF IKK� /� cells (Fig. 6c). Interestingly,
this corresponded with a robust and significant increase in base
unit NEMO dimers (o100 nm) in IKK� /� cells (Supplementary
Fig. 6c). Alhough we did not observe a similar increase in the
prevalence of smaller structures post DUB treatment, this is
probably explained by the prolonged absence of IKK subunits in
these stable knockout cell lines rather than a transient removal of
polyubiquitin chains.

Lastly, we compared the maximum diameter of structures from
WT HDFs and IP-derived cells (Fig. 6d, expanded data in
Supplementary Fig. 6d). Our analysis validated our observations
of a significant reduction in preformed lattice structures in
IP-derived cells, with a two- to threefold decrease in the
prevalence of large structures compared with control cells. This
effect was exacerbated in the more severe IPGR patient cells. As
fibroblasts exhibit larger structures than U2OS cells, we further
compared even larger higher-order lattices over 800 nm in length
(Supplementary Fig. 6d). These structures represented 0.6% of all
structures in the cell, but only 0.05% in IPSS cells. We observed no
structures of this size in IPGR cells. Although these numbers

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12629

8 NATURE COMMUNICATIONS | 7:12629 | DOI: 10.1038/ncomms12629 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


represent a small proportion of the total structures, those over
400 nm in size occupy over 50% of total NEMO structure area in
WT HDFs, but only 20 and 13% in IPSS and IPGR cells,
respectively (Supplementary Fig. 6e). We further observed a
significant increase in the prevalence of smaller structures of
200–300 nm in IP-derived cells, reinforcing the notion that these
cells are unable to form NEMO lattices of significant size,
but yield an increased proportion of NEMO conglomerates of a
non-functional nature. The shift in the distribution of structure
size was more severe in IPGR cells, although this is likely to
be due to the more severe nature of the mutation. Although the
increased proportion of small structures in IP patient cells
within the range of 200–300 nm does not directly equate to the
NEMO dimer ‘base unit’, these structures may represent
non-functional conglomerates of ‘sticky’ NEMO protein.
Although they are still able to bind IKK subunits, this alone
cannot facilitate significant lattice formation without polyubiqui-
tin chains.

The combination of these data are summarized in the
schematic representation in Fig. 6e. Under normal conditions,
unstimulated cells contain preformed lattices extending from
400 nm to over 1 mm in length held together by delicate bridges
o100 nm in width. Importantly, cells stimulated with IL-1 largely
maintain these lattices but reveal highly dense smaller NEMO
aggregates 200–400 nm in size, which can be visualized
by conventional microscopy. In contrast, cells in which the
interactions of NEMO with polyubiquitin chains or catalytic IKK
subunits are perturbed form small non-functional NEMO
aggregates. Importantly, the presence or absence of preformed
lattices is only distinguishable by SRLM.

Discussion
In this report we use SRLM to demonstrate the existence and,
indeed, extent of a preformed higher-order lattice structure of
NEMO, as well as its functional significance in the context of a
genetic disease (Fig. 6). Although such a higher-order structure
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has been hypothesized and inferred from biochemical data, to the
best of our knowledge this is the first time it has been visualized
in both live-cell and fixed-cell conditions, and therefore the
strongest evidence that exist to date.

Despite the size of the NEMO higher-order lattice surpassing
the diffraction limit of light, the delicate NEMO bridges along
which it is connected appear to be within the range of 20–100 nm
(cell type dependent), thus obscuring their observation using
diffraction-limited microscopy. Alternative techniques have been
used to reveal similar nanoscale structures, including electron
microscopy and PALM. However, to preserve the structural
integrity of the delicate lattice within the context of endogenous
NEMO expression levels, we believed a dSTORM strategy was
best suited to this application, although a SOFI-based method was

also used to demonstrate that the lattices could still be observed in
live-cell conditions.

Notably, our results contribute significantly to the mechanistic
understanding of how a regulatory protein can so efficiently and
exquisitely react to external stimuli. We determined that a small
number of preformed open-ended NEMO lattice structures
linked by catalytic IKK subunits and polyubiquitin chain binding
are sufficient to rapidly activate the NF-kB cascade. Although it
has been shown that polyubiquitin chains bind NEMO on IL-1
stimulation46, our data strongly suggest both K63 and linear
chains are necessary and exist within a preformed NEMO
structure. An explanation for this inconsistency between our and
previous experimental data may lie in the fact that this delicate
non-covalent association of reticulated NEMO may be destroyed
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by insensitive biochemical techniques. Interestingly, the
proportion of preformed structures varied across different cell
types, although this may be attributed to the well-documented
variation in the concentration of polyubiquitin chains between
cell types47. We observed that the appearance of a few highly
dense NEMO aggregates in IL-1-stimulated cells correlated with a
very small reduction in open-ended NEMO lattices. Although we
cannot exclude additional protein factors, the data presented here
supports a mechanism by which a small number of lattices are
primed to swiftly respond to external stimuli and ‘fold-in’ on each
other to create compact NEMO-IKK signalosomes leading to a
proximity-enhanced response. Such a mechanism would require a
highly dynamic structure. Both our live-cell data and a previous
report20 provide strong experimental evidence to show the highly
dynamic nature of NEMO oligomers. Indeed, this may further
explain the modest reduction (Fig. 6a) in open-ended lattices in
IL-1-treated cells, in which we would expect to observe some
latency in the reformation of the lattice. Instead, a rapid and
highly dynamic feedback mechanism is implicated in the
reformation of the NEMO lattice structure on IL-1 induction.
It would therefore be highly valuable to further investigate the
nature of this dynamic interaction between inactive and activated
cellular states with the advancement of such technologies in a
broader study. In particular, NEMO ubiquitination—which
corresponds to a covalent attachment of non-degradative
polyubiquitin chains (linear and K63) to NEMO—could
considerably enhance the conversion of preformed open-ended
NEMO lattice structures into activating centres, where specific
ubiquitin ligases are presumably present. Importantly, the small
proportion of higher-order NEMO lattices and subsequent
IL-1-induced signalosomes further provides a mechanism by
which the signalling response could ‘ignore’ biological noise.
This property, in conjunction with an ability to mediate
proximity-enhanced activation, would effectively facilitate a
binary biological switch.

The importance of such a higher-order lattice of NEMO is
apparent from our data showing the near elimination of these
structures in IP-derived cells. At first glance, the NEMO mutation
in IPSS cells confers no apparent detriment to the function
of the protein, apart from a reduction in length. Importantly,
the domains necessary for IKKb and polyubiquitin chain binding
are still present in these cells. Thus, NEMO should be
able to facilitate activation of the signalling cascade. Yet, our
analysis of structural data (Supplementary Fig. 4) indicates
that the IPSS mutation results in the ubiquitin-binding domains
being misconfigured, leading to incorrectly positioned
polyubiquitin chains, obstructing their ability to form a higher-
order lattice structure. Therefore, in demonstrating that cells
with this mutation lack higher-order structures before stimula-
tion, we show the extent to which such accurate structural
oligomerization and cooperativity is required for NF-kB
signalling. Indeed, our data provide evidence that despite the
broad spectrum of IP causing mutations, the common molecular
cause for disease may be an inability to form higher-order
lattices of significant size and number. These structures permit
the signal transduction cascade through cooperativity, to achieve
rapid Hill function responses once the appropriate threshold is
achieved.

Higher-order structures constitute a very small proportion of
total structure number, yet are absent in IP patient-derived cells,
which lack a functional NF-kB response. This suggests that only a
small number of large higher-order structures are necessary to
efficiently regulate reliable signal transmission and interpretation
by balancing signal intensity, while acting as a noise filtering
mechanism. This concept bolsters previous observations where it
has been shown that NF-kB signalling is activated in a digital

manner, rapidly reaching a stimulus saturation point, exemplified
in rapid Hill function responses48.

Although there exist simple methods for diagnosis of IP,
the demonstration here that IP patients harbouring different
mutations have a common molecular defect in the higher-order
structure of NEMO protein may bypass the mutational screening
and characterization required for identifying NEMO mutations. It
is possible to speculate that this method may be useful for
prenatal diagnosis in families in which IP is suspected but not
fully confirmed in males but also, as evident by our study, in
females in which skewed X-inactivation has not occurred. In our
analysis we were able to show a statistical difference with only six
cells from different clinical samples, suggesting the isolation and
limited expansion of amniocytes may be useful in augmenting
such a diagnosis. The expansion of such super-resolution
techniques may therefore provide not only invaluable mechanistic
insight into disease but also facilitate the genetic diagnosis of a
clinically severe disorder.

Methods
Structural modelling of NEMO. A modelling of the human dimeric NEMO
protein (residues 49–419) with K63 di-Ub chains was undertaken based on
COILS49 and PAIRCOIL2 (ref. 50) coiled-coil prediction algorithms and the
following crystal and NMR structures of NEMO fragments: kinase-binding domain
(PDB ID: 3BRV, residues 49–109); Helical domain 2 (HLX2, PBD ID: 3CL3,
residues 193–249), coiled-coil domain 2–leuzine zipper (CC2-LZ, PDB ID: 2V4H
and 4BWN, residues 257–344) and ZF (PDB ID: 2JVX, residues 392–419). All
regular heptad phases (abcdefg)n within the predicted fragment of NEMO (residues
49–364), as well as coiled-coil discontinuities such as stutters (deletion of three
residues) and stammers (deletion of four residues), were correctly predicted using
PAIRCOIL2 when compared with the heptad phases identified from available
crystal structures by the coiled-coil analysis programme SOCKET51. This includes,
for instance, one stutter and one stammer at positions 103 and 295, respectively.
Two other highly predictable discontinuities at position 203 (stutter) and 256
(deletion of two residues) were taken into account to accommodate the heptad
phases at the KD/HLX2 and HLX2/CC2-LZ junctions. A first model was built
using O52 by assembly of crystal and NMR NEMO fragments with the following
modelled regions: 110–192 (CC1, 82 aa), 250–256 (7 aa), 345–364 (20 aa) and
365–391 (27 aa). The long WT CC1 (110–192) and the short mutant CC1
(110–133) fragments were generated using CCBuilder53 with a radius of 5.07 Å,
a superhelical pitch of 225.8 Å and an interface angle of 26.42�. The fragment
building corresponding to the disordered region between CC2-LZ and ZF domains
(residues 365–391) was based on the circular dichroism (CD) spectra analyses of
the 248–344, 248–419 and 392–419 constructs of human NEMO (CD spectra
available upon request). This disordered fragment was manually generated and
refined from initial atomic coordinates derived from a I-TASSER-generated model
based on threading algorithm53. The NEMO:IKKb:K63-di-Ub complexes (WT and
Mu) were built by homology modelling using as structural templates the crystal
structure of the mouse CC2-LZ in complex with a K63 di-Ub chain (PDB ID:
3JSV54) or the modelled NEMO ZF in complex with a K63 di-Ub chain55. This
structural modelling of NEMO is consistent with a recent in vitro EPR study
showing that NEMO forms a parallel coiled-coil dimer in solution20. The
incomplete crystal structure of the human IKKb (residues 16–665, PDB ID:4E3C)
and its short C-terminal fragment bound to the NEMO N terminus (NDB, residues
S705–Q743, PDB ID:3BRV) were previously described15,56. PyMOL (version 1.7,
Schrödinger) was used for molecular display and structural figures.

Expression constructs and antibodies. The CYLD-FLAG expression construct
has been previously described38 (kind gift of Dr Gilles Courtois), whereas the
OTULIN-GFP expression construct was obtained from OriGene Technologies
(USA, catalogue number RG224840). The siRNA targeting NEMO was acquired
from Sigma. Primary antibodies for labelling NEMO for SRLM were obtained from
Santa Cruz (FL-419; polyclonal) and BD Transduction Laboratories (611306;
monolconal). The latter binds to amino acids 278–396. The anti-P65 antibodies
were obtained from Santa Cruz (sc-109; sc-8008), whereas the anti-FLAG antibody
was purchased from Sigma (F1804). The catalytic IKK subunit antibodies used for
SRLM were as follows: Ab6146 Rabbit polyclonal to IKKb (Abcam), Anti
hPhospho IKK alpha S176/S180 catalogue number MAB3768 (R&D), Ab194528
Rabbit polyclonal to IKKa and IKKb (phospho S176 & S177) (Abcam).

The following secondary antibodies were used: anti-rabbit AlexaFluor 488
(A11008, Invitrogen), anti-mouse AlexaFluor 488 (A-11001, Invitrogen), anti-
rabbit Atto 550 (611-154-122S, Rockland), anti-rabbit Atto 647N (611-158-122S,
Rockland), anti-rabbit AlexaFluor 647 (A-31573, Invitrogen) and anti-mouse
AlexaFluor 647 (A-21236, Invitrogen). We observed as others have that the best
SRLM acquisitions were acquired with a 647 dye. We noted that the monoclonal
antibody may reveal less extensive structures, as it binds to the UBAN domain of
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NEMO, possibly excluding the population of NEMO forming extensive lattice
structures. Therefore, all metric analysis was performed using the polyclonal
antibody.

Cell culture and transfection conditions. All patient material was gathered, after
receiving informed consent from participants, under protocols approved by the
Declaration of Helsinki, which was approved by the ethics committee at Hôpital
Necker. U2OS cells and WT fibroblasts (WT HDFs) were obtained from Lonza
(USA). WT MEFS were obtained from ATCC (USA). MEF IKK� /� cells were a
kind gift of I.M. Verma (The Salk Institute Institute for Biological studies,
La Jolla, CA). All cells were grown in complete RPMI medium (Gibco) containing
10% fetal bovine serum (PAA) and were screened for mycoplasma before
experimental use. Cells were authenticated by western blotting where appropriate.
Plasmids and siRNA were transfected into U2OS cells using Fugene HD (Roche)
and into fibroblasts using the Invitrogen Neon Transfection system. Live-cell
experiments were performed as previously described10 using IPGR NEMO defective
cells. Transiently transfected cells were imaged 48 h after transfection. U2OS cells
and fibroblasts were stimulated with 10 ng ml� 1 IL-1b (H2691, Sigma) for 5 and
15 min, respectively, before fixation and imaging. The peptides A-UBI (catalogue
number 481418, Calbiochem) and NBD (480025, Calbiochem) were used at a final
concentration of 20mM on WT HDFs. Cells were incubated with aforementioned
peptides for 2 h, followed by treatment with IL-1, before fixation.

Western blottings. Cells (106) were lysed in 200 ml of lysis buffer. After cen-
trifugation at 10,000 g. Ten microlitres of supernatant corresponding to 105 cells
were loaded onto a 12% SDS–PAGE, followed by western blotting using a
monoclonal antibody against NEMO. The human nucleoside diphosphate kinase B
was used as a loading control.

Sample preparation for SRLM. Glass coverslips were washed three times in
optical grade acetone, methanol and deionized water. Coverslips were then
sonicated in 0.1 M KOH for 45 min, rinsed and further sonicated in deionized
water. Cells were resuspended in 100% ethanol and exposed to ultraviolet radiation.
Cells were fixed with 3.7% stabilized formaldehyde for 10 min at room temperature
and then permeabilized with 70% ethanol. After blocking with 1% BSA-Tween for
30 min, the samples were incubated with primary antibodies at 4 �C overnight,
washed three times with 1% BSA and incubated with secondary antibodies for 1 h
at room temperature. To maximize the number of detected molecules, care was
taken to minimize photobleaching: cells were embedded in oxygen scavenger buffer
as previously described25, imaged on the same day of labelling and kept in the dark
until imaged. Tetraspeck beads (200 nm diameter; Invitrogen) were mounted with
the sample as fiduciary landmarks and later tracked for computational drift
correction.

Image acquisition. Samples were imaged on a custom-built PALM/STORM
microscope as described before57. For each coverslip, preselected fields of view were
chosen typically containing one cell. We developed the automated acquisition
sequence based on the open-source Micro-Manager microscopy acquisition
software58. First, the field of view was centred to include as much of the cytosol as
possible, to maximize the area acquired over the flatter cell membrane. Cells were
then imaged by TIRF illumination with a 488 nm, 568 nm and/ or 647 nm laser. We
then performed a SRLM image-stream acquisition for the 647 channel (635 nm
laser-excitation at 1.7 kW cm� 2, 662–690 nm emission) or the 568 channel
(561 nm laser excitation at 2.4 kW cm� 2, 589–625 nm emission), each composed
of 20,000 images acquired at 33 ms intervals. Dual dSTORM images were generated
by first performing an acquisition as described above in the 647 channel, followed
by the 568 channel. Imaging parameters were set using Micro-Manager running on
a desktop PC. Laser control was achieved with custom software57. Before particle
detection and localization, fiduciary beads were identified and marked, typically
1–5. Sample drift was then calculated by tracking the group displacement of
selected beads throughout the acquired image sequence. After particle detection
and localization, the position of each particle was readjusted by subtracting the drift
identified at the corresponding time point.

The diffraction limited z-stack acquisition was performed at 300 nm z-steps
encompassing the size of the cells. This was performed to determine the proper
localization and expression levels of the proteins of interest in the analysed cells.

Live-cell image acquisition. Imaging of NEMO-GFP-expressing cells was
performed using an N-STORM inverted microscope (Nikon) in TIRF mode.
A 488 nm excitation laser was angled through the back focal plane of an original
magnification � 100 TIRF objective (Nikon). A range of laser powers were tested
for imaging the samples; as GFP intensity fluctuations are minimal regardless of
laser power in the absence of a specialized imaging buffer, similar SOFI-based
reconstructions were obtained at all powers tested. As a result, the live-cell movie
displayed was obtained at 0.083 kW cm� 2. Emitted signal from the excited GFP
molecules was collected by an electron-multiplying charge-coupled device camera
(iXon Ultra 897, Andor), with a pixel size of 160 nm.

Fixed-cell super-resolution image reconstruction. Final super-resolution
reconstructions were then generated in Fiji59 through the QuickPALM algorithm57

by creating images with 20 nm pixel size and additively superimposing a Gaussian
kernel of 20 nm full-width half-maximum to each particle.

Live-cell super-resolution image reconstruction. Final super-resolution recon-
structions were generated in Fiji59 through a custom-made SOFI-based algorithm
using fourth-order SOFI and generating images with 40 nm pixel size. Super-
resolution Movie 1 analysed through the custom NanoJ-SRRF V1.0 ImageJ plugin
is available upon request to the authors.

Quantitative analysis. Protein cluster segmentation was performed through a
dedicated algorithm implemented in Jython, running within the Fiji software59.
Here the algorithm uses a Huang threshold method60 to segment clustered particle
detections, this approach showed optimal performance in the identification of
NEMO particle clusters. Background detections (false detection) caused by noise
fluctuations or motile unbound labelled antibodies were minimally present in the
thresholded images. For each segmented particle cluster in the rendered image, the
following properties were measured: particles density, area, circularity and
diameter. We verified that cell illumination was considerably homogenous for the
individual cell regions-of-interest, but slightly non-homogeneous for the full field
of view due to the Gaussian profile of the laser illumination in our microscopy
setup. In all graphs, n is the number of whole cells analysed per condition.

Statistical analyses. We used StatPlus to create histogram bin sets for the
quantification of comparisons between cell types and treatments. The error bars are
representative of s.e.m. Statistical analyses were performed using a two-tailed
Student’s t-test, to determine statistical significance that is expressed as *Po0.05.
Data shown are that of biological replicates from various experiments performed
multiple times.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.
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