
                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Sheehan, Helen M

Title:
Machine learning for wind flow modelling

using grid-based neural networks to capture wind flow changes over terrain

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



Machine Learning for Wind Flow
Modelling

Using Grid-Based Neural Networks to Capture Wind Flow Changes Over

Terrain

By

HELEN SHEEHAN

Cabot Institute
&

School of Civil, Aerospace and Mechanical Engineering
UNIVERSITY OF BRISTOL

A dissertation submitted to the University of Bristol in ac-
cordance with the requirements of the degree of MASTER OF
SCIENCE BY RESEARCH in the Faculty of Engineering.

APRIL 2022

Word count: 27114





ABSTRACT

Modelling the wind flow over terrain is a key element of wind resource assessments
within the wind energy industry. Existing flow modelling methods range from fast, low
fidelity analytical models to time-consuming and computationally expensive high-fidelity

Computational Fluid Dynamics software. Machine learning offers the potential for high-fidelity
yet fast-running surrogate flow models. This project created surrogate wind flow models using
machine learning which aim to achieve the accuracy of the industry-standard WAsP software for
wind over terrain. WAsP is split into three components: orographic (elevation-induced) speedup;
orographic turn; and roughness speedup. Hence, surrogate models were developed for each. While
initial tests with Convolutional Neural Networks were unsuccessful, a Grid Neural Network

approach was developed as part of this work, which takes in sub-grids of each input (terrain) map
and output (speed or direction change) map, and uses data points from these sub-grids as the
inputs and outputs of a Deep Neural Network. Models using this novel architecture proved to be
trainable with a relatively small set of data, with the optimal sub-grid sizes discovered providing
an understandable measure of the radius of influence of each input variable on the corresponding
output. Using Grid Neural Networks, surrogate models were created to predict the orographic
speedup and turn, and roughness speedup, at heights of 10m and 100m above ground level. The
predictions for orographic speedup and turn for multiple sites and wind directions correlated well
to the WAsP data at both heights. The surrogate model predictions for the roughness speedup
at 10m above ground level were also a close match to the WAsP values, but at 100m above
ground level the roughness speedup predictions were inaccurate for some sites. Future work
could combine the surrogate models at separate heights, and incorporate the separate sub-model
predictions into full wind resource maps.
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INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

1.1.1 Climate Change and the Need for Renewable Energy

It is well known that the production of carbon dioxide (CO2) and other greenhouse gases by
human civilisation is leading to an increase in global temperatures, aptly known as global
warming, which will have devastating consequences on the climate (including weather

patterns and the environment) if it continues [1]. To attempt to curb climate change, the United
Nations have formed an international alliance known as the Paris Agreement, one of the key
aims of which is: "holding the increase in the global average temperature to well below 2°C above

pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C" [2]. In a
similar vein, the European Commission has created a Climate Target Plan, which aims to "cut

net greenhouse gas emissions by at least 55% by 2030" and to "make Europe a climate-neutral

continent by 2050" [3]. Achieving these ambitious targets will necessitate changes in many
industries across Europe, including transport, manufacturing and energy production. One of the
key steps that can be taken by countries to achieve these aims is to significantly diversify their
energy mixes to decrease their reliance on fossil fuels.

The energy production industry accounted for ~25% of the UK’s total CO2 production in 2020,
according to the currently available (provisional) statistics [4]. While the nuclear and renewable
energy industries are not exempt from CO2 production over their life cycle, they are considered
to be "low carbon" or "carbon neutral" energy sources as they do not directly produce CO2 when
generating electricity. Wind energy is currently the second largest renewable energy technology
in terms of GWh of electricity generated globally, accounting for ~19% (1.1 million GWh) of

1
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the world’s electricity generation in 20181. There is also a clear trend of increasing installed
wind energy capacity, with the onshore and offshore wind energy installed generation capacity
predicted to increase by 10 times and 40 times respectively by the end of 2050 [5]. It is evident,
then, that wind power is here to stay, and that maximising the amount of power it produces is
crucial in the fight to slow global warming.

1.1.2 Wind Energy

For onshore locations, to convert energy from the wind into electricity, wind turbines are installed
at chosen sites, usually in arrays of tens or hundreds of individual turbines, e.g. the Whitelee
wind farm in Scotland2, which has 215 turbines with a total generation capacity of 539MW. There
are a number of criteria for selecting the particular sites of land on which to locate wind turbines,
such as site access, potential disruption to neighbouring settlements, and the suitability of the
terrain for installing such large pieces of machinery. Paramount among these considerations is
the amount of energy that can be harvested from the winds at that location, known as the wind
resource. At present the wind industry has converged on the upwind three bladed Horizontal
Axis Wind Turbine (HAWT) design (as in Figure 1.1), as typically seen on any British landscape;
in this design the incoming wind creates a lift and drag force on the turbine blades, causing them
to rotate in the vertical plane about the turbine hub. The rotating turbine blades are connected
(either in direct drive or via a gearbox) to a generator, which generates electricity. Therefore,
when deciding where to situate a wind farm or any individual turbines it is vitally important to
know what the typical wind speeds and directions in that location are, in order to calculate the
expected Annual Energy Production (AEP) from the proposed wind farm, optimise the layout,
and determine whether it is financially viable.

The wind flow velocity is an almost chaotic variable to predict at a given instant, as it can
change drastically in the space of minutes or even seconds (see e.g. Figure 1.2, which shows the
onshore wind speed at a mast taken at 10 minute intervals); on top of this the wind has diurnal
variations due to the changes in temperatures throughout the day and night, and daily changes
in the weather. The seasonal changes in environmental conditions also affect the expected wind
behaviour. In addition, the scale of wind turbines (a typical onshore wind turbine3 may have
a height of 100m at the hub, and blade lengths of around 70m) causes them to interact with
the Atmospheric Boundary Layer (ABL). The ABL is a boundary layer that exists over the
surface of the Earth, characterised by anisotropic, frictional, slow-moving flow (compared to
the free stream flow above it). Fortunately, for the purposes of calculating the wind resource, a
wind farm developer will require the steady state wind speeds over the area of terrain being

1
https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Technologies,

accessed on 30/08/2021
2
https://www.scottishpowerrenewables.com/pages/whitelee.aspx, accessed on 10/09/2021

3
https://www.siemensgamesa.com/products-and-services/onshore accessed on 12/09/2021

2
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FIGURE 1.1. An example of a Horizontal Axis Wind Turbine. By © Hans Hillewaert,
CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=6361901

considered, usually calculated with a known set of atmospheric conditions (air temperature,
pressure, density).

FIGURE 1.2. An example of a wind speed time series, reproduced from Figure 2 of [6].

1.1.3 Wind Flow Models

There are a number of commercially available software packages for calculating the wind resource
or instantaneous flow, with a range of fidelity levels each with a corresponding computational cost.

3
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Higher fidelity Computational Fluid Dynamics (CFD) models such as Large Eddy Simulation
(LES) require significant computational power and time (on the order of days), while lower fidelity
analytical models can take minutes to run. Ideally, all wind flow simulations would be performed
with the highest fidelity models available, however this is not possible in reality due to time and
computing resource constraints. This is of particular relevance when multiple wind directions,
grid resolutions or atmospheric conditions are to be analysed, or for example when optimising
the layout of a wind farm by testing multiple options.

1.1.3.1 Navier-Stokes Equations

The flow field over terrain or through wind farms can be modelled by the incompressible Navier-
Stokes equations for mass conservation:

(1.1) r ·uuu = 0

and for momentum conservation:

(1.2)
@uuu

@t
+ (uuu ·r)uuu =°1

Ω
rp+∫r2

uuu

where uuu is the velocity vector of the flow; Ω is the flow density; ∫ is the kinematic viscosity; p is
the pressure; and assuming that there are no external body forces on the fluid. The non-linear
convective term ((uuu ·r)uuu) in the Navier-Stokes equations is not easy to resolve, and so there
are very few complete solutions to these equations. Turbulent flows contain eddies of varying
length and time scales which, while incorporated into the Navier-Stokes equations, adds to
the complexity of their solutions. In order to solve the Navier-Stokes equations with CFD, a
common method is to discretise the derivatives in space and time, and apply initial conditions
and boundary conditions to set up the appropriate scenario.

1.1.3.2 Analytical Models

Analytical models are the fastest, but lowest fidelity, class of flow model. Designed through
consideration of the governing physical equations for a flow scenario (mass, momentum, energy
balancing), analytical models contain a set of equations which estimate the general flow outline or
speed. Examples include the Jensen wake model [7], which uses equations with a single solution
to predict the time-averaged shape of the wake behind a wind turbine. A more complex analytical
model is the Wind Atlas and Analysis Program (WAsP)4, a software developed by DTU Wind
Energy. WAsP calculates the wind climate of a specified geographical region by extrapolating
measured wind data and incorporating the physical characteristics of the terrain. The WAsP
calculations are based on the European Wind Atlas methodology [8], and are described more fully
in Chapter 2. The WAsP software is much faster to use than the more complex CFD methods

4
https://www.wasp.dk/wasp, accessed on 30/08/2021

4
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outlined below, and is an industry standard method of calculating the wind resource over complex
and large terrains and multiple wind directions.

1.1.3.3 Computational Fluid Dynamics

Computational Fluid Dynamics solvers exist for a wide range of fidelity scales, with the highest
fidelity tools requiring the most computational time to solve. The Reynolds-Averaged Navier-
Stokes (RANS) methodology is a form of CFD that treats flow properties (velocity and pressure)
as a combination of average and fluctuating components, and is used to calculate steady-state
flow regimes; it is one of the lower fidelity CFD solvers. RANS is commonly used in the wind
energy industry due to its reasonable computational times, with examples such as [9] and [10].
However, RANS does not model individual turbulent eddies at any scale, so cannot be used to
model precise turbulent motion.

Large Eddy Simulation explicitly models turbulent eddies in flow down to a specified grid
scale, and hence it can calculate turbulent fluid motion. Eddies below the grid scale are accounted
for via a stress term. LES solvers such as Simulator fOr Wind Farm Applications (SOWFA)5 are
used in scenarios where the turbulent flow is of specific interest, such as wind turbine wakes.
Collecting real wind data at suitable quality and frequency for analysis or validation can be
challenging, which leads to LES models being used in lieu of e.g. SCADA data; examples of LES
in the wind energy industry are [11] and [12].

Finally, the highest fidelity form of CFD used for wind energy is Direct Numerical Simulation
(DNS), which aims to solve the Navier-Stokes equations for a flow, without simplifications,
between specified length scales. This is a useful method where knowing the exact patterns
and motion of turbulent flow over time (such as a transitional region between laminar and
turbulent flow) is important. For time-averaged applications of large-scale engineering tasks
such as modelling the wind resource or the flow over a wind farm, DNS is impractical given its
high time and computational requirements.

1.1.4 Motivation for this Project

Flow models are key tools for many aspects of the wind energy industry, and projects must often
make a choice on how to compromise fidelity of the results with available time and computational
resources. As such, any routes to reducing the cost of generating high fidelity wind flow predictions
are of great interest to both the industrial and academic communities. One potential solution to
this is the use of machine learning "surrogate models" trained to emulate existing physics-based
methods. When appropriately designed and trained, such models can learn complex relationships
between input and output variables, and once trained they typically run in a matter of seconds.
The renewed interest in Artificial Intelligence (AI) in recent times has led to data-driven modelling

5
https://github.com/NREL/SOWFA, accessed on 16/03/2022
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being trialled for a wide variety of industrial applications. For the wind energy industry, relevant
areas where such surrogate flow models would be of use include calculating the wind resource
over terrain for proposed wind farms, or predicting the real-time wind flow through an operational
wind farm (for the purposes of monitoring and control).

This work aims to develop a machine learning framework to calculate the changes in the
wind speed and direction over a site that are induced by the elevation and roughness of the
terrain. The WAsP model has been chosen as the target model for these surrogate data-driven
models to emulate, rather than a CFD software; this is due to its understandable physics basis
and simplified flow assumptions. The outcomes of this work can be seen as a first step towards
creating fully data-driven CFD.

1.2 Literature Review

A review into the topics of machine learning for physics (in particular, fluid dynamics) applications,
machine learning within the wind industry, and wind resource calculation methods, is now
presented here.

1.2.1 Wind Resource Over Complex Terrain

The problem of calculating accurate wind fields over terrain has been investigated for many
decades; even describing the flow over a low hill, which may sound simple, is a difficult task when
considering the texture of the ground, slope of the terrain, thermal effects, viscous boundary
layer effects, etc.. In 1975, Jackson & Hunt [13] produced a seminal piece of work in this field,
presenting an analytical model for boundary layer flow over a low hill with uniform roughness.
This model is the basis (with improvements and adjustments over the years) of the modern
WAsP software, which is still industry-standard for flow over terrain. Despite real terrain being
"complex", in that it consists of combinations of terrain types (roughnesses), steep slopes, and
undulating and uneven ground, the complexity of the models needed for corresponding flow
calculations have meant that most validation campaigns (i.e. measurements of real wind flow
to evaluate the performance of computational models) were undertaken at sites with relatively
"simple" terrain. Some of the most famous examples (which are still used today) include the
Askervein [14], Bolund hill [15] and Perdigão [16] experimental campaigns; the features of these
sites are, respectively, a 2-D uniform roughness ridge, an isolated hill, and a pair of parallel ridges
(Figure 1.3). However, in recent times winds over more complex sites have been investigated
and modelled, such as the mountainous Alaiz site [17], and islands in the northern Norwegian
archipelago [18]. The review paper by Finnigan et al. [19] gives a comprehensive summary of
advances in the field of wind resource calculation, outlining recent research in this field that
focusses on the incorporation of detailed surface uses (in particular plant canopies) into flow
models, as well as ongoing work into combining the different environmental effects such as
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1.2. LITERATURE REVIEW

FIGURE 1.3. Terrain heights and meteorological mast layouts for three experimental
campaigns to measure wind flow over terrain (a-c): Askervein (reproduced from
[17]); Bolund (reproduced from [17]); Perdigão (reproduced from [16]).

temperature variation, gravity and boundary layer physics into universal flow models. The latest
wind flow over terrain models look to integrate high fidelity LES methods within lower fidelity
models (e.g. [20]) to achieve finer mesh resolution, particularly at the ground surface. Statistical
methods [21] and even fully machine learning models [22] have been the subject of recent work
on calculating the wind flow over complex terrains.

1.2.2 Machine Learning in Wind Energy

There have been a number of projects into the application of machine learning techniques
to different areas of wind energy research. For example, many papers use machine learning
techniques to either improve or replace wind turbine wake models ([23], [24], [25]). Within
the maintenance sector, data-driven methods have been applied in order to link factors that
contribute to wind turbine failures [26], for predictive maintenance through calculating turbine
loads [27], and to detect damage such as cracks on turbine blades [28] (which takes inspiration
from image processing research). Machine learning models are also being created for various
aspects of the operation of wind farms, particularly to aid wind farm control via fast models of
the flow through wind farms [29], and to predict the effects of changing operating conditions on a
farm’s power output [30].

Another active area of interest in the wind energy community is the creation of data-driven
models to predict time series of short-term wind speeds, which is of particular interest to both
wind farm operators and electricity traders. The methods used to capture different time scales
range from multiple Deep Neural Network (DNN) models [31] (one for each scale), to Long Short
Term Memory (LSTM) nets [32] with "in-built" temporal memory capabilities; a review of data-
driven methods for short-term wind speed time series prediction [33] suggested that the most
promising techniques combine convolutional and LSTM networks. Building from this, there are a
number of papers that combine both temporal and spatial dimensions, predicting the wind speed
time series at locations corresponding to different wind farms. Liu et al. [34] used a network (the
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"STNN-VB") formed of LSTM cells and convolutional layers in an encoder-forecaster architecture
to produce predictions of the point wind speed values, with probability distributions of the model
parameters calculated through variational Bayesian inference. Their STNN-VB model predictions
of time series data are very promising, with a low level of uncertainty in the results; the maps of
predicted wind speeds are close to the ground truth, but do diverge with increasing time steps.
In a similar vein, Wilms et al. [35] combined spatial and temporal features of wind speed time
series at neighbouring wind farms to predict the time series at a particular location, using a
convolutional long short term recurrent neural network (convLSTM). Interestingly, the authors
of this paper did not know the exact locations of the wind farms they received the measured
wind speed data from, so instead experimented with different configurations of the relative farm
locations on a grid; they found that constructing grids that most closely matched the real relative
farm positions gave the best results.

A slightly different technique was investigated in Zhang & Zhao [36], using a DNN to predict
grids of wind velocity and pressure from LIDAR measurements. Since DNNs do not have spatial
or temporal feature extraction properties by design, the network designed here operated on point
data, taking in the time and position of points and calculating the stream function, pressure
function and therefore the wind velocity components and pressure for each point (see Figure 1.4).
This method is dependent on the LIDAR data used to train the model, but it works well to predict
the time-variant velocity and pressure fields given sparse LIDAR measurements. A key feature
of this model was the incorporation of the Navier-Stokes equations for fluid dynamics into the
loss functions of the network during training; this was inspired by Raissi et al. [37], discussed
further on, and both increases the interpretability of the model and allows training of the DNN
with relatively few input data points.

Bleeg [38] tackled the problem of modelling flow through a wind farm in a different manner,
by constructing a Graph Neural Network (GNN) [39] to predict the power output at each wind
turbine in a farm, setting the nodes of the GNN to represent the turbines themselves and learning
the form of the connections between them given certain environmental variables including the
free stream speed. This model gave accurate predictions of the wind speed and hence power
output at each turbine when compared to RANS simulation results. Similarly, Park & Park [40]
used a physics-induced GNN to predict the power output from wind turbines, by treating the
turbines as nodes and the interactions between them as the edges of the GNN. There is potential
for this model (and other data-driven surrogate models) to be used alongside physics-based
models such as RANS when analysing numerous similar scenarios, such as different wind inflow
directions to a wind farm, where the physics-based model could be used for a subset of the
directions and a surrogate model for the remainder. This hybrid analysis could remove some of
the uncertainty of "black box" machine learning models, by allowing for validation of each set of
analyses with trusted simulation methods.

For the class of problem being investigated in this work, i.e. the use of machine learning
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FIGURE 1.4. Examples of wind velocity fields predicted by the DNN of [36], at three
successive times (a), (c) and (e). The corresponding true values are also shown for
comparison (b, d, f) (reproduced from Figure 3 of [36]).

methods to predict time-invariant grids of wind speeds, recent research in this specific field
points towards either a Convolutional Neural Network (CNN), or a combination of Deep Neural
Networks applied to coordinate grids. Most research predicting the wind resource has focussed on
the prediction of short-term time series, and few appear to have concentrated on the direct effect
of terrain on the wind speeds. As wind farms become larger, the interactions of the flow between
wind turbines within the farm will become more complex, which has led a new wave of interest
into the application of wind farm control to both maximise AEP and minimise fatigue damage to
turbines. Hence, there is a growing need for fast and accurate models to predict short-term wind
flow variations through a wind farm, which could be a reason that less effort has been dedicated
to finding surrogate models for wind flow over terrain.

1.2.3 Machine Learning for Fluid Dynamics

In general, machine learning has been trialled for two categories of problems within fluid
dynamics: the creation of full surrogate models for CFD, and the amalgamation of machine
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learning methods with physical models to create hybrid tools. The papers described here focus
more on the former of these since it is of the most relevance for the problem being investigated
in this project. Examples of the latter application include the use of the Neural Network (NN)
technique to calculate turbulence properties based on higher fidelity CFD, and incorporating this
into lower fidelity CFD (e.g. from LES into RANS [23]); or using machine learning methods to
learn additional turbulence terms for RANS as in [41] and [42]. As for creating machine learning
surrogate flow models, it is evident from the literature available that this is a very active research
field, and that almost every known machine learning technique from regression forests [43] to the
Generative Adversarial Network (GAN) [44] has been applied to this end. The review paper by
Brunton et al. [45] provides a comprehensive summary of the current state of the art in machine
learning applications within various contexts of fluid dynamics.

Google’s Deepmind research team have had a number of successes in applying Graph Neural
Networks in a novel way to simulate a range of physical domains, including fluid flow, developing
both the Graph Network-based Solver (GNS) in [46] and MeshGraphNets in [47]. GNS is analo-
gous to molecular simulations, solving the motion of particles in the system by treating them as
nodes in a GNN, and passing information on the dynamics along edges generated between nodes
within a certain connectivity radius. By contrast, the MeshGraphNets model more closely mimics
a mesh- or grid-based CFD (or Finite Element (FE)) solver, with GNN nodes at the grid points,
and the edges connecting these points; example applications of MeshGraphNets are shown in
Figure 1.5. The MeshGraphNets method creates a mesh (graph) over the object(s) to be modelled,
which is adaptively re-meshed at each timestep to ensure that the connections between the
GNN nodes represent the proximity of the nodes in terms of both the model architecture and
physical distances. Similarly to GNS, information on the dynamics of the system are passed
via the GNN edges at each timestep in MeshGraphNets, while the nodes hold information such
as displacement and velocity at that position. Both GNS and MeshGraphNets produced very
believable predictions of the motion of a range of materials and conditions with time, and they
outperformed other machine learning surrogate solvers such as ConvNet [48] and Theurey et
al.’s modified U-Net [49] architecture [50], which use CNNs and CNN-autoencoders respectively.
Although a number of metrics such as rollout mean squared error were calculated to compare
model performance, it is more informative to review the results of the different simulations by
eye to distinguish their strengths and weaker areas. Both of Deepmind’s models ([47], [46]) are
compelling advances towards full machine learning flow solvers.

CNNs are a popular choice of NN for surrogate CFD models, as they are designed to ex-
tract spatial dependencies from data, and can be easily constructed to work on two- or three-
dimensional "grid" data. Like the Deepmind projects described above ([47], [46]), Ummenhofer et
al. [48] worked towards creating a machine learning based flow solver. The network proposed in
[48] contained both convolutional and fully connected layers (i.e. a CNN-DNN hybrid), based on
particle solver methods (similar to the GNS described above), designed to calculate the change in
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FIGURE 1.5. Examples of the applications of MeshGraphNets to predict the dynamics
of physical scenarios, showing (a-d) a waving flag; deformation of a plate; water
flowing around a cylinder; air flowing over an aerofoil. Reproduced from Figure 2
of [47].

positions and velocity of fluid particles over a single timestep. At each timestep, the positions and
velocities of the particles were approximated from their current positions and external forces such
as gravity, and the NN (termed ConvNet) calculated the "correction" that should be applied to
each particle to account for interactions and collisions. Simulations performed with this ConvNet
method closely match ground truth, even with large numbers of individual particles (6,000).

Lee & You [51] implemented a deep learning model for the prediction of unsteady flow over
a cylinder, aiming to capture both the spatial flow features and the fluid flow evolution over
time. The authors of this paper recognised connections between video processing and unsteady
flow prediction, as video processing has both spatial (image processing on individual frames)
and temporal (video is a series of images through time) characteristics. The aim of the deep
learning model in this work was to predict flow fields for one or multiple future timesteps, given
a time history of previous snapshots of the flow. To do this, a GAN was proposed, where both
the generator and discriminator were CNNs, which was compared to the generator model on its
own (i.e. a CNN). A key element of this work was the comparison of the performance of both the
CNN and the GAN models with and without the addition of physical loss terms (representing
mass and momentum conservation) to the loss functions. The ability of GAN models to learn from
unsupervised data could be exploited to extract underlying flow physics from a large number of
flow scenarios, as noted in this paper, and seen in the believable flow fields the GANs created at
Reynolds numbers outside of those they were trained on. As an example, when predicting the
flow over a cylinder after a single, large time step with known 3-D free stream speeds, the mean
errors in the wind speeds in each of the three directions were 7%, 5% and 16% (from Table 3 of
[51]).

Several papers use the classic example of flow over an aerofoil to train and test their NNs for
flow prediction. Two such papers are [50] and [52], both of which aimed to predict the steady state
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flow over an aerofoil; these are perhaps the most relevant papers out of those described here for
the problem at hand, as they predict time-invariant flows and are both based on structured grid
input and output data. Bhatnagar et al. [52] created a CNN with an autoencoder (encoder-decoder)
structure, consisting of progressively smaller convolutional filters and feature maps through
the encoder section, followed by transposed convolution layers with increasing filter size in the
decoder section. The purpose of this autoencoder structure was to extract important flow features
in the encoder, and use those as a basis for building up the full map of fluid flow through the
decoder - this is similar to the application of Proper Orthogonal Decomposition (POD). With this
network Bhatnagar et al. were able to calculate the pressure and velocity fields around a range
of aerofoil shapes, and with varying angles of attack, using a map of the shape of the aerofoil
and the value of the angle of attack as the only inputs. This is a striking amount of relations
between inputs and outputs for a CNN to learn, and it achieved a reasonable amount of success,
with the predicted flow fields being very similar to the ground truth. Using their CNN to predict
the 2-D flow over a previously unseen aerofoil shape gave errors of 6.41% and 8.59% in each of
the directions over the entire flow (from Table 8 of [52]). Thuerey et al. [50] undertook a very
similar investigation, again using convolutional layers in an autoencoder structure, but instead
their network architecture was based on the U-Net model [49], and contained (feed-forward)
connections between corresponding encoder and decoder layers. As with [52], this network was
designed to accept grids of input data, in this case grids of the free-stream wind speeds in the x

and y directions (with zero values inside the aerofoil), and a mask of the aerofoil shape. There is
a lot of redundant information in these inputs, as the free stream speeds are effectively constants,
and the aerofoil shape itself is repeated in all three grids. This method also produced maps of the
flow speeds around the aerofoil with good accuracy (see example results in Figure 1.6), stating an
error of 2.32% in their final model. From these works it is evident that CNNs can work well on
grid-based flow prediction problems, which was a promising starting point for investigations into
predicting terrain-induced flow changes.

FIGURE 1.6. Examples of results from the U-Net style CNN of Thuerey et al. [50] for
predicting flow around aerofoils in four cases (left-right). Reproduced from Figure
8 of [50].
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The increasingly widespread applications of machine learning techniques to real-world
scenarios (such as surrogate CFD solvers) has started to raise questions on how to ensure or
even quantify the "trustworthiness" of such "black box" models, where the inner workings are
unknown. This has piqued the interest of researchers in a range of fields, and a seminal piece of
work relevant for those looking to create surrogate models to predict fluid dynamics (and any
other physics-based scenarios) is that of Raissi et al. [37]. This paper demonstrated that inclusion
of the physical equations into machine learning CFD or FE solvers could increase prediction
accuracy, needed only a small number of training data points and crucially, was designed to obey
the physical equations governing the system. Marrying the physical basis with the computational
abilities of NNs is potentially an important route to ensuring the understanding and reliability
of machine learning models in the future, and these considerations have been made in several
of the papers described above, through loss functions ([51], [36]) or model update loop design
[40], allowing for easier interpretation of the workings of the machine learning models. Gagne
et al. [53] took an alternative approach to creating an interpretable CNN for the purpose of
classifying storms by their likelihood of producing severe hailstorms. Once they had trained
their CNN, the authors of this work undertook to determine how much recognisable climate
physics their model had learned, through examining the filters (i.e. the inner workings) of the
CNN, and experimenting with the types of storms which would "activate" different parts of their
model. While this model may not have been designed with physical equations "built in", this is a
very interesting approach to increasing the understandability of machine learning models, and
connected "black box" elements to real weather modelling parameters.

There have been a number of research works on the creation of Neural Networks as surrogate
flow models, several of these taking in "grid" data as input and producing velocity and pressure
field "grids" as outputs. The most successful of these approaches tend to use Convolutional Neural
Networks, which are known for their ability to recognise spatial dependencies within data, or
Graph Neural Networks, which can be constructed to work on unstructured grids. In recent times,
the incorporation of flow physics equations into the loss functions when training such networks
has been seen to improve the accuracy of the predicted flows, as well as guiding the network
towards correct solutions with fewer training data needed, and making the relations learned by
the networks more understandable. From the literature, it would seem prudent to start with
CNNs to create a data-driven flow solver, and to consider the form of its governing equations in
case they can be incorporated into such a model.

Work from this project was presented at the Wind Energy Science Conference6 in May 2021,
titled "Predicting Linearised Wind Resource Grids using Neural Networks", alongside work by Dr.
E. Traiger on a similar topic. A corresponding paper is currently in progress.

6
https://www.wesc2021.org/fileadmin/wesc2021/themes/ParallelSessions20210528_1530.pdf, ac-

cessed on 27/09/2021
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The aim of this project is to create a data-driven model which can achieve the accuracy of the
WAsP software for flow over complex terrain. To do this, different machine learning techniques
were applied, starting with CNNs as concluded above, and considering the physical basis of the
target model (WAsP). After this chapter, the methodology of this project is outlined in Chapters 2
to 4, starting with the physics of the target flow model WAsP (Chapter 2), followed by descriptions
of the supervised machine learning methods used in this project (Chapter 3) and of the ways that
the accuracy and errors are measured and compared between the test models in Chapter 4. Once
the methods are established this thesis presents the results of testing these machine learning
techniques to create data-driven surrogate models for three sub-models of WAsP: orographic
speedup (Chapter 5), orographic turn (Chapter 6) and roughness speedup (Chapter 7). Finally,
conclusions and suggestions for further work are made in Chapter 8. Maps of the site terrains
used as training data for the machine learning models are presented in Appendix A, and tables of
the performance metrics for all the machine learning model tests discussed are given in Appendix
B.
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As a first step in the challenge of building a machine learning model to predict CFD results,
this project investigated the creation of a surrogate model for WAsP. WAsP was developed
from the European Wind Atlas [8], with the aim of calculating wind resource maps over

large areas of terrain (such as the continent of Europe). The WAsP software is commonly used
within the industry to carry out wind resource assessments, for example on prospective wind
farm sites, as it is fast and well-validated, with known and documented limitations. This chapter
describes the workings of the WAsP flow model, to establish the physical background of the target
for the machine learning models tested in this work.

2.1 The WAsP Model

The WAsP model is a linear potential flow model, which gives it the advantage of fast calculation
times compared to CFD methods such as LES, but conversely does mean that this model has
some limitations in its accuracy, particularly over complex terrain. The WAsP flow model is made
up of three constituent sub-models, which calculate effects on the flow due to different features of
the terrain:

1. Shelter sub-model;

2. Roughness sub-model;

3. Orographic sub-model.

The effects of each of these features on the terrain are removed in the order listed above to
calculate the generalised wind climate over the terrain assuming geostrophic wind conditions,
using the measured wind data from meteorological (met.) masts on the site, and maps of the
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terrain. From this generalised wind climate, the terrain effects are applied in the reverse order
to calculate the wind resource at five different heights Above Ground Level (AGL)1. From there
a Wind Resource Grid (WRG) can be calculated at heights specified by the user (for example,
turbine heights).

Figure 2.1 shows the terrain maps for the Waspdale example site and a single wind direction,
and Figure 2.2 shows the orographic speedup and turn, and the roughness speedup calculated
from the WAsP model for this site and direction.

FIGURE 2.1. Terrain maps (as calculated by WAsP) for the Waspdale example site
(left-right): elevation; roughness; meso-roughness; roughness changes.

FIGURE 2.2. Resource maps (as calculated by WAsP) for the Waspdale example site at
10m AGL (top) and 100m AGL (bottom) (left-right): orographic speedup; orographic
turn; roughness speedup.

1Note that this height is measured vertically upwards from the terrain elevation at each coordinate, so it follows
the terrain elevation.
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This work focussed on creating surrogate machine learning models for the orographic and
roughness sub-models of WAsP. It does not include the shelter sub-model, hence the shelter
effects are not described in any detail here. Full descriptions of the sub-models can be found
in the WAsP manual [54] and the European Wind Atlas [55], and are outlined below for the
orographic and roughness sub-models.

2.1.1 Geostrophic Wind

Within the ABL, large scale winds arise from the interactions of high and low pressure systems.
For neutral stability, an approximate balance between the pressure forces and the effect of surface
friction at the planet’s surface can be found, giving the Geostrophic Drag Law equations:

(2.1) G = u§
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where G is the geostrophic wind, u§ is the surface friction velocity, ≥0 is the surface roughness
length, ∑ is the von Kármán constant (0.40), Æ is the angle between the wind near the land
surface and the geostrophic wind, f is the Coriolis value, A = 1.8 and B = 4.5. The WAsP model
removes the effects of the orographic, roughness and shelter features of the terrain from the
flow, then extrapolates this wind flow to the geostrophic height. At this height, the winds can be
extrapolated horizontally, before the terrain effects are re-applied to give the wind resource at
particular heights AGL and coordinates.

2.1.2 The Orographic Sub-Model

The WAsP orographic sub-model accounts for the effects of elevation changes across the terrain on
the flow. It is a linear potential flow model, based originally on Jackson & Hunt’s 1975 paper [13],
in which they analysed the flow over low hills, assuming that the flow would remain attached at
all points. WAsP has adapted this approach (the validity of which is detailed in Section 2.1.4) and
applies a zooming, polar, cylindrical grid over the terrain, centred on the point of interest, e.g. a
met. mast. The potential flow solution for a given orography is assumed to be a summation of
Bessel functions, in the form of Equation 2.3:
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where Kn j are arbitrary coefficients, Jn the nth order Bessel function, r the radius, R the outer
radius of the area considered, ¡ the azimuth, z the height above ground, and c

n

j
are the j

th zero of
Jn. An example of a 3-D Bessel function plot is given in Figure 2.3.
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FIGURE 2.3. An example three-dimensional Bessel function.

To calculate the wind velocity field the flow potential derivative is calculated as:

(2.4) uuu =r¬

The coefficients of Equation 2.3 are found by considering the boundary conditions of the terrain,
which is the kinematic condition at the ground (Equation 2.5):

(2.5) w0 =
@

@z
¬
ØØØ
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=uuu0 ·rh(r,¡)

where w0 is the terrain-induced vertical velocity, uuu0 is the velocity vector at the ground, and h is
the terrain height. There is assumed to be zero flow velocity at the outer boundary of the terrain
[55], i.e. r¬=000 at r = R.

The effects of surface friction are approximated in the orographic sub-model by applying
a factor to the wind velocities derived from the potential flow, resulting in a logarithmic wind
velocity profile between the ground surface and a characteristic height L j of the flow. The factor
applied is dependent on the roughness of the terrain, the velocities at the top of the perturbation
depth, the terrain surface and the height at which the flow is being calculated.

The orographic speedup calculated by WAsP is the change (in %) in the wind speed due to the
elevation of the terrain as compared to the wind speed with no elevation changes. This could be
e.g. the change in wind flow speed over a low hill.

The orographic turn calculated by WAsP is the change (in °) in the wind flow direction due to
the elevation of the terrain as compared to the incoming wind direction. This could be e.g. wind
turning to flow around a hill, or following a valley.
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2.1.3 The Roughness Sub-Model

The WAsP roughness sub-model calculates the effects of changes in the terrain type on the flow;
this model uses three types of terrain inputs, which are:

• roughness: roughness values are categories assigned to each coordinate of the terrain,
depending on the height of the covering on the terrain;

• meso-roughness: meso-roughness values are the roughness values that would occur at
each point of the terrain, if the wind over the terrain obeyed the geostrophic drag law;

• roughness changes: the number of transitions between different roughness values that
occur over the terrain in a given wind direction.

A change in terrain roughness is assumed to result in the development of an Internal
Boundary Layer (IBL), extending from the surface of the terrain to a characteristic height, which
is dependent on the downwind distance from the roughness change and the roughness heights on
either side of the change (Figure 2.4).

FIGURE 2.4. Schematic of the roughness submodel, depicting a transition between
roughnesses ≥1 and ≥2 in the streamwise direction (where ≥2 > ≥1); the IBL is
shown in red, and the change in the velocity profiles are shown in black and purple.

This IBL causes a change in the velocity profile of the flow which propagates vertically
upwards with downstream distance [56], and at a downstream distance x from a roughness
transition, the height h of the IBL follows the equation:
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where

(2.7) ≥00 =max(≥01,≥02)

and ≥01 and ≥02 are the roughness values on either side of the transition. The flow speeds across
the transition can be related using the following equation:

(2.8)
u§2

u§1
= ln(h/≥01)

ln(h/≥02)

where u§1 is the surface friction velocity upwind of the roughness transition, and u§2 the surface
friction velocity at the point where the wind speed is to be calculated. The perturbed velocity
profile can then be described as three sections of logarithmic velocity profiles:
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with c1 = 0.3 and c2 = 0.09. The effects of multiple roughness transitions can be combined in
sequence (in the streamwise direction), but WAsP limits the number of roughness changes that
can occur per wind direction sector to 10. The roughness transitions are weighted such that
their influence decreases exponentially with upstream distance from the current point being
considered.

The roughness speedup calculated by WAsP is the change (in %) in wind speed at each
point over the terrain compared to the wind speed at those points if the terrain had a single
meso-roughness value.

2.1.4 Limitations

WAsP uses a linearised potential flow solver, which treats the air flow as incompressible and
irrotational, and remains attached over surfaces. In order for the flow to remain attached over
curved surfaces such as hills, it assumes that the length scale of the hill is much greater than its
height (i.e. shallow slopes); this does not hold true over topography such as bluffs and cliffs, which
is a known limitation of the WAsP model. WAsP calculations also assume that the atmospheric
conditions are neutral (i.e. no temperature differential between the ground and the air), although
it is able to handle small perturbations from the neutral state. WAsP permits users to make
small corrections to the wind speed and direction measurements that it produces. These might be
due to wind tunnel measurements of the shelter effects or known effects on the met. mast data
due to shadowing from other obstacles in certain wind direction sectors [54].
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The WAsP model’s orography, roughness and shelter sub-models are distinct from each other,
and each of these models provides factors to be applied to the input wind speed (speedup) and/or
direction (turn). A linear combination of these factors is applied to achieve the actual wind
resource. Hence, the speedup and turn values from the orography and roughness (and shelter,
though it is not used in this work) sub-models can be used to train separate surrogate models.
Additionally, in the case of the orography sub-model, given that the turn and speedup values are
calculated in the same process (as detailed in Section 2.1.2 above), treating these as separate
values and using them to train individual surrogate models does not invalidate the values.

2.2 Site Data

DNV provided WAsP workspaces from 15 real terrain sites, including roughness and elevation
maps. Using these real sites and the data from the Waspdale computer-generated site provided
with the WAsP installation, the orographic speedup and turn, and roughness speedup were
calculated with WAsP 11 (as part of the WRG calculation) at 10m and 100m AGL (and additionally
for Site 1, 25m AGL). In addition, the meso-roughness and roughness changes per site and
direction were obtained as part of each WRG. The minimum size of the grids was 400x400 grid
points, with a resolution of 50m in both the x and y axes giving a minimum grid size of 20km
x 20km. All sites were assumed to have neutral, steady boundary layer flow conditions. Some
sites were large enough to provide multiple grids of data, giving 19 sets of site data in total, the
elevation and roughness maps of which are presented in Appendix A.

Each of the sites was split into 12 direction sectors, and the speedups, turn, meso-roughness
and roughness change maps are calculated on a per-sector basis. Sector 1 encompasses data
between ±15° clockwise of due North, where the wind is assumed to come from due North (Figure
2.5). In all the grids provided, the y axis was assumed to coincide with the North-South axis.

In all the models tested, nine out of twelve sectors per site were used for training, two
for validation, and one was held back for testing on the final model. Different combinations
of validation and blind test sectors were chosen for each terrain. As explained in the relevant
sections further on, some models tested used a subset of sites for training.

2.2.1 Data Quality

All the site data (terrain data and wind resource values) used here were calculated with consistent
environmental conditions as part of this work, using elevation and roughness maps provided by
DNV; hence there should be no difference in the accuracy of the wind resource values (orographic
speedup and turn, roughness speedup) between sites. The roughness maps which were input
to machine learning models were the only form of input data which was not produced as part
of the WAsP wind resource calculation; instead the "WAsP Grid Maker" tool (part of the WAsP
11 package) was used to produce roughness grids from contour (i.e. roughness transition) maps.
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FIGURE 2.5. Wind directions for 12 sectors, with Sector 1 highlighted in green; note
that the wind direction is the direction that the wind is coming from, i.e. for Sector
1 wind comes from 0°.

Calculating Cartesian grids of the roughness from contours sometimes produced small areas of
high roughness in the direction of the x and y axes, which appear to be artefacts of the calculation
rather than real features (see e.g. Figure A.3). These were not taken out of the roughness grids
before using them as inputs to the machine learning models, which could give rise to some small
errors. Apart from an area of unusually sharp slopes in Waspdale (Figure 2.1), the elevation of
all sites appeared to be smooth. Within image processing, it is standard practice to augment
the training data set through rotating, zooming or flipping the images; this was not possible
here as any change in the conditions (wind direction, grid resolution or terrain) would require
re-calculation of the data. WAsP 11 is (at the time of writing) the second newest version of WAsP
available, and was chosen over the latest version (WAsP 12) as it did not alter the air density
with the global location of the site.

While ideally each machine learning model tested would take in inputs from all the available
sites, limits on the computing power available meant this was not viable. Sub-sets of sites used
for training were chosen to include a range of different terrain features, such as flat areas, valleys,
isolated hills and mountains (large elevation changes). As discussed later in the text, it is possible
that flat, uniform roughness sites, with very small changes in the wind speed or direction, provide
less "information" to Neural Networks during training. Conversely, it could be that using more
mountainous terrain or terrain with many roughness changes would provide a greater variety of
input-output relations for an NN to learn. However, as it is unlikely that wind farms would be
installed on extremely mountainous terrain or within a forest, it was still important to produce
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data-driven flow models which performed well over plains and uniform roughness areas.

Having explained the theory of the physics-based model which the surrogate models will
attempt to emulate, the various types of machine learning model elements, algorithms and
techniques will be explained in the next chapter.
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3
MACHINE LEARNING METHODS

The term machine learning refers to a branch of AI that involves training machines (i.e.
computers) to recognise patterns in data through the application of statistics. This work
uses supervised machine learning techniques, wherein the models are trained to learn

the relationship between input and known output data; in this case the input data are terrain
variable maps, and the output data are the changes in wind speed and direction over this terrain.
This chapter provides an overview of the range of machine learning techniques and Neural
Network architectures that were used in this work to create and test surrogate flow models.

3.1 General Form of Supervised Machine Learning Models

The machine learning models created in this work followed a consistent format, and were
constructed and trained via the following process:

1. Specify model architecture, initialising the neuron parameters (weights and biases) with a
distribution of random numbers;

2. For a specified number of epochs:

a) Pass a batch of input training data through the model;

b) Calculate the loss (a form of error) over this batch by comparing predictions with
target output data;

c) Calculate the gradients of the loss with respect to (w.r.t.) the weights and biases of the
model neurons;

d) Update the weights and biases of the model using the calculated gradients, such that
the losses are minimised.
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The schematic in Figure 3.1 (a) shows the process of training a supervised NN in more detail.
There are several important elements which are defined here (the capital letters refer to items
highlighted in Figure 3.1 (a)):

(A) Training, Validation and Test Data: The set of pairs of input-output data is split into
training, validation and (optionally) test data. Training data is used to update the NN
parameters; validation data is used after training data each epoch to examine the model’s
ability to predict outputs from previously unseen inputs; test data can be used as blind test
data on the final model, to evaluate its performance. Test data is not meant to influence the
final model architecture, so it should not be used before then.

(B) Batch: Data can be split into batches such that the gradients are back-propagated and
the NN parameters updated after each batch, rather than after all training data has been
passed through the model. This reduces the computational load and allows the network to
be updated after smaller, more representative groups of training data.

(C) Epoch: All training and validation data having passed through the network once is termed
an epoch.

(D) Loss: The difference between the predicted and ground truth outputs is the loss, and can be
calculated with different methods, such as Mean Absolute Error (MAE) and Mean Squared
Error (MSE). The loss is minimised through updating the network’s weights and biases.

(E) Back-Propagation: After the overall loss of a network has been calculated, the gradients
of the loss w.r.t. each of the network neuron’s weights and biases (i.e. all the trainable
parameters) must be calculated, in order for them to be updated to minimise the loss. This
is achieved by using the chain rule to propagate the gradients backwards from the output
layer, towards the first layer of the network. In a network with N layers, the gradient w.r.t.
weights in layer i is calculated via the chain rule from layers N through i as:

(3.1)
@L

@wi

= @L

@y

@y

@hN°1
...
@hi+1

@hi

@hi

@wi

where y is the model output, L is the model loss, hi is the hidden layer output at layer i

and wi are the weights at layer i.

(F) Optimiser: Once the gradients of the loss w.r.t. the weights and biases have been back-
propagated through the model, the optimiser calculates the actual changes needed in the
values of the weights and biases.

(i) Goal: The overall aim of the machine learning model’s training is to reach the mini-
mum possible loss, by updating the model parameters to follow the gradients which
will decrease the loss.
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3.1. GENERAL FORM OF SUPERVISED MACHINE LEARNING MODELS

(ii) Learning Rate: Most optimisers use a learning rate, which is a factor applied to the
gradients to determine how quickly the NN parameters change. A high learning rate
has the risk of over-shooting optimum model parameter points, while a low learning
rate may result in the network parameters not changing fast enough to reach an
optimum network configuration. A Learning Rate Scheduler can be used during
model training to alter the optimiser’s learning rate, e.g. decreasing it if the model’s
validation loss does not improve for a given number of successive epochs, to fine-tune
the NN’s learning.

(iii) Momentum: Some optimisers include the effect of previous parameter updates, in
order to remember the trend of the change in model parameters. This is done by
applying momentum factors to the first and/or second order moments of the gradients.
Using momentum in an optimiser helps the model to avoid getting stuck in localised
gradient minima.

(iv) Adam: The Adaptive Momentum (Adam) optimiser [57] is used in this work, and
uses both a learning rate and two types of momentum, applied to the first and
second moments (mean and variance respectively) of the gradients. Adam updates NN
parameters via:

(3.2) m̂t =
Ø1mt°1 + (1°Ø1)gt°

1°Ø1
¢

(3.3) v̂t =
Ø2vt°1 + (1°Ø2)g

2
t°

1°Ø2
¢

(3.4) µt+1 = µt °
¥

p
v̂t °≤

m̂t

where ¥ is the learning rate, Ø1 and Ø2 are the momentum values for the first (mt) and
second (vt) moments of the gradients gt at the current timestep, ≤ is a small constant
value (1E-8), and µt and µt+1 are the current and updated NN parameters.

(G) Activation Function: The output from a neuron can be passed through an activation
function (Figure 3.1 (b)), e.g. to introduce non-linearity to the network or force the output
from the neuron to be within a given range. Examples include the Rectified Linear Unit
(ReLU) (for the former) and Tanh (for the latter) [58].
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FIGURE 3.1. a) Flow chart of the training process of a Neural Network; b) detail of a
single neuron, with inputs xn, weight matrix w, bias b, activation function æ and
output y.
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3.2 Deep Neural Networks

A Deep Neural Network is formed of multiple layers of neurons, usually as a fully-connected,
feed-forward network. Feed-forward networks have connections between successive layers only
in the direction from the input towards the output; no reverse connections from later layers to
earlier layers are present. In fully-connected networks, each neuron in a layer takes inputs from
all neurons in the previous layer, and provides output to all neurons in the next layer (assuming
a feed-forward network). Aside from fully-connected, feed-forward nets, DNNs can be used in
architectures such as LSTM networks, or CNNs as described below.

3.3 Convolutional Neural Networks

A Convolutional Neural Network contains convolutional layers; Figure 3.2 shows an illustration
of the workings of a convolutional layer in a CNN. A convolutional layer in a CNN contains a
number of different filters, which are passed over the input data to extract relevant features from
this data, producing "feature maps" which are the outputs of this layer. This can also be termed
a cross-correlation operation, as the filters are representations of the features they recognise.
The values of these filters are learned during model training so that the most relevant and
useful features of the data are extracted. CNNs are a particular form of DNN architecture, with
the neurons of each layer applied to input data so as to form filters in the required number of
dimensions. Arranging the neurons in this way gives the network the capability to learn spatial
dependencies in the data, but they are trained in the same way as DNNs.

Convolutional layers can be used on data with any number of dimensions, by using filters
that have a corresponding number of dimensions. For a single convolutional layer, if the input
data has ci input channels and the number of output channels required is co, then the number of
filters needed is:

(3.5) Nf = ci § co

and assuming that the filters have side lengths of fw and fh, the number of weights to be learned
in this layer is:

(3.6) Nw = ci § co § fw § fh

This can be a large number of filter weights to learn. A single feature map output from a
convolutional layer is the sum of the convolution of each of the input maps with the filters
corresponding to this output for each input.

The convolution operation on a two-dimensional grid results in an output grid smaller than
the input grid; to keep the grid size constant through a CNN, the grids at each layer can be
padded with zero values (as shown in Figure 3.2) or edge values.
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FIGURE 3.2. Process of convolution for a layer in a CNN; an input grid of 4x4 is padded
with zeros and convolved with a 3x3 filter; the resulting output grid retains the
same size as the input grid. The outlined sections show the convolution inputs that
result in a single output value.

Transposed convolutional layers are used to enlarge feature maps, e.g. in the decoder section
of an autoencoder CNN. They are a version of convolutional layers which apply transposed

convolutional filters to feature maps; the increase in feature map size is achieved through
padding the input maps. CNNs often contain pooling layers after convolutional layers to reduce
the model’s translational variance [58]; these pooling layers cut down the size of the feature maps
by passing pre-determined filters over the outputs from a convolutional layer that extract the
maximum or average values from each patch seen by the filter. Pooling the output from layers
means the model is less dependent on the relative spatial positions of important features, making
it an important step for classification CNNs in particular.

3.3.1 Uses of CNNs

CNNs are most commonly used in image processing, in particular for classification and image
transformation; they are the basis of well-known image recognition networks such as ImageNet
[59] and VGG-16 [60]. While CNNs can be used to process one-dimensional data such as time
series (by using one-dimensional filters), their strength is usually recognised as their ability
to process multi-dimensional inputs with spatial dependencies, such as Red Green Blue (RGB)
images or maps.
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3.4 Autoencoders

Autoencoders consist of two stages: an encoder, and a decoder. Their aim is to break down input
data into its most important components (i.e. extract the most relevant features) in the encoder
stage, and then to regenerate the data (or a form of the data), using these components in the
decoder stage. A straightforward example of this is as shown in Figure 3.1 (a), using a feed-
forward NN with decreasing numbers of neurons in each successive layer as the encoder, with the
decoder having layers of increasing numbers of neurons. Autoencoders are often used to de-noise
data in their first stages by reducing the dimensionality of the inputs, and then to predict the
de-noised version as output.

3.4.1 U-Net

The U-Net architecture [49] is a particular format of CNN, which was developed to automate
segmentation of biological images, i.e. recognising different cells within a microscopic image
of biological tissue. U-Net uses an autoencoder architecture, but with skip connections from
encoder layers to their corresponding decoder layers. This passing of information between the
encoder and decoder sections of the network in U-Net was designed to ensure that the network
could remember the input features clearly, and it was very successful in performing biological
segmentation compared to its competitors at the time. Variations on the U-Net architecture have
been used in many applications of machine learning, including [61], [62] and [50].

3.5 Grid Neural Network

In this work, the concept of a Grid Neural Network (Grid NN) is introduced, and is described
more fully in Chapter 5. In brief, the Grid NN applies kernels of a given size to two-dimensional
input and output maps, and uses the resulting vectors of data as inputs and target outputs to a
DNN. This network architecture is intended to give a clear relationship between the area of input
information (the kernel sizes) used to produce the output predictions. The layers of a CNN can
be difficult to interpret, even with methods such as occlusion (see [63]), hence the Grid NN uses
kernels (analogous to convolutional filters) only over the raw input and target output data. Unlike
CNNs, which must use whole images (for two-dimensional data) leading to spatial correlations,
the two-dimensional data can be split into as many pairs of vectors of input and target output
data as are possible, and then shuffled, for use in the Grid NN. The Grid NN also exploits more
of the data than CNNs employed for the same task, as they are optimised after a certain number
of input-output pairs, rather than after a certain number of images (or terrain maps) have been
passed through the model. The Grid NN model is a novel architecture developed as part of this
work, intended to incorporate the capabilities of CNNs for learning spatial dependencies, but
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with an easily understandable relationship between the kernel sizes applied to the input and
output data.

3.6 Prevention of Overfitting

An NN can become overfit to the data used to train it, meaning that the network fails to learn
generalised relations between the input and output data, and instead learns to produce specific
training data outputs given particular inputs. This can occur if the training data set is not
sufficiently large or varied; if the network is over-trained; or if the network is too large (e.g. too
many neurons), as this means the network has the capacity to simply "memorise" the training
data inputs and outputs rather than having to learn more general relationships. There are
several techniques that can be used during training to prevent this from happening, with some of
the most commonly used being batch normalisation, dropout, weight regularisation, and early
stopping. The aim of most of these techniques is to keep network weights small, as overfitting
will cause large weights on neurons corresponding to particular training data input-output pairs;
this makes the network unstable as small changes in the inputs (e.g. noise) can then cause large,
unexpected changes in the network outputs.

3.6.1 Batch Normalisation

Batch normalisation [64] is a widely used technique which ensures that the output from each
layer in a network is reasonably small and centred around zero, which prevents subsets of model
weights from becoming comparatively large and dominating the network predictions. Batch
normalisation normalises all layer outputs within a batch such that the mean becomes 0.0, and
the standard deviation becomes 1.0, as in Equation 3.7. The model then estimates, updates and
keeps track of two factors (Ø and ∞) per layer for scaling the normalised data back to its initial
values if ever needed. ≤ is a small factor (1E-5) for denominator stability (in case of zero variance).

(3.7) y= x°E[x]
p

Var[x]+≤
§∞+Ø

If this layer is included in a Neural Network, it is typically placed between the layer of
neurons (e.g. a linear or convolutional layer) and the activation function for that layer, so that the
activation function does not distort the normalisation, and the following layer has a consistent set
of input values. For one-dimensional data, such as a 4x1 vector of inputs passed through a DNN,
each of the input channels would be normalised, i.e. every row in the vector would be normalised
across each batch of data, and compute its own Ø and ∞ values. For two-dimensional data, such as
images, passed through e.g. a two-dimensional convolutional layer, the normalisation is applied
per channel over all images in each batch. If RGB images with three channels (red, green and blue)
per image were batch normalised, each of the colour channels would be normalised separately,
and have its own Ø and ∞ values.
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3.6.2 Early Stopping

If a model trains for too long on a given set of training data, it will inevitably specialise towards
learning the specifics of that particular data set, and will not generalise. To prevent this, the
training of a machine learning network can be terminated early when a condition is met, e.g.
if the validation loss has not improved over five successive epochs. Applied correctly, it can
automatically stop the model at its optimum point of training and prevent it from overfitting.

3.6.3 Dropout

Dropout refers to the "dropping out" of neurons within an NN with a given probability [65]. For a
given layer in an NN, dropout can be used to specify that the neurons in that layer must not be
trained for certain batches of data, e.g. each neuron in a layer with a dropout probability of 10%
will only be trained by 90% of the input data. This is to stop specific neurons from building up
large weights and dominating the network.

3.6.4 Weight Regularisation

In order to keep NN weights small, the magnitude of the weights can be penalised during the
training phase [66]; this is done by adding a term for the magnitude of the weights into the
optimiser loss function, and minimising this combined term. In this work the sum of the squares
of the weights (L2 regularisation) is used for certain sensitivity studies, and is included within
the loss equation as in Equation 3.8 where it is added to MSE loss.

(3.8) loss= 1
N

"
NX

i=1

°
oi,predict ° oi,real

¢2
#
+∏

PX

j=1
w

2
j

where oi,predict and oi,real are the predicted and real output values, wj is the jth neuron’s weight
value, N is the number of samples in the batch of training data, P is the number of parameters in
the network, and ∏ is the decay factor applied to control the effect of the network weights on the
loss.

3.7 Coding

In this work, custom Python 31 code was written to read in the WAsP data, create and train the
machine learning models, and evaluate and display the outputs from these models in comparison
to the WAsP target values. The PyTorch2 machine learning Python library was used in this code
for the machine learning models themselves, as it has features such as templates for linear and
convolutional layers, implementations of loss functions, optimisers, activation functions and other

1
https://docs.python.org/3/, accessed on 16/03/2022

2
https://pytorch.org/, accessed on 16/03/2022
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relevant hyperparameters. The PyTorch framework is specifically designed to perform gradient
calculation and back-propagation in machine learning models, making them easy to construct,
train and validate. Other commonly used Python modules such as NumPy3 and Matplotlib4 were
used in the custom code for data processing and plotting. As this code was generated on DNV
systems it has not been made available here.

This chapter outlined the process of setting up and training a Neural Network, as well as
describing the workings of Deep Neural Networks and Convolutional Neural Networks (which are
the two architectures used in this project). The problem of overfitting has also been introduced,
along with common techniques for preventing it. Once an NN has been designed and built, its
performance must be evaluated, including how well it has learned to generalise the relations
between input and output data, and whether any overfitting has occurred. The next chapter
describes how performance metrics of the machine learning models tested in this work were
calculated, and the difficulties of measuring the accuracy of the two-dimensional output maps.

3
https://numpy.org/, accessed on 16/03/2022

4
https://matplotlib.org/, access on 16/03/2022
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4
EVALUATION METRICS

When evaluating the performance of machine learning models, it can be difficult to
choose methods that accurately describe how well a model has achieved its goal.
For classification networks such as image recognition models that assign labels to

photographs, performance can be quite easily measured as the accuracy of the model’s discrete
predictions. However, in this work, the aim of the network is to predict a variable over a given
two dimensional grid of points (e.g. a speedup map). The error of each grid point prediction can
be measured and the overall average given as an indicator of the performance of the model, but
this metric alone does not give sufficient information to make judgements on the accuracy of
the model. Therefore, a number of different methods were used to assess model performance as
discussed in this chapter.

4.1 Loss

The loss of a Neural Network is the difference between the output from the NN, and the target
(real) output, in this case the WAsP speedup or turn values. Different methods can be used to
calculate loss, with the most commonly used being Mean Absolute Error and Mean Squared
Error, where:

(4.1) MAE= 1
N

"
NX

i=1
|oi,predict ° oi,real |

#

and

(4.2) MSE= 1
N

"
NX

i=1
(oi,predict ° oi,real)2

#
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where N is the number of data points, oi,predict is a single predicted output value, and oi,real is
the corresponding real output value. MSE penalises large errors more heavily than MAE, while
MAE is preferred for fine-tuning models with small errors.

4.1.1 Loss Curves

When training a machine learning model, it is standard practice to consider the loss per epoch
for both training and validation data. After the training part of each epoch, the validation data
(which is different to the training data, but should be representative of the same learning aim)
is input to the model, and the validation loss is calculated but not used to update the model.
Plotting the loss from the training and validation per training epoch gives the user a look at how
fast or slow the model is learning (if at all), and whether it is able to generalise and work well on
the validation data. Figure 4.1 shows three different sets of loss curves:

(a) a good set of loss curves, where the training loss improves and saturates with more epochs,
and the validation loss, while higher than the training loss (to be expected as the network
is using new inputs), still decreases with more training;

(b) an overfit set of loss curves, where the model has not learned to generalise, but instead has
learned how to produce specific outputs given the inputs from the training data - this can
be seen from the poor performance of the validation data;

(c) an underfit set of loss curves, where the network does not have the the capacity to learn the
relation of the inputs to the outputs, or the training data does not give a sufficient range of
input and output pairs to learn from.

These loss curves can be used as a first impression of the model’s expected performance, and
helps to diagnose issues such as under- and overfitting.

4.2 Human Evaluation (By Eye)

In the early stages of model development, when testing many different NN architectures with
greatly varying levels of success, it is possible to distinguish obviously failed or under-performing
runs by eye. These include collapsed or unsuccessful runs compared to successful runs as seen
in Figure 4.2. In such cases, it is perhaps easiest and fastest to compare the tests using human
judgement (assuming these humans are experienced in this problem field) to decide which avenues
are worth pursuing. Isola et al. [62] used a "mechanical Turk" approach to evaluating certain
image transformation tasks by asking humans to distinguish between real and model-created
street maps, and Gatys et al. [67] frequently discuss and evaluate their image transformation
model’s performance based on how the model outputs look to humans. However the work in
this project, unlike [67] and [62], does require quantitative measures of accuracy for the WAsP
surrogate models once promising machine learning methods are found.
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FIGURE 4.1. Examples of loss curves for models which show (left-right): good fit to data;
overfit to data; underfit to data.

FIGURE 4.2. Plots of roughness speedups for Site 1 at 100m AGL from (left) model
predictions and (right) WAsP: (top) a model with good performance; (bottom) a
model with poor performance.

4.3 Error Metrics

In this section the error is defined as the difference between the ground truth (i.e. WAsP) values
and the surrogate model predicted values, and the distribution of these errors has been presented
in the following ways for each model tested.
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4.3.1 Error Maps

The output for each validation site and sector from each test network is plotted as a two-
dimensional map of the speedups or turn angles (as relevant) over the terrain. The difference
between the model output and the ground truth values (WAsP) for this variable is also plotted,
giving a map of the errors with colours representing the sign and magnitude of the error (i.e.
strong red for large model over-prediction, white for a perfect match between WAsP and the
machine learning model, and strong blue for large model under-prediction); an example is seen
in Figure 4.3. This allows the user to see where errors are happening, which can help with
diagnosing problem areas of the model; for example, in Figure 4.3 the shape of the roughness is
clearly visible in the error map and in the orographic speedup plot.

FIGURE 4.3. Plots of orographic speedup for Site 4 at 10m AGL from (left) model pre-
diction and (right) WAsP, showing the input of roughness visible in the orographic
speedup map.

The error values themselves were calculated for each point i.e. x,y coordinate as (where o is
the output at a point):

(4.3) error= opredict ° oreal

Speedup values were provided to the models in the form of speedup factors, such that the
target speedup outputs were between 0.0 and 4.0. A speedup value of 1.1 corresponds to a 10%
increase in wind speed at that point, and a speedup of 0.75 corresponds to a 25% decrease in
wind speed, compared to flow over a flat terrain. To make the plots of the outputs and the errors
more "human-readable", the speedups are plotted as % speedups rather than as factors - this was
purely a post-processing step and did not affect the training or running of the models. Figure 4.4
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shows an example of the error map plotted for the output from a machine learning model, where
a general slight underprediction of the speedups can be seen.

4.3.2 Scatter Graphs and Bar Charts

Along with the maps of error values, for every site and sector in each run presented here the
errors were also plotted as scatter graphs and bar charts, an example of which is shown in Figure
4.4. In the scatter graphs, the real and predicted values for each coordinate point are plotted, with
colours corresponding to the error (as described in the previous section). The scatter plots also
include a linear trend line for the data points, and the "perfect match" trend line for reference.
These plots show the overall correlation between the real and predicted data points. This style of
plot is also useful for determining limitations of the model, as seen in Figure 4.5 where the top
model predicts a range of different speedup values for a single real value, compared to the good
correlation shown in the bottom model. Note that the scales of these scatter plots are different
as they are from two unrelated runs, and are intended only to illustrate a range of correlations
between predictions and ground truth values.

The bar charts of errors (Figure 4.4) divide the errors into bins with equal ranges. Again, the
colours of the bars correspond to the errors as per the scatter graph and error map for this site
and sector. These bar charts are useful for viewing the modal error range, and for models and site
sectors that work well, it confirms that most errors are very small. The bar charts of errors are
plotted for each validation or blind testing site sector individually, and also for the aggregated
data from all validation/inference site sectors.

4.3.3 Error Statistics

In addition to plotting the differences between predicted and target output values for every
validation site sector per test run, the prediction error statistics are calculated. These are:

• mean error;

• MAE;

• Standard Deviation (Std. Dev.) of errors;

• minimum error;

• maximum error.

The mean and standard deviation are the parameters of a normal distribution that is plotted
for each validation or inference site sector, and all sectors together, per test run along with the
error bar charts. The MAE gives the overall error, and the standard deviation gives an indication
of the spread of the errors, both of which are useful when comparing different models. The
maximum and minimum errors are usually outlier values, but are interesting to note.
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With the range of evaluation methods and error statistics defined above, the surrogate flow
models tested in this work could be measured in a consistent manner. In the following chapters,
the machine learning models created and run are detailed, and their results presented, showing
the process of testing and updating the model architectures and configurations to achieve the
best predictions of each of the WAsP output variables, starting with orographic speedup in the
next chapter.
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FIGURE 4.4. Top to bottom: orographic speedup map for a single site and wind direction
produced by WAsP (left) and a Neural Network (right); error map between the
predicted and WAsP maps (left) and scatter graph of the errors per coordinate
(right); bar chart of errors.
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FIGURE 4.5. Error scatter plots for (top) a run with weak correlation between surrogate
model predictions and true values; (bottom) a run where the true and predicted
data points have strong correlation.
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5
OROGRAPHIC SPEEDUP SURROGATE MODELS

The first sub-model of WAsP to be investigated was the orography sub-model, which
calculates the effect of terrain elevation on wind velocity. The orography-induced changes
to the wind speed and direction (turn) are reported separately in the WAsP software, and

so are also treated as two separate variables in this work, with surrogate models created for
each. This chapter investigates machine learning models to predict the orographic speedup, while
Chapter 6 focusses on orographic turn.

Note that all figures in this chapter and Chapter 7 (Roughness Speedup Surrogate Models)
that contain results from WAsP or machine learning models have been post-processed to present
speedups as %, but the raw data is in the form of speedup factors (e.g. a speedup of 1.25 from
WAsP is presented as +25% here). For all plots of speedups or turn in this chapter, Chapters 6
and 7:

• the plots are not to scale;

• all model output plots presented are validation data from the data set used in that run,
unless otherwise specified;

• the colour scales of the plots of speedups are determined by the limits of the real (WAsP)
speedups, hence model predicted speedups outside these limits take the extreme colours.

5.1 Inputs

Terrain elevation is obviously a key factor in the orographic speedup calculations, and Equation
2.5 of the WAsP orographic sub-model uses the elevation gradients to predict the speedup. As
described in Section 2.1.2, the effects of terrain roughness are included in the orographic speedup

43



CHAPTER 5. OROGRAPHIC SPEEDUP SURROGATE MODELS

model. Figure 5.1 shows the difference in orographic speedup when the roughness of the terrain is
set to zero everywhere, and while the speedups are not significantly altered, there is a difference
when roughness is not accounted for. For the sites available in this work the elevation varies
between around -10m and 1,000m; using a first order central difference method, the range of
elevation gradients is between approximately ±1. WAsP uses roughness category values, rather
than roughness heights, which range between 0 and 1.5. Standard good practice in machine
learning is to non-dimensionalise inputs and to ensure that the scales of all inputs are similar.

FIGURE 5.1. Effect on orographic speedups of excluding terrain roughness for Site 2,
calculated by WAsP (left-right): orographic speedup with elevation and roughness
inputs; difference in orographic speedup with and without roughness; orographic
speedup with elevation only input. Values in % speedup.

5.1.1 Elevation Normalisation

To non-dimensionalise and re-scale the elevation data, two different normalisation techniques
were tested, as described below. As not all sites were used for training, each machine learn-
ing model tested would normalise using its specific input sites, and saved the parameters for
normalising any new sites in the inference stage.

5.1.1.1 Min-Max Normalisation

For min-max normalisation, elevation data (z) is normalised using the minimum and maximum
values of the data set, by:

(5.1) zmm = z° zmin

zmax ° zmin

where zmin and zmax are the minimum and maximum elevation values, and zmm is the min-max
normalised data. The normalised data is in the range of 0 to 1, and provides a simple way of
bringing the scale of the elevation data in line with that of the roughness data.
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5.1.1.2 Z-Scale Normalisation

Z-scale normalisation uses the mean and standard deviation of a set of data to re-scale the data,
meaning that most of the normalised data lies between around ±2. Z-scale normalisation uses
the following formula:

(5.2) zzs =
z°µ

p
æ2 +≤

where µ=
P

zi

N
and æ=

sP
(zi °µ)2

N

where z or zi are elevation data points, N is the total number of data points, and zzs is the z-scale
normalised data. The value of ≤ is set to 1E-5, and is used to prevent errors arising from any data
sets with zero standard deviation.

A comparison of the real, min-max and z-score normalised elevations for Site 2, normalised
with data from 11 sites total, is shown in Figure 5.2.

FIGURE 5.2. Comparison of elevation normalisation for Site 2.

5.1.2 Elevation Gradients

The first derivative of the elevation w.r.t. distance is already dimensionless. A first order central
difference method was used in this work to calculate the first derivatives over the Cartesian grid
of data points:

(5.3) żx =
zi+1, j ° zi°1, j

2¢x
and ży =

zi, j+1 ° zi, j°1

2¢y

where z is the elevation, i and j are coordinates in the x and y directions, ż is the spatial
derivative of the elevation, and ¢x and ¢y are equal to one grid spacing in the x and y directions,
respectively. At the edges of the elevation grid, first order forward or backward differences are
used as appropriate to calculate the gradients. Each of these derivatives were resolved into
directions parallel1 and perpendicular to the wind. This was done using the following equations:

(5.4) żÆ = żx §sin(Æ)+ ży §cos(Æ)
1This is actually anti-parallel to the wind, due to the notation of the wind being e.g. "from 0°" i.e. at 180°. This is

consistent through all the tests done, and is the equivalent of multiplying the derivative parallel to the wind by -1.
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with Æ being the angle clockwise from the y-axis (North-South). An example of the components of
the elevation gradients resolved parallel and perpendicular to the wind direction (which is shown
by the arrow) are in Figure 5.3.

FIGURE 5.3. Site 2 (left-right): elevation; component of the elevation gradients resolved
parallel to the wind direction; component of the elevation gradients resolved
perpendicular to the wind direction.

5.1.3 Direction

The single point NN and Grid NN models include the incoming wind direction as an input, unless
otherwise specified. Since the direction is given as a number between 0°and 360°, when it is used
an an input it is normalised to ensure that this input is also between 0 and 1, using:

(5.5) dnorm = d

360.0

where d and dnorm are the raw and normalised incoming wind directions. In this case there is a
step change at 360° as it is normalised to 0 rather than 1, and a direction of e.g. 330° would be
normalised to 0.92.

5.2 Single Point Neural Network

The first Neural Network tested had a deliberately simple design, taking in data from a single
point and the wind direction as inputs, and producing orographic speedup point values as output;
the network itself consisted of two hidden layers with five fully-connected neurons in a feed-
forward configuration, each using ReLU activation. Each test used input data from one site and
one type of variable to predict the orographic speedup at 100m AGL. Figure 5.4 shows the results
for Site 1 for tests using min-max normalised elevation (top) and elevation gradient (bottom) as
inputs, and Table B.2 gives the performance metrics.

The error maps for both of these tests are nearly identical to the orographic speedup target
map, indicating that the NN predicted speedups have almost no correlation to the target speedups.
Although it is difficult to see due to the scales being very small, the NN-produced orographic

46



5.3. CONVOLUTIONAL NEURAL NETWORKS

FIGURE 5.4. Single point NN results for Site 1, using (top) min-max normalised eleva-
tion and (bottom) elevation gradient as inputs to predict the orographic speedup
at 100m AGL. Shown are (left-right): input maps; WAsP-calculated orographic
speedup; single point NN predicted orographic speedup; difference between the
NN predicted and WAsP calculated speedups.

speedup maps bear a strong resemblance to the input maps; for example the hill can be seen in
the high speedup area predicted by the NN using elevation as an input. This simplistic NN does
not contain enough spatial information to produce accurate predictions of the orographic speedup,
and the inclusion of the direction as an input did not seem to change the results significantly
for different sectors. Moving on from this, the next network architectures needed to incorporate
spatial information from the terrain maps.

5.3 Convolutional Neural Networks

A number of successful recent studies have used CNN-based models to predict flow field maps
given grid-based inputs, as outlined in the earlier literature review (Section 1.2). Bhatnagar et
al. [52] and Thuerey et al. [50] employed two different CNN architectures to predict the static
pressure and two-dimensional velocity fields around aerofoils, given certain information such
as the aerofoil shape and flow conditions. Parallels can be drawn between these papers and this
project, which also has grid-based inputs (terrain maps) and outputs (speedup or turn maps),
so CNNs would seem a logical architecture for a WAsP surrogate model. The code written for
this part of the research was able to create CNNs with multiple convolutional and transposed
convolutional layers, different numbers of channels, activation functions, pooling and upsampling.
This gave a large range of potential network configurations to test. Note that the input and
output grids were not rotated and the wind direction was not provided as an input to these CNNs,
and hence the directional information was assumed to come from the direction-resolved elevation
gradients. All CNNs were tested using orographic speedups at 100m AGL.

The work of Bhatnagar et al. [52] on flow prediction over a grid used an autoencoder-based
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CNN structure, with small filters in each convolutional layer (the input data grids were 150x150,
the filters were either 5x5 or 3x3). The size of successive filters decreased in the encoder section,
and then increased in the decoder section. The network in this paper was used as a starting
point for creating and testing multiple CNN architectures for this problem - small filters and an
autoencoder structure. Unfortunately, this style of model was not successful, with an example of
the results shown in Figure 5.5, for a run using the elevation gradients parallel and anti-parallel
to the wind direction as inputs. This model used input grids of 150x150 grid points, with an
autoencoder structure of 5x5, 3x3 and 3x3 filters in the encoder, a mirrored set of transposed
convolution filters in the decoder, 10 channels, Sigmoid Linear Unit (SiLU) activation [68] and
2-D batch normalisation. While the speedups predicted by this model have reasonable output
scales (owing to the inclusion of batch normalisation), they are still very similar to the inputs
(i.e. the elevation gradients) in shape. It is possible that this model did not train for a sufficient
number of epochs, or use enough training data (it was trained with data from 11 sites), when
compared to models such as [52] and [50].

FIGURE 5.5. Results of an autoencoder CNN for predicting orographic speedup, for Site
1 (top) and Site 3 (bottom), showing (left-right) WAsP calculated speedups, CNN
predicted speedups, and the difference between them.

5.3.1 Best CNN Model

Despite using different combinations of input variables, numbers of channels, and filter sizes,
many of the CNNs tested collapsed, giving unrecognisable outputs. From the more successful
tests, the architecture that most reliably produced reasonable results consisted of an encoder-type
set of 2-D convolutional layers with small filters that decreased in size with successive layers,
followed by a transposed convolutional final layer. The results from the most promising CNN
are shown in Figure 5.6; as with the previous tests described there is still a clear correlation
between the predicted speedups and the input elevation gradients (especially in Site 1), but
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for Sites 2-4, the scale and overall shape of the speedups are reasonable. This model used the
elevation gradients parallel and perpendicular to the wind direction, with architecture described
in Table B.1. It is possible that the "right" combination of convolutional/normalisation/pooling
layers, activation functions, loss, training epochs, and other hyperparameters was not found in
these tests, or that more training data would improve the results.

FIGURE 5.6. Results of the most successful CNN for predicting orographic speedup,
for (top-bottom) Sites 1-4, showing (left-right) WAsP calculated speedups; CNN
predicted speedups; the difference between them. Note that the Site 1 sector data
shown here was part of the training data rather than the validation data, but is
included here for consistency.

Investigation into how to train CNNs with relatively small data sets and comparison of this
machine learning problem to image transformation problems led to the U-Net architecture, which
was trialled next.

5.3.2 U-Net Style Networks

The U-Net model [49] consists of blocks of convolutional/transposed convolutional, batch normali-
sation and pooling/upsampling layers in an autoencoder-style structure, but with skip connections
between corresponding encoder and decoder layers. These skip connections allow the model to
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carry through data from earlier layers deeper into the network, which helps it to "remember"
input structures. Given there is a degree of correlation between the elevation, elevation gradients
and orographic speedups the U-Net structure was thought to be an appropriate architecture for
this problem. U-Net style networks which were less complex than those in [49] and [50] in terms
of number of channels and layers were tested here. Using "blocks" consisting of:

• encoder: two layers of 2-D convolutional layers with a 3x3 kernel, no padding and stride 1,
followed by ReLU activation; the encoder doubles the number of channels out compared to
the number in; after the encoder is a max pooling layer with kernel size 2x2 and stride 2.

• decoder: a 2-D transposed convolutional layer with a 2x2 kernel, no padding and stride 2;
concatenation with the corresponding encoder layer’s output; a 2-D convolutional layer as
per those in the encoder; the decoder halves the number of channels out compared to those
in.

• a final 2-D convolutional layer with kernel size 1x1 and stride 1, which outputs a single
channel.

Again, none of the U-Net style models tested showed great promise, and frequently collapsed into
"blocky" sections or predicted a single output value per site. The speedups predicted by of one of
the more successful models are given in Figure 5.7. This model also used the elevation gradients
parallel and anti-parallel to the wind direction as inputs in 350x350 grids, had three encoder and
three decoder blocks (using SiLU instead of ReLU activation), included batch normalisation in
the encoder layers, and was trained using data from six sites. While there are some small areas
of the predicted speedup that have the correct shape, overall this method still has not properly
learned the transformation between the inputs and outputs, and is too similar to the input maps.

FIGURE 5.7. Results of a U-Net style CNN for predicting orographic speedup, for Site
1 (top) and Site 2 (bottom), showing (left-right) WAsP calculated speedups; CNN
predicted speedups; the difference between them.
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The performance metrics for the CNNs presented here are given in Table B.1. While this
U-Net style model has better performance metrics than the previous CNNs described, the plots of
the outputs from the models show that the CNN described in Section 5.3.1 produced outputs that
are closer to the ground truth. The U-Net style model predicted almost uniform speedup values
across the terrain, and produced smaller output grids than the previous CNNs (an artefact of
the U-Net approach), which could be the cause of these lower errors without a corresponding
improvement in performance.

After a lack of success with the U-Net architecture, a more systematic approach to CNN
design was suggested, namely an investigation into the appropriate filter sizes needed. This led
to revisiting and expanding on the grid approach started with the Single Point Neural Network

in Section 5.2.

5.4 Grid Neural Networks

5.4.1 Motivation and Method

The Grid Neural Network method was created to investigate the spatial extent of terrain orogra-
phy information required to calculate orographic speedup, which could then be used to inform
filter sizes in CNNs for predicting orographic speedup. The Grid NN method applies sub-grids to
the input and target output data grids, and passes the points from these sub-grids into a Deep
Neural Network. The steps of this method (as shown in Figure 5.8) are:

1. take in a grid (or grids) of input data (e.g. elevation, elevation gradient and roughness);

2. split each input data grid into as many (square) sub-grids of a specified size (e.g. 15x15
points) as possible;

3. take a given pattern of points from each sub-grid (and the wind direction), and use these as
inputs to a fully-connected, feed-forward DNN;

4. take another pattern of points (or a single point) from corresponding sub-grids of the output
data, and use these as target outputs for the DNN.

This Grid NN technique incorporates spatial information into a Deep Neural Network approach,
and is designed to facilitate testing of a range of input sub-grid sizes (which are analogous to CNN
filters) to determine the "radius of influence" of the input variables on the output. An optimal
sub-grid size determined using this method could be used to inform the filter size for future CNN
tests, as well as being a generally useful finding about the wind flow characteristics in the target
model.
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FIGURE 5.8. Grid Neural Network schematic, showing the stages: 1) splitting the input
and output maps into sub-grids; 2) taking a pattern of points from each sub-grid;
3) passing the sub-grid points as inputs and outputs to a Deep Neural Network.
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While sub-grids of different sizes can be applied to each input variable, investigating all
combinations of sub-grid sizes and input variables would take too much time to be achievable in
this work. Hence, all input variables used in a Grid NN run have the same input sub-grid size,
and use the same pattern of input points from each sub-grid. Unless specified in the description,
all Grid NN tests here calculated a single output point, and used a consistent pattern of input
sub-grid points. Figure 5.9 shows examples of input and output sub-grid patterns.

FIGURE 5.9. Example Grid NN sub-grid patterns for input (left) and output (right).

It is difficult to class one type of Neural Network as more "complicated" than another, but
the Grid NN approach could have advantages over CNNs in terms of understandability, as the
sub-grid size is a clear measure of the important spatial dimensions that relate the input data to
the output data. The Grid NN method takes in a 1-D vector of input data points by splitting the
input grids, resulting in around 150,000 pairs of input-output data for training and validation
per site and sector, and hence millions of input-output data pairs over 11 sites and all sectors.
By contrast, the CNNs described in Section 5.3 above use 2-D grids of inputs (with one input
variable per channel, similar to RGB images), giving around 250 pairs of input-output data2 for
training and validation. Having more data pairs in the Grid NN model means that this model
will have substantially more iterations of updating the model parameters (i.e. learning) than a
CNN using the same input data.

5.4.2 Sub-Grid Size

To determine the optimal sub-grid size for a Grid NN model predicting orographic speedup, a
range of sub-grid sizes were tested, using a single input variable type for each run (the Grid

2Assuming two random grids of the specified input size are taken from each input grid.
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NN model could not take in multiple input variables at this stage), and data from a single site.
The DNNs of these Grid NNs comprised of two hidden layers with five neurons each, both using
ReLU activation.

A selection of the most relevant sub-grid sizes are given in Figure 5.10 for Site 1, using a
input sub-grid pattern of a 3x3 points, a single point output, and input variables of min-max
normalised elevation (top) and elevation gradient parallel to the wind direction (bottom). Results
from a corresponding set of tests using data from Site 2 instead, and using a denser pattern
of points per sub-grid (17 points rather than the nine for the Site 1 tests) are given in Figure
5.11. The error statistics for both sets of tests are given in Table B.2. Note that the sub-grid size
refers to the sub-grid side length, as shown in Figure 5.9. In both of these figures, the output
from the smallest sub-grid size models is strongly correlated to the input data, scaled to match
the orographic speedup values, as seen with the single point NN in Figure 5.4. Using the largest
sub-grid size (2.7km square) the elevation gradient input tests for both sites start to collapse,
with the predicted speedups lacking detail. The 1.2km sub-grid tests with elevation gradient
input give the best speedup maps for both sites. Taking the results from Site 1 as an example
(Table 5.1), using a sub-grid size of 1.2km gives the lowest MAE and error standard deviation
with the elevation gradients as input. For Site 1, the speedups produced using elevation gradient
as input are superior to those from the elevation as input (despite having larger errors overall),
but for Site 2 there is a stronger influence of the elevation itself on the orographic speedup (see
the valley shapes in the top left of the Site 2 speedup map in Figure 5.11). At this point, the Grid
NN model was only able to take in one input variable per run, so the optimum sub-grid size was
taken to be 1.2km square, with elevation gradient as the input.

FIGURE 5.10. Grid NN sub-grid size tests using Site 1 data at 100m AGL, with inputs
of (top) min-max normalised elevation and (bottom) elevation gradient parallel to
the wind direction, and sub-grid sizes of (left-right): 0.2km; 1.2km; 2.7km.

These results provide some insight into how the Grid NN approach works - the input maps
are "re-printed and re-scaled", with increasing sub-grid sizes able to "re-print" the input data at
larger distances from the output point. This leads to very small sub-grids effectively repeating
the input data as output, with the scales adjusted to match the outputs; sub-grids that are too

54



5.4. GRID NEURAL NETWORKS

FIGURE 5.11. Grid NN sub-grid size tests using Site 2 data at 100m AGL, with inputs
of (top) min-max normalised elevation and (bottom) elevation gradient parallel to
the wind direction, and sub-grid sizes of (left-right): 0.2km; 1.2km; 2.7km. These
tests use a denser grid pattern than for Figure 5.10.

Run ID Input Sub-Grid Size (km) MAE Error Std. Dev.

OS-S-1 Min-Max Elevation Single Point 1.43 1.98
OS-G-1 Min-Max Elevation 0.2 1.40 1.95
OS-G-2 Min-Max Elevation 1.2 1.31 1.84
OS-G-3 Min-Max Elevation 2.7 1.36 1.89
OS-S-2 Elevation Gradient Single Point 1.67 2.52
OS-G-4 Elevation Gradient 0.2 1.68 2.54
OS-G-5 Elevation Gradient 1.2 1.56 2.29
OS-G-6 Elevation Gradient 2.7 2.24 2.67

Table 5.1: Performance metrics for orographic speedup Grid NN sub-grid size investigations in %
speedup for Site 1; minimum values for each type of input are highlighted.

large produce "blurred" speedup maps as the input points are too far from the output point, which
is seen in the 2.7km square grid using elevation gradient in Figure 5.10.

CNN models were built which used this optimal filter size, but they did not produce any
successful results. As such, work continued on the Grid NN models rather than returning to
CNNs for orographic speedup.

5.4.3 Improvements to Baseline Model

Figure 5.12 shows the evolution of the Grid NN models for orographic speedup at 100m AGL,
starting from models which have:

• input sub-grid size of 1.2km square, with elevation gradient parallel to the wind direction
as input (as determined in the previous section);

• output of a single point value (at the centre of each sub-grid) of orographic speedup;
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• a DNN with 50 neurons arranged as five hidden layers of 10 neurons each, with batch
normalisation and ReLU activation after each layer;

• training with data from a single site, for 50 epochs;

• Adam optimiser with MSE loss for training.

The full performance metrics of each model tested in Figure 5.12 are given in Table B.3, and are
summarised in Table 5.2. Starting from the model configuration known as Baseline A (the second
from top set of maps in Figure 5.12, where three separate models have been trained with data
from Sites 1, 2 and 3), the first change was to include the min-max normalised elevation and the
roughness data for each site as inputs - the Grid NN code had been updated at this point to take
input maps from multiple variables. This made a significant difference for all sites shown, in
particular for Sites 1 and 3 where the shapes of the predicted speedups are visibly closer to the
real (WAsP) outputs. Following this, the next change was to train each Grid NN model with data
from four different sites, rather than individual sites - this was a necessary change if the Grid NN
approach was to be considered for any real-world applications, and should prevent overfitting to
data from a single site. The orographic speedups predicted from this model were an improvement
over the Baseline A models.

Run ID Training
Sites

Inputs Neurons MAE Error Std.
Dev.

OS-G-13 1 Elevation Gradient 50 1.36 1.86
OS-G-16 1 Elevation Gradient,

Min-Max Elevation,
Roughness

50 1.09 1.51

OS-G-19 1-4 Elevation Gradient,
Min-Max Elevation,
Roughness

50 0.790 1.09

OS-G-23 1-4 Elevation Gradient,
Min-Max Elevation,
Roughness

500 0.692 0.928

OS-G-24 1-11 Elevation Gradient,
Min-Max Elevation,
Roughness

500 0.691 1.11

Table 5.2: Performance metrics for orographic speedup Grid NN improvements in % speedup;
minimum values are highlighted.

Expanding the DNN section of the Grid NN model to include 500 neurons rather than 50
(arranged in 10 hidden layers of 50 neurons, with batch normalisation and ReLU activation after
each layer as per Baseline A) gave superior performance, which can be seen from the metrics in
Table 5.2. For Sites 1 and 2, the speedup shapes and scales appear closer to the WAsP outputs,
and are smoother over the terrain compared to the 50 neuron model. However, there are areas
of overprediction along the valley edges in Site 3. Finally, additional training data was used so
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that the Grid NN models trained on data from 11 sites (Sites 1-11 in Appendix A); this model
is marked as Baseline B in Figure 5.12. This improved the detailed shape of the speedups in
Sites 2 and 3 compared to the previous model, and addressed the overprediction at the valley
edges in Site 3. While the MAE decreased with more training sites, the error standard deviation
increased, which could be due to the corresponding larger range of validation sites over which
the error was measured. Comparing the results between Baseline A and Baseline B, there is
significant improvement in the scales, shapes and detail of the orographic speedups with the
changes applied in Baseline B.
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FIGURE 5.12. Evolution of the Grid NN models for predicting orographic speedup at
100m AGL, for (left-right) Sites 1, 2 and 3. These tests show (top-bottom): WAsP
output; baseline Grid NN model with 50 neurons, using single site data, elevation
gradient parallel to the wind direction as input; adding roughness and min-max
normalised elevation; training each model with data from four sites; enlarging the
model to have 500 neurons; training each model with data from 11 sites.
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There were additional investigations which were not successful, i.e. changes trialled that
were not kept in for the Baseline B models, the metrics of which are reported in Table B.3. These
were: training for 100 epochs; using z-scale elevation normalisation; using an autoencoder-style
DNN architecture.

5.4.4 Grid NN Investigations

Using the same Grid NN parameters as defined for Baseline B above, but training on data at 10m
AGL, gave the Baseline B model for orographic speedup at 10m AGL, which performed well (see
metrics in Table B.5). The WAsP orography model extrapolates a potential flow solution over a
given terrain to different heights AGL, so it is not too surprising that the Grid NN configuration
that works well for 100m AGL is applicable at 10m AGL as well. A series of sensitivity studies
were undertaken on the Baseline B models with the results detailed below, with the MAE and
error standard deviation collated in Tables 5.3 and 5.4 for the tests at 100m AGL and 10m AGL
respectively.

Run ID Neurons Rotate? Balancing Batch
Normalisation

MAE Error
Std. Dev.

OS-G-24 500 No - Yes 0.691 1.11
OS-G-25 Autoencoder No - Yes 0.721 1.17
OS-G-26 50 No - Yes 0.926 1.43
OS-G-27 500 Yes - Yes 0.793 1.43
OS-G-28 500 No - No 1.17 2.17
OS-G-29 500 No Equal Yes 0.904 1.41
OS-G-30 500 No Normal

Distribution
Yes 0.905 1.34

Table 5.3: Performance metrics for orographic speedup Grid NN investigations in % speedup at
100m AGL; minimum values are highlighted.

Run ID Neurons Rotate? Balancing Batch
Normalisation

MAE Error
Std. Dev.

OS-G-31 500 No - Yes 1.89 3.09
OS-G-32 Autoencoder No - Yes 1.92 3.16
OS-G-33 50 No - Yes 2.41 3.27
OS-G-34 500 Yes - Yes 1.95 3.25
OS-G-35 500 No - No 2.83 6.05

Table 5.4: Performance metrics for orographic speedup Grid NN investigations in % speedup at
10m AGL; minimum values are highlighted.

5.4.4.1 Network Size

The first sensitivity study was a repeat of the network size testing detailed in Section 5.4.3, and
was carried out to ensure that the Baseline B network size of 500 neurons in uniformly-sized
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hidden layers did not have excess capacity, which could lead to overfitting. The three network
sizes tested are as shown in Figure 5.13, and the results for Site 1 at 100m AGL and 10m AGL
are in Figures 5.14 and 5.15 respectively. At both heights, 50 neurons is an insufficient network
size to capture the orographic speedup calculations, and gives poor results and a significant
increase in the MAE from the 500 neuron model, e.g. from 0.69% to 0.93% speedup at 100m AGL.
When comparing the autoencoder structure to the 500 neuron architecture, it is difficult to decide
on which gives better results by eye, either from the speedups or the error maps, but the 500
neuron models do have lower error values in Tables 5.3 and 5.4. Additionally, looking at the loss
curves in Figure 5.16 (this is for 10m AGL; the curves are similar for 100m AGL), the training
losses are smaller for the 500 neuron model, and the output plots show no sign of overfitting.
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FIGURE 5.13. Schematic of Grid NN architectures tested, showing a) 50 neuron model;
b) 500 neuron model; c) autoencoder.
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FIGURE 5.14. Comparison of different DNN architectures within the Grid NN models
for orographic speedup at 100m AGL, showing (left-right) the WAsP speedups, Grid
NN speedups, and the difference between them for (top-bottom): Baseline B model
with 500 neurons; an autoencoder architecture; 50 neurons.

FIGURE 5.15. Comparison of different DNN architectures within the Grid NN models
for orographic speedup at 10m AGL, showing (left-right) the WAsP speedups, Grid
NN speedups, and the difference between them for (top-bottom): Baseline B model
with 500 neurons; an autoencoder architecture; 50 neurons.
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FIGURE 5.16. Comparison of the loss curves for a Grid NN for orographic speedup at
10m AGL, comparing models with 500 neurons to an autoencoder architecture;
training (left) and validation (right) losses shown.

5.4.4.2 Rotation

Figure 5.17 shows the speedups at 10m AGL calculated by Grid NN models, one of which included
the normalised wind direction as an input value to the DNN section of model (left), while the
other rotated all input and output grids such that the relative wind direction was always from
0° and did not include the normalised wind direction as a specific input value (right). While the
results are reasonably similar, the scales in the "rotated" run are not as extreme as those in
the "non-rotated" run, e.g. the area of low speedup in the shadow of the hill in Site 2 is better
predicted in the non-rotated run. The non-rotated speedups also appear smoother than the
rotated speedups; from Table B.5 the non-rotated run also has better error statistics, particularly
in terms of the maximum and minimum errors. Similar results are seen for a corresponding test
carried out on data at 100m AGL, with the error statistics given in Table 5.3. It is somewhat
surprising that the inclusion of wind direction as an input variable gives the Grid NN models
sufficient information to predict the highly direction-dependent orographic speedup. But since
the elevation gradient input is resolved parallel to the wind direction (from the Baseline A results
in Figure 5.12 this alone as an input to a Grid NN gives reasonable speedup predictions) there is
directional information provided to the Grid NN models without rotating the input and output
grids.

5.4.4.3 Batch Normalisation

Figures 5.18 and 5.19 demonstrate the importance of including batch normalisation in the Grid
NN models at 100m and 10m AGL respectively. Without batch normalisation, the speedups
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FIGURE 5.17. Comparison of Grid NN models for orographic speedups at 10m AGL,
showing (left-right) WAsP; Grid NN with wind direction as an input; Grid NN with
input and output grids rotated to have consistent wind direction, for (top) Site 1
and (bottom) Site 2.

predicted by the models resemble the elevation terrain maps, and do not match the WAsP
calculated speedups in shape or scale. From Tables 5.3 and 5.4 there are significant increases in
both MAE and error standard deviation when batch normalisation is removed, e.g. the increase
in error standard deviation from 3.09% to 6.05% speedup at 10m AGL. Although the scales of
all the input variables are roughly similar, it could be that the batch normalisation layers help
to balance the effects of the different inputs, and so without it a single type of input dominates,
which in this case is the elevation.
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FIGURE 5.18. The effect of including batch normalisation layers in a Grid NN model
for speedups at 100m AGL, with (left-right) WAsP speedups; Grid NN with batch
normalisation; Grid NN without batch normalisation, for (top) Site 1 and (bottom)
Site 2.

FIGURE 5.19. The effect of including batch normalisation layers in a Grid NN model
for speedups at 10m AGL, with (left-right) WAsP speedups; Grid NN with batch
normalisation; Grid NN without batch normalisation, for (top) Site 1 and (bottom)
Site 2.

5.4.4.4 Balancing Speedup Data

A significant portion of the terrain data available for training in this work consists of plains,
i.e. areas of little change in elevation; as such there is minimal change in wind speed due to
orography over these areas. Examples of this include Site 2 and Site 3, which both consist of
mostly flat terrain (in terms of elevation) with distinct features such as the isolated hill in Site 2
and the narrow valleys in Site 3 (Figure 5.12). The prevalence of flat terrain areas means that a
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significant fraction of the training data for models has little useful information, i.e. flat elevation
with ~0 gradient giving 0% orographic speedup. To combat this, tests were run with the training
data balanced such that more input-output pairs with high speedup values were used to train
the model. The total number of training data points was unchanged and the validation data was
unaffected. Figure 5.20 (a) shows the distribution of orographic speedup values over the training
data set in question.

The first method of balancing, termed uniform balancing here, balanced out the bars of the
histogram in Figure 5.20 (a), giving instead a distribution as in Figure 5.20 (b), where the bins of
orographic speedup have the same limits but there is an equal number of data points in each bin.
Any histogram bins with more data points than required had an appropriate number of random
points removed from the data set. Histogram bins with fewer data points than needed had their
existing data points replicated until the bin had the required size. This meant that the histogram
bins at the extreme ends of the orographic speedup ranges, which had the fewest number of data
points in the original data set, consisted of the same data repeated many times, which may have
resulted in a degree of overfitting on these points.

The alternative balancing method trialled here was intended to lessen the artificial repetition
of data points at the extreme ends of the histogram in Figure 5.20 (b). Instead, a normal
distribution was fitted to the original orographic speedup data set, characterised by its mean and
standard deviation (Figure 5.20 (a)). For this balanced data set, the mean was unchanged, but
the standard deviation set to a fifth of the total data range, aiming to give a larger spread of data
points (Figure 5.20 (c)); this was termed the normal distribution balancing method. Again, the
limits of the histogram bins were unchanged, and the mean of each bin was used to calculate the
number of data points that should be present per bin in the balanced data set.

The results from Grid NN models using these balancing techniques are shown in Figure
5.21, and the performance metrics are given in Table 5.3. The MAE and error standard deviation
increase with both types of balancing compared to the baseline case. For the speedups shown,
there do seem to be larger errors in the predictions at the edges of terrain features, such as the
valleys in Site 3 and the top of the hill in Site 2, when the training data has been balanced.
Additionally, the error statistics are uniformly worse in these runs compared to a model without
balanced training data (excepting the maximum error of the normal distribution balancing
method, which improves on the un-balanced (baseline) model (Table B.4)).
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FIGURE 5.20. Histograms of orographic speedup training data at 100m AGL, with a)
no balancing (and a fitted normal distribution shown); b) uniform balancing; c)
normal distribution balancing (with the altered distribution shown). Note that the
speedups are given as speedup factors here.
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FIGURE 5.21. Comparison of orographic speedup at 100m AGL for (top-bottom) Sites 1,
2 and 3, from (left-right) WAsP; Grid NN model with no changes to the training
data; Grid NN model with uniform balancing of training data; Grid NN model with
normal distribution balancing of training data.

5.4.5 Final Models

While all the sensitivity studies in Sections 5.4.3 and 5.4.4 used a consistent pattern of sub-grid
points as inputs, some of these sub-grid points were later found to be in different positions than
intended. This issue was fixed and the final orographic speedup models at 10m and 100m AGL
were re-run. Both of these models had:

• Inputs:

– min-max normalised elevation, elevation gradient parallel to the wind direction, and
roughness;

– normalised wind direction (rather than rotating the input and output grids);

– input sub-grid size of 1.2km square;

• Outputs:

– single point output of orographic speedup factor;

– no data balancing;

• Deep Neural Network:

– 10 hidden layers of 50 neurons each with batch normalisation and ReLU activation
after each hidden layer;
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• Training / Validation:

– training and validation data from 11 sites (Sites 1-11 in Appendix A) with 12 direction
sectors each, where nine sectors were used for training, two for validation and one
was held out for inference;

– training of between 50 and 60 epochs, stopping at the best epoch between these limits
(with patience of three);

– training with an Adam optimiser, and MSE loss.

The loss curves of both runs show reasonable trends for training and validation (see Figure 5.22
for the loss curves at 10m AGL). For ease of comparison, the table of performance metrics is
presented here for the final Grid NN models at for both heights AGL, for both validation and
inference data.

FIGURE 5.22. Loss curves for final Grid NN for orographic speedup at 10m AGL.

Run ID Height AGL (m) Validation / Inference MAE Error Std. Dev.

OS-G-36 10 Validation 1.90 2.79
OS-G-36 10 Inference (New Sites) 3.68 7.04
OS-G-37 100 Validation 0.652 1.04
OS-G-37 100 Inference (New Sites) 1.64 3.01

Table 5.5: Performance metrics for final orographic speedup Grid NN models in % speedup.
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5.4.5.1 Validation

Figure 5.23 shows the orographic speedups calculated by the final Grid NN model trained on data
at 10m AGL. The form and scales of the Grid NN predictions are very similar to the WAsP output
speedups, but the NN output maps are less smooth than the real (WAsP) speedups across terrain.
The error maps for each site have large scales, but most errors appear to be relatively small; the
Grid NN model performs well across areas of flat or gradually changing terrain, and shows the
highest errors at locations of steep slopes such as the edges of the valleys in Site 3. Given the
relatively sparse set of input points that are used per orographic speedup value, and the fact that
each point in the predicted orographic speedup maps is calculated separately, the results for Sites
1-3 are very promising. Figure 5.24 shows a scatter graph of the real (WAsP) against predicted
orographic speedups for Site 1 sector 9 (wind from 240°), and shows good correlation between
the machine learning model and WAsP. Site 4 has mostly flat terrain, but with a high value
roughness feature in the top left of the site; the Grid NN model has emphasised the roughness in
the orographic speedup predictions, which is obviously incorrect. However this effect is not seen
in the other three sites, so it is difficult to determine how much this affects the overall errors.
Additionally, the scales of the speedups for Site 4 are much smaller than the other sites shown,
so it is possible that there are unseen roughness-based artefacts in the other plots with scales
that are too small to be visible. Aside from this, the Grid NN gives accurate predictions of the
orographic speedup for the rest of Site 4. The error bar chart in Figure 5.25 confirms that most of
the errors are small; the full error statistics are given in Table B.6.
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FIGURE 5.23. Final Grid NN model for predicting orographic speedup at 10m AGL for
(top-bottom) Sites 1, 2, 3 and 4, showing (left-right): WAsP calculated speedup;
Grid NN predicted speedup; the difference (Grid NN - WAsP).

FIGURE 5.24. Scatter graph of the orographic speedup at each grid point predicted by
the final Grid NN at 10m AGL compared to the WAsP calculated values, for Site 1
sector 9 (wind from 240°).
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FIGURE 5.25. Bar chart of the errors (Grid NN - WAsP) in orographic speedup over the
validation data using the final Grid NN model at 10m AGL.
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Orographic speedups produced by the final Grid NN model trained on data at 100m AGL are
shown in Figure 5.26 for Sites 1-4, and the error statistics are given in Table B.6. As with the final
Grid NN at 10m AGL, the overall shapes and scales of the speedups are good, and the largest
errors occur over abrupt changes in elevation. Again, this model gives accurate predictions over
flat and gradually changing terrain. The orographic speedups predicted for Site 1 have quite
large errors around the hill on this site, which could indicate that the input sub-grid (i.e. filter)
size used is not sufficient to capture the influence of large terrain features.

FIGURE 5.26. Final Grid NN model for predicting orographic speedup at 100m AGL
for (top-bottom) Sites 1, 2, 3 and 4, showing (left-right): WAsP calculated speedup;
Grid NN predicted speedup; the difference (Grid NN - WAsP).
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FIGURE 5.27. Bar chart of the errors (Grid NN - WAsP) in orographic speedup over the
validation data using the final Grid NN model at 100m AGL.

5.4.5.2 Inference (Test Data)

Although one of every 12 direction sectors for the 11 training sites was held out for blind testing,
the symmetry of the WAsP orography sub-model means that the orographic speedups for opposing
wind directions are very similar. For example, if sector 1 (wind from 0°) of Site 1 had been used to
train a model, and sector 7 (wind from 180°) was the test sector for this site, the model would be
predicting a speedup map close to that seen in training (albeit with a different direction input).
Therefore, to gauge the performance of the final orographic speedup models on truly new data,
three sites (Sites 12, 13 and 14) that were not included in the training or validation data were
used for inference. In terms of terrain characteristics, Site 12 is mountainous, Site 13 has a single
valley feature, and Site 14 is flat but with areas of high roughness (see Appendix A).

Figures 5.28 and 5.31 show predicted orographic speedups at 10m AGL and 100m AGL from
the final Grid NN models for these heights (as described in Section 5.4.5); the full error metrics
are given in Table B.6. For Site 12 at 10m AGL, WAsP predicts an orographic speedup range
of -99% to +124%, significantly larger than those in Figure 5.23. Figure 5.29 shows the WAsP
against Grid NN predicted orographic speedup values for this site and direction, and confirms
that there is generally a good match between the model and the target values, but with more
underprediction of large speedup magnitudes compared to the validation data (Figure 5.24). The
Grid NN model at 10m AGL has captured the general shape of the orographic speedups well,
but the error map highlights that that the model has failed to capture the highest speedups at
the top of the mountain ridge in Site 12. A similar issue, although less extreme, occurs at 100m
AGL. In Site 14, as for Site 4, areas of high roughness in a flat terrain are emphasised in the
Grid NN’s orographic speedup map (see the top left corner of the orographic speedup) at both
10m and 100m AGL. The main feature of Site 13 is a single valley, which bears resemblance to
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Site 3 (which has two narrow valleys). The Grid NN’s speedup predictions for Site 13 correlate
well in shape and scale to the ground truth for 10m AGL, but at 100m AGL there are some errors
around the valley edges, similar to errors that have been discussed in this chapter.

FIGURE 5.28. Final Grid NN model for predicting orographic speedup at 10m AGL for
(top-bottom) Sites 12, 13 and 14, showing (left-right): WAsP calculated speedup;
Grid NN predicted speedup; the difference (Grid NN - WAsP).
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FIGURE 5.29. Scatter graph of the orographic speedup at each grid point predicted by
the final Grid NN at 10m AGL compared to the WAsP calculated values, for Site
12 sector 6 (wind from 150°).

FIGURE 5.30. Bar chart of the errors (Grid NN - WAsP) in orographic speedup over
three new sites using the final Grid NN model at 10m AGL.

The error bar chart in Figure 5.32 confirms that the majority of prediction errors are small at
100m AGL, with the MAE over the inference data at this height being 1.6%; for reference, the
MAE over the validation data at 100m AGL was 0.65% speedup. Although the error bar chart at
10m AGL (Figure 5.30) displays a trend of small errors, the central bar containing 89% of the
data points has limits of ±10% error, which is quite high. This is likely to be due to the extreme
speedups at Site 12; the overall MAE over the inference data at 10m AGL is 3.7%, compared to
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1.9% over the validation data, which is a large increase.

FIGURE 5.31. Final Grid NN model for predicting orographic speedup at 100m AGL for
(top-bottom) Sites 12, 13 and 14, showing (left-right): WAsP calculated speedup;
Grid NN predicted speedup; the difference (Grid NN - WAsP).

FIGURE 5.32. Bar chart of the errors (Grid NN - WAsP) in orographic speedup over
three new sites using the final Grid NN model at 100m AGL.

5.5 Conclusions

This chapter introduced the Grid Neural Network method, and investigated the use of both CNNs
and Grid NNs to predict the orographic speedup over terrain. The CNNs (including U-Net style
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networks) tested were largely unsuccessful. This work initially focussed on creating and training
new CNNs, but as discussed in Section 5.3 above, the comparatively small training data set
available is likely to have been a significant factor in the lack of success in finding and training a
suitable CNN architecture for this problem. For context, the work of [50] used a U-Net type CNN
to predict aerofoil flow with a great deal of success, with ~27,000 sets of simulation data to train
on, compared to the ~250 different maps of orographic speedup available in this work. Perhaps
using a pre-trained model, with a proven architecture for e.g. image transformation or aerofoil
flow field prediction, would give better results if no additional training data was available.

The final Grid NN models created for speedup predictions at 10m and 100m AGL gave good
results for a range of sites, using elevation, elevation gradient and roughness as inputs; examples
are presented in Figure 5.33. As the Grid NN method takes in sub-grids of terrain data, using
points in a pattern of concentric squares, there is a degree of similarity between this approach
and the polar "zooming" grid over which WAsP calculates its orographic speedup potential flow
solution [8]. There is still room for improvement in these models, particularly in smoothing maps
of the output, and ensuring that the roughness inputs do not dominate over flat sites; this might
be achieved by training with more sites.

FIGURE 5.33. Examples of two sites and directions for which the final Grid NN models
at (top) 10m AGL and (bottom) 100m AGL perform well. Shows the WAsP (left)
and Grid NN (right) predicted orographic speedup values.

Following this investigation, the next step was to continue creating surrogate models for the
orographic sub-model, but this time focussing on the orographic turn, which is presented in the
next chapter.
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6
OROGRAPHIC TURN SURROGATE MODELS

The second set of investigations in this work centred on the orographic turn model. Together,
the orographic speedup and turn values for a site give the change in the wind velocity
due to terrain elevation, calculated with WAsP’s orography sub-model. Given the success

of the Grid Neural Network approach as a surrogate model for orographic speedup (Section 5.4)
compared to CNNs, all investigations on orographic turn surrogate models used the Grid NN
approach.

6.1 Inputs

Since WAsP uses a single orographic sub-model to calculate both the orographic speedup and
turn, the inputs for the surrogate models for both of these variables were tested using the same
inputs, i.e. normalised elevation, directional components elevation gradients, and roughness.

6.2 Grid Neural Networks

The Grid Neural Network method used in these tests is described in Section 5.4. As they are
calculated with same WAsP sub-model, the orographic turn surrogate model investigations were
informed by the results from the orographic speedup tests. For all the tests detailed here, the
DNN section of the Grid NN was formed of 500 neurons arranged as 10 layers of 50 neurons, with
batch normalisation followed by ReLU activation after each layer. The Grid NN models described
here all output a single point value of orographic turn.
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6.2.1 Sub-Grid Size

The first step in the Grid NN approach was to determine an appropriate sub-grid size to apply to
the input terrain maps. Due to time constraints, it was not possible to test every combination of
sub-grid sizes for each input map (e.g. sub-grid size of 3km square for the elevation map, and
1km square for the roughness map in the same model), so for each run the same sub-grid size is
applied to every input variable.

Figure 6.1 shows the results of sub-grid size tests, using data from a single site (Site 1) at
10m AGL, and with inputs of min-max normalised elevation, elevation gradient parallel to the
wind direction, and roughness. Figure 6.2 shows the results of similar tests for Site 2 at 100m
AGL. Table 6.1 presents the MAE and error standard deviation for the tests shown. In both
figures, the single point grid shows no ability to learn transformations of the input maps, and
the largest (3.2km) sub-grid results lack definition. For the 10m AGL tests (Figure 6.1), the
optimum sub-grid size looks to be around 1.2km or 1.6km square but both have similar error
metrics, making it difficult to distinguish between these results. For the 100m AGL tests again
the orographic turn predictions using 1.2km and 1.6km square sub-grids are the most promising,
from Figure 6.2. The performance metrics of all tests are given in Table B.7.

Run ID Height
AGL (m)

Site Sub-Grid Side
Length (km)

MAE Error
Std. Dev.

OT-G-1 10 1 Single point 1.58 2.29
OT-G-2 10 1 0.8 1.27 1.77
OT-G-3 10 1 1.2 1.19 1.66
OT-G-4 10 1 1.6 1.36 1.78
OT-G-5 10 1 3.2 1.21 1.78
OT-G-16 100 2 Single point 0.506 0.734
OT-G-17 100 2 0.8 0.458 0.597
OT-G-18 100 2 1.2 0.385 0.545
OT-G-19 100 2 1.6 0.430 0.598
OT-G-20 100 2 3.2 0.443 0.586

Table 6.1: Performance metrics for orographic turn Grid NN sub-grid size investigations in °;
minimum values for each set of tests are highlighted.
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FIGURE 6.1. Comparison of the WAsP and Grid NN predicted orographic turn values
for Site 1, sector 9 at 10m AGL, for the sub-grid sizes of (clockwise from top right):
single point; 1.2km square; 3.2km square; 1.6km square; 0.8km square.
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FIGURE 6.2. Comparison of the WAsP and Grid NN predicted orographic turn values
for Site 2, sector 1 at 100m AGL, for the sub-grid sizes of (clockwise from top right):
single point; 1.2km square; 3.2km square; 1.6km square; 0.8km square.
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6.2.2 Inputs

Since the sub-grid sizes of 1.2km and 1.6km square seemed to give similar performance from the
plots of the results and the error metrics, both of these configurations were then tested using
input data from 11 sites (Sites 1-11 in Appendix A). An additional test was also carried out which
included the elevation gradient perpendicular to the wind direction as an input; however the
available computing power meant that runs including this additional input could only use data
from seven sites for training, rather than 11 sites. At 10m AGL, a comparison of the results for
Site 1 and Site 2 for the two grid sizes and the additional input variable are shown in Figure 6.3.
The equivalent tests for the same two sites at 100m AGL are given in Figure 6.4. From these
results and the performance metrics in Table 6.2, 1.2km and 1.6km sub-grid sizes are comparable
in accuracy. Providing the perpendicular elevation gradient as an input gives worse error metrics
(e.g. an increase in MAE from 0.993° to 1.48° at 10m AGL). For consistency with the orographic
speedup surrogate models in Chapter 5, and to allow for training with the maximum number
of sites possible, the 1.2km sub-grid without the perpendicular elevation gradient as input was
selected for further testing.

FIGURE 6.3. Comparison of the WAsP and Grid NN predicted orographic turn values
at 10m AGL for Sites 1 (top) and 2 (bottom), showing (left-right): WAsP; sub-grid
size of 1.2km square; sub-grid size of 1.6km square; sub-grid size of 1.2km square
including perpendicular elevation gradient as an input.
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FIGURE 6.4. Comparison of the WAsP and Grid NN predicted orographic turn values
at 100m AGL for Sites 1 (top) and 2 (bottom), showing (left-right): WAsP; sub-grid
size of 1.2km square; sub-grid size of 1.6km square; sub-grid size of 1.2km square
including perpendicular elevation gradient as an input.

Run ID Height
AGL (m)

Elevation Gradient @
90° Input?

Sub-Grid Side
Length (km)

MAE Error
Std. Dev.

OT-G-21 10 No 1.2 0.993 2.88
OT-G-22 10 No 1.6 0.955 3.03
OT-G-23 10 Yes 1.2 1.48 3.44
OT-G-26 100 No 1.2 0.381 0.603
OT-G-27 100 No 1.6 0.406 0.616
OT-G-28 100 Yes 1.2 0.483 0.715

Table 6.2: Performance metrics for orographic turn Grid NN input investigations in °; minimum
values for each set of tests are highlighted.

6.2.3 Outputs

For the orographic speedup Grid NN models investigated in Section 5.4, the model outputs (i.e.
speedup factors) range between 0.0 and 4.0. However, the orographic turn values calculated by
both WAsP and the Grid NN models tested here vary between ±180°, a far larger numerical
range. To investigate whether the magnitude of the output affected the accuracy of the model
predictions, a brief sensitivity study was undertaken where the orographic turn values were
either converted to radians, or normalised to a scale of ±1.0, before being used to train the Grid
NN models. These tests used a sub-grid size of 1.2km square, did not include the perpendicular
elevation gradient as an input, and kept all other conditions the same as for Section 6.2.2.

The results of these tests are given for Sites 1 and 2 in Figure 6.5 (10m AGL) and Figure 6.6
(100m AGL), and the performance metrics are in Table 6.3. The plots and error metrics have been
post-processed such that the errors and orographic turn plots are in °. From these results there
does not seem to be much of a case for converting the orographic turn to radians, or normalising
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to a range of ±1.0. There is no consistent improvement when the turn is converted to radians,
and at 10m AGL the test with normalised orographic turn output collapsed (Figure 6.5), despite
having performance metrics that are not significantly worse than similar runs (Table B.8).

FIGURE 6.5. Comparison of the WAsP and Grid NN predicted orographic turn values
at 10m AGL for Sites 1 (top) and 2 (bottom), with orographic turn predicted in
(left-right): °; radians; orographic turn / 180 (i.e. normalised to between ±1). The
plots are all converted to ° in post-processing.

FIGURE 6.6. Comparison of the WAsP and Grid NN predicted orographic turn values
at 100m AGL for Sites 1 (top) and 2 (bottom), with orographic turn predicted in
(left-right): °; radians; orographic turn / 180 (i.e. normalised to between ±1). The
plots are all converted to ° in post-processing.
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Run ID Height AGL (m) Unit MAE Error Std. Dev.

OT-G-21 10 ° 0.993 2.88
OT-G-24 10 rad 0.968 2.82
OT-G-25 10 - 1.15 3.17
OT-G-26 100 ° 0.381 0.603
OT-G-29 100 rad 0.372 0.624
OT-G-30 100 - 0.401 0.619

Table 6.3: Performance metrics for orographic turn Grid NN output investigations in °; minimum
values for each set of tests are highlighted.

6.2.4 Final Models

As outlined in Section 5.4.5, although the tests described above were all carried out with a
consistent pattern of sub-grid points as inputs, some of these sub-grid points were found to be
different position than intended. This issue was fixed and the final orographic turn models at
10m and 100m AGL were re-run. Both of these models had:

• Inputs:

– min-max normalised elevation, elevation gradient parallel to the wind direction, and
roughness;

– normalised wind direction (rather than rotating the input and output grids);

– input sub-grid size of 1.2km square;

• Outputs:

– single point output of orographic turn in °;

– no data balancing;

• Deep Neural Network:

– 10 hidden layers of 50 neurons each, with batch normalisation and ReLU activation
after each layer;

• Training / Validation:

– training and validation data from 11 sites (Sites 1-11 in Appendix A) with 12 direction
sectors each, where nine sectors were used for training, two for validation and one
was held out for inference;

– training of between 50 and 60 epochs, stopping at the best epoch between these limits
(with patience of three);

– training with an Adam optimiser method, and MSE loss.
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Overfitting is potentially a problem in these runs as the loss curves (see Figure 6.7 for the
losses at 10m AGL) show more improvement in the training data than for the validation data. The
step changes in the orographic turn at ±180° (discussed further in Section 6.2.4.1) could be a factor
in the large validation losses, as these loss patterns are not seen in either the orographic speedup
(Chapter 5) or roughness speedup loss curves (Chapter 7). However, this could be investigated in
greater depth in the future. For ease of comparison, the table of performance metrics is presented
here for the final Grid NN models at both heights AGL, for both validation and inference data.

FIGURE 6.7. Loss curves for final Grid NN for orographic turn at 10m AGL.

Run ID Height AGL (m) Validation / Inference MAE Error Std. Dev.

OT-G-31 10 Validation 0.901 2.66
OT-G-31 10 Inference (New Sites) 1.39 3.11
OT-G-32 100 Validation 0.397 0.635
OT-G-32 100 Inference (New Sites) 0.446 0.786

Table 6.4: Performance metrics for the final orographic turn Grid NN models in °.

6.2.4.1 Validation

Figure 6.8 shows the orographic turn predictions for Sites 1-4 from the final Grid NN model at
10m AGL. The outputs from this model have good accuracy in areas where the shape of the turn
follows the shape of an input variable closely (e.g. the valleys in Site 3), but it also performs well
over flat areas where there is little or no turn, which are present in all of the sites. The scales of
the model-predicted turn are close to those calculated by WAsP, with the error maps showing
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mostly small differences (as in Figure 6.9). Most of the large differences occur at points of sharp
changes in the turn, e.g. the edges of valleys in Site 3, and (similar to the orographic speedup
final model) this model has failed to recognise areas of turn in the "shadow" of the hill in Site 2,
which can be clearly seen in the error map. The model performs quite poorly on Site 1, where
the effect of the large hill on the orographic turn seems to be beyond the capability of the Grid
NN model. For this site, with the wind coming from 240°, the scatter plot in Figure 6.10 shows
that there is reasonable agreement between the real and predicted outputs for small turn values,
but that the larger positive and negative turn values are not predicted well. The Mean Absolute
Error over all sites is less than 1°.

The maximum and minimum errors at 10m AGL, which are both large outlier values, occur
for a single site and direction, shown in Figure 6.11. This site contains a winding valley feature,
for which WAsP calculates orographic turn values that change rapidly from +180° to -180°. For
the Grid NN model, such sudden changes in output over a smooth, small change in the input
(given that the elevation is relatively constant within the valley) may be very difficult to learn,
hence the large errors here. There is also a question on whether it would be physically plausible
to turn the incoming wind by 180° in a valley, as calculated by WAsP.

FIGURE 6.8. Final Grid NN model for predicting orographic turn (in °) at 10m AGL for
(top-bottom) Sites 1, 2, 3 and 4, showing (left-right): WAsP calculated turn; Grid
NN predicted turn; the difference (Grid NN - WAsP).
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FIGURE 6.9. Bar chart of the errors (Grid NN - WAsP) in orographic turn over the
validation data using the final Grid NN model at 10m AGL.

FIGURE 6.10. Scatter graph of the orographic turn at each grid point predicted by the
final Grid NN at 10m AGL compared to the WAsP calculated values, for Site 1
sector 9 (wind from 240°).
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FIGURE 6.11. Orographic turn output from the final Grid NN model at 10m AGL, for
Site 5, sector 6; the detail shown is of a valley with high orographic turn values.
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The final Grid NN model at 100m AGL has the same setup as that at 10m AGL, as they emu-
late data from the same WAsP potential flow model (discussed in Section 5.4.5). The magnitude
of the orographic turn decreases with height, as the influence of the terrain orography lessens;
this leads to much smaller error values for 100m AGL than 10m AGL (Table 6.4). In the Grid NN
predictions of the turn at 100m AGL for Site 4 (Figure 6.12), the roughness map input is visible
in the model output (as was the case for orographic speedup in Figure 5.26). This seems to be
more likely to occur for flat sites, and could have been exacerbated by the small orographic turn
values at 100m AGL. The Grid NN model does not capture the largest turn values in Sites 1 and
2, but for Site 3 where the areas of high turn match the terrain features the model performs well.
Figure 6.13 shows that over 90% of the errors in this model are less than 1°.

FIGURE 6.12. Final Grid NN model for predicting orographic turn (in °) at 100m
AGL, showing (left-right) Grid NN predicted turn, WAsP calculated turn and the
difference (Grid NN - WAsP) for (top-bottom) Sites 1, 2, 3 and 4.
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FIGURE 6.13. Bar chart of the errors (Grid NN - WAsP) in orographic turn over the
validation data using the final Grid NN model at 100m AGL.

6.2.4.2 Inference (Testing)

For the reasons set out in Section 5.4.5.2, three new sites were used for inference on the final
orographic turn Grid NN models at 10m and 100m AGL, with the predictions displayed in Figures
6.14 and 6.17 respectively. At 10m AGL, there are some small areas of very high turn calculated
by WAsP (see Site 12 and Figure 6.15), which resulted in some very high error Grid NN point
predictions despite the overall error being small. At 100m AGL the orographic turn predictions
for Site 12 seem better, but any significant areas of high turn (such as the tops of ridges, or
valleys) are not captured by the Grid NN, leading to the conclusion that the model has learned to
apply high turn values primarily at steep slopes. The roughness in Site 14 incorrectly dominated
the orographic turn predictions at 10m AGL, but this has improved slightly at 100m AGL. The
turn values in the valley in Site 13 are predicted well at both heights. The full performance
metrics are detailed in Table B.9 and the overall errors are shown in Figures 6.16 and 6.18. The
MAE values are 1.4° at 10m AGL and 0.45° at 100m AGL for the inference sites. This compares
to MAE values of 0.90° and 0.40° at 10m and 100m AGL respectively over the validation data.
Potential reasons for the large increase in error at 10m AGL could be the high turn areas at 10m
AGL as discussed above.
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FIGURE 6.14. Final Grid NN model for predicting orographic turn (in °) at 10m AGL
for (top-bottom) Sites 12, 13 and 14, showing (left-right): WAsP calculated turn;
Grid NN predicted turn; the difference (Grid NN - WAsP).

FIGURE 6.15. Scatter graph of the orographic turn at each grid point predicted by the
final Grid NN at 10m AGL compared to the WAsP calculated values, for Site 12
sector 6 (wind from 150°).
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FIGURE 6.16. Bar chart of the errors (Grid NN - WAsP) in orographic turn over three
new sites using the final Grid NN model at 10m AGL.

FIGURE 6.17. Final Grid NN model for predicting orographic turn (in °) at 100m AGL
for (top-bottom) Sites 12, 13 and 14, showing (left-right): WAsP calculated turn;
Grid NN predicted turn; the difference (Grid NN - WAsP).
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FIGURE 6.18. Bar chart of the errors (Grid NN - WAsP) in orographic turn over three
new sites using the final Grid NN model at 100m AGL.
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6.3 Conclusions

The Grid Neural Network approach has proven reasonably successful as a surrogate model for
orographic turn, using a sub-grid size of 1.2km square, at both 10m and 100m AGL. Figure 6.19
displays examples of a site and direction at each height for which the Grid NN models perform
well. The effects of certain complex terrain features are captured, such as valleys where the turn
values do not change rapidly. However, these models could benefit from training with more sites,
and possibly from different combinations of input variables. The poor performance both of the
final models demonstrated on Site 1 might be due to the scale of the hill in this terrain being
larger than the sub-grid size, as the model does seem able to give better predictions of the effect
of the smaller hill in Site 2, and the valleys in Site 3. This would suggest that adding input points
further from the prediction point may help, despite larger sub-grids having proven unsuccessful.

FIGURE 6.19. Examples of two sites and directions for which the final Grid NN models
at (top) 10m AGL and (bottom) 100m AGL perform well. Shows the WAsP (left)
and Grid NN (right) predicted orographic turn values.

Having created surrogate models for both components of the WAsP orography sub-model,
roughness speedup was the final variable to be investigated, as detailed in the next chapter.
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7
ROUGHNESS SPEEDUP SURROGATE MODELS

The WAsP roughness speedup sub-model has a number of fundamental differences when
compared to the orographic speedup sub-model. The changes in wind speed from terrain
roughness are due to the growth of an Internal Boundary Layer at a roughness transition,

which alters the flow downstream of the transition to an extent dependent on the roughness
values on either side of the transition. The roughness speedup therefore changes significantly with
height, as the new flow regime and turbulence introduced at a roughness transition permeates
vertically upwards with downstream distance, meaning that flow at 100m AGL will be affected
by the same roughness transition much further downstream than at 10m AGL.

7.1 Inputs

WAsP uses roughness, meso-roughness and roughness changes to determine the roughness
speedup across a terrain (Section 2.1.3), hence they are all likely to be necessary inputs to a
surrogate model. Roughness values are between 0.0 and 1.5, with 0.0 used for water (lakes,
sea, etc) and values >1 used for tall forests. For the sites used in this work, most roughness
values were between 0.0 and 0.5, with only one site having roughness values above 0.5. The
meso-roughness has similar values to the roughness over a terrain, but since it is calculated
per sector and is the effective roughness experienced by the geostrophic wind, it has "roughness
persistence" features downstream of roughness changes. The roughness changes over a terrain
are integer values, and are also dependent on the wind direction; the maximum number of
roughness changes permitted per sector is 10 [54]. An example of the roughness, meso-roughness
and roughness changes for a single site and direction are shown in Figure 2.1.

These variables have significantly different scales, with the scale of roughness changes being
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around 10 times larger than the roughness and meso-roughness values. In order to ensure that
no single type of input would dominate the predictions, the roughness and meso-roughness values
were transformed in some tests (where specified) to have similar ranges to the roughness changes.
From the equations for roughness speedup specified in the European Wind Atlas [8], the basis for
the WAsP model, the wind speed is dependent on the natural log of the inverse of the roughness.
Hence, to even out the scales of all the input variables, tests were run which included the natural
log of the roughness and meso-roughness, and the natural log of the inverse of the roughness and
meso roughness. To avoid errors from zero division or taking the logarithm of zero, areas of water
which have a roughness value of 0.0 were assigned a roughness value of 2E-4, which is the value
that the WAsP 11 manual [54] states is the true roughness length of water, and is a small value
in this context.

Since wind resource grids at 100m AGL are likely to be of more use to wind energy practition-
ers than 10m AGL (as it is closer to the height of wind turbine hubs), and the roughness speedup
patterns at 100m AGL bear less resemblance to the terrain features, initial tests used data from
100m AGL.

7.2 Inputs Testing

The first investigation into roughness speedups was to find which inputs were of most importance.
Using Grid Neural Networks with one type of input variable each, an optimum grid size was
found for each input, with the results shown in Figure 7.1 and metrics given in Table B.14. The
inputs used were roughness, meso-roughness and roughness changes, with no transformations
applied. However, it is clear that none of these models performed particularly well, and hence no
single type of input contains enough information to calculate roughness speedups over terrain.
The subsequent runs therefore combine these inputs and their various transformations. These
single input variable tests were not repeated for 10m AGL due to the lack of success at 100m
AGL.

FIGURE 7.1. Best results from Grid NN models with a single input variable type (left-
right): roughness, meso-roughness; roughness changes for Site 1 at 100m AGL.
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7.3 Convolutional Neural Networks

Roughness speedups, in particular those at large vertical heights, require information from a
large surrounding area of terrain - the recommended minimum map size to accurately calculate
speedups in the WAsP manual is 20km x 20km [54]. At these sizes, the problem becomes almost
an image transformation task, and so Convolutional Neural Networks were again considered
as a potential surrogate model architecture. Note that unlike the CNNs tested for orographic
speedup (Section 5.3), in this investigation all input and output grids were rotated such that the
wind direction was always from 0°.

7.3.1 Initial Tests

Testing of the CNNs for roughness speedups began by using speedup predictions at 100m AGL.
As with the orographic speedup CNNs, the first networks tested used comparatively small filters
in an autoencoder-style structure. Unfortunately, the majority of these runs "collapsed", giving
no useful outputs, for example by predicting a uniform speedup value at every coordinate point.
Possible reasons for this could be the relatively small data set available for training, inappropriate
filter sizes, or that the input data grids did not encompass a sufficiently large area to encompass
sufficient information to calculate roughness speedups at 100m AGL. Few of the initial CNN
tests showed any promise, with an example of the results in Figure 7.2 (error metrics in Table
B.10).

FIGURE 7.2. Results from a CNN for predicting the roughness speedup at 100m AGL,
for Site 1 (top) and Site 2 (bottom), with (left-right) WAsP calculated speedup and
CNN predicted speedup.
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Although the roughness speedup values at 100m AGL may be more useful to industry, they
proved to be difficult to model with simple CNNs. However the terrain roughness has a greater
influence on the wind flow close to the ground; this can be seen for Site 1 in Figure 2.2, where
the scale of the roughness speedup at 10m AGL is between +14% and -7% while at 100m AGL
it is between +3% and -1%. For training surrogate wind flow models, the larger magnitudes
of roughness speedups at 10m AGL could give more information for the Neural Networks to
train on. In addition, the shape of the roughness speedups at 10m AGL is closely correlated to
the roughness terrain features; again from Figure 2.1 and Figure 2.2 the direct influence of the
roughness, meso-roughness and roughness changes on the roughness speedups is easier to see at
10m AGL than at 100m AGL.

7.3.2 Transfer Learning from 10m to 100m AGL

To give the CNNs to best chance of learning relations between the terrain variables and the
roughness speedup, the variables and their transformations were provided as inputs to the CNNs.
The full set of inputs was:

• roughness, natural log of roughness, and natural log of inverse roughness;

• meso-roughness, natural log of meso-roughness, and natural log of inverse meso-roughness;

• difference between roughness and meso-roughness;

• roughness changes.

as shown in Figure 7.3 for Site 1 sector 9.
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FIGURE 7.3. All inputs provided for Site 1 sector 9 roughness speedup CNNs, where
"Ro" is roughness and "MR" is meso-roughness.

As the roughness speedups at 10m AGL contain more information for training an NN, and
the speedups at different heights are related, it was thought that transfer learning might achieve
good speedup predictions at multiple heights. Transfer learning has been successfully used within
the image processing field, where trained models such as ImageNet [59] which have been proven
to work, are applied to different purposes (e.g. [69]). For the current problem, a CNN trained on
data at 10m AGL could serve as a baseline model, then have additional training using data at e.g.
25m or 100m AGL.

Figure 7.4 shows the results of transfer learning on a baseline run using only data from Site 1,
followed by runs with additional training at 25m AGL or 100m AGL. The error statistics for these
runs are presented in Table B.11. In the baseline CNN at 10m AGL the model has been unable
to completely learn that the area of high speedup is downwind of the grass-to-lake roughness
transition. This is exacerbated in the transfer learning models, with the roughness transition
emphasised in the CNN predictions, unlike the WAsP calculated speedups. The error limits stay
between ±30% for all three runs, which is high compared to the actual speedup values. At 25m
and 100m AGL there is evidence (Figure 7.4) that the CNNs have learned to move the high
speedup areas further downstream of the roughness transition than at 10m AGL. However it
seems likely (judging by their shape and position) that these speedup areas are re-scaled versions
of the meso-roughness and roughness changes, rather than new relations learned by the CNN.
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FIGURE 7.4. Transfer Learning of a CNN for roughness speedup for Site 1 only, showing
(left-right): WAsP; CNN; difference between them. Starting with a baseline model
trained on data from 10m AGL (top), which is then trained with additional data
from 25m AGL (middle), or alternately trained with additional data from 100m
AGL (bottom). Note that the 10m AGL model was the baseline for both additional
heights.

7.3.3 Batch Normalisation

From this point on, the CNNs used training data from multiple sites at 10m AGL for training each
model. A reasonably successful CNN architecture was tested in Figure 7.5, where the inclusion of
batch normalisation layers makes a significant improvement to the results (see Table B.12 for
the error metrics and CNN architecture). The batch normalisation process (detailed in Section
3.6.1) normalised the output from each convolutional layer to have a mean of 0.0 and standard
deviation of 1.0. Given the effect that this has on the results in Figure 7.5, it is assumed that
the varying scales of the inputs, and the variation between sites, were evened out by the batch
normalisation, allowing the different inputs to be combined to give a reasonable approximation
of the speedup. As seen in Section 7.3.2, the CNN with batch normalisation has not learned to
position the area of high speedup in Site 1 downstream of the roughness transition, and instead
predicts it to occur in the same position as the roughness feature (the lake).
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FIGURE 7.5. Effect of adding batch normalisation layers into CNNs for predicting
roughness speedup at 10m AGL, for Site 1 (top) and Site 2 (bottom).

7.3.4 Filter Sizes

As detailed in Table B.13, the filter sizes for the CNN shown in Figure 7.5 (with batch normalisa-
tion) are small, and so do not take in information from a large input area. To determine whether
greater terrain areas were required as inputs to the CNN, a set of tests were carried out with an
extra convolutional layer added to the batch normalised model in Figure 7.5. The filter size of
this additional initial convolutional layer was larger than any of the following layers, and was
changed for each of tests. The results of these runs are given in Figure 7.6 and Table B.13; it
can be seen that the CNN predicted speedup maps lose clarity when the additional large filter
convolutional layer is included. Edge effects can also be seen when a 51x51 filter is tested, and
while the scales of the speedups improve slightly with large filters for Site 1, the same cannot be
said of Site 2. Overall, the addition of a large filter convolutional layer did not improve on the
baseline CNN.
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FIGURE 7.6. Effect of adding filters of increasing size to the baseline roughness speedup
CNN as the first layer for Site 1 (top) and Site 2 (bottom). Shows (left-right): WAsP;
baseline CNN; additional 15x15 filter; additional 51x51 filter. Note: all input grid
sizes are 250x250.

7.4 Grid Neural Networks

7.4.1 Input and Output Sub-Grid Size

Having exhausted trials of CNNs, and with the Grid NN code updated to take in multiple
input variables (as discussed in Section 5.4.1), the Grid NN approach for roughness speedups
was investigated. As with the orographic speedup investigations, the first stage was to find
appropriate sub-grid sizes for both the inputs and outputs, using data from a single site per test.
The inputs used for each test were:

• natural log of inverse roughness;

• natural log of inverse meso-roughness;

• difference of the natural logs of inverse roughness and inverse meso-roughness;

• number of roughness changes.

These transformations were chosen as the scale of all these inputs is similar, between ±10. The
Grid NN parameters were:

• DNN architecture of 1,000 neurons, split into 10 layers of 100 neurons;

• trained for between 5 and 10 epochs;

• Adam optimiser with MSE loss;

This is a similar structure to the orographic speedup models tested in Section 5.4.5, but with more
capacity as there are more input features and a complex relationship between the inputs and the
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outputs, particularly at 100m AGL. Unlike the orographic speedup and turn Grid NN sub-grid
size tests in Chapters 5 and 6, both the input and the output sub-grid sizes were investigated
here. During the post-processing stage of plotting the validation speedup maps, the predictions
from the Grid NN for each coordinate point were averaged. For example, if a Grid NN model were
to output the speedup values of a square sub-grid of 3x3 adjacent points (Figure 5.9), then the
speedup at every coordinate point in the final output map would be predicted by nine different
iterations of the Grid NN, and the value plotted would be their average. The intended effect of
this was to smooth out the speedup predictions, which could be especially useful for the roughness
speedups at 100m AGL.

Given the results of the sub-grid size tests on orographic speedup and turn, only a small
sample of sub-grid sizes was tested:

• 1.2km square;

• 2.2km square;

• 3.2km square.

The output sub-grids tested were:

• single point output;

• 25 points forming a 5x5 square with side length 0.2km;

• 17 points forming a concentric squares pattern with side length approximately half the
input sub-grid length.

Figure 7.7 shows the effect of increasing sub-grid size (with single point output) at 10m and 100m
AGL. Figure 7.8 shows the difference in using the three output sub-grid methods at 10m AGL
(with 1.2km square input sub-grid) and 100m AGL (with 3.2km square input sub-grid). These
tests were repeated for two other sites, with comparable levels of prediction accuracy to Site 1 at
10m AGL, but with very poor results at all input and output sub-grid configurations at 100m
AGL.

From Figure 7.7 and Table 7.1 the optimal input sub-grid size for 10m AGL is around 1.2km
square, as it has the lowest MAE and minimises the "halo" effect seen around the area of high
speedup. It is difficult to find an optimum input sub-grid size at 100m AGL from Figure 7.7, but
from Table 7.2, 3.2km has the best performance of the three sub-grids tested. This makes sense
given the speedups at this height are affected by terrain features further upstream than at 10m
AGL, and hence require a larger area of terrain data. There is a pronounced smoothing effect
(Figure 7.8) when using multiple output sub-grid points, but when the data from each of the Grid
NN output neurons was plotted separately they were almost identical (as would be expected).
There is little benefit to learning the same input-output relations multiple times, and so the idea
of multiple output sub-grid points was not continued.
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These results show clearly the workings of the Grid NN approach, which "re-prints" the input
maps at various positions, scaling the values appropriately. This leads to a "halo" effect around
the lake in Site 1 at 10m AGL, and at 100m AGL rather than an area of zero speedup, copies of
the lake roughness feature are visible (Figure 7.7).

FIGURE 7.7. Input sub-grid size investigations for Grid NN roughness speedup models
at 10m (top) and 100m (bottom) AGL for Site 1. All runs used a single point output.

FIGURE 7.8. Output sub-grid size investigations for Grid NN roughness speedup models
at 10m (top) and 100m (bottom) AGL for Site 1. At 10m AGL the input sub-grid
size is 1.2km square; at 100m AGL the input sub-grid size is 3.2km square.
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Run ID Input Sub-Grid
Size (km)

Output Sub-Grid
Size (km)

MAE Error Std. Dev.

RS-G-4 1.2 Single Point 0.437 0.781
RS-G-5 2.2 Single Point 0.960 1.35
RS-G-6 3.2 Single Point 1.45 1.71
RS-G-7 1.2 0.2 0.482 0.681
RS-G-8 1.2 0.6 0.438 1.09

Table 7.1: Performance metrics for roughness speedup Grid NN input and output sub-grid
configuration investigation at 10m AGL, in % speedup; minimum values are highlighted.

Run ID Input Sub-Grid
Size (km)

Output Sub-Grid
Size (km)

MAE Error Std. Dev.

RS-G-9 1.2 Single Point 0.543 0.255
RS-G-10 2.2 Single Point 0.550 0.576
RS-G-11 3.2 Single Point 0.279 0.323
RS-G-12 3.2 0.2 0.256 0.200
RS-G-13 3.2 1.6 0.241 0.354

Table 7.2: Performance metrics for roughness speedup Grid NN input and output sub-grid
configuration investigation at 100m AGL, in % speedup; minimum values are highlighted.

7.4.2 Network Size

A study into the appropriate DNN size was undertaken, focussing on the roughness speedups at
100m AGL. These runs were trained on the data from seven1 sites (a consistent subset of sites
1-11 in Appendix A), using the input variables described in Section 7.4.1, with a 3.2km square
input sub-grid and single point output. The DNN architectures tested were:

• 100 neurons (10 layers of 10 neurons);

• 500 neurons (10 layers of 50 neurons);

• 1,000 neurons (10 layers of 100 neurons).

Note that Site 4 is presented here rather than Site 2, as Site 2 showed uniformly poor results at
all network sizes; Site 3 was not one of the seven sites used to train these models. From Figure
7.9, 100 neurons is insufficient to capture the input to output transformations, and there is little
overall benefit to using 1,000 neurons rather than 500 neurons. However, Table 7.3 shows that
both the MAE and standard deviation of the error decrease when the number of neurons is
increased to 1,000; though the decrease in MAE is only 0.3% speedup from 500 to 1,000 neurons.
The model with 500 neurons does not match the scale of the increase in speed downstream of the
lake in Site 1, but it does give a good approximation to zero speedup ahead of the lake. However
with 1,000 neurons, there is an area of decrease in speed ahead of the lake, and a slight loss in

1As four input variable maps were used to train the roughness speedup Grid NNs compared to three variables
needed to train the orography Grid NNs, only seven sites could be used rather than 11 due to computational constraints.
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definition in the "roughness persistence" downstream of the lake. The outputs for Site 4 look
approximately the same for 500 and 1,000 neurons. To avoid overfitting caused by having excess
model capacity, it was judged best to use Grid NN models with 500 neurons at 100m AGL; 500
neurons also proved to be a suitable network size for runs at 10m AGL, using an input sub-grid
size of 1.2km square and single point output.

FIGURE 7.9. Network size investigation for Grid NN roughness speedup models at
100m AGL showing (left-right): WAsP; 100 neurons; 500 neurons; 1,000 neurons.

Run ID Neurons MAE Error Std. Dev.

RS-G-14 50 0.418 0.842
RS-G-15 500 0.369 0.844
RS-G-16 1000 0.339 0.776

Table 7.3: Performance metrics for roughness speedup Grid NN network size tests, in % speedup;
minimum values are highlighted.

7.4.3 Overfitting

Examining the loss curves from the two 500 neuron Grid NN models (for 100m and 10m AGL)
at this point revealed that both models were likely to be overfitting their training data (see loss
curves for the 100m AGL model in Figure 7.10). The results from the 500 neuron model at 10m
AGL at this stage looked very promising for the validation data from all seven sites used. By
contrast, at 100m AGL there were several validation sites for which the 500 neuron Grid NN
produced very poor results; therefore the 100m AGL models were suspected to be more affected
by overfitting.

A Neural Network which is overfit to its training data has learned to reproduce the training
data outputs, rather than learning to apply generalised input-output relations which can be used
on the validation or other new data. To test whether the 500 neuron Grid NN at 100m AGL was
overfitting the training data, a sample of training sites and sectors were plotted and compared
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FIGURE 7.10. Loss curves for Grid NN for roughness speedup at 100m AGL, showing
potential overfitting.

against the validation sites and sectors, seen in Figure 7.11 for Site 2. This does suggest that
the model is overfit, as it is able to produce very good roughness speedup maps for the training
data, but cannot predict the validation data with any accuracy. By contrast, this model produced
good predictions on both the training and validation data for Site 1 (not shown), so it is not clear
which factors affect the overfitting of the model.
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FIGURE 7.11. Comparison of the roughness speedup output from a Grid NN model at
100m AGL for Site 2 (left-right): validation sector 1; training sector 2; training
sector 10.

To combat the issue of overfitting in the 100m AGL run, the widely used techniques of dropout
(Section 3.6.3) and weight regularisation (Section 3.6.4) were applied to re-runs of this model.
For two runs, dropout probabilities of 10% and 25% were applied to all layers (except the output)
after batch normalisation. For another two runs, L2 weight regularisation was implemented
with decay factors of 0.1 and 0.25. Unfortunately, neither of these methods proved successful
(results from one run using each method are shown in Figure 7.12), as the models with weight
regularisation collapsed, and the models employing dropout gave significantly worse performance
than the baseline run. It is possible that the parameters used for weight regularisation and
dropout were non-optimal, but it was not deemed worthwhile to conduct a full investigation of
this.
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FIGURE 7.12. Application of techniques to prevent overfitting in a Grid NN model at
100m AGL, for Site 1 (top) and Site 4 (bottom), using (left-right) WAsP; no dropout
or weight regularisation; dropout with 10% probability; weight regularisation with
decay factor 0.1. Note that Site 2 showed uniformly poor output so is not included.

7.4.4 Combining Grid NN and CNN

While the Grid NN approach provided much more promising results than the CNN tests, there
were still improvements to be made to the roughness speedup predictions, especially at 100m
AGL. The conclusion from the CNNs tested was that the input maps were too dissimilar to the
output maps for the CNN filters to learn the input-output transformations with the limited
data available. To overcome this, it was considered whether it would be possible to combine both
modelling approaches, by using the Grid NN predicted speedups as inputs to a CNN. The Grid
NN outputs provided a "first pass" at the roughness speedups, and the CNN was intended to fine
tune them. To test this idea, the outputs from a Grid NN model at 100m AGL, along with the
terrain data, were used as inputs to a series of CNN architectures. Unfortunately, the majority of
these CNNs gave very poor outputs; an example of one of the most promising runs is shown in
Figure 7.13. This combination of approaches did not show much merit, and a full search of all the
CNN parameters was not thought to be worthwhile at this stage.
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FIGURE 7.13. Combining the Grid NN and CNN approaches for roughness speedup
prediction at 100m AGL, by using the output from a Grid NN as the input to a
CNN (as well as other CNN inputs as detailed in Table B.18). For Site 1 (top) and
Site 2 (bottom), plots shown are (left-right): WAsP calculated speedups; Grid NN
predicted speedups used as CNN inputs; CNN predicted speedups.

7.4.5 Final Models

As with the orographic speedup and turn final Grid NN models, the final roughness speedup Grid
NN models for each of 10m and 100m AGL had a fix applied to the input sub-grid patterns, but
otherwise were the same as the 500 neuron runs described in the previous sections. Each of the
final Grid NN roughness speedup models had the following parameters:

• Inputs:

– natural log of inverse roughness, natural log of inverse meso-roughness, difference
of the natural logs of inverse roughness and inverse meso-roughness, number of
roughness changes;

– normalised direction (rather than rotating the input and output grids to have consis-
tent direction);

• Outputs:

– single point output of roughness speedup factor;

– no data balancing;

• Deep Neural Network:

– 10 layers of 50 neurons, each followed by batch normalisation and ReLU activation;

• Training / Validation:
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– trained on data from seven unique sites (a consistent subset of sites 1-11 in Appendix
A);

– trained for between 50 and 60 epochs, using early stopping to terminate training at
the best epoch with a patience of three epochs;

– trained with MSE loss and the Adam optimiser.

The loss curves of the final Grid NN models still show a degree of overfitting (Figure 7.14
presents the loss curves at 100m AGL), which has been discussed in Section 7.4.3. For ease of
comparison, a summarised table of performance metrics is presented here for the final Grid NN
models at both heights AGL, for both validation and inference data.

FIGURE 7.14. Loss curves for final Grid NN for roughness speedup at 100m AGL.

Run ID Height AGL (m) Validation / Inference MAE Error Std. Dev.

RS-G-22 10 Validation 0.768 1.45
RS-G-22 10 Inference (New Sites) 0.472 1.16
RS-G-23 100 Validation 0.517 0.980
RS-G-23 100 Inference (New Sites) 0.384 0.953

Table 7.4: Performance metrics for the final roughness speedup Grid NN models in % speedup.

7.4.5.1 Validation

Note that for consistency with the final orographic speedup and turn models, the final roughness
speedup models were run on the validation data from sites 1-11, despite being trained on a subset
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of seven of these sites.
The final Grid NN model for predicting roughness speedup values at 10m AGL used an input

sub-grid size of 1.2km square; the speedups predicted by this model are given in Figure 7.15.
With the exception of Site 2, the speedups produced by this Grid NN match the ground truth well
in terms of scale and shape. For Site 2 there is a noticeable difference in the scales of the speedup,
but the detailed shapes of the speedup areas are captured well. The error maps show that the
largest differences occur at sharp transitions between different speedup magnitudes, which
matches the errors seen at sharp elevation slopes in the orographic speedup models (Section
5.4.5.1). A common strength between the Grid NN models for orographic and roughness speedups
was the ability of these models to predict the correct speedups over flat areas, or terrain with
no roughness changes. The close correlation of the input maps of roughness, meso-roughness
and roughness changes to the speedup at 10m AGL meant that the Grid NN could re-scale and
combine the input maps to give a good approximation of the speedup. However, the number
of neurons in the Grid NN is sufficiently large that more complex relations are likely to have
been learned. One significant area of improvement over the CNNs tested is shown in Site 1,
where the Grid NN has learned to apply the increase in speed due to the transition from grass to
lake, slightly downstream of the transition. The error bar plot in Figure 7.16 confirms that most
differences (91%) between the model and WAsP outputs are within ±2% speedup, with very few
extreme errors. These results are still in need of some smoothing, and while the methods tested
here (multiple output points, additional CNN) were not successful, it would be a useful avenue to
try in the future.
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FIGURE 7.15. Final Grid NN model for predicting roughness speedup at 10m AGL for
(top-bottom) Sites 1, 2, 3 and 4, showing (left-right): WAsP calculated speedup;
Grid NN predicted speedup; the difference (Grid NN - WAsP).

FIGURE 7.16. Bar chart of the errors (Grid NN - WAsP) in roughness speedup over the
validation data using the final Grid NN model at 10m AGL.
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Results from the final Grid NN model for roughness speedups at 100m AGL are given in
Figure 7.17; this model used an input sub-grid size of 3.2km square. The loss curves of this model
showed evidence of overfitting, as was discussed in Section 7.4.3 for previous runs. The outputs
from the model for Sites 1 and 4 were reasonable, with some errors in areas of abrupt change
in speedup, and in Site 1 where the model has had to "erase" the shape of the lake from the
speedup map. With Figure 7.17, Site 1 demonstrates the ability of the Grid NN approach to
handle multiple spatial scales, as these models have learned to apply the effects of roughness
transitions on speedup at different distances downstream at different heights, unlike the CNNs
that were tested. There is generally good correlation between the predicted and ground truth
speedup values, as seen in Figure 7.18. The results for Site 3 have the correct speedup shape,
but have incorrect values; however as the overall scale of these speedups are between ±1% there
is likely to be small overall error for this site. Site 2, as always, gives very poor performance
at 100m AGL. There are some areas of high and low speeds in this site which approximate the
WAsP speedup map, but judging from previous results it is likely that the model has overfit the
training data from this site. There is no obvious reason for Site 2 to be more challenging than
the others for the Grid NN to predict; it could be that as the sub-grid is smaller than the large
roughness area, the sub-grids do not contain sufficient information to predict the changes in
speed caused by this terrain feature. The majority of errors are between ±1% speedup as shown
in Figure 7.19.

Since the input and output grids are not rotated, the directional information comes from
both the normalised wind direction input, and the input maps themselves, which is impressive
given the relatively sparse patterns of input sub-grid points provided and the highly direction-
dependent speedups.
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FIGURE 7.17. Final Grid NN model for predicting roughness speedup at 100m AGL
for (top-bottom) Sites 1, 2, 3 and 4, showing (left-right): WAsP calculated speedup;
Grid NN predicted speedup; the difference (Grid NN - WAsP).

FIGURE 7.18. Scatter graph of the roughness speedup at each grid point predicted by
the final Grid NN at 100m AGL compared to the WAsP calculated values, for Site
1 sector 9 (wind from 240°).
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FIGURE 7.19. Bar chart of the errors (Grid NN - WAsP) in roughness speedup over the
validation data using the final Grid NN model at 100m AGL.
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7.4.5.2 Inference (Testing)

When the final Grid NN model for roughness speedup at 10m AGL was run on Sites 12-14 for
inference, the results (Figure 7.20) were very promising, with 94% of errors between ±2.4%
speedup (Figure 7.21). Two of the sites (Sites 12 and 14) tested contained well-defined areas of
roughness and hence speedup, which the Grid NN can predict well at this height. The roughness
speedup over the valley in Site 13 is also calculated with reasonable accuracy by the Grid NN,
although the error maps show that the "roughness persistence" area downstream of the valley
feature has not been captured. The MAE at 10m AGL over these new sites was 0.47% (Table
7.4), compared to 0.77% for the validation data. This increase in accuracy over the test sites is
unusual, but it is likely to be due to the (unintentional) choice of inference sites with well-defined
areas of constant roughness, as the Grid NN model predicts the speedups over these terrains
well.

FIGURE 7.20. Final Grid NN model for predicting roughness speedup at 10m AGL for
(top-bottom) Sites 12, 13 and 14, showing (left-right): WAsP calculated speedup;
Grid NN predicted speedup; the difference (Grid NN - WAsP).
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FIGURE 7.21. Bar chart of the errors (Grid NN - WAsP) in roughness speedup over
three new sites using the final Grid NN model at 10m AGL.

The inference results for the final Grid NN at 100m AGL are given in Figure 7.22. Sites 12 and
13 had very low roughness speedup magnitudes at 100m AGL, so the errors are exacerbated in
Figure 7.22. Sites 12 and 14 contained relatively small areas of speedup changes in the directions
shown in this figure. The speedups predicted for these sites at 100m AGL by the final Grid
NN have room for improvement, as the slowdown shape in Site 14 is badly defined, and the
magnitudes of the speedups in the other sites are inaccurate. The scatter graph of the real versus
predicted speedup values over Site 12 (with wind from 150°) in Figure 7.23 shows poor correlation
between the model and WAsP values, but the magnitudes of the speedups are small, and from
Figure 7.22 most of this site has constant roughness speedup. The error bar chart in Figure 7.24
confirms that most errors are small, with no general under- or overprediction from the Grid NN.
Overall, the MAE over these sites at 100m AGL is 0.38%, compared with an MAE of 0.52% over
the validation data; again the decrease in MAE over the inference sites as unexpected, but likely
to be due to the Grid NN’s ability to predict large areas of zero speedup well.
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FIGURE 7.22. Final Grid NN model for predicting roughness speedup at 100m AGL for
(top-bottom) Sites 12, 13 and 14, showing (left-right): WAsP calculated speedup;
Grid NN predicted speedup; the difference (Grid NN - WAsP).

FIGURE 7.23. Scatter graph of the roughness speedup at each grid point predicted by
the final Grid NN at 100m AGL compared to the WAsP calculated values, for Site
12 sector 6 (wind from 150°).
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FIGURE 7.24. Bar chart of the errors (Grid NN - WAsP) in roughness speedup over
three new sites using the final Grid NN model at 100m AGL.
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7.5 Conclusions

The investigations into roughness speedup surrogate modelling presented here have given further
insight into the workings of the Grid Neural Network approach, demonstrating the strength of
these models when the output can be approximated well by re-scaling and combining the input
variables. The results from the final Grid Neural Network models at 10m AGL had superior
performance to those at 100m AGL, but there were some sites for which the final Grid NN model
at 100m AGL performed well, as shown in Figure 7.25. This work has provided evidence that the
Grid NN method can out-perform Convolutional Neural Networks at calculating the wind flow
over rough terrain with a limited amount of training data, and appropriate sub-grid sizing.

FIGURE 7.25. Examples of two sites and directions for which the final Grid NN models
at (top) 10m AGL and (bottom) 100m AGL perform well. Shows the (left) WAsP
and (right) Grid NN predicted roughness speedup values.

This is the final WAsP variable for which surrogate modelling was investigated, and together
with the data-driven orographic speedup and turn models, produced an interesting set of results
to consider. Conclusions and suggestions for further work follow in the next chapter.
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8
CONCLUSIONS AND FURTHER WORK

8.1 Conclusions

In this work, grid-based machine learning techniques were used to create data-driven models
for the calculation of terrain-induced wind velocity changes, with the aim of emulating
the WAsP orography and roughness sub-models at multiple heights above ground. Investi-

gations were undertaken into the creation of separate machine learning surrogate models for
predicting three different variables at 10m and 100m AGL: orographic speedup, orographic turn
and roughness speedup.

Recent research projects into the creation of data-driven CFD models, particularly those with
grid-based inputs and outputs, have demonstrated that Convolutional Neural Networks can work
well as surrogate flow models. Examples of recent research relevant to this work are the papers
of Bhatnagar et al. [52] and Thuerey et al. [50], both of which use 2-D spatial grids containing an
aerofoil, along with flow conditions (such as free stream speeds and angle of attack) as inputs to
autoencoder-style CNNs, to predict the velocity and pressure fields around the aerofoil on 2-D
grids. Given the similarities between this problem and that of predicting the wind flow-field over
a 2-D grid of terrain, it was initially thought that these architectures would also be successful as
WAsP surrogate models.

The first set of investigations focussed on predicting the orographic speedup (i.e. the change
in wind speed due to terrain elevation), starting with CNNs based on those described above in
[52] and [50], with autoencoder and U-Net [49] style architectures. Despite testing with a range
of filters and hyperparameters, even the most promising of these CNN models had mean absolute
errors of ~2% speedup (at 100m AGL) and gave visibly poor performance. A possible reason
for the lack of success with this type of Neural Network could be the relatively small data set
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available for training and testing; whereas Thuerey et al. [50] had ~27,000 pairs of input-output
data, in this work there were ~250 pairs of input-output grid data.

Following a lack of success in building Convolutional Neural Networks for these tasks, the
novel Grid Neural Network method was developed here, intended to find optimal filter sizes
to inform the CNN tests. This Grid NN approach split the terrain and speedup data grids into
smaller sub-grids (analogous to CNN filters), taking input-output data pairs for model training
and validation from these sub-grids to train a feed-forward, fully-connected Deep Neural Network.
Models with Grid NN architectures proved to be trainable with far less data than the CNNs, with
the optimal sub-grid sizes providing an understandable measure of the spatial input information
required to calculate a given output value. Looking at the outputs produced by various Grid NN
tests, this network appears to "re-scale" and "re-print" combinations of the input variables, which
can result in areas of poor performance around edges in the terrain, such as the perimeter of
roughness areas or steep elevation slopes, where the influence of the edge is extended by the
Grid NN beyond that seen in WAsP. This Grid NN method proved more successful than the
CNNs tested for orographic speedup, achieving generally good correlation between the predicted
and ground truth speedup values at both 10m and 100m AGL for a range of sites with different
complex terrain features. There are similarities between the Grid NN method, which takes input
points in a concentric squares pattern from each sub-grid, and the zooming polar grid of the
WAsP orography model. This work found an optimal sub-grid size (akin to a radius of influence)
of around 1.2km x 1.2km, applied to the terrain data to give good orographic speedup predictions
from the Grid NN models at both 10m and 100m AGL. The final models used the sub-grid size of
1.2km square, with a DNN of 500 neurons (with batch normalisation and ReLU activation after
each layer), and produced MAE values of 3.7% and 1.6% speedup on blind test data for 10m and
100m AGL respectively.

As the WAsP orography sub-model calculates the changes in both the wind speed and direction
(turn) over terrain, the orographic turn surrogate model tests were heavily influenced by the
results of the orographic speedup tests, and so CNNs were not trialled for orographic turn.
Instead, Grid NN models were investigated using different input sub-grid sizes, input variables
and output normalisation. From this, an optimal input sub-grid size of 1.2km x 1.2km was found
(applicable at both 10m and 100m AGL), and using a DNN configuration with 500 neurons
(with batch normalisation and ReLU activation), the final Grid NN models calculated orographic
turn values for blind test data with MAE of 1.4° and 0.45° for 10m and 100m AGL respectively.
The orographic turn Grid NN models struggled to predict accurate turn around large terrain
features, such as large hills, which may be related to the size of the input sub-grids, or could
mean that more input variables are needed (such as additional directional elevation gradients).
Since CNNs were not tested for the orographic turn, it is not possible to say whether they would
be suitable surrogate models here, but based on the performance of CNNs for orographic speedup
it is unlikely with the amount of training data available here.
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After the orography sub-model, machine learning models were tested to emulate the WAsP
roughness sub-model, i.e. the change in wind speeds due to the terrain roughness. Again, the first
stage was to use Convolutional Neural Networks in the style of autoencoders, testing multiple
layers, filter sizes, and hyperparameters. The roughness speedups at 10m AGL were of larger
magnitudes, and produced speedup maps strongly correlated to the terrain maps, and so most
tests used the data at this height. The inclusion of batch normalisation layers was crucial to give
any reasonable results, and convolutional filter sizes were required to be small to avoid excessive
blurring and edge effects. Transfer learning was attempted to achieve good speedup predictions
at 100m AGL based on pre-trained CNNs at 10m AGL, but this was not successful. The CNNs did
not learn to apply the wind speed changes downstream (i.e. away from) the changes in roughness,
which is the physical basis of this sub-model in WAsP. The MAE of the most promising CNN at
10m AGL was 1.7% speedup.

Moving on from the CNNs, Grid Neural Networks were used to predict the roughness speedup
at both 10m and 100m AGL. The input and output sub-grid sizes were investigated, giving
optimal input sub-grids of 1.2km x 1.2km at 10m AGL and 3.2km x 3.2km at 100m AGL, and
single point outputs for both. The Grid NN models excelled at situations where the output grid
was of a very similar form to the input grids; the best example of this is the strong performance of
the final Grid NN model for roughness speedup at 10m AGL. Significant issues with overfitting
of the Grid NN models were found at 100m AGL, but attempts to prevent this through weight
decay and dropout were unsuccessful. Notably this Grid NN was able to learn to apply roughness
speed changes downstream of the roughness transitions that had caused them, which the CNNs
were unable to achieve. The Grid NN method is perhaps not applicable as a surrogate model
for roughness speedups at multiple vertical heights, as the physical basis of the speedups and
how they are calculated in WAsP is very different to the Grid NN approach. The Mean Absolute
Errors for the final Grid NN models for roughness speedup over blind test data at 10m and 100m
AGL were 0.47% and 0.38% speedup respectively.

Despite the connections between the filters of CNNs and the sub-grids of the Grid NNs, the
Grid NN models created here had superior performance compared to the CNNs tested for all
three types of output variables. There was a relatively limited amount of training data available
in this work, particularly compared to the volume of data used to train CNNs for similar fluid flow
surrogate models; it is possible that CNNs would work as surrogate models for WAsP if trained
with enough data. Another route that could have been taken would be to apply transfer learning
to pre-trained CNN models, adjusting them to this particular use case. However, the Grid NN
method proved to be versatile and easy to train with a small number of real sites (11 sites with
12 wind directions each), and produced models with good performances for a range of terrain
features (valleys, hills, plains) and two different ground truth WAsP sub-models (orography and
roughness). Examples of the predictions from these Grid NN models for each type of output are
presented in Figure 8.1.
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FIGURE 8.1. Examples of predictions from the final Grid NN models at 10m AGL for a
single site and direction (Site 8 with wind from 30°). Shows (top-bottom) orographic
speedup, orographic turn and roughness speedup from (left-right) WAsP and Grid
NNs.

Validation of the WAsP model in Bowen & Mortensen [70] showed that the errors in mean
wind speeds compared to measured data are between ±2% for a range of sites, which is a good
level of agreement. The errors in the surrogate models created must be combined with the known
accuracy level of the WAsP model itself, but given that this has been proven relatively small,
the WAsP surrogate models that perform well (e.g. orographic speedup at 10m AGL) can be
considered reasonably accurate flow models over terrain which does not contain steep slopes.

This work has proven that an appropriately sized set of filters over terrain data, coupled
with a sufficiently large Deep Neural Network, can calculate the changes in wind speed and
direction due to the terrain with small errors. While the WAsP model used as ground truth here
is a lower fidelity model than full Computational Fluid Dynamics, it is still industry-standard,
and the techniques used in this project could be investigated for data-driven CFD, which would
be of great interest for both industry and academia. There is significant interest in the wind
energy community on wind flow models which can be run within seconds, for use in wind farm
control; the surrogate models created here could potentially be further developed to be suitable
for such an application. Additionally, while the offshore wind market continues to grow, it is still
easier to install fixed offshore rather than floating wind turbines, which are likely to be close to
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coasts. Hence, terrain-based wind resource modelling remains a valid stage of wind farm location
assessment, to determine the effects on the wind of terrain both inland and coastal.

8.2 Further Work

There are a number of investigations that could be explored further in future work, namely:

• conducting a more in-depth hyperparameter search on the optimiser choice, learning rate,
momentum and loss function for the Grid NN models;

• further investigation into the prevention of overfitting in the Grid NN models, particularly
for orographic turn and roughness speedup;

• extending the surrogate models to calculate speedups or turn at user-specified heights,
either by incorporating the height as an input to the Grid NN models, or interpolat-
ing/extrapolating from separate Grid NN models at set heights;

• combining the orographic speedup and turn, and the roughness speedup, predicted by the
individual Grid NN models to produce data-driven Wind Resource Grids;

• investigating the use of the techniques that have been found to be successful here to form
surrogate models for Computational Fluid Dynamics Wind Resource Grids.
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This appendix shows the elevation and roughness maps for each of the 19 terrain areas
used for training Grid Neural Networks in this work. Note that the scales for roughness
and elevation are unique to each site, in order to best show the features of that site. These

plots are not to scale, and do not have coordinates, in order to preserve anonymity.

FIGURE A.1. Site 1 elevation (L) and roughness (R) maps.
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FIGURE A.2. Site 2 elevation (L) and roughness (R) maps.

FIGURE A.3. Site 3 elevation (L) and roughness (R) maps.

FIGURE A.4. Site 4 elevation (L) and roughness (R) maps.



FIGURE A.5. Site 5 elevation (L) and roughness (R) maps.

FIGURE A.6. Site 6 elevation (L) and roughness (R) maps.

FIGURE A.7. Site 7 elevation (L) and roughness (R) maps.
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FIGURE A.8. Site 8 elevation (L) and roughness (R) maps.

FIGURE A.9. Site 9 elevation (L) and roughness (R) maps.

FIGURE A.10. Site 10 elevation (L) and roughness (R) maps.
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FIGURE A.11. Site 11 elevation (L) and roughness (R) maps.

FIGURE A.12. Site 12 elevation (L) and roughness (R) maps.

FIGURE A.13. Site 13 elevation (L) and roughness (R) maps.
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FIGURE A.14. Site 14 elevation (L) and roughness (R) maps.

FIGURE A.15. Site 15 elevation (L) and roughness (R) maps.

FIGURE A.16. Site 16 elevation (L) and roughness (R) maps.
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FIGURE A.17. Site 17 elevation (L) and roughness (R) maps.

FIGURE A.18. Site 18 elevation (L) and roughness (R) maps.

FIGURE A.19. Site 19 elevation (L) and roughness (R) maps.
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This Appendix gives tables of performance metrics for all runs described in this thesis.
Note that for the metrics:

• "Std. Dev." means standard deviation;

• "Min." means minimum;

• "Max." means maximum;

And for the inputs: Note that for the inputs:

• "MM Elev." is min-max normalised elevation;

• "ZS Elev." is z-scale normalised elevation;

• "Elev. Grad." is elevation gradient parallel to wind direction;

• "Elev. Grad. @ X°" is elevation gradient at angle X clockwise from the wind direction;

• "Ro" is roughness;

• "MR" is meso-roughness;

• "RC" is roughness changes.

For Convolutional Neural Networks:

• conv2d(k=K,c=C) is a 2-D convolutional layer with filter (kernel) size K §K , and C number
of output channels (if different from number of input channels); zero padding applied and
stride length 1 unless otherwise specified;
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• convtr2d(k=K,c=C) is a 2-D transposed convolutional layer with filter (kernel) size K §K ,
and C number of output channels; zero padding applied and stride length 1 unless otherwise
specified;

• SiLU and ReLU are SiLU and ReLU activations;

• batchnorm2d is a 2-D batch normalisation layer.

For Grid Neural Networks:

• XL YN defines a DNN with X hidden layers, each with Y neurons;

• unless specified, all DNNs have 1-D batch normalisation followed by ReLU activation after
each hidden layer.
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B.1 Orographic Speedup

B.1.1 Convolutional Neural Networks

The tables of performance metrics for the validation data from each orographic speedup CNN
surrogate model described in Chapter 5 are given here.

Run ID Inputs Layers MAE Error
Std. Dev.

Min.
Error

Max.
Error

OS-C-1 Elev. Grad @ 0°,
Elev. Grad @ 180°

conv2d(k=5,c=6)
SiLU
batchnorm2d
conv2d(k=5)
SiLU
batchnorm2d
conv2d(k=3)
SiLU
batchnorm2d
convtr2d(k=3)
SiLU
batchnorm2d
convtr2d(k=5)
SiLU
batchnorm2d
convtr2d(k=5,c=1)

2.02 3.40 -50.4 27.1

OS-C-2 Elev. Grad @ 0°,
Elev. Grad @ 180°

conv2d(k=5,c=10)
SiLU
batchnorm2d
conv2d(k=3)
SiLU
batchnorm2d
conv2d(k=1)
SiLU
batchnorm2d
convtr2d(k=1,c=1)

1.89 3.67 -50.9 32.8

OS-C-3 Elev. Grad @ 0°,
Elev. Grad @ 180°

U-Net 0.897 1.52 -19.3 15.7

Table B.1: Performance metrics for orographic speedup Convolutional Neural Networks. All at
100m AGL; numbers of epochs ran and input grid size vary; all trained with MSE loss; input and
output grids not rotated.
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B.1.2 Grid Neural Networks

The tables of performance metrics for the validation data from each orographic speedup Grid NN
surrogate model described in Chapter 5 are given here.

Run ID Site Input Sub-Grid
Size (km)

No. In-
put Pts

MAE Error
Std. Dev.

Min.
Error

Max.
Error

OS-S-1 1 MM Elev. Single
Point

1 1.43 1.98 -10.1 13.4

OS-G-1 1 MM Elev. 0.2 9 1.40 1.95 -9.24 13.0
OS-G-2 1 MM Elev. 1.2 9 1.31 1.84 -8.51 10.3
OS-G-3 1 MM Elev. 2.7 9 1.36 1.89 -7.18 9.75
OS-S-2 1 Elev.

Grad.
Single
Point

1 1.67 2.52 -13.7 16.4

OS-G-4 1 Elev.
Grad.

0.2 9 1.68 2.54 -13.7 14.3

OS-G-5 1 Elev.
Grad.

1.2 9 1.56 2.29 -14.9 12.3

OS-G-6 1 Elev.
Grad.

2.7 9 2.24 2.67 -14.3 11.9

OS-G-7 2 MM Elev. 0.2 17 1.03 1.51 -14.67 9.13
OS-G-8 2 MM Elev. 1.2 17 0.966 1.44 -15.6 7.60
OS-G-9 2 MM Elev. 2.7 17 0.954 1.41 -9.62 9.54
OS-G-10 2 Elev.

Grad.
0.2 17 1.53 1.96 -18.7 11.5

OS-G-11 2 Elev.
Grad.

1.2 17 1.43 1.97 -20.8 14.9

OS-G-12 2 Elev.
Grad.

2.7 17 1.44 2.07 -22.0 9.57

Table B.2: Performance metrics for orographic speedup sub-grid size investigations in % speedup.
All at 100m AGL; normalised direction as an input variable; consistent DNN configurations.
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Run ID Train
Sites

Inputs Architecture Epochs MAE Error
Std. Dev.

Min.
Error

Max.
Error

OS-G-13 1 Elev. Grad. 5L 10N 50 1.36 1.86 -10.8 10.7
OS-G-14 2 Elev. Grad. 5L 10N 50 1.00 1.34 -11.9 13.7
OS-G-15 3 Elev. Grad. 5L 10N 50 1.10 1.14 -8.91 7.69
OS-G-16 1 Elev. Grad.,

MM Elev.,
Rough

5L 10N 50 1.09 1.51 -21.9 7.97

OS-G-17 2 Elev. Grad.,
MM Elev.,
Rough

5L 10N 50 1.33 1.49 -8.36 9.33

OS-G-18 3 Elev. Grad.,
MM Elev.,
Rough

5L 10N 50 0.457 0.705 -10.5 9.08

OS-G-19 1-4 Elev. Grad.,
MM Elev.,
Rough

5L 10N 50 0.790 1.09 -10.5 8.06

OS-G-20 1-4 Elev. Grad.,
ZS Elev.,
Rough

5L 10N 50 0.763 1.12 -15.5 9.71

OS-G-21 1-4 Elev. Grad.,
MM Elev.,
Rough

5L 10N 100 0.856 1.14 -11.5 10.9

OS-G-22 1-4 Elev. Grad.,
MM Elev.,
Rough

Autoencoder 50 0.644 0.911 -10.5 8.20

OS-G-23 1-4 Elev. Grad.,
MM Elev.,
Rough

10L 50N 50 0.692 0.928 -8.77 7.13

OS-G-24 1-11 Elev. Grad.,
MM Elev.,
Rough

10L 50N 50 0.691 1.11 -15.9 17.7

Table B.3: Performance metrics for orographic speedup model improvements in % speedup. All
at 100m AGL; input sub-grids of 1.2km square; single output point; consistent input sub-grid
patterns; normalised direction as an input variable.

Run ID Architecture Rotate? Balancing Batch
Norm.

MAE Error
Std. Dev.

Min.
Error

Max.
Error

OS-G-24 10L 50N No - Yes 0.691 1.11 -15.9 17.7
OS-G-25 Autoencoder No - Yes 0.721 1.17 -16.3 17.7
OS-G-26 5L 10N No - Yes 0.926 1.43 -15.6 18.9
OS-G-27 10L 50N Yes - Yes 0.793 1.43 -24.4 31.3
OS-G-28 10L 50N No - No 1.17 2.17 -24.4 29.0
OS-G-29 10L 50N No Equal Yes 0.904 1.41 -17.4 22.0
OS-G-30 10L 50N No Norm. Dist. Yes 0.905 1.34 -19.7 16.5

Table B.4: Performance metrics for orographic speedup investigations in % speedup. All at 100m
AGL; input sub-grids of 1.2km square; single output point; consistent input sub-grid patterns; all
using MM Elev., Elev. Grad. and Ro as inputs; all trained with data from 11 sites for 50 epochs.

149



APPENDIX B. APPENDIX B

Run ID Architecture Rotate? Balancing Batch
Norm.

MAE Error
Std. Dev.

Min.
Error

Max.
Error

OS-G-31 10L 50N No - Yes 1.89 3.09 -53.4 60.1
OS-G-32 Autoencoder No - Yes 1.92 3.16 -53.1 60.4
OS-G-33 5L 10N No - Yes 2.41 3.27 -69.6 55.3
OS-G-34 10L 50N Yes - Yes 1.95 3.25 -73.8 90.3
OS-G-35 10L 50N No - No 2.83 6.05 -130 101

Table B.5: Performance metrics for orographic speedup investigations in % speedup. All at 10m
AGL; input sub-grids of 1.2km square; single output point; consistent input sub-grid patterns; all
using MM Elev., Elev. Grad. and Ro as inputs; all trained with data from 11 sites for 50 epochs.

Run ID Height
AGL (m)

Validation / Test MAE Error
Std. Dev.

Min. Error Max. Error

OS-G-36 10 Validation 1.90 2.79 -51.3 48.4
OS-G-36 10 Test (New Sites) 3.68 7.04 -103 111
OS-G-37 100 Validation 0.652 1.04 -14.7 14.6
OS-G-37 100 Test (New Sites) 1.64 3.01 -31.1 23.8

Table B.6: Performance metrics for final Grid NN orographic speedup models in % speedup. All
with sub-grids of 1.2km square; consistent input sub-grid pattern; single point output; inputs of
MM Elev., Elev. Grad. & Ro; trained with data from 11 sites for between 50 and 60 epochs.
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B.2 Orographic Turn

B.2.1 Grid Neural Networks

The tables of performance metrics for the validation data from each orographic turn Grid NN
surrogate model described in Chapter 6 are given here.

Run ID Height
AGL (m)

Site Sub-Grid
Side
Length
(km)

MAE Error
Std.
Dev.

Min.
Error

Max.
Error

OT-G-1 10 1 Single point 1.58 2.29 -22.9 22.9
OT-G-2 10 1 0.8 1.27 1.77 -16.8 14.4
OT-G-3 10 1 1.2 1.19 1.66 -15.6 12.6
OT-G-4 10 1 1.6 1.36 1.78 -13.6 14.1
OT-G-5 10 1 3.2 1.21 1.78 -14.8 14.9
OT-G-6 10 2 Single point 1.60 2.26 -23.8 19.4
OT-G-7 10 2 0.8 1.11 1.61 -17.2 26.5
OT-G-8 10 2 1.2 1.29 1.71 -18.9 19.9
OT-G-9 10 2 1.6 1.49 1.99 -15.4 24.3
OT-G-10 10 2 3.2 1.30 1.77 -15.7 15.3
OT-G-11 100 1 Single point 0.672 0.963 -6.63 6.53
OT-G-12 100 1 0.8 0.592 0.756 -4.68 4.06
OT-G-13 100 1 1.2 0.485 0.668 -3.68 4.04
OT-G-14 100 1 1.6 0.481 0.692 -4.09 4.31
OT-G-15 100 1 3.2 0.454 0.693 -3.81 4.05
OT-G-16 100 2 Single point 0.506 0.734 -6.28 5.28
OT-G-17 100 2 0.8 0.458 0.597 -3.88 4.54
OT-G-18 100 2 1.2 0.385 0.545 -5.01 5.71
OT-G-19 100 2 1.6 0.430 0.598 -4.36 5.86
OT-G-20 100 2 3.2 0.443 0.5s86 -3.70 4.47

Table B.7: Performance metrics for orographic turn sub-grid size investigations in °. All using
MM Elev., Elev. Grad., Ro. and normalised direction as an input variables; consistent DNN
configurations.
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Run ID Height
AGL
(m)

Input Elev.
Grad. @90°

Unit Sub-Grid
Side Length
(km)

MAE Error
Std.
Dev.

Min.
Error

Max.
Error

OT-G-21 10 No ° 1.2 0.993 2.88 -258 268
OT-G-22 10 No ° 1.6 0.955 3.03 -277 294
OT-G-23 10 Yes ° 1.2 1.48 3.44 -270 191
OT-G-24 10 No rad 1.2 0.968 2.82 -286 262
OT-G-25 10 No - 1.2 1.15 3.17 -185 182
OT-G-26 100 No ° 1.2 0.381 0.603 -8.85 13.8
OT-G-27 100 No ° 1.6 0.406 0.616 -9.44 8.82
OT-G-28 100 Yes ° 1.2 0.483 0.715 -10.1 8.42
OT-G-29 100 No rad 1.2 0.372 0.624 -13.95 10.1
OT-G-30 100 No - 1.2 0.401 0.619 -14.5 8.62

Table B.8: Performance metrics for orographic turn input and output investigations in °. Runs
with "-" as the Unit predict turn

180 . All using MM Elev., Elev. Grad., Ro. and normalised direction as
inputs; consistent DNN configurations.

Run ID Height
AGL (m)

Validation / Test MAE Error
Std. Dev.

Min.
Error

Max.
Error

OT-G-31 10 Validation 0.901 2.66 -281 155
OT-G-31 10 Test (New Sites) 1.39 3.11 -288 261
OT-G-32 100 Validation 0.397 0.635 -11.9 10.3
OT-G-32 100 Test (New Sites) 0.446 0.786 -9.77 9.50

Table B.9: Performance metrics for the final orographic turn Grid NN models in °. All using
MM Elev., Elev. Grad., Ro. and normalised direction as an input variables; consistent DNN
configurations; run for between 50 and 60 epochs.
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B.3 Roughness Speedup

B.3.1 Convolutional Neural Networks

The tables of performance metrics for the validation data from each roughness speedup CNN
surrogate model described in Chapter 7 are given here. In these CNNs, the input and output
grids are rotated such that the wind direction is always from 0°.

Run ID Height
AGL (m)

Inputs Layers MAE Error
Std. Dev.

Min.
Error

Max.
Error

RS-C-1 100 ln(1/Ro),
ln(1/MR),
RC

conv2d(k=5,c=10)
batchnorm2d
ReLU
conv2d(k=3)
batchnorm2d
ReLU
convtr2d(k=3)
batchnorm2d
ReLU
convtr2d(k=5,c=1)

1.06 1.43 -7.51 11.7

Table B.10: Performance metrics for the initial roughness speedup CNN in % speedup (note that
this model was trained with MAE loss).

Run ID Height
AGL
(m)

Prev.
Run

Inputs Layers MAE Error
Std. Dev.

Min.
Error

Max.
Error

RS-C-2 10 - Ro,
ln(Ro),
ln(1/Ro),
MR,
ln(MR),
ln(1/MR),
Ro-MR,
RC

conv2d(k=5,c=8)
ReLU
conv2d(k=3)
ReLU
convtr2d(k=3)
ReLU
convtr2d(k=5,c=1)

1.11 2.37 -29.9 20.8

RS-C-3 25 RS-C-2 As
RS-C-2

As RS-C-2 0.923 1.96 -29.4 16.2

RS-C-4 100 RS-C-2 As
RS-C-2

As RS-C-2 0.862 1.53 -29.0 16.2

Table B.11: Performance metrics for roughness speedup transfer learning investigations in %
speedup. Using data from Site 1 only.
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Run ID Height
AGL
(m)

Inputs Layers MAE Error
Std. Dev.

Min.
Error

Max.
Error

RS-C-5 10 Ro,
ln(Ro),
ln(1/Ro),
MR,
ln(MR),
ln(1/MR),
Ro-MR,
RC

conv2d(k=5,c=8)
ReLU
conv2d(k=3)
ReLU
convtr2d(k=3)
ReLU
convtr2d(k=5,c=1)

2.92 4.98 -30.3 41.1

RS-C-6 10 As
RS-C-5

conv2d(k=5,c=8)
batchnorm2d
ReLU
conv2d(k=3)
batchnorm2d
ReLU
convtr2d(k=3)
batchnorm2d
ReLU
convtr2d(k=5,c=1)

1.72 2.98 -33.7 33.3

Table B.12: Performance metrics for roughness speedup batch normalisation CNN test, in %
speedup. Using data from all 19 sites.
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Run ID Added
Filter

Inputs Layers MAE Error
Std. Dev.

Min.
Error

Max.
Error

RS-C-6 - Ro,
ln(Ro),
ln(1/Ro),
MR,
ln(MR),
ln(1/MR),
Ro-MR,
RC

conv2d(k=5,c=8)
batchnorm2d
ReLU
conv2d(k=3)
batchnorm2d
ReLU
convtr2d(k=3)
batchnorm2d
ReLU
convtr2d(k=5,c=1)

1.72 2.98 -33.7 33.3

RS-C-7 15x15 As
RS-C-6

conv2d(k=15,c=8)
batchnorm2d
ReLU
conv2d(k=5)
batchnorm2d
ReLU
conv2d(k=3)
batchnorm2d
ReLU
convtr2d(k=3)
batchnorm2d
ReLU
convtr2d(k=5,c=1)

1.82 2.54 -31.3 34.0

RS-C-8 51x51 As
RS-C-6

conv2d(k=51,c=8)
batchnorm2d
ReLU
conv2d(k=5)
batchnorm2d
ReLU
conv2d(k=3)
batchnorm2d
ReLU
convtr2d(k=3)
batchnorm2d
ReLU
convtr2d(k=5,c=1)

1.53 2.54 -26.1 39.9

Table B.13: Performance metrics for roughness speedup CNNs with additional filters of varying
sizes, in % speedup. Using data from all 19 sites.
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B.3.2 Grid Neural Networks

The tables of performance metrics for the validation data from each roughness speedup Grid NN
surrogate model described in Chapter 7 are given here.

Run ID Input Sub-Grid
Size (km)

MAE Error
Std. Dev.

Min.
Error

Max.
Error

RS-G-1 Ro. 2.2 2.06 2.03 -6.24 1.00
RS-G-2 MR 2.2 0.592 0.653 -2.49 2.23
RS-G-3 RC 1.8 0.134 0.265 -2.07 2.09

Table B.14: Performance metrics for roughness speedup Grid NN sub-grid size investigations
with single variable inputs, in % speedup. All for Site 1 at 100m AGL; normalised direction input;
consistent sub-grid patterns; consistent DNN configurations.

Run ID Height
(m AGL)

Input Sub-
Grid Size
(km)

Output
Sub-Grid
Size (km)

MAE Error
Std. Dev.

Min.
Error

Max.
Error

RS-G-4 10 1.2 Single
Point

0.437 0.781 -10.8 6.84

RS-G-5 10 2.2 Single
Point

0.960 1.35 -6.81 10.4

RS-G-6 10 3.2 Single
Point

1.45 1.71 -12.8 4.13

RS-G-7 10 1.2 0.2 0.482 0.681 -11.3 8.11
RS-G-8 10 1.2 0.6 0.438 1.09 -12.6 10.2
RS-G-9 100 1.2 Single

Point
0.543 0.255 -2.71 2.08

RS-G-10 100 2.2 Single
Point

0.550 0.576 -1.08 3.21

RS-G-11 100 3.2 Single
Point

0.279 0.323 -1.23 0.170

RS-G-12 100 3.2 0.2 0.256 0.200 -1.80 0.545
RS-G-13 100 3.2 1.6 0.241 0.354 -1.16 1.60

Table B.15: Performance metrics for roughness speedup Grid NN input and output sub-grid
configuration investigation, in % speedup. All with ln(1/Ro), ln(1/MR), ln(1/Ro)-ln(1/MR), RC and
normalised direction as inputs; consistent DNN configurations.
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Run ID Architecture MAE Error
Std. Dev.

Min. Er-
ror

Max.
Error

RS-G-14 5L 10N 0.418 0.842 -9.19 10.3
RS-G-15 10L 50N 0.369 0.844 -11.1 9.24
RS-G-16 10L 100N 0.339 0.776 -10.6 9.61

Table B.16: Performance metrics for roughness speedup Grid NN network size tests, in % speedup.
All at 100m AGL; with ln(1/Ro), ln(1/MR), ln(1/Ro)-ln(1/MR), RC and normalised direction as
inputs; input sub-grid of 3.2km square, consistent sub-grid pattern; single point output.

Run ID Dropout
Probability

Weight Decay
Factor

MAE Error
Std. Dev.

Min.
Error

Max.
Error

RS-G-15 0% 0.0 0.369 0.844 -11.1 9.24
RS-G-17 10% 0.0 0.517 0.912 -11.6 9.26
RS-G-18 25% 0.0 0.467 0.820 -8.65 9.33
RS-G-19 0% 0.1 4.71 1.54 -10.1 7.23
RS-G-20 0% 0.25 11.0 1.54 -16.5 0.877

Table B.17: Performance metrics for roughness speedup Grid NN anti-overfitting technique tests,
in % speedup. All at 100m AGL; with ln(1/Ro), ln(1/MR), ln(1/Ro)-ln(1/MR), RC and normalised
direction as inputs; input sub-grid of 3.2km square, consistent sub-grid pattern; single point
output.

Run ID Description Inputs Layers MAE Error
Std. Dev.

Min.
Error

Max.
Error

RS-G-15 Baseline
Grid NN

ln(1/Ro)
ln(1/MR)
ln(1/Ro)-
ln(1/MR)
RC

10L 50N 0.369 0.844 -11.1 9.24

RS-G-21 Grid NN In-
put to CNN
(2.4km Input
Sub-Grid)

ln(1/Ro)
ln(1/MR)
RC

10L 50N 0.330 0.721 -10.2 9.88

RS-C-9 CNN RS
Ro.
MS
Ro-MR
RC

conv2d(k=5,c=5)
batchnorm2d
ReLU
conv2d(k=3)
batchnorm2d
ReLU
convtr2d(k=3)
batchnorm2d
ReLU
convtr2d(k=5,c=1)

1.47 2.01 -19.8 22.2

Table B.18: Performance metrics for roughness speedup Grid NN-CNN model tests, in % speedup.
"RS" represents the roughness speedup from the Grid NN RS-G-15 input to run RS-C-9. All at
100m AGL; the input and output grids for the CNN were not rotated; the Grid NN models used
normalised direction as an input.
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Run ID Height
AGL (m)

Validation / Test MAE Error
Std. Dev.

Min.
Error

Max.
Error

RS-G-22 10 Validation 0.768 1.45 -23.0 24.1
RS-G-22 10 Test

(New Sites)
0.472 1.16 -18.2 25.2

RS-G-23 100 Validation 0.517 0.980 -10.8 8.80
RS-G-23 100 Test

(New Sites)
0.384 0.953 -9.91 11.7

Table B.19: Performance metrics for the final roughness speedup Grid NN models in % speedup.
All using ln(1/Ro), ln(1/MR), ln(1/Ro)-ln(1/MR), RC and normalised direction as an input variable;
consistent DNN configurations.
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