Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Chiral Alkaline-Earth Metal Complexes Having M-Se Direct Bond (M = Mg, Ca, Sr, Ba):

Syntheses, Structures and ε-Caprolactone Polymerisation

Ravi K. Kottalanka,^a Adimulam Harinath,^a and Tarun K. Panda*^a

^aDepartment of Chemistry, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502205, Telangana, India. Fax: + 91(40) 2301 6032; Tel: + 91(40) 2301 6036; E-mail: <u>tpanda@iith.ac.in</u>

List of Content:

- 1. Table TS1
- 2. Figure S1
- 3. Typical polymerisation procedure.
- 4. Plausible mechanism for ring-opening polymerisation of ε-Caprolactone initiated by chiral barium complex [Ba{N(*R* *CHMePh)P(Se)Ph₂}₂(THF)₂].
- 5. ³¹P {¹H} NMR spectral study in C₆D₆ during the ring—opening polymerisation of ε -caprolactone initiated by chiral barium complex [Ba{N(*R*-*CHMePh)P(Se)Ph₂}₂(THF)₂].
- 6. ¹H NMR in CDCl₃ of poly(ε-Caprolactone).

Crystal	1 a	1b	4 a	4b	5 a	5b
CCDC No.	1053400	1053401	1053402	1053403	1053404	1053405
Empirical formula	C ₂₀ H ₂₀ NPSe	C ₂₀ H ₂₀ NPSe	$C_{48}H_{54}CaN_2O_2P_2Se$	$C_{48}H_{54}CaN_2O_2P_2Se$	$C_{48}H_{54}N_2O_2P_2$	$C_{48}H_{54}N_2O_2P_2 Se_2Sr$
_			2	2	Se ₂ Sr	
Formula weight	384.30	384.30	950.87	950.87	998.41	998.41
$T(\mathbf{K})$	293(2)	293(2)	150(2)	150(2)	150(2)	150(2)
λ (Å)	1.54184	1.54184	1.54184	1.54184	1.54184	1.54184
Crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	<i>P</i> 1	<i>P</i> 1	<i>P</i> 2 ₁	<i>P</i> 2 ₁	<i>P</i> 2 ₁	<i>P</i> 2 ₁
<i>a</i> (Å)	6.0159(11)	6.0127(12)	13.0607(5)	13.0797(10)	12.5000(7)	12.4934(6)
<i>b</i> (Å)	9.3867(17)	9.368(3)	14.5382(5)	14.5246(8)	14.6217(4)	14.6187(7)
c (Å)	9.5866(17)	9.581(3)	13.6308(6)	13.6284(14)	13.9074(8)	13.9134(6)
α (°)	106.872(16)	106.91(3)	90	90	90	90
β (°)	107.869(16)	107.98(2)	118.032(5)	117.984(11)	115.038(7)	115.041(5)
γ (°)	103.345(15)	103.26(2)	90	90	90	90
V (Å ³)	461.65(14)	459.9(2)	2284.57(15)	2286.4(3)	2303.0(2)	2302.25(19)
Ζ	1	1	2	2	2	2
$D_{\rm calc} {\rm g}{\rm cm}^{-3}$	1.382	1.388	1.382	1.381	1.440	1.439
μ (mm ⁻¹)	3.545	3.558	3.971	3.968	4.391	4.393
F (000)	196	196	980	980	1016	1014
Theta range for data	5.26 to 70.94	5.27 to 71.98 deg.	3.67 to 70.76 deg.	4.77 to 70.73 deg.	3.51 to 70.58 deg.	3.51 to 70.63 deg.
collection	deg.					
Limiting indices	-7<=h<=7	-7<=h<=6	-14<=h<=15	-11<=h<=15	-14<=h<=15	-15<=h<=14
	-11<=k<=8	-11<=k<=11	-9<=k<=17	-17<=k<=10	-17<=k<=17	-13<=k<=17
	-11<=1<=11	-11<=1<=11	-16<=l<=16	-16<=1<=15	-17<=l<=16	-16<=l<=16
Reflections collected /	3019 / 2114	3475 / 2382	9628 / 6006 [R(int)	6267 / 4638 [R(int)	10051 / 6833	11230 / 6302 [R(int)
unique	[R(int) = 0.0216]	[R(int) = 0.0218]	= 0.0310]	= 0.0342]	[R(int) = 0.0397]	= 0.0424]
Completeness to theta =	96.6 % (70.94)	95.2 % (71.98)	97.9 % (70.76)	93.8 % (70.73)	97.8 % (70.58)	98.2 % (70.63)
71.25						
Absorption correction	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Multi-scan
Max. and min.	1.00000 and	1.00000 and	1.00000 and	1.00000 and	1.00000 and	1.00000 and
transmission	0.25106	0.78826	0.62045	0.64464	0.71299	0.52179
Refinement method	Full-matrix	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-

1. Table TS1. Crystallographic data and structure refinement parameters for complexes 1a,b, 4a,b-8a,b.

	least-squares on	squares on F^2				
	F^2					
Data / restraints /	2114 / 3 / 210	2382 / 3 / 211	6006 / 1 / 517	4638 / 1 / 517	6833 / 1 / 517	6302 / 1 / 517
parameters						
Goodness-of-fit on F ²	1.086	1.015	1.025	1.047	1.049	1.032
Final R indices	R1 = 0.0544,	R1 = 0.0542, wR2	R1 = 0.0342, wR2	R1 = 0.0424, WR2	R1 = 0.0602, wR2	R1 = 0.0402, WR2 =
[I>2sigma(I)]	wR2 = 0.1402	= 0.1610	= 0.0874	= 0.1104	= 0.1622	0.0979
R indices (all data)	R1 = 0.0547,	R1 = 0.0552, wR2	R1 = 0.0359, wR2	R1 = 0.0455, wR2	R1 = 0.0650, wR2	R1 = 0.0464, wR2 =
	wR2 = 0.1417	= 0.1657	= 0.0895	= 0.1146	= 0.1697	0.1032
Absolute structure	0.00(5)	0.01(5)	0.002(13)	-0.05(3)	0.00(3)	0.00(2)
parameter						
Largest diff. peak and	0.885 and -0.394	0.618 and -0.735	0.455 and -0.607	0.473 and -0.761	1.680 and -0.805	0.722 and -0.756
hole	e.A-3	e.A ⁻³				

 Table 1. Crystallographic data and structure refinement parameters for complexes 1a,b, 4a,b-8a,b. (contd.)

Crystal	6a	6b	7a	7b	8 a	8b
CCDC No.	1053406	1053407	1053408	1053409	1053410	1053411
Empirical formula	$C_{48}H_{54}BaN_2O_2P_2Se_2$	$C_{48}H_{54}BaN_2O_2P_2Se_2$	$C_{20}H_{23}BNP$	$C_{20}H_{23}BNP$	$C_{48}H_{60}B_2BaN_2O_2P_2$	$C_{48}H_{60}B_2BaN_2O_2P_2$
Formula weight	1048.12	1048.12	319.17	319.17	917.87	917.87
$T(\mathbf{K})$	150(2)	150(2)	293(2)	293(2)	150(2)	150(2)
λ (Å)	1.54184	1.54184	1.54184	1.54184	1.54184	1.54184
Crystal system	Monoclinic	Monoclinic	Monoclinic	Orthorhombic	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁	<i>P</i> 2 ₁	<i>P</i> 2 ₁	$P 2_1 2_1 2_1$	<i>P</i> 2 ₁	$P 2_1$
a (Å)	12.5451(2)	12.5571(3)	11.3581(10)	8.8785(2)	13.1696(9)	13.1465(5)
b (Å)	14.6496(3)	14.6478(3)	6.1729(5)	18.0839(4)	14.8039(4)	14.7929(3)
c (Å)	14.0905(2)	14.0913(4)	13.3347(12)	23.6013(6)	13.7579(9)	13.7413(7)
α (°)	90	90	90	90	90	90
β (°)	115.323(2)	115.305(3)	90.752(8)	90	117.394(9)	117.316(5)
γ (°)	90	90	90	90	90	90

V (Å ³)	2340.73(7)	2343.16(10)	934.85(14)	3789.38(15)	2381.5(2)	2374.34(16)
Ζ	2	2	2	8	2	2
$D_{\rm calc} \ {\rm g} \ {\rm cm}^{-3}$	1.487	1.486	1.134	1.119	1.280	1.284
μ (mm ⁻¹)	9.319	9.309	1.264	1.247	7.403	7.425
F(000)	1052	1052	340	1360	948	948
Theta range for data	3.47 to 70.86 deg.	3.47 to 71.12 deg.	3.31 to 70.69	3.08 to 70.72 deg.	3.62 to 70.75 deg.	3.62 to 70.78 deg.
collection			deg.			
Limiting indices	-14<=h<=15	-13<=h<=15	-13<=h<=13	-9<=h<=10	-16<=h<=12	-16<=h<=15,
	-14<=k<=17	-12<=k<=17	-7<=k<=7	-18<=k<=21	-16<=k<=18	-10<=k<=17,
	-16<=l<=17	-16<=l<=17	-16<=l<=13	-28<=l<=26	-10<=l<=16	-15<=l<=16
Reflections collected	9480 / 6551 [R(int)	10629 / 6444 [R(int)	3685 / 2609	10266 / 5991	10805 / 7370	11397 / 6453
/ unique	= 0.0284]	= 0.0436]	[R(int) = 0.0280]	[R(int) = 0.0257]	[R(int) = 0.0310]	[R(int) = 0.0320]
Completeness to	98.2 % (70.86)	98.1 % (71/12)	97.7 %	98.0 % (70.72)	98.1 % (70.75)	97.5 %
theta = 71.25						
Absorption	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Multi-scan
correction						
Max. and min.	1.00000 and	1.00000 and	1.00000 and	1.00000 and	1.00000 and	1.00000 and
transmission	0.39804	0.31944	0.86951	0.66265	0.66652	0.51058
Refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix
	squares on F ²	squares on F^2	squares on F^2	squares on F^2	squares on F^2	least-squares on F ²
Data / restraints /	6551 / 1 / 519	6444 / 1 / 516	2609 / 1 / 211	5991 / 0 / 420	7370 / 1 / 540	6453 / 1 / 541
parameters						
Goodness-of-fit on	1.031	1.061	1.044	1.034	1.004	1.021
F ²						
Final R indices	R1 = 0.0391, wR2 =	R1 = 0.0538, WR2 =	R1 = 0.0478,	R1 = 0.0418, wR2	R1 = 0.0357, wR2	$R_1 = 0.0333,$
[I>2sigma(I)]	0.1042	0.1402	wR2 = 0.1179	= 0.1102	= 0.0905	$wR_2 = 0.0843$
R indices (all data)	R1 = 0.0394, wR2 =	R1 = 0.0543, wR2 =	R1 = 0.0573,	R1 = 0.0456, wR2	R1 = 0.0650, wR2	R1 = 0.0464, wR2 =
	0.1047	0.1412	wR2 = 0.1285	= 0.1169	= 0.1697	0.1032
Absolute structure	-0.009(3)	-0.004(4)	0.00(4)	0.000(19)	-0.021(4)	-0.019(4)
parameter						
T (1°CC 1						
Largest diff. peak	1.081 and -1.064	1.568 and -1.383	0.140 and -0.297	0.381 and -0.530	1.680 and -0.805	0.722 and -0.756

2. Figure S1. Solid state structures of calcium complexes 5a and 5b. Hydrogen atoms are omitted for clarity except methyl and methine hydrogen atoms.

3. Typical polymerization procedure:

In a glove box under argon atmosphere, the catalyst was dissolved in the appropriate amount (1.0 ml) of dry toluene. ε-caprolactone in 1.0 mL of toluene was then added under vigorous stirring. The reaction mixture was stirred at room temperature for 5–20 minutes, after which the reaction mixture was quenched by addition of a small amount of (1.0 ml) methanol and then added acidified methanol little excess. The polymer was precipitated in excess methanol and it was filtered and dried under vacuum. The final polymer was then analysed by NMR and GPC.

4. Pluasible machanism for ring-opening polymerisation of ε-Caprolactone initiated by chiral barium complex [Ba{N(*R*-*CHMePh)P(Se)Ph₂}₂(THF)₂].

The plausible mechanism of the ROP of CL initiated by enantiomeric pure chiral strontium and barium complexes **5a** or **5b** and **6a** or **6b** was depicted in the Scheme below. First we studied by NMR spectroscopy with equimolar reaction of $[{(THF)_2Ba}{Ph_2P(Se)N(R-*CHMePh}_2]$ (**6a**) with ε -CL in C₆D₆, which though Lewis base exchange, gave $[{(THF)_2Ba}{Ph_2P(Se)N(R-*CHMePh}_2(\varepsilon-CL)]$ (**6-1a**). Although (6-1a) could not be isolated since it rapidly evolved towards the formation of (6-1b) (vide infra), it could be characterized in situ by its ¹H NMR and ³¹P{¹H} NMR spectra. We have identified two peaks in the ³¹P{¹H} NMR spectra, one is at δ 80.1 ppm and another is at δ 70.4 ppm. The former peak is indicating the formation new selenium-carbon bond during the ring opening of the ε -CL initiated by Ba complex (**6a** or **6b**). The intermediate complex (6-1b) which is generated in the initiation step further undergoes insertion of ε -CL through a coordination-insertion type mechanism to form the active polymer chain

 $[\{Ba\{Ph_2P(Se)N(R-*CHMePh\}_2-\{O(CH_2)_5C(O)\}_{n+1}O-(CH_2)_5C(O)\}]$ (6-1c). Subsequent addition of acidified methanol to (6-1c) results in hydrolysis of the Ba-O bond at one end and cleavage of Se-C bond at other end and finally capped by -OH group.

5. ³¹P {¹H} NMR spectral study in C₆D₆ during the ring—opening polymerisation of ε -caprolactone initiated by chiral barium complex [Ba{N(*R*-*CHMePh)P(Se)Ph₂}₂(THF)₂].

6. ¹H NMR in CDCl₃ of poly(ε-Caprolactone).

