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Abstract 

Mathematical models of malaria transmission are increasingly used to quantify the impact of malaria 

control efforts and to assist in the development and costing of future initiatives such as the WHO 

Global Technical Strategy for Malaria 2016-2030. These models have highlighted both the progress 

made so far, but also how continued investment is needed to reach the milestones required. However, 

the increase in global malaria cases reported in 2018 suggests that new tools may be required to 

continue the gains made and to address the growing risk of antimalarial resistance threatening to 

reverse the recent declines in malaria burden. The proliferation of genetic sequencing and the 

publication of the Plasmodium falciparum reference genome in 2002 has facilitated a greater 

understanding of the genetic determinants of resistance and molecular tools are subsequently poised 

to become a routine tool for malaria control. Consequently, integrating parasite genetic information 

into established models of malaria transmission models can contribute to both our understanding of 

the drivers and optimum policies for addressing resistance and detailing the potential of molecular 

tools within malaria control.  

Plasmodium falciparum is known to have evolved several times in response to first line antimalarials. 

However, recent evidence has shown evolution to rapid diagnostic tests. The WHO has consequently 

issued guidance advising national malaria control programmes to conduct surveillance for pfhrp2/3 

deletions. The timing of this policy recommendation and my previous work modelling pfhrp2 deletions 

necessitated a timely extension of our previous model to evaluate the implications of seasonality in 

malaria transmission on estimates of the prevalence of pfhrp2/3 deletions.   

Recent studies have suggested that malaria genotyping could be a useful tool for epidemiological 

surveillance. By developing an extended version of an established model of malaria transmission, 

which now models individual mosquitoes affording the full parasite life cycle to be represented, I 

characterise the potential utility of malaria genomics for inferring changes in transmission intensity. I 

conclude that although molecular tools could enable accurate estimation of malaria prevalence, 

greater attention needs to be placed on the chosen sampling scheme, recording patient metadata and 

developing the statistical toolkit for analysing polyclonal infected individuals.  

In 2015, health ministers in the Greater Mekong Subregion (GMS) adopted the WHO strategy for 

malaria elimination in the GMS 2016-2030. The strategy was developed to accelerate elimination in 

South-East Asia, which is currently the best approach to address the growing threat of artemisinin 

resistance and the emergence of multidrug resistant parasite lineages. In response, I demonstrate how 

the therapeutic lifespan of the five currently recommended artemisinin combination therapies can be 

prolonged by reducing antimalarial overprescription by ensuring that all suspected malaria fevers are 

tested before administering antimalarials. I conclude by comparing different cycling and mixing 

strategies before reviewing how each strategy can be improved to slow the spread of antimalarial 

resistance.  

Elimination in the GMS is undoubtedly an effective mechanism for preventing the spread of 

artemisinin resistance to Africa. However, if efforts to eliminate by 2030 have failed it will be 

imperative to understand the mechanisms with which resistance may continue to spread. To this 

extent, the capability of resistant strains to invade susceptible populations is evaluated using data 

from standard membrane feeding assays. Findings are incorporated in the transmission model to 

quantify the transmission advantage of artemisinin resistance at the population level.  
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Chapter 1. Introduction 

 

Malaria is estimated to have caused 435,000 deaths in 2017 and continues to be one of the largest 

burdens to global health efforts, despite decreasing morbidity and mortality rates over the last 20 

years. To continue reductions in the burden of malaria, an understanding of both its epidemiology and 

the emergence of new threats is required. In this chapter I give an introduction to the epidemiology 

of malaria and the lifecycle of the parasite and how it, along with external sources of selection, shapes 

the genetic diversity of the malaria parasite. The introduction also covers genetic approaches to the 

study of malaria and how they have led to our current understanding of the emergence of resistance, 

both with respect to antimalarial drugs and rapid diagnostic tests (RDTs). I finish by reviewing how 

mathematical models of malaria transmission have been previously used to model malaria control, 

focussing on models of drug resistance. The chapter subsequently serves to give an overview of the 

current state of malaria transmission modelling and lays the foundation for the work I present within 

the thesis.  

1.1. Epidemiology of malaria 

1.1.1. Global burden of malaria 

Malaria is distributed across the tropical and subtropical regions of the world and is caused by the 

Plasmodium parasite (Guerra et al. 2006; Hay et al. 2009; Gething et al. 2011b). Malaria is estimated 

to have caused 219 million clinical cases in 2017, with an associated 435,000 deaths worldwide (World 

Health Organization 2018c). Human malaria is caused by six different species of Plasmodium parasites: 

P. falciparum, P. malariae, P. knowlesi, P. ovale curtisi, P. ovale wallikeri, and P. vivax (Calderaro et al. 

2013). Globally, the vast majority of malaria cases are caused by infection with P. falciparum and occur 

in Africa, with approximately 92% of global cases occurring in Africa and 99.7% of the 200 million 

estimated cases in Africa caused by P. falciparum (World Health Organization 2018c).  

P. falciparum is not the major infecting species within all endemic malaria regions, however, with P. 

vivax being the predominant parasite species in the WHO defined region of the Americas accounting 

for 74.1% of malaria cases (World Health Organization 2018c). Similarly, zoonotic cases of malaria 

caused by P. knowlesi are the most common cause of human malaria in Malaysia, increasing from 

1600 to over 3600 cases between 2016 and 2017 (Cooper et al. 2019). The spatial heterogeneity in 

the predominance of different Plasmodium species reflects the different life history of the parasites 

(Price et al. 2007), different mosquito vectors (Medley et al. 1993), and different genetic variation in 
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the human population (Kwiatkowski 2015) such as the presence of P. vivax resistance in Duffy-

negative individuals in West Africa (Langhi and Bordin 2006).  

The burden of malaria has declined substantially since 2000, despite its still current high burden and 

inherent heterogeneities and complexities.  This decline represents the scale-up of malaria control 

programmes and the renewed political interest in reducing the global burden of malaria, which has 

resulted in over 40% reduction in clinical cases between 2000 and 2015 (Bhatt et al. 2015). These 

reductions have involved a number of countries being certified as malaria free. Algeria and Argentina 

were both certified as malaria free in May 2019 and Paraguay was certified in June 2018 (World Health 

Organization). These achievements represent significant milestones with a number of other countries 

also nearing elimination, with 26 countries in 2017 reporting less than 100 indigenous cases, which 

provides a strong indication that elimination is within reach (World Health Organization 2018c).  

 

Figure 1.1 The spatial distribution of P. falciparum malaria burden in 2017. Regions with no risk of malaria 

are shown in white, regions with low endemicity (0-1% prevalence in children aged 2-10 (PfPR2-10)) in shades 

of grey, and prevalence greater than 1% shown scaled from blue to red. Sourced from Weiss et al (CC BY 4.0) 

(Weiss et al. 2019).  

1.1.2. Lifecycle of malaria 

The lifecycle of Plasmodium falciparum is structured in three distinct cycles: the exo-erythrocytic cycle, 

the erythrocytic cycle and sporogenic cycle (Figure 1.2). The exo-erthrocytic or pre-erythrocytic cycle 

starts with the delivery of malaria sporozoites from an infected Anopheles mosquito. The parasite then 

travels from the site of the bite until reaching a blood vessel and migrating to the liver. In the liver 

sporozoites invade hepatocytes, develop into trophozoites before maturing into schizonts, which 

eventually burst releasing approximately 20,000 merozoites into the blood stream (Meis et al. 1986). 

However, not all sporozoites make it to the liver. Sporozoites reside in the skin for roughly 1-6 hours, 

with 20% estimated to migrate to the lymph nodes (Amino et al. 2006) where they are believed to 
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trigger anti-parasite immune responses (Guilbride et al. 2012). In fact, most sporozoites fail to reach 

the lymph nodes and are simply cleared at the inoculation site,  with only a small proportion reaching 

a blood vessel and subsequently the liver (Sidjanski and Vanderberg 1997). The precise proportion, 

however, is not known.  

 

Figure 1.2 Malaria parasite lifecycle in humans and mosquitoes. Public Domain. Centers for Disease Control 

and Prevention (Centers for Disease Control and Prevention [Public Domain]). 

Once merozoites have entered into the blood stream, the erythrocytic cycle starts with merozoites 

invading erythrocytes and developing into ring stage trophozoites. Ring stage trophozoites mature 

into schizonts before causing the infected red blood cell to rupture releasing approximately 8-32 

merozoites into the blood stream to start the next erythrocytic cycle (Sinden and Gilles 2002). The 

erythrocytic cycle for P. falciparum lasts for two days and is responsible for the periodic fever 

commonly associated with clinical malaria. A number of merozoites will differentiate into the sexual 

stages of the parasite, known as gametocytes. Gametocyte sex ratios are usually female-biased, with 

the male gametocyte producing up to eight male gametes via exflagellation when taken up by a 

mosquito. However, the sex ratio of malaria parasites has been shown to be adaptive and dependent 

on a range of factors that affect the hematologic state of the host (Paul et al. 2000). For example, 

anaemia has been shown to be associated with an increase in male gametocytes in infected children 

(Robert et al. 2003). Changes in parasite density, either through antimalarial treatment (Stone et al. 
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2017), immune suppression (Sowunmi et al. 2009) or other environmental factors are suggested to 

trigger malaria parasites to invest more in their transmission stages by increasing gametocytogenesis 

or increasing the proportion of male gametocytes (Bradley et al. 2018).  

The sporogenic cycle takes part inside the mosquito, starting with male gametes fertilising female 

gametes to form a zygote. The specific dynamics of mating, however, have been shown to be affected 

by transmission intensity, with an increased chance of outcrossing occurring at higher transmission 

intensities, reflecting the increased number of different parasite strains in individuals (Ranford-

Cartwright et al. 1991; Paul et al. 1995). The zygote develops into a motile stage known as an ookinete, 

which invades the mosquito midgut wall before developing into an oocyst. Successful ookinete 

invasion is dependent on a number of genetic and immune factors (Smith and Barillas-Mury 2016) and 

consequently only a fraction of the potential oocysts that could form, based on the number of gametes 

taken up in a feed, go on to form oocysts. Oocysts will then grow before rupturing and, depending on 

the Plasmodium species, release up to thousands of sporozoites that travel to the mosquito salivary 

glands ready to be inoculated into humans (Vaughan 2007).  

1.1.3. Malaria mortality, morbidity and immunity 

Malaria infection in individuals with no immunity results in the rapid proliferation of merozoites 

leading to the development of symptoms from up to seven days after inoculation, however more 

usually between 9-15 days (Boyd and Kitchen 1937).  Symptoms usually include fever, headache and 

nausea, which result from infected erythrocytes in the spleen triggering an immune response and the 

production of pro-inflammatory cytokines (Angulo and Fresno 2002). As the infection progresses, 

acute anaemia can occur due to a reduction in erythrocytes resulting from the intraerythrocytic cycle, 

which is responsible for the cyclical fever and chills associated with malaria infection (Lamikanra et al. 

2007). A proportion of clinical cases will also develop severe malaria. Symptoms of severe malaria 

include cerebral malaria, respiratory distress, acute renal failure, pulmonary edema and severe 

anaemia (World Health Organization 2015a). Rapid development of any number of these symptoms 

can occur leading to death within hours or days (Trampuz et al. 2003). 

Infection with malaria results in an immune response to the emergence of blood stage parasites. The 

immune response includes both an immediate non-specific response and a slower malaria-specific 

response. The innate response acts to quickly hinder parasite development and limit the initial phase 

of parasite replication, which allows the specific adaptive immune response to be developed and 

enable the infection to be eventually cleared (Stevenson and Riley 2004). The adaptive immune 

response targets multiple stages of the parasite life cycle. Antibodies are generated that target 
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sporozoites and merozoites providing protection against parasites invading hepatocytes and 

merozoites respectively (Bull and Marsh 2002; Schwenk et al. 2003). Interferon-mediated responses 

are also recruited to inhibit parasite development in hepatocytes and in the activation of macrophages 

to target infected erythrocytes and merozoites in the blood stream for phagocytosis (Miller et al. 

2014).  

Acquired immunity to malaria builds up sequentially in response to repeated infection. For example, 

the risk of clinical disease increases from birth with infants becoming susceptible to malaria after 3-4 

months, likely due to the waning of maternally-derived immunity (Doolan et al. 2009). After this period 

immunity to severe malaria develops rapidly, with the frequency of clinical cases resulting in mortality 

falling between the ages of two to five years depending on the transmission setting (Doolan et al. 

2009). Immunity against non-severe clinical malaria is acquired more slowly and is developed over the 

course of multiple infections. Consequently, the rate at which acquired clinical immunity develops is 

dependent on the transmission intensity, with adults in high transmission regions rarely developing 

clinical symptoms of malaria due to high levels of acquired immunity (Langhorne et al. 2008). 

However, the diversity of P. falciparum parasites and their ability to switch which proteins are 

expressed on the surface of erythrocytes act to delay the rate at which malaria immunity can be 

acquired. The different types of malaria immunity and the need for multiple infections to develop 

effective acquired immunity cause the clinical burden of malaria to be highest in children, with the 

majority of malaria morbidity and mortality occurring in children under the age of five in sub-Saharan 

Africa (Murray et al. 2012). 

1.1.4. Malaria Diagnosis 

Diagnosis of malaria is complicated due to the commonality of symptoms and similar clinical 

presentation to a number of common diseases. For example, in 2014 35.7% of self-reported fevers in 

sub-Saharan Africa were estimated to be accompanied by a malaria infection (Dalrymple et al. 2017). 

As a result, previous guidance to carry out presumptive treatment and syndromic management has 

led to both overtreatment of patients, with between 47%-95% of patients presenting with a non-

malarial febrile illness being presumptively treated with antimalarials (Rao et al. 2013). Consequently, 

the recommendation made by the WHO in 2010 to test, treat and track all malaria infections has 

necessitated the deployment of quick and accurate diagnostic tests (World Health Organization 

2010a). The two main diagnostic tests used regularly are microscopy-based diagnosis and rapid 

diagnostic tests (RDTs).  
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Microscopy has been the most commonly used diagnostic test for the past century, affording 

detection thresholds of up to 4-20 parasites per microliter in laboratory controlled settings 

(Wongsrichanalai et al. 2007). In the absence of highly skilled microscopists, however, detection 

thresholds of 100-200 parasites per microliter are more commonly observed in field settings, which is 

substantially higher than limits of detection of molecular diagnostic methods that can achieve <5 

parasites per microliter (Payne 1988; Tangpukdee et al. 2009). Diagnosis by microscopy requires the 

preparation of blood smears which enable trained microscopists to visually assess for the presence of 

malaria parasite life stages. It is also possible for different parasite species to be determined using 

microscopy based diagnosis, however, this is more prone to incorrect diagnoses and is more 

dependent on parasite densities (McKenzie et al. 2003). Microscopy based diagnosis is inexpensive 

but is not feasible in all settings. The need for training and basic equipment, as well as the time taken 

for staining, can impair diagnosis feasibility in remote areas and high endemic settings where the 

demand for diagnostics exceeds the capacity afforded by microscopy (Payne 1988; Ochola et al. 2006). 

Poor specificity in microscopy can also occur due to a number of factors, such as poor quality reagents, 

inadequate film preparation and human error relating to both microscopist training and their 

workload (Durrhelm et al. 1997; Houwen 2002).  

Malaria RDTs were designed to be useful in settings where microscopy based diagnosis is not feasible, 

and now possess comparable detection sensitivities to field microscopy (Wu et al. 2015). The ease of 

use and absence of additional equipment allows malaria to be diagnosed with minimal training in rural 

settings (Carrara et al. 2006). The simplicity of using malaria RDTs and their widespread adoption has 

resulted in an increase in diagnostic testing for suspected malaria. In 2007, less than 10% of individuals 

treated for malaria had a confirmed diagnosis (World Health Organization 2008), whereas the median 

percentage of cases that were tested before receiving antimalarial treatment in 2015-2017 was 74% 

(IQR: 51–81%) (World Health Organization 2018c). This increase helps to both reduce expenditure on 

antimalarials and reduces the level of over-prescription, which has been shown to increase the 

probability of drug resistance emerging in other infectious diseases (Llor and Bjerrum 2014). 

Additionally, it can help clinicians rule out malaria as the cause of an undiagnosed fever, which in turn 

increase the chance that the correct diagnosis and treatment is provided for the non-malarial fever 

(Odaga et al. 2014).  

RDTs are immunochromatographic lateral flow devices that use antibodies to detect malarial antigens. 

Different RDTs are able to detect different malaria species depending on the targeted antigen. RDTs 

have been developed to detect either single species (P. falciparum or P. vivax) or multiple species (P. 

falciparum, P. vivax, P. malariae and P. ovale), with some able to distinguish between P. falciparum 

and non-falciparum infection. The most widely used RDTs target histidine-rich protein 2 (HRP2), which 
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is unique to Plasmodium falciparum (World Health Organization 2015b). Other targeted antigens 

include plasmodium lactate dehydrogenase (LDH) and aldolase (ALDO), although most RDTs being 

tested target HRP2 with 44 out of 46 RDTs tested in round 7 of the WHO Foundation for Innovative 

New Diagnostics (WHO-FIND) Malaria RDT Evaluation Programme targeting PfHRP2 (Organization 

2017). The HRP2 antigen, however, has a long half-life in the human body and subsequently has a slow 

clearance rate, with the antigen remaining in the bloodstream for weeks after successful clearance of 

the parasite, leading to a false-positive RDT result for a median of 35-42 days (Grandesso et al. 2016). 

The duration of being HRP2 positive leads to complications when determining if treatment has been 

successful or whether lingering HRP2 concentrations are indicative of a recrudescent event. However, 

an analysis of HRP2 concentrations from patients in Angola, Tanzania and Senegal showed that 

comparisons of day three and day seven antigen concentrations against pre-treatment levels can be 

useful for predicting recrudescence (Plucinski et al. 2018a).  Day three levels taken alone provide 

sufficient information to determine a drug failure, with an area under the receiver operating 

characteristic (ROC) curve of 0.86 (95% confidence interval, 0.73–0.99). In contrast, RDTs that detect 

LDH or ALDO have shorter half-lives and the majority of LDH and ALDO are cleared concurrently with 

parasite clearance reducing the possibility of a false-positive RDT result (Plucinski et al. 2018b, 2019). 

However, RDTs that target ALDO and LDH generally possess higher limits of detection (LOD) and lower 

sensitivities (Iqbal et al. 2002; Murray et al. 2008) as well as being less thermostable (Chiodini et al. 

2007; Singh et al. 2013).  

The development of highly sensitive nucleic acid based detection methods, such as polymerase chain 

reaction (PCR) (Johnston et al. 2006) and quantitative nucleic acid sequence based amplification (QT-

NASBA), has enabled sub-patent infections to be detected (Tangpukdee et al. 2009; Hofmann et al. 

2015). However, the costs of conducting PCR based diagnosis means that PCR analysis is not feasible 

for widespread detection and is largely used for research purposes to test the diagnostic performance 

of less sensitive diagnostics (Mappin et al. 2015), or for studies of parasite genetics (Ranford-

Cartwright et al. 1991). For example, a comparison of malaria diagnosis by PCR, microscopy and RDT 

revealed that only 41% of infections positive by PCR were RDT positive (Wu et al. 2015). Similar 

diagnostic sensitivities were found for microscopy based diagnosis, with 87% of infections detected 

by RDT also detected by microscopy (Wu et al. 2015). However, a recent analysis of the discordance 

between RDT and microscopy diagnosis in sub-Saharan Africa revealed an excess of false-negative RDT 

results within community-based surveys (Watson et al. 2019a). This finding suggested that RDT 

performance in community based surveillance is less sensitive than microscopy due to increased false-

negative RDT results in areas with lower malaria prevalence, which have been shown to exhibit lower 

parasite density infections on average (Slater et al. 2019). Lastly, there are several reports of 
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individuals with high density P. falciparum infections which are detected using microscopy but for 

whom PfHRP2-based RDT results have been negative (Cheng et al. 2014). These occurrences have 

been attributed to the part or whole deletion of the pfhrp2 gene, resulting in no HRP2 expression. 

These pfhrp2-deleted mutants may still possess a functioning pfhrp3 gene, however the cross 

reactivity of the PfHRP3 epitope is such that PfHRP2-based RDTs may be only partially effective at very 

high parasitaemia (Baker et al. 2005). The presence of pfhrp2-deleted mutants has been confirmed 

and mapped to several locations in South America, with the scale of pfhrp2-deletions resulting in 

recommendation against the use of PfHRP2-based RDTs in certain regions with high false-negative 

rates (Akinyi et al. 2013; Abdallah et al. 2015). Confirmed pfhrp2-deleted mutants were historically 

rarer in Africa, however in the last four years there has been an increase of confirmed cases, 

prompting the WHO to issue guidance for the prevalence of pfhrp2/3 deletions to be estimated in key 

areas in sub-Saharan Africa (World Health Organization 2018b).  

1.1.5. Malaria Interventions 

Malaria control interventions can be broadly summarised as either targeting the malaria parasite or 

the mosquito vector. Multiple interventions have been developed that target different life stages of 

the parasite and vector, attempting to increase the probability of preventing onwards transmission.  

1.1.5.1. Parasite Based Interventions 

Antimalarial drugs are used to both prevent and treat clinical cases of malaria by targeting blood-stage 

parasites. Chloroquine (CQ) was the first antimalarial used widely to control malaria, however, its 

extensive use as part of the Global Malaria Eradication Programme (GMEP) led to the evolution of CQ 

resistance (Payne 1987) and was attributed in part to the failure of the GMEP (Cohen et al. 2012a). CQ 

was subsequently replaced as a first line drug by sulfadoxine/pyrimethamine (SP), however, resistance 

to SP shortly emerged (Nair et al. 2003; Roper et al. 2003), with Southeast Asia appearing to be the 

centre of resistant malaria emergence (Roper et al. 2004; Anderson and Roper 2005). The discovery 

of artemisinin towards the end of the 20th century has been instrumental in renewed efforts to reduce 

the global burden of malaria. Artemisinin was briefly used as a monotherapy before artemisinin 

combination therapies (ACTs), an artemisinin derivative combined with a longer lasting partner drug, 

were developed. The decision to administer artemisinin within an ACT is both due to the shorter half-

life of artemisinin, which reduces the total parasite killing of the drug compared to other antimalarials 

despite its comparatively higher rate of parasite clearance (Hastings et al. 2016), and to decrease the 

speed at which artemisinin resistance emerges (Group 2004).  Additionally, treatment with an ACT has 
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been shown to reduce the probability of onward transmission through killing sexual stage parasites 

(Okell et al. 2008).  

Recent recommendations have also seen the expanded use of antimalarials for prophylaxis. In 2010, 

the WHO recommended the use of intermittent preventive treatment in infants (IPTi) in areas of 

moderate to high transmission (World Health Organization 2010b). This involves treatment being 

given three times during the first year of life, regardless of whether the child is infected with malaria 

(Aponte et al. 2009). This style of treatment is known as chemoprevention and is designed to provide 

protection by providing a period of prophylaxis. In 2012 this was extended to include intermittent 

preventive treatment in pregnancy (IPTp) (World Health Organization 2012b), which involves 

administering SP (ACTs are not recommended due to safety considerations) to protect pregnant 

women from their second trimester onwards (Holtz et al. 2004). Additionally, in 2012 seasonal malaria 

chemoprevention (SMC) was officially recommended (World Health Organization 2012c), in which 

three month drug courses are given to children under the age of 5 years in areas with highly seasonal 

transmission (Greenwood 2006). In 2015, the WHO also recommended the use of mass drug 

administration (MDA) within near elimination settings (World Health Organization 2015c), in which 

antimalarial drugs are given to the whole population regardless of infection status (Gosling et al. 

2011). This was also extended to include time-limited MDA as an initial response for malaria epidemic 

control and in  emergency settings such as during the recent Ebola outbreak (Walker et al. 2015). 

Although not currently recommended, mass screen and treat (MSAT) policies have been explored that 

use antimalarials in combination with RDT to screen a population for malaria parasite prevalence 

before administering ACTs to parasite positive individuals (Tiono et al. 2013). 

A number of additional interventions that target parasite stages of infection are in development. This 

includes new antimalarials in clinical trials such as artefenomel–ferroquine and lumefantrine-KAF156 

(Ashley and Phyo 2018), as well the potential first malaria vaccine. Malaria vaccine development was 

initially believed to be feasible after the observation that immunisation of mice with irradiated 

sporozoites yielded a level of protective immunity (Nussenzweig et al. 1967).  Since then a number of 

potential vaccine candidates have been developed although none have been shown to offer sufficient 

protection. In 2019, however, pilot introductions of the RTS,S/AS01 vaccine, which is the only vaccine 

to date that has shown a protective effect in a Phase III trial, have started in three African countries 

as part of the WHO Malaria Vaccine Implementation Programme (MVIP) (2018). RTS,S/AS01 is a pre-

erythrocytic vaccine that aims to protect against the parasite forming liver stages. Potential vaccines 

candidates that offer protection against blood stage parasites are yet to reach Phase III trials (Miura 

2016), and transmission blocking vaccines, which have seen recent interest as a tool for interrupting 

malaria transmission (malERA Consultative Group on Vaccines 2011), are just entering Phase II trials. 
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1.1.5.2. Vector Based Interventions 

Vector based interventions work by either preventing contact between the mosquito and the human 

or through directly killing the mosquito. Insecticide treated bed nets (ITNs) provide both a chemical 

and physical barrier between the mosquito and the human, and are used to provide a sleeping area 

that is protected from night time feeding mosquito activity (Lengeler 2004). ITNs confer both a direct 

protection to the individual using the net, preventing potential malaria transmission from infectious 

mosquito bites, as well as indirect protection by preventing uninfected mosquitoes from infection by 

feeding on an infected human (Howard et al. 2000; Maxwell et al. 2002). Long lasting insecticidal nets 

(LLINs) are improved ITNs, which directly incorporate insecticide into the net material increasing the 

duration of chemical protection to up to three to five years (Kilian et al. 2011), although estimates 

suggest that effective chemical protection is often less than three years (Gnanguenon et al. 2014). 

Although LLINs are primarily effective against night feeding vectors, they have been shown to confer 

some protection against other mosquito species that feed primarily during the day, likely through a 

killing action due to resting on treated nets (Lenhart et al. 2008). LLINs are attributed to have 

prevented 68% of the 665 million malaria cases that were prevented as part of the scale up of malaria 

intervention control between 2000 – 2015 (Bhatt et al. 2015). However, as with antimalarials, the 

continued use of pyrethroids as the only insecticide class in LLINs has resulted in the emergence of 

insecticide resistance to pyrethroids (Strode et al. 2014). This has led to the WHO encouraging the 

development of new types of LLINs. One example is the use of piperonyl butoxide (PBO), which is used 

as a chemical synergist in pyrethroids-treated LLINs, which has been shown in recent randomised 

control trials in Tanzania to result in an increased in the effectiveness of LLINs compared to nets 

treated with only pyrethroids (Protopopoff et al. 2018). 

Indoor residual spraying (IRS) is another widely used form of vector based intervention, in which 

insecticides are directly sprayed onto the walls of houses to either kill mosquitoes that land after 

feeding or to prevent mosquitoes from entering the house and feeding in the first place (Pluess et al. 

2010). The use of IRS has been attributed to preventing only 13% of malaria cases between 2000 – 

2015 (Bhatt et al. 2015), which reflects the reduced levels of IRS used compared to ITNs, reduced levels 

of personal protection compared to ITNs as well as difficulties within communities of achieving 

effective coverage and ensuring repeat rounds of IRS are carried out to yield continued protection 

(Sherrard-Smith et al. 2018). Larviciding can also be used to target known larval breeding sites with 

insecticides in an attempt to kill aquatic larval stages of the mosquito (Walker and Lynch 2007). 

However, larviciding is only cost-effective for malaria control in settings where vector breeding sites 
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are few, fixed and findable and are thus is not recommended in many areas in sub-Saharan Africa 

(World Health Organization 2012a). 

There are a number of new vector control tools in development that promise to increase vector based 

intervention options in light of insecticide resistance. Mosquito gene drive is a technique in which 

genetically modified mosquitoes are introduced into native mosquito populations in an effort to 

reduce mosquito abundance or alter their effectiveness as a malaria vector (Burt 2003). In a similar 

approach, sterile insect techniques have been proposed as a method for reducing mosquito 

population sizes by releasing an overwhelming number of sterilised mosquitoes (Alphey et al. 2010). 

Other approaches include using adult mosquitoes as a method of disseminating insecticides to larval 

habitats (Devine et al. 2009), the deployment of attractive targeted sugar baits (Mueller et al. 2010; 

Zhu et al. 2015) and the use the ivermectin, which possesses mosquitocidal properties (Smit et al. 

2018),  impairs parasite development (de Carvalho et al. 2019) and has been shown to be effective 

when used as part of repeated MDA for reducing malaria incidence (Foy et al. 2019).  

1.1.6. Malaria Transmission 

1.1.6.1. Transmission Metrics 

The discovery by Ross and Grassi that mosquitoes transmitted malaria resulted in the start of attempts 

to model its transmission and understand the factors driving the burden of malaria within populations 

(Cox 2010). The burden of malaria in a population can be measured by the parasite prevalence (PfPR 

for P. falciparum), which is the proportion of the sampled population that is positive for malaria. PfPR 

will vary depending on both the age of the cohort sampled and the method of diagnosis used. PCR 

PfPR will typically be higher than PfPR measured using microscopy due to their lower limits of 

detection (Okell et al. 2009, 2012). Any measure of PfPR will depend on how representative the 

individuals samples are of the population as a whole. For example, active case detection through 

community health workers is unlikely to provide unbiased estimates of the prevalence in the entire 

population, with focus usually placed in areas of known higher transmission. On the other hand, 

passive case detection methods, usually in the form of individuals arriving at treatment clinics or 

hospitals, allows for estimates of the clinical incidence of malaria, defined as the average number of 

clinical malaria episodes per person per year, to be made. Clinical incidence is an easier measure of 

malaria burden to make, relying on largely passive case detection schemes. Efforts have been made 

to use measures of clinical incidence to infer the PfPR in the population. This process, however, is 

complicated by reporting errors, symptomatic individuals not reporting at health facilities and 

differences in the proportion of malaria infections that develop symptoms based on historic malaria 
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prevalence and population level immunity (Cameron et al. 2015). Cluster designed household surveys 

provide a method of capturing individuals in the population who may be unaccounted for via passive 

case detection, either through having an asymptomatic infection or choosing to seek care for a fever 

through private health services that are not reported to national malaria control programmes 

(Demographic and Health Surveys Program 2018).  

The entomological innoculation rate (EIR) is one metric for the intensity of malaria transmission, which 

measures exposure to infectious mosquitoes by reporting the average number of infectious bites per 

person in a year. Attempts to measure EIR require some form of counting the number of mosquitoes 

that attempt to take a feed from a human adult in one day and multiplying it by the proportion of the 

mosquitoes that are infectious. The gold standard way to measure this is using human landing catches, 

in which volunteers are required to reside outside during mosquito feeding time and count the 

attempted feeds (Gimnig et al. 2013). However, given the human cost inherent in human landing 

catches, a number of other approaches have been used to estimate EIR. These approaches use traps 

to capture mosquitoes, including light traps (Wong et al. 2013), tent traps (Govella et al. 2009) and 

window exit traps (Müller et al. 2017). An infectious mosquito bite does not always lead to an 

infection, however, as infections can either be suppressed by an immune-response (Schwenk and 

Richie 2011) or may simply fail to progress to an infection by chance (Rickman et al. 1990). The 

proportion of infectious bites that do yield a blood-stage infection can be multiplied by the EIR to yield 

the force of infection.  

1.1.6.2. Transmission Heterogeneity 

The variation in malaria transmission is also important to consider. Variation can occur both spatially 

and temporally. Spatial heterogeneity in malaria transmission can be characterised in terms of the 

spatial of autocorrelation, with metrics such as Moran’s I being used to assess for the scale spatial 

heterogeneity (Mogeni et al. 2017). Fine-scale spatial heterogeneity, occurring at the village or 

household level, can arise due to local proximity to mosquito larval breeding sites (Smith et al. 2004), 

differential ownership and effective usage of bed nets (Atiele et al. 2011) and variation in the quality 

of building materials used in housing (Lindsay and Snow 1988; Tusting et al. 2019). Spatial 

heterogeneity at larger scales occurs due to differences in urbanicity (Donnelly et al. 2005; Kamya et 

al. 2015) and economic development (Charchuk et al. 2016), climactic differences often associated 

with differences in altitude (Gething et al. 2011a; Cairns et al. 2015) and mosquito and parasite species 

distributions (Guerra et al. 2008; Hay et al. 2010; Battle et al. 2019; Weiss et al. 2019). Heterogeneity 

can even exist within the same household due to human factors related to an individual’s age, body 



27 
 

temperature and surface area, sleeping behaviour and olfactory cues related to differing respiratory 

levels (Burkot 1988; Knols et al. 1995; Rodriguez-Barraquer et al. 2016).  

Temporal variation in malaria transmission is largely driven by seasonality in rainfall and temperature, 

which impacts the total mosquito population size in an area (Craig et al. 1999). Interactions between 

climactic effects can also occur, for example heavy rainfall accompanied with high temperatures is 

observed to cause sharper increases in malaria transmission than in colder regions (Teklehaimanot et 

al. 2004). Malaria regions can be broadly defined by their level of seasonality and endemicity. Regions 

possessing stable annual temperatures are more capable of sustaining mosquito populations 

throughout the year, leading to perennial transmission (Hay et al. 2008). Most regions, however, 

experience some degree of seasonality and can be characterised by the periodicity of transmission, 

with transmission increasing in the rainy season and falling during the dry season (Cairns et al. 2012). 

1.1.6.3. Transmission targets 

Declines in malaria transmission resulting from human intervention can be classed with respect to 

their long term reduction targets. Malaria control is associated with the reduction of burden such that 

the immediate public health concern is removed. Malaria elimination involves the interruption of local 

malaria transmission, defined as zero locally contracted cases, knowing that people may acquire 

malaria infections while travelling to malaria regions (Cohen et al. 2010; Tatem et al. 2017). This 

definition allows for malaria cases acquired outside the region but diagnosed in the region concerned, 

known as an imported case, as well as introduced cases, which are first-generation local transmissions 

that are epidemiologically linked to proven imported cases (World Health Organization and Global 

Malaria Programme 2017). This distinction was recently introduced to adapt the requirements for a 

country to be certified as malaria eliminated by the WHO, however, methodology for classifying an 

introduced case through epidemiological methods is not 100% accurate, with genetic measures often 

required to determine a true introduced case (Hemingway et al. 2016). Lastly, malaria eradication is 

the substantially more complicated challenge of achieving worldwide permanent reduction of malaria 

infection to zero (Alonso et al. 2011). Eradication was previously viewed as an unrealistic goal after 

previous failed eradication programmes, however, there has been recent optimism and renewed 

efforts to achieve eradication, largely resulting from a call for eradication made by the Bill and Melinda 

Gates Foundation in 2007 (Roberts and Enserink 2007). The specific timelines to eradication are 

contentious (Enserink 2019), with a lack of consensus between the WHO and a recent Lancet 

commission on malaria eradication (Feachem et al. 2019). However, it has been shown that local 

elimination is possible in many parts of the world, although highly endemic regions are currently 

unlikely to achieve elimination with currently available tools (Griffin et al. 2010). 
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1.2. Genetic approaches within malaria 

In 1996, an International Consortium of Scientists set a goal to determine the sequence of the P. 

falciparum genome because the human genome project was already progressing at a satisfying speed 

(Hoffman et al. 1997). Seven years later, the first genome sequence for P. falciparum was published. 

In the seventeen years after this our understanding of the biology of the malaria parasite and how it 

interacts with both the human and the mosquito vector has increased substantially. Large-scale 

population genomic analyses have enabled malaria genomics to be used to inform malaria control, 

largely through the identification of the genetic factors associated with the parasite’s response to host 

and vector immune responses and the discovery of novel antimalarial targets and the origins of 

emerging antimalarial resistance.  

1.2.1. Malaria Genome Project 

In 2002, the first reference genome for P. falciparum was published (Gardner et al. 2002). The P. 

falciparum 3D7 reference genome started a series of efforts to sequence the genomes of other known 

malaria parasites, including the genome of the rodent malaria species, P. yoelii, which was also 

published in 2002 (Carlton et al. 2002). The increasing use of Sanger sequencing in the 21st Century 

resulted in the sequencing of multiple Plasmodium species genomes, which recently included the 

publication of the P. malariae and P. ovale genomes in 2017, representing the last major human 

malaria species’ genome to be sequenced (Rutledge et al. 2017). The publication of all Plasmodium 

species genomes to date, as well as key technical developments for conducting genetic engineering 

are shown in Figure 1.3. 

The publication of the P. falciparum 3D7 genome and efforts to ensure its maintenance and improve 

its annotation have created a hugely beneficial tool for the global malaria research community by 

enabling comparative genome studies. Comparative genome studies are a major research area and 

use the growing collection of genome sequences collected across malaria endemic regions to 

characterise genetic diversity, enabling genomic epidemiology to be applied for the study of malaria 

(Amato et al. 2016). Underpinning these efforts is the creation of international research networks, 

such as the Malaria Genomic Epidemiology Network (MalariaGEN)). Development of consortia of this 

nature helps to developed standards of openness by which samples collected from multiple research 

institutions and studies can be sequenced to the same level of accuracy and disseminated publically 

for the wider research community to use in follow up comparative studies. For example, studies have 

identified how the parasite genome is shaped both by human genetic variation (Kwiatkowski 2015) 
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and drug pressure leading to the identification of the origins of artemisinin resistance (Miotto et al. 

2015).  

The publication of malaria genomes has also triggered the development of other omics related 

approaches that harness the increasing computational power to study the network of ways in which 

a parasite’s genetics are translated through to the observed phenotype of the parasite. Similarly, 

improved forwards and reverse genetic approaches, such CRISPR-Cas9 gene editing (Wagner et al. 

2014), have been used to increase the functional annotation of the P. falciparum genome, leading to 

the number of genes with an unknown function approximately halving between the original 3D7 

genome publication in 2002 and version 3.2 of the genome published in 2019 (Böhme et al. 2019). 

Central to both of these again is the open development of community tools and data sources, such as 

PlasmoDB, which has furthered progress in functional genomics research across multiple Plasmodium 

species (Aurrecoechea et al. 2009).  

 

Figure 1.3 Advances in malaria genomics and related fields.  Genome sequences and key resistance and 

malaria pathogenesis studies are shown in blue, with advancements in genetic engineering shown in green. 

Adapted from Kirchner et al (Open Access CC BY 4.0) (Kirchner et al. 2016).  

1.2.2. Implications of parasite genomics for malaria control 

1.2.2.1. Parasite virulence and immune responses 

P. falciparum has evolved numerous mechanisms in response to host immune responses (Ferreira et 

al. 2004). The human immune system primarily targets the cell surface antigen Pf erythrocyte 

membrane protein 1 (PfEMP1). PfEMP1 is encoded by the exclusive expression of one of roughly 60 
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different var genes, with the parasite able to switch expression between different var genes and 

thereby to adapt between different virulence phenotypes associated with different disease severities 

and symptoms (Recker et al. 2011; Almelli et al. 2014). Immune evasion via var gene expression is 

exclusive to P. falciparum, with the characterisation of other Plasmodium species’ adaptations to 

immune responses less defined (Neafsey et al. 2012). There are a number of other cell surface antigens 

expressed by P. falciparum, which include multi-copy gene families of RIFIN and STEVOR proteins, the 

latter of which has been associated with the severity of malaria symptoms within individuals with 

blood group A (Frech and Chen 2013; Bachmann et al. 2015). 

Within the mosquito, the malaria parasite is also subject to immune pressures, which has also resulted 

in the evolution of adapted immune systems that are expressed in the sexual stages of parasite 

development. Pfs47 has been shown to be expressed on the surface of the motile ookinetes stage and 

is expressed by the female gamete which forms the body of the ookinetes after fertilisation (Molina-

Cruz et al. 2013). Experimental studies using parasite strains expressing globally distinct genetic 

variants of Pfs47 were used to demonstrate that P. falciparum is adapted to its local vector, with non-

adapted parasites less able to successfully evade the mosquito immune system and develop oocysts 

(Molina-Cruz et al. 2015).  

1.2.2.2. Resistance identification 

Genetic approaches have been used in the identification of the molecular markers of antimalarial 

resistance. Genetic crossing between CQ-resistant and CQ-sensitive parasites was used to identify a 

36kb region in chromosome 7 of P. falciparum as the source of CQ resistance (Wellems et al. 1991). 

Further studies built on this to identify mutations in the gene encoding for the Pf chloroquine 

resistance transporter (CRT) that were significantly associated with the resistance phenotype (Fidock 

et al. 2000; Thomas et al. 2002). Similar approaches were used to identify point mutations in 

dihydropteroate synthetase and dihydrofolate reductase that are responsible for SP resistance 

(Peterson et al. 1988; Wang et al. 1997). In light of emerging artemisinin resistance, the first scientific 

goal of MalariaGEN focussed on analysing genetic variation using whole genome sequencing to 

understand how antimalarial resistance emerges and spreads. By combining genome sequences with 

the clinical phenotype of the parasite with respect to drug treatment failure,  single nucleotide 

polymorphisms  (SNPs) associated with drug treatment failure were identified (Takala-Harrison et al. 

2013). These efforts resulted in the identification of Pf Kelch13 (K13) as the gene responsible for rising 

levels of artemisinin resistance in the Greater Mekong Subregion (Cheeseman et al. 2012). This 

discovery has greatly helped efforts to control emerging artemisinin resistance, with control efforts 

now able to sequence for the molecular markers associated with drug resistance. The WorldWide 
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Antimalarial Research Network (WWARN), for example, is an international network that uses 

molecular markers, as well as clinical markers, of resistance to provide maps and databases to help 

document the current prevalence of antimalarial resistance and to track its continued emergence and 

spread (WorldWide Antimalarial Research Network (WWARN)).  

Recent developments in genetic engineering of P. falciparum have enabled the role of K13 mutations 

in conferring artemisinin resistance to be confirmed (Straimer et al. 2015). More recently, CRISPR-

Cas9 engineering has been used to assess for differential fitness phenotypes associated with different 

K13 SNPs (Nair et al. 2018), in an effort to explain why resistant strains with C580Y mutations in K13 

have recently emerged amongst multiple different K13 SNPs (Anderson et al. 2016). However, it is 

increasingly likely that the apparent benefits associated with C580Y mutations are reflective of the 

genetic background on which C580Y strains emerged, suggesting that a number of compensatory 

mutations in other genes offset fitness costs associated with K13 mutations. Possible sources for these 

beneficial mutations include genes encoding for ferredoxin, multidrug resistance protein 2 (MDR2) 

and CRT (Ménard et al. 2016). Alternatively, it has been suggested that K13 SNPs interact with inositol 

phosphate paths, causing reduced binding efficacies of Pf phosphatidylinositol-3-kinase (PI3K) 

(Neafsey et al. 2012). Understanding of the involvement of PI3K and other associated genes, however, 

has been greatly helped by the availability of longitudinally sampled genome sequences that enabled 

emergence times of novel artemisinin resistance targets to be compared against K13 emergence 

(Cerqueira et al. 2017). 

1.2.3. Factors shaping parasite population genetics 

The lifecycle of P. falciparum has been the topic of substantial research (Aly et al. 2009; Gerald et al. 

2011), with the debate concerning the existence of a sexual stage and recombination within the 

mosquito (Maccallum 1897) resulting in numerous investigations to characterise the specifics of the 

obligate sexual stage (Ranford-Cartwright et al. 1991; Paul et al. 1995). In addition, malaria 

transmission between both the human and the mosquito involves a series of population bottlenecks 

(Vaughan 2007; Churcher et al. 2010), which combined with the rapid sexual stage involving a single 

two-step meiotic division (Bennink et al. 2016) have important implications upon the population 

genetics of P. falciparum (McKenzie et al. 2001). This is also extenuated by the increasing evidence of 

the transmission of multiple clonally-related parasites within one bite (Wong et al. 2017), within host 

mediated immune responses (Barry et al. 2007; Portugal et al. 2011) and density-dependent 

regulation of superinfection (Bruce et al. 2000; Pinkevych et al. 2013). These factors, along with the 

external selective pressures placed upon the parasite by antimalarial drugs, have resulted in a 

complicated network of processes driving the genetic diversity of the parasite population. In addition, 
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frequent polyclonal infection makes it harder to distinguish the actual parasite genotypes within an 

infected individual. This complexity led to the description of polyclonally infected individuals in terms 

of their complexity of infection (COI), defined as the total number of genetically distinct parasites 

within an individual. However, recently developed computational methods (Galinsky et al. 2015; Ken-

Dror and Hastings 2016; Chang et al. 2017) have improved the ability to predict higher COIs, allowing 

for the prevalence of minor clones associated with lower parasitaemia to be estimated. This greater 

understanding of the parasite genetic lifecycle and population dynamics, combined with 

recombination maps of the P. falciparum genome (Mu et al. 2010; Jiang et al. 2011) and the availability 

of longitudinal genomic data increase the potential to create and importantly parameterise new 

mathematical models of malaria transmission that integrate parasite genetic information.  

1.3. Mathematical models of malaria transmission 

Models of malaria transmission are mathematical tools that describe how malaria is transmitted 

within a population and allow for the formulation of mathematical definitions for the prevalence of 

malaria with respect to key quantities and parameters. These tools are able to be used to quantify the 

benefit of different malaria control programmes and can help guide the deployment of future 

initiatives and how they can be optimised for malaria control.  

1.3.1. The Ross-MacDonald model 

The suite of modern models of malaria transmission are the end result of numerous iterative 

modelling developments taking place in the 20th century. Ronald Ross published the first mathematical 

model of malaria transmission in 1908 when he was tasked with characterising the different methods 

of preventing malaria in Mauritius (Ross 1908). In this model he described how the ratio of mosquitoes 

to humans, denoted as m, is related to malaria infection incidence. In continuation, Ross defined the 

proportion of mosquitoes that would need to be killed to result in a mosquito density, denoted m’, 

below which transmission would be interrupted. The key parameters involved in Ross’ are summarised 

in Table 1.1 (Smith et al. 2012a). From this, Ross’s insight can be summarised by the formula: 

𝑚′ >
𝑔𝑟

𝑎2𝑏𝑐𝑒−𝑔𝑣
. 

During the GMEP in 1955-1969 the original Ross model was developed further by George Macdonald 

(MacDonald 1957). These developments incorporated needed biological processes such as the 

potential for individuals who are already infected to be reinfected, known as superinfection 

(MacDonald 1950), allowing the accumulation of multiple parasites within an infected individual to be 

captured. The developed Ross-MacDonald model was applied to provide insight into the efficacy of 
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using the insecticide DDT alongside treatment with CQ for malaria control. Although the eradication 

efforts of the GMEP ultimately failed, the modelling approaches developed helped increase our 

understanding of the importance of mosquito life expectancy on malaria transmission, which was used 

to explain the non-linear relationship between increasing mosquito death rates and decreasing 

sporozoite positivity rates (MacDonald 1952b). MacDonald’s involvement in the GMEP helped to 

develop a new quantitative understanding of how entomological control impacts the transmission of 

malaria, which both led to the first attempts to define the basic reproductive number, R0 (MacDonald 

1952a), for malaria and subsequent modelling developments to better understand how to model the 

implementation of different malaria interventions to control malaria (MacDonald 1956).  

Table 1.1 Human Infection State Transitions. Reproduced from Smith et al. (Open Access CC BY) 

(Smith et al. 2012a). 

Parameter Description 

m The ratio of mosquitoes to humans 

g The instantaneous death rate of a mosquito 

r The daily rate each human recovers from infection 

a The rate at which a mosquito takes human blood meals 

b The probability that a bite by an infectious mosquito infects a human 

c The probability a mosquito becomes infected after biting an infected human 

v The number of days from infection to infectiousness in the mosquito 

  

1.3.2. Using Models for Intervention Evaluation 

After the failure of the GMEP, a WHO sponsored investigation in collaboration with a Nigerian 

government research team was undertaken in the Garki district of Nigeria between 1966-1976 

(Molineaux 1980). The investigation differed from previous efforts that had attempted to test the 

feasibility of eradication campaigns, but rather focussed primarily on the collection of measures of 

malaria transmission. Malaria measures included serological, parasitological and entomological 

measures with the view of building relationship between malaria metrics and transmission intensity 

(Molineaux and Gramiccia 1980). In addition, the Garki project aimed to measure the effect of IRS in 

combination with an MDA campaign using sulfalene-pyrimethamine. From the outset though, the 

Garki project also wanted to use the controlled set up to incorporate the collected malaria data and 

intervention data within a constructed malaria model that could be used going forward to evaluate 

malaria control efforts. Although malaria transmission returned after the end of the Garki project, it 
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highlighted the temporal and spatial heterogeneity in malaria endemicity and affirmed the importance 

of incorporating the collection of epidemiological data as part of any planned malaria control 

programme (Nájera et al. 2011).   

The shift away from eradication to malaria control after the GMEP and the Garki project resulted in 

models of malaria transmission needing to incorporate measurable entities that could be used to 

assess the efficacy of interventions. This subsequently allowed for the cost-effectiveness of 

interventions to be calculated when combining malaria modelling predictions with the costs of disease 

burden. The shift in modelling focus also occurred alongside, or arguably as a result of, computational 

advancements that enabled originally deterministic models to be extended to more completely 

capture heterogeneity in the human population, including age-dependent malaria risk (Dietz et al. 

1988; Anderson and May 1991), acquired immunity (Aron 1988) and variability in transmission 

intensity (Hasibeder and Dye 1988; Gupta et al. 1994)  and the mosquito biting behaviour (Dye and 

Hasibeder 1986). As a result of continued extensions, mathematical models of malaria transmission 

are now capable of assessing the impact of intervention strategies and of simulating novel 

intervention strategies and tools. 

Table 1.2 WHO recommended malaria interventions supported by malaria modelling. 

Intervention References 

Increasing Treatment Coverage (Okell et al. 2011; Johnston et al. 2014) 

Seasonal Malaria Chemoprevention (SMC) (Cairns et al. 2011) 

Intermittent Preventive Treatment in pregnancy (IPTp) (Walker et al. 2017) 

Mass Drug Administration (MDA) for elimination  (Walker et al. 2015; Brady et al. 2017) 

Insecticide-treated nets (ITNs) 
(Le Menach et al. 2007; Chitnis et al. 2010; 
Okumu and Moore 2011; White et al. 2011) 

Indoor residual spraying (IRS) 
(Chitnis et al. 2010; Okumu and Moore 2011; 
White et al. 2011)  

Larval Control (Killeen et al. 2002; Eckhoff 2011a) 

In 1988, the WHO, World Bank, UNICEF and UNDP founded the Roll Back Malaria (RBM) Partnership 

in an effort to control malaria and halve the burden by 2010 (Nabarro 1999). As highlighted earlier, 

much of the progress achieved as part of RBM is attributed to the scale-up of ITNs (Bhatt et al. 2015), 

which demonstrates that the focus on reducing adult female mosquito populations in the Ross-

MacDonald model has been shown to be effective. Malaria models have been used since to evaluate 

and confirm the efficacy of a number of other interventions, with a number of intervention strategies 
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and WHO guidance and policy recommendations based on and incorporating findings from malaria 

modelling efforts (Table 1.2). Given the direct and indirect benefit afforded by malaria interventions, 

modelling has been used to explore both the individual and population benefits of different 

intervention combinations and policies.  

From a population perspective, modelling has been used to review how cost-effective combinations 

of malaria interventions are and to review different proposed strategies. For example, modelling was 

used as part of the creation of the WHO Global Technical Strategy for Malaria 2016–2030, helping to 

cost different strategies and predict their long-term impacts on malaria prevalence (Griffin et al. 2016). 

This style of exercise also highlights how previous scale-up of malaria interventions has contributed to 

the declines in malaria observed during the RBM partnership and how continued investment in 

malaria prevention is required to prevent rebounds in malaria prevalence, in particular in response to 

potential cuts to international funding agencies such as the President’s Malaria Initiative (Jakubowski 

et al. 2017). These types of study are important for highlighting that the current malaria burden in any 

country reflects its intervention coverage, with models highlighting the non-linear relationship 

between malaria exposure and malaria prevalence in the context of current treatment coverage and 

how it relates to the potential impact of increased treatment coverage (Penny et al. 2015). Different 

mathematical models have also been used to model malaria elimination strategies at the country-

level (Maude et al. 2012), how malaria interventions should be deployed in response to global health 

emergencies such as Ebola outbreaks (Walker et al. 2015) and in the optimisation of malaria control 

and the importance of tailoring intervention packages to the ecological landscape of the region 

concerned (Walker et al. 2016).  

Models can also be used to evaluate novel intervention tools and provide target product profiles 

(TPPs) to help guide policy-decision making and industrial research effort when designing new 

vaccines, antimalarials, diagnostics and vector control tools. For example, by considering the potential 

efficacy of different vaccine candidates in different transmission settings, mathematical models have 

been used to characterise the minimally effective profile of pre-erythrocytic vaccines (Maire et al. 

2006c) and potential blood-stage and transmission blocking vaccines (Penny et al. 2008). These studies 

have highlighted the need for vaccine development to be considered in the context of the transmission 

settings they will be deployed in and how feasible mass vaccination campaigns will be that require 

follow up booster doses. TPPs for antimalarials have been used to help screen new drugs with lower 

risks of antimalarial resistance emerging (Ding et al. 2012). Mathematical models have been used in 

creating TPPs for next generation RDTs with increased sensitivity in an effort to increase the utility of 

MSAT programmes by increasing the proportion of asymptomatic infections that would be treated 
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(Slater et al. 2015a). These approaches can then be used to prevent wasted research and development 

costs in testing new RDTs if preliminary tests are not sufficiently sensitive. Similar approaches have 

been used when reviewing novel vector control tools that could be used to slow the spread of 

insecticide resistance. Spatial models of individual mosquitoes have been used to evaluate the 

optimum use of attractive toxic sugar baits (Marshall et al. 2013), and to guide mosquito gene drive 

release frequencies and schedule in relation to seasonality (Eckhoff et al. 2016). Lastly, the inclusion 

of ivermectin within mass treatment strategies has been modelled to consider the impact on mosquito 

mortality and reductions in the probability of infected mosquitoes developing sporozoites thus 

preventing onwards transmission (Slater et al. 2014). 

1.3.3. Consensus Modelling Approaches 

Inherent in the strength of any model is its ability to reproduce historic data and make accurate 

forward predictions. The former relies on model fitting, which has taken advantage of increasingly 

powerful methods for statistical inference and the increased quality and availability of data collected 

from field studies. Importantly, the ability to conduct multiple simulations of a model is increasingly 

easier due to decreased computation resource costs and distributed computing services. This allows 

model predictions to better capture and report model uncertainty, which is crucial when using models 

to support policy decisions. In addition to this, it is beneficial to also combine the predictions of 

different models to assess whether the same recommendations are made. 

The recent evaluation of the RTS,S/AS01 vaccine used a consensus approach of multiple mathematical 

models to compare the cost-effectiveness and public-health benefit of the RTS,S/AS01 vaccine (Penny 

et al. 2016). The use of an ensemble of models that were each individually calibrated to the Phase III 

trial data for RTS,S/AS01 allowed the different models, and importantly their individual model’s 

assumptions, to be brought within one framework to provide recommendations regarding the 

prevalence ranges that would most benefit from the RTS,S/AS01 vaccine as well as reviewing different 

dosing schedules. The different dosing schedules is worth further discussion as consensus was not 

achieved across all four models used, with one model only predicting a marginal benefit of moving 

from a three-dose to a four-dose schedule. However, by reviewing the components of each model and 

using sensitivity analysis to review the impact of a given model’s assumptions, assumptions related to 

the estimated waning of protection against infection afforded by the vaccine were identified. This 

point highlights the strength of correctly setting up a consensus approach, in which only the 

parameters of the settings being modelled and not the modelling assumptions have been harmonised. 

At this stage recommendation can also be made about the need for further data to clarify how 

immunity wanes given its identified importance. However, if consensus had been achieved regardless 
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of different modelling assumptions then attention could be focussed elsewhere. In essence, the 

strength of the consensus approach is the differences between model predictions because it also 

strengthens the conclusion of findings when consensus is reached in other settings. Due to the 

strength of consensus approaches they have been used in reviewing mass drug administration (Brady 

et al. 2017) and in evaluating the benefit of increased sensitivity in RDTs (Slater et al. 2015b).  

1.3.4. Current Malaria Models 

The substantial range of malaria interventions that have been modelled and discussed above has been 

largely due to the work of a few research groups, each of which has developed a different 

mathematical model of malaria transmission. I now cover in brief the structure of four models of 

malaria transmission that have been used either in the evaluation of intervention strategies or 

considering the emerging threat of antimalarial resistance, before comparing their differences.   

1.3.4.1. The Intellectual Ventures model 

A team at the Institute for Disease Modelling  published a model of malaria transmission in 2011 that 

focussed initially on capturing the dynamics of mosquito populations in response to seasonal effects and the 

implementation of intervention strategies (Eckhoff 2011b). The model explores the different daily 

outcomes for a given mosquito, depending on whether the mosquito feeds on livestock or humans and if 

the latter how interventions may cause mosquitoes to be repelled or killed as a result of interventions. The 

model was extended in 2012 to include an individual-based human population, which included an immune 

component that tracked a human’s exposure to different parasite variants in terms of their expressed 

variant surface antigens, with exposure to up to 50 PfEMP-1 variants included (Eckhoff 2012). Modelling 

immunity in this way allows for the gradual acquisition of immunity and was used to show how increasingly 

accurate predictions of the relationships between malaria prevalence and age across transmission 

intensities can be achieved by increasing the number of unique antigenic components included in the 

model (Eckhoff 2012). The model has been used to also estimate the size of the infectious reservoir 

(Gerardin et al. 2015b) of malaria and evaluate potential malaria vaccines (Wenger and Eckhoff 2013) 

and MDA campaigns (Gerardin et al. 2015a), both independently and as part of the consensus 

exercises highlighted earlier evaluating the benefit of the RTS,S/AS01 vaccine (Penny et al. 2016).  

1.3.4.2. OpenMalaria 

In 2006, researchers at the Swiss Tropical and Public Health Institute published a series of papers 

exploring different components and functionality of a micro-simulation model of the epidemiology of 

malaria transmission (Smith et al. 2006a). The  additional components of the models published at the 
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same time detail multiple aspects of the human component of the transmission model, which include 

the dynamics of asexual parasitaemia in non-immune individuals (Dietz et al. 2006), the acquisition of 

blood-stage immunity (Maire et al. 2006b) and  the relationship between parasite density and the 

infectiousness of humans to mosquitoes (Killeen et al. 2006; Ross et al. 2006a). In addition, the model 

considers a variety of clinical symptoms and disease outcomes and was also used to explore the 

dynamics of clinical and severe malaria (Ross et al. 2006b; Smith et al. 2006b) as well as malaria-

associated anaemia (Carneiro et al. 2006) and neonatal mortality (Ross and Smith 2006). The model 

was initially developed to evaluate pre-erythrocytic vaccines (Maire et al. 2006c, 2006a) and has 

consequently been used for cost-effectiveness studies of both case management and incorporating 

vaccines in expanded immunisation programmes (Tediosi et al. 2006). The focus on vaccine evaluation 

continued by predicting in 2012 that any vaccine similar to RTS,S/AS01  included in immunisation 

programmes would substantially decrease malaria morbidity and mortality (Smith et al. 2012b). 

However, it was shown to be dependent on transmission intensity with little effect predicted at 

transmission intensities prevalent in sub-Saharan Africa. Further vaccine studies have also been 

conducted to assess the utility of blood-stage and transmission-blocking vaccines (Penny et al. 2008). 

Outside of vaccine studies, OpenMalaria has been used in evaluating MSAT (Crowell et al. 2013) and 

reactive case detection strategies (Reiker et al. 2019) as well as modelling the threats of insecticide 

resistance (Briët et al. 2013) and changing mosquito feeding behaviour on vector control (Briët and 

Chitnis 2013). It has also been used in both consensus modelling exercises highlighted earlier. 

1.3.4.3. The Imperial College model 

An individual-based simulation model for P. falciparum transmission has been developed by the 

malaria modelling group at Imperial College London, which was initially developed for the evaluation 

of the impact of different intervention packages for malaria control (Griffin et al. 2010). Parameter 

estimates were fit using a mixture of clinical and parasitological data from multiple transmission 

settings (Griffin et al. 2014) and has been used to guide the costing of the Global Technical Strategy 

for malaria 2016-2030 (Griffin et al. 2016). Three different mosquito species (An. gambiae, An. 

arabiensis and An. funestu) can be modelled for the transmission of malaria. Potential interventions 

that can be modelled include changing treatment coverage with multiple antimalarials, IRS and ITNs. 

Similarly to the other models, it has been used to independently model and cost evaluate the benefit 

of mass drug administration in intervention packages (Walker et al. 2016) and the implementation of 

the RTS/S vaccine (Winskill et al. 2017), as well as taking part in the highlighted consensus exercises 

modelling these areas.     
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1.3.4.4. The OUCRU Malaria Sim 

An individual-based microsimulation of malaria transmission was developed by individuals at Penn 

State and the Oxford University Clinical Research Unit (OUCRU). The resultant model, OUCRU Malaria 

Sim., was developed initially to assess the use of multiple first line therapies as a method to slow the 

emergence of ACT resistance (Nguyen et al. 2015). This version of the simulation includes transmission 

between hosts without explicit implementation of mosquitoes but rather using a population of 

mosquitoes and tracking the prevalence of exposed and infectious adult mosquitoes. The model also 

tracks within host parasite development and explicitly models parasite densities of multi-clonal 

infections and the impact on the relative infectiousness of different within host parasite strains. 

Additionally, the model includes a pharmacokinetic and pharmacodynamics component as well as 

mutation events to multiple types of drug-resistant genotype. The model also reproduces 

heterogeneity in malaria prevalence and symptoms, which involves the modelling of symptomatic and 

asymptomatic infections, age-dependent immune acquisition, and individual and age-dependent 

variation in host biting rates. The model was not included in the mentioned consensus exercises, but 

has been involved in simulating antimalarial resistance threat in response to MDA as part of the WHO 

Evidence Review Group on MDA for malaria (Malaria Policy Advisory Committee 2019). 

1.3.4.5. Model Differences 

The four models described above differ in terms of the level of detail each model places on different 

aspects of the transmission of malaria, what sources of data were used to parameterise the models 

and the level of stochasticity in each model. These differences are not an indication of any model being 

better or worse than another model and are largely reflective of the specific questions the models 

were initially designed to answer. For example, OpenMalaria was initially developed to evaluate pre-

erythrocytic vaccines and consequently includes more biological realism with respect to within host 

parasite densities and how they relate to the build-up of acquired immunity, with immunity reflecting 

both previous numbers of infections as well as total parasite density exposure (Maire et al. 2006b), 

and extended to include waning immunity with modelling ensembles (Smith et al. 2012b).  Both the 

Intellectual Ventures and OUCRU models also model absolute parasite density, with the former model 

largely focussing on biological realism and the latter model requiring it to capture fitness costs and 

differential parasite clearance rates resulting from antimalarial resistance. The Imperial College 

Model, on the other hand, does not track parasite density because the initial model development did 

not necessitate its inclusion to produce a model that was able to both reproduce prevalence and 

incidence dynamics during model fitting and was developed initially to contrast different intervention 

strategies. Aspects of malaria transmission that are related to parasite density, such as the probability 
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of developing a fever, being detected with a given diagnostic and the probability of onwardly infecting 

a mosquito, are modelled using relationships related to acquired immunity as a proxy for parasite 

density. These assumptions do, however, give computational benefits related to how quickly model 

simulations can run. Additionally, despite these differences the three models used within consensus 

exercises gave comparable predictions, although there are key differences when comparing the 

incidence against prevalence profiles for different age groups (Cameron et al. 2015), as well as 

differences in the amplitude of malaria prevalence resulting from seasonal transmission (Brady et al. 

2017).   

Each model handles uncertainty in model parameters and incorporates stochasticity within model 

predictions in different ways. For the 2015 analysis of ACT deployment strategies, the OUCRU model 

was parameterised using either known values resulting from direct measurements from experimental 

or field data. A similar approach was used across all models where possible, with the malaria therapy 

data being commonly used to estimate the duration of infection in nonimmune individuals (Eyles and 

Young 1951). Where parameters were unavailable, parameters were fit by reproducing known malaria 

relationships from field data, such as relationships between prevalence and EIR in different age 

groups. Lastly, sensitivity analysis was employed where parameters were unknown and simulation 

repetitions with different random seeds were used to provide summary statistics for metrics of 

antimalarial resistance such as drug treatment failures and mutation frequencies. Consequently, 

stochasticity in these prediction stems from the inherent stochasticity of the model with most 

parameters remaining fixed. In contrast, the Intellectual Ventures model often uses incremental 

mixture importance sampling to parameterise their model. This approach was used to reproduce 

prevalence and incidence data when calibrating the within host parasite component of the model to 

data collected from sites in Tanzania and Senegal (McCarthy et al. 2015), as well as in estimating the 

annual reproductive rate when investigating how malaria parasite genetic barcode data could be used 

for inferring transmission intensity (Daniels et al. 2015). The Imperial College model relies on the 

posterior distribution of model parameters to draw parameter sets for simulations, thus allowing 

model prediction uncertainty to arise from uncertainty in the model parameterisation when the model 

was fit to incidence data from 23 sites in Africa (Griffin et al. 2010). Lastly, the OpenMalaria model 

incorporates uncertainty using different modelling assumptions, which are combined within an 

ensemble of sub-models that acknowledge uncertainty in how processes such as treatment access 

and immune decay occur (Smith et al. 2012b).  

The comparison of model differences above highlights the need to consider the question that is being 

answered when developing a model. In the work presented in this thesis, I will be producing a new 

model based on the Imperial College model that is capable of simulating parasite genetics. 
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Consequently, the consideration of how other models have chosen to model within host parasite 

dynamics is of particular merit. For example, within host parasite densities will have an impact on 

which parasite strains are taken up in a mosquito feed, which directly impacts the generation of new 

genetic diversity as a result of potential recombination in the sporogenic cycle. Additionally, tracking 

parasite strain types will need to be incorporated so that the advantages and fitness costs of drug 

resistance can be included. There are, however, other models of parasite dynamics that are not full 

transmission models but give insight into how parasite genetic diversity occurs and also how resistant 

strains may be expected to emerge under different conditions. 

1.4. Models of malaria genetics 

Mathematical models of malaria parasite genetics have largely been developed to answer questions 

related to the emergence of drug resistance. However, a handful of studies have built models aimed 

at understanding the occurrence of neutral genetic variation and often the spatial distribution of 

genetic variance. These models largely draw from modelling approaches within the field of population 

genetics, rather than using epidemiological models. Despite the limited number of studies using 

population genetics approaches, genetic methods are increasingly thought of as a necessary tool for 

malaria surveillance going forwards. For example, a technical consultation was proposed in October 

2018 to the WHO Malaria Policy Advisory Committee to assess the role of genetics in optimising 

surveillance programs (Noor and Ringwald 2018). 

1.4.1. Population Genetic Models 

Population genetics seeks to use models to explain the genetic diversity within and between different 

populations. Its application in malaria has largely focussed on understanding and detecting selection 

within populations, which has immediate implications for antimalarial resistance, which are discussed 

in the next section. The other main applications of population genetics for malaria include 

evolutionary analyses and demographic inference, including inferring how population sizes have 

changed over time and how related different populations are to one another in space.  

One application of population genetics in malaria has been to explain the evolutionary history of the 

Plasmodium genus. These approaches have used samples from different Plasmodium species to 

estimate the genetic distances between species before constructing phylogenetic trees to infer the 

relationship between species. Phylogenetic approaches were used in the reclassification of P. ovale as 

two distinct species, P. ovale curtisi and P. ovale wallikeri (Sutherland et al. 2010), which has been 

verified more recently with further phylogenetic studies (Ansari et al. 2016). These analyses also offer 

insight into possible zoonotic origins of different malaria species and help identify invasion related 
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genes, such as the RBP family (Rutledge et al. 2017). Another use of phylogenetics is to link it with 

epidemiological models, often based on coalescent theory (Kingman 2000) or birth-death models 

(Volz 2012), to infer the effective population size. This has particular benefits for the study of infectious 

diseases as it promises to be able to allow us to infer the historic prevalence of the disease. For malaria 

this would be very useful, due to the difficulties in surveillance efforts resulting from missed low 

density parasite infections (Okell et al. 2009) and an inability to conduct surveillance effectively in 

some regions. However, the application to malaria is complicated by frequent recombination, which 

is poorly handled in most models incorporated in phylodynamic approaches. One of only a few 

examples in malaria, which used microsatellite models of genetic distances, failed to detect changes 

in the effective population size in a population in Turbo, Columbia over an 8-year period of increased 

treatment and decreased cases of malaria (Chenet et al. 2015). These issues of the unsuitability of 

commonly used genetic models for malaria was highlighted in a study investigating unusual patterns 

of SNPs (Chang et al. 2013). Under the Wright-Fisher model, one would expect that changes in gene 

frequencies due to random drift in finite populations to reduce natural selection, a process which is 

expected to occur due to competition between strains and selection towards a virulent phenotype. 

However, the frequent population bottlenecks occurring at both transmission stages appears to 

impact the commonly accepted dogma of a trade-off existing between genetic drift and selection, with 

both processes being enhanced in the life cycle.   

The other use of population genetics approaches in malaria is to assess for population structure in 

space and to assess for links between different populations. Approaches using genetic distances based 

on microsatellites have been used to quantify movement of malaria in the DRC, revealing a 

complicated landscape of both close genetic ties between geographically distant parasites and 

isolation by distance (Carrel et al. 2015). In lower prevalence countries, however, alternative measures 

are required to quantify spatial connectivity due to parasites appearing increasingly similar. Measures 

of genetic distances based on identity by descent (IBD), which unlike measures of identity by state 

(IBS), explicitly account for the genetic markers used by conditioning on allele frequencies, were 

shown to be able to relate genetic distance to spatial distances in Thailand (Taylor et al. 2017). A recent 

opinion article highlighted the differences needed in genetic approaches with respect to malaria 

prevalence. The article suggested that these approaches will increasingly be used as malaria control 

efforts change the landscape of malaria prevalence away from one of high prevalence homogeneity 

to one where hotspots and source-sink dynamics of connected populations are more prevalent 

(Wesolowski et al. 2018). With these changes, different approaches to malaria control can be taken 

that focus interventions and ensure that imported cases of malaria vs local cases are detected 

accordingly as has been used in Namibia (Tessema et al. 2019) and Bangladesh (Chang et al. 2019) by 
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combining genetic data with mobile phone and travel survey data. Central to these approaches, 

however, are the developed statistical approaches for detecting spatial patterns within proximal 

populations. However, analyses of malaria at larger scales has used more standard methodology to 

understand malaria biology (Volkman et al. 2012), with analysis of microsatellites used to identify the 

source of outbreaks of malaria (Patel et al. 2014). At these spatial scales model-based Bayesian 

methods, such as STRUCTURE (Pritchard et al. 2000; Lawson et al. 2012), have been used to assess 

population structure data and helped to identify the sources of resistance to both RDTs (Akinyi et al. 

2013; Murillo Solano et al. 2015) and antimalarial drugs (Roper et al. 2004; Miotto et al. 2013).  

1.4.2. Antimalarial Resistance Models 

The development of antimalarial drugs is frequently guided by mathematical models of within host 

pharmacokinetics and pharmacodynamics of antimalarial compounds (Simpson et al. 2014). These 

models have been used to assess the therapeutic efficacy (Tarning et al. 2013) and decay of 

antimalarial compounds to inform both the optimisation of dosing schedules (WWARN DP Study 

Group 2013) for available antimalarials and to guide antimalarial drug development (Slater et al. 

2017). However, the occurrence of antimalarial resistance has necessitated considering the 

implications of drug-based control strategies upon the emergence of antimalarial resistance, 

especially with the increase in the use of drugs within SMC and IPT (O’Meara et al. 2006). Initially, 

mathematical models of malarial genetics were utilised to understand both the emergence and spread 

of antimalarial resistance (Mackinnon 2005). The former models the emergence of resistant mutations 

using within host parasite dynamics under different assumptions concerning the fitness and selective 

advantage of emerging strains (Antao and Hastings 2011). The latter, however, often assumes that the 

resistant strain has emerged and seeks to determine the impact of population demographic elements, 

such as disease prevalence, host immunity and drug treatments, upon the spatiotemporal dynamics 

of the spread of resistance (Smith et al. 2010b). Recent efforts have been made to incorporate both 

modelling scales within one framework with the concomitant modelling of resistance evolution both 

within and between hosts yielding important insights into the suitability of different strategies to 

preserve the therapeutic longevity of available antimalarials (Nguyen et al. 2015). However, the 

realism of either the transmission models or the genetic evolutionary process has been limited in these 

models, with the representation of the parasite lifecycle within the mosquito often simplified.  

1.4.2.1. Within-host models 

Within-host models choose to focus on the dynamics of the parasite population within an individual 

and not focus on the transmission of resistant parasites to mosquitoes. As a result, these models focus 
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on identifying the factors that accelerate the emergence of a new resistant parasite within a single 

infection resulting from mutation. For example, by considering the number of distinct parasite 

generations and the numbers of parasites generated at each stage of the parasite life cycle, the de 

novo probability of resistance arising within each of three stages of a parasite life cycle can be 

calculated (Pongtavornpinyo et al. 2009). Alternatively, considering the timing of treatment with 

respect to the stage of infection has been used to reveal interactions between how the timing of host 

immunity and drug pressure may increase the likelihood of developing viable drug-resistant 

populations (Gatton et al. 2001).  

As mentioned earlier, these models often use pharmacokinetic and pharmacodynamic approaches to 

address resistance emergence (Saralamba et al. 2011) and have been used to recommend increasing 

assessment of resistance emergence to greater than 28 days after treatment (Simpson et al. 2000). 

Lastly, approaches similar to those used in population genetics have been used by considering the 

frequency of parasites that would survive from one infection in order to populate the population 

frequency of resistant alleles over time. These can be used to address questions of emergence 

(Hastings 1997), as well as the transmission of emergent resistance, for example demonstrating the 

necessity of using antimalarials within combination therapies and that adding second drugs to already 

failing antifolate drugs is unlikely to work and will lead to partner drug resistance (Watkins et al. 2005).    

1.4.2.2. Population models 

Population models focus on modelling how resistant strains spread within a population of individuals 

and consequently place more focus on how control interventions impact these processes. One major 

area of research is in the review of how different long-term drug treatment strategies can be used to 

slow the spread of resistance. For example, compartmental models of malaria epidemiology have 

been used to contrast using multiple first line therapies (MFT) against cycling available drug 

treatments (Boni et al. 2008). In this study a number of evaluation metrics were also introduced that 

enabled strategies to be assessed based on treatment failure rates as well as population allele 

frequencies related to resistance. This study predicted that MFT has reduced treatment failures over 

a 20-year period compared to cycling strategies, explaining that MFT creates a varied drug pressure 

environment that slows the path to resistance emergence and that the rate at which resistance is lost 

is not sufficient to cause resistance frequencies to return to pre-emergence levels. Similar 

compartment models have also been used to look at whether increased or decreased drug pressure 

slows the spread of resistance, while also looking at how MFT can be used to slow the increase in the 

fitness of resistant parasites in response to drug pressure (Smith et al. 2010b). A version of the Imperial 

College model was also used to explore resistance, but primarily from the point of view of its impact 
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on malaria prevalence, suggesting that partner drug resistance is likely to cause higher increases in 

morbidity than artemisinin resistance (Slater et al. 2016). 

Population models have also been developed to explore questions related to the role of sexual 

recombination and multiplicities of infection in resistance. One investigation sought to focus on the 

relationship between transmission intensity, superinfection and fitness costs to highlight that fitness 

costs must both consider the impacts on the length of an infection as well as the probability of 

onwards transmission within mixed infections (Klein et al. 2012). With regards to the role of 

recombination, a population genetics approach that included recombination occurring from multiply 

infected individuals in the population highlighted that whether MFT was better than cycling was 

dependent on transmission intensity (Antao and Hastings 2012). Additionally, the same model was 

used to demonstrate that conclusions drawn concerning resistance emergence need to be made by 

models including any known epistatic relationships between the mechanisms of resistance (Antao and 

Hastings 2011). For example, there is evidence to suggest that some genes are involved in resistance 

to multiple drugs, such as P. falciparum multidrug resistance gene-1 (pfmdr1) (Okell et al. 2018a) and 

members of the ATP-binding cassette family (Koenderink et al. 2010), with notable difference in drug 

failure rates dependent on different combinations of particular SNPs and copy number variations 

(Nwakanma et al. 2014). Consequently, including both synergistic and antagonistic behaviour between 

genetic loci associated with resistance is key in any resistance modelling.  

1.4.2.3. Within-host and Population Models 

The inclusion of both within host dynamics and population level transmission enables the realism of 

both modelling scales to be included within one framework, which enables the interaction between 

the two scales to occur. For example, one model was developed specifically for this purpose by 

comparing the influence of transmission dynamics and within host evolution of resistance. The process 

demonstrated the need for accurate parameterisation of both processes, highlighting that both 

treatment efficacy and coverage are related to time until resistance emergence (Legros and 

Bonhoeffer 2016). Similarly, both modelling scales were included in a different model that focussed 

on the predicting the waiting time for resistance to emerge, be onwardly transmitted and lead to a 

recombination event that produces a doubly-resistant parasite (Kim et al. 2014). Other examples have 

been used to highlight the differential impact of chronic asymptomatic infections vs short-lived 

symptomatic treated infections on the speed of resistance emerging (Chang et al. 2016). Lastly, the 

OUCRU model that was discussed in the review of transmission models of malaria includes both 

realistic within host modelling, tracking parasite densities and multiple strains, as well as a full 

transmission model that reproduces malaria epidemiological dynamics (Nguyen et al. 2015). This 
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model was used to explore MFT vs cycling, with three different ACTs being used. Due to parasite 

genotypes being modelled, the shared resistance mechanism associated with artemisinin resistance 

could be accurately captured. Resistance was, however, assumed to always lead to treatment failure 

rather than conferring partial resistance and probabilistic treatment failure, which may impact 

findings related to the superior performance of MFT vs cycling.  

1.4.3. Brief lessons from antibiotic resistance modelling 

In Smith et al. the question was raised as to whether increased or decreased drug pressure is 

advantageous in preventing emergence of antimalarial resistance (Smith et al. 2010b). Unsurprisingly, 

the same question is under active consideration within the wider antimicrobial resistance community. 

Historic belief is that high drug pressure is key in preventing resistant strains emerging, with imperfect 

adherence to drug regimens and inappropriate antimicrobial prescription increasing the probability of 

resistance (Llor and Bjerrum 2014). However, mathematical models have highlighted that this is 

largely dependent on the relationship between the strength of the resistance mechanism, i.e. 

complete vs partial resistance, and the strength of inter-strain competition, and that subsequently the 

best strategy is to either use the highest tolerable drug dose or the lowest clinically effective dose 

(Day and Read 2016). Modelling of antibiotic resistance has also explored questions of cycling drugs 

vs MFT. Initial modelling efforts suggested that MFT is superior to drug cycling, with cycling failing to 

reduce antimicrobial resistance in hospitals (Bergstrom et al. 2004), with similar explanations as to 

why as suggested in Boni et al (Boni et al. 2008). However, more recent modelling that explored a 

greater suite of plausible cycling vs MFT strategies, which also included greater variation in the 

performance and properties of the available antibiotics, suggested it is not as simple as that, with a 

number of cycling strategies shown to outperform MFT (Beardmore et al. 2017). As before, key 

questions related to the properties of the drugs in question, the inter-strain dynamics and fitness 

advantages and costs associated with resistance can cause conclusions to lean each way. This 

appreciation prompts me to consider two paths going forwards when extending malaria transmission 

models for simulating resistance dynamics: 1) use parameter sets and modelling assumptions that 

closely resemble our understanding of resistance, or 2) in the absence of known quantities exhaustive 

sensitivity analysis and parameter sweeping is required to review all possibilities and assign confidence 

to the settings that are most probably in an ensemble fashion. Path 2) is undoubtedly most likely, 

however, with each additional parameter to explore, the computational tractability of this approach 

diminishes and the merits of a hybrid approach should be considered.  
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1.4.4. pfhrp2 resistance models  

Mathematical models of malaria transmission have also been developed that consider within host 

parasite profiles in response to reports of false-negative RDT results due to P. falciparum hrp2/3 gene 

deletions (Parr et al. 2016). This approach has been used to characterise the drivers and potential 

spread of P. falciparum hrp2 gene deletions at a population level (Watson et al. 2017), whereas 

alternative modelling methodologies have focussed on explicitly modelling parasite antigen levels 

within individuals to consider the potential impact on malaria morbidity (Gatton et al. 2017). Both 

scales of modelling offer differing insights into the impact of changes in parasite genetics on the 

efficacy of malaria control interventions and are similarly used when modelling the impact of 

antimalarial resistance upon control interventions. 

1.4.5. Models for inferring malaria transmission intensity 

The inclusion of neutral genetic information within population level transmission modelling of malaria 

has been largely unexplored, although such methods are increasingly being developed for modelling 

other pathogens (Rasmussen et al. 2014; Kuhnert et al. 2016). One notable example, however, was 

conducted by Daniels et al. that incorporated parasite genetic barcodes in an agent-based model to 

infer the effect of intervention strategies upon malaria transmission intensity within Thiès, Senegal 

(Daniels et al. 2015). This study illustrated the potential for  genetic data to add value to other 

surveillance methods in areas with less developed surveillance systems (Greenhouse and Smith 2015). 

However, before this can happen the generalisability and accuracy of these methods needs to be 

validated.  

1.5. Thesis Aims 

The aim of this thesis is to use mathematical models of malaria transmission that track parasite 

populations and enable the simulation of parasite genetics to address a range of issues – including 

how parasite genetics could be used within surveillance contexts as well as exploring the dynamics of 

antimalarial and diagnostic resistance. Alongside gaining insight in these areas, I aimed to support 

health policy by considering how best to implement surveillance programs to estimate the prevalence 

of gene deletions responsible for diagnostic resistant malaria, as well as exploring how current 

treatment strategies could be adapted to slow the emergence of antimalarial resistance. Specific 

objectives of each chapter are: 
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 Chapter 2: Extend my previous work looking at pfhrp2 gene deletions to identify the optimum 

sampling windows in support of new WHO guidance on estimating the prevalence of 

pfhrp2/pfhrp3 gene deletions. 

 Chapter 3: Develop a new model of malaria transmission for flexible modelling of parasite 

genetic traits and apply the model to explore the role of superinfection and co-transmission 

events towards within host parasite genetic diversity. 

 Chapter 4: Use the model developed in chapter 3 to define the useful limits of malaria genetics 

for inferring changes in malaria prevalence in response to the scale up of intervention 

strategies and conclude by developing a statistical model for translating parasite sequence 

data into estimates of malaria prevalence. 

 Chapter 5: Adapt the model developed in chapter 3 to explore the dynamics of antimalarial 

resistance emergence, conducting an analysis of how the reduction in the over-prescription 

of antimalarials could be used to improve the therapeutic lifespan of current first line 

antimalarials.  

 Chapter 6: Analyse laboratory data using generalised linear mixed-effects models to 

characterise the contribution of artemisinin resistance towards reducing the impact of 

artemisinin on the parasite’s ability to infect mosquitoes.. Incorporate these findings into the 

transmission model to characterise if a subsequent transmission advantage is conferred by 

artemisinin resistance when resistant parasites invade susceptible populations.  

Throughout this thesis I aim to demonstrate that mathematical models are a useful tool for 

understanding how parasite genetic information can be used to inform emerging challenges within 

malaria control, and the policy implications of these results in light of resistance emergence. 
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Chapter 2. Implications of seasonal malaria transmission for 

the detection of pfhrp2/3 gene deletions 

 

The emergence of “diagnostic resistant” malaria resulting from the deletion of the genes that encode 

for histidine-rich proteins poses a new threat to the control of P. falciparum malaria. Eleven countries 

have now reported pfhrp2/pfhrp3 gene deletions since the first observation of pfhrp2-deleted 

parasites in 2012. In this chapter I present an extended version of my previous study that characterised 

the drivers selecting for pfhrp2/3 deletions and mapped the regions in Africa with the greatest 

selection pressure (Watson et al. 2017). I explore how the timing of surveillance programmes 

recommended by the World Health Organization in February 2018 could cause premature decisions 

to switch to alternative RDTs.  

This chapter has been published as: Watson OJ, Verity R, Ghani AC, Garske T, Cunningham J, Tshefu, 

A, Mwandagalirwa, MK, Meshnick SR, Parr JB, Slater HC. Impact of seasonal variations in Plasmodium 

falciparum malaria transmission on the surveillance of pfhrp2 gene deletions. eLife 2019. 8, e40339 

(Watson et al. 2019b).   

2.1. Introduction 

Diagnostic testing of suspected malaria cases has more than doubled in the last 15 years, with 75% of 

suspected cases seeking treatment from the public health sector receiving a diagnostic test in 2017 

(World Health Organization 2018d). Much of this progress reflects the increased distribution of rapid 

diagnostic tests (RDTs), with the most commonly used RDTs targeting the P. falciparum protein HRP2 

(PfHRP2). In 2014, a review of published reports of pfhrp2/3 deletions was conducted and included a 

critical assessment of the comprehensiveness of the diagnostic investigation (Cheng et al. 2014). The 

findings of this review highlighted a need for a harmonized approach to investigating and confirming 

or excluding pfhrp2/3 deletions and called for further studies to determine the prevalence and impact 

of pfhrp2/3 gene deletions. Since that review, false-negative RDT results due to pfhrp2/3 gene 

deletions have been reported in 10 countries in sub-Saharan Africa (SSA) (World Health Organization 

2018a). The frequency of pfhrp2/3 deletions varies across SSA, with the highest burden observed in 

Eritrea where 80.8% of samples from Ghindae Hospital were both pfhrp2-negative and pfhrp3-

negative in 2016 (Berhane et al. 2018).  

Mathematical modelling has predicted that the continued use of only PfHRP2 RDTs will quickly select 

for parasites without the pfhrp2 gene (Gatton et al. 2017). This selection pressure occurs due to the 
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misdiagnosis of infections caused by parasites lacking the pfhrp2 gene, which will subsequently 

contribute more towards onwards transmission than wild type parasites that are correctly diagnosed 

due to the expression of pfhrp2. In 2017, I conducted an analysis of the drivers of pfhrp2 gene deletion 

selection, identifying the administrative regions in SSA with the greatest potential for selecting for 

pfhrp2-deleted parasites (Watson et al. 2017). The regions identified were areas with both a low 

prevalence of malaria and a high frequency of people seeking treatment and being treated on the 

basis of PfHRP2-based RDT diagnosis. The precise strength of selection, however, is not known with 

other factors such as the rate of non-malarial fevers and non-adherence to RDT outcomes likely to 

impact the number of misdiagnosed cases receiving treatment.  

In February 2018, the World Health Organization (WHO) issued guidance for national malaria control 

programmes on how to investigate suspected false-negative RDTs with an emphasis on pfhrp2/3 gene 

deletions (World Health Organization 2018b). The primary study outcome to be calculated in the 

guidance is as follows: 

The guidance recommends that a national change to non PfHRP2-based RDTs should be made if the 

estimated proportion of P. falciparum cases with false-negative HRP2 RDT results due to pfhrp2/3 

deletions is above 5%. If the estimated proportion is less than 5% the country is recommended to 

establish a monitoring scheme whereby the study is repeated in two years if the 95% confidence 

interval does not include 5%, or one year if it does include 5%. The 5% threshold approximates the 

point at which the number of cases missed due to false-negative PfHRP2-based RDTs caused by 

pfhrp2/3 deletions may become greater than the number of cases that would be missed due to the 

decreased sensitivity of non PfHRP2-based RDTs. The guidance also specifies a sampling scheme to be 

used when estimating the prevalence of pfhrp2/3 gene deletions. Samples are to be collected from at 

least 10 health facilities per province to be tested, with sampling focussed on symptomatic P. 

falciparum patients presenting at the health facilities. All sampling is to be ideally completed within 

an 8-week period.  

The 8-week interval permits for a rapid turnaround and allows for efficient investigations and policy 

responses. However, the timing of the 8-week interval chosen within a transmission season is 

important. The chosen interval could lead to estimates of the proportion of P. falciparum cases with 

false-negative HRP2 RDT results due to pfhrp2/3 deletions that are not representative of the annual 

Proportion of P. falciparum cases with 

false-negative HRP2 RDT results due to 

pfhrp2/3 deletions 

# of confirmed falciparum patients with pfhrp2/3 gene 

deletions and HRP2 RDT negative results 

# of confirmed P. falciparum cases (by either RDT or 

microscopy) 

 

= 
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average proportion. Subsequently, any recorded estimate may not be predictive of the number of 

cases that may be misdiagnosed due to pfhrp2/3 deletions in the years between sampling intervals. 

For example, an overestimation of the annual average proportion of false-negative RDTs due to 

pfhrp2/3 deletions could result in a switch to a less sensitive RDT, resulting in an increase in the 

number of malaria cases misdiagnosed if the annual average proportion of false-negative RDTs due to 

pfhrp2/3 deletions is less than 5%. The alternative RDT may also be both more expensive and 

complicated to implement. Similarly, an underestimation of the annual average proportion of P. 

falciparum cases with false-negative HRP2 RDT results due to pfhrp2/3 deletions would result in 

continued use of an overall less effective test and could provide pfhrp2/3 deleted parasite populations 

an opportunity to expand.  

In response to these concerns, I have extended my original methods (Watson et al. 2017) to 

characterise the impact of seasonal variations in transmission intensity on the proportion of false-

negative RDTs due to pfhrp2-deleted parasites. The extended model predicts that more false-negative 

RDTs due to pfhrp2 gene deletions are observed when monoclonal infections are more prevalent, with 

the highest proportion observed when sampling from younger children at the start of the rainy season. 

I continue to assess how samples collected within an 8-week interval can both over- and 

underestimate this proportion when compared to the annual average, which reflects the monitoring 

scheme recommended by the WHO for follow up studies if the outcomes of the original study are 

inconclusive. Lastly, I map the administrative regions in SSA with the greatest potential for estimates 

of the proportion of P. falciparum cases with false-negative HRP2 RDT results due to pfhrp2 deletions 

to be not predictive of the annual average. In addition, I identify the optimum sampling intervals for 

each level one administrative region, which are most representative of the annual average. 

2.2. Methods 

2.2.1. Extensions to the P. falciparum transmission model 

In my previous publication, I presented an extended version of an individual-based model of malaria 

transmission to characterise the key drivers of pfhrp2 deletion selection, however it did not capture 

seasonality. To address this I incorporated seasonal variation in malaria transmission intensity through 

the inclusion of seasonal curves fitted to daily rainfall data available from the US Climate Prediction 

Center (2010). Rainfall data was available at a 10x10km spatial resolution from 2002 to 2009, with 

data missing for only 2 days. The data was subsequently aggregated to a series of 64 points per year, 

before Fourier analysis was conducted to capture the seasonal dynamics within this time period 

(Cairns et al. 2012). The first three frequencies of the resultant Fourier transformed data were used 
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to generate a normalised seasonal curve. This inclusion alters the rate at which new adult mosquitoes 

are born, with the differential equation governing the susceptible adult stage of the mosquito 

population now given by: 

𝑑𝑆𝑀
𝑑𝑡

= 𝜃(𝑡)𝜇𝑀𝑀𝑣 − 𝜇𝑀𝑆𝑀 − 𝛬𝑀𝑆𝑀 

where 𝜇𝑀 is the daily death rate of adult mosquitoes, Mv is the total mosquito population, i.e. SM + EM 

+ IM, 𝛬𝑀 is the force of infection on the mosquito population and 𝜃(𝑡) is the normalised seasonal 

curve, with a period equal to 365 days. 

2.2.2. Characterising the impact of seasonal transmission intensities upon the proportion 

of false-negative RDTs due to pfhrp2 gene deletions 

The impact of seasonality was examined by recording the proportion of clinical incidence that would 

have been misdiagnosed due to pfhrp2 gene deletions across the year. This proportion was 

summarised at twelve 8-week intervals, i.e. January – March, February – April ... December – February. 

This proportion was recorded in both a high and low seasonality setting, characterised by a Markham 

Seasonality Index = 80% and 10% respectively (Cairns et al. 2015). These settings were examined at 

both a low and moderate transmission intensity (EIR = 1 and 10 respectively), with the starting 

proportion of pfhrp2-deleted parasites in the whole population set equal to 6% in agreement with 

previous observations of pfhrp2 gene deletions in the DRC (Watson et al. 2017). The proportion of 

symptomatic cases seeking treatment was assumed to be 40% (𝑓𝑇 = 0.4). In all simulations, ten 

stochastic realisations of 100,000 individuals were simulated for 60 years to reach equilibrium first, 

before setting the frequency of pfhrp2 deletions. Initially, I assumed there was no assumed fitness 

cost or selective advantage associated with pfhrp2 gene deletion. This was modelled by assuming that 

individuals who are only infected with parasites with pfhrp2 gene deletions will still be treated. This 

decision allowed us to control for selection within my investigation by ensuring that the changes 

observed in the observation of PfHRP2-negative clinical cases are only due to seasonal variation in 

transmission intensity, and not due to an increase in the frequency of pfhrp2 gene deletions due to 

the selective advantage by evading diagnosis. As a result, when reporting the proportion of clinical 

cases that were misdiagnosed resulting from a false-negative PfHPR2-negative RDT I am reporting the 

proportion of cases that are infected with only pfhrp2-deleted parasites, i.e. individuals who would 

have been pfhrp2-negative and subsequently misdiagnosed. I also assume that 25% of individuals who 

are only infected with pfhrp2-deleted parasites will still be pfhrp2-positive due to the cross reactivity 

of PfHRP3 epitopes causing a positive PfHRP2-based RDT result (Baker et al. 2005).  
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Model predictions were subsequently compared to data collected from the Democratic Republic of 

Congo (DRC) as part of their 2013 – 2014 Demographic and Health Survey (DHS). In overview, 7,137 

blood samples were collected from children under the age of 5 years old, which yielded 2,752 children 

diagnosed with P. falciparum infection by real-time PCR targeting the lactate dehydrogenase (pfldh) 

gene. The RDT barcodes for the 2,752 samples were identified and matched to the DHS survey to 

identify both the age of the children and the date of sample collection. The collection date was used 

to predict the mean clinical incidence from the previous 30 days for each sample. This was estimated 

using the deterministic implementation of my model fitted to the observed PCR prevalence of malaria 

from the DRC DHS 2013-2014 survey (Meshnick et al. 2015), incorporating the seasonality and 

treatment coverage for each province. Children who were younger than the median age in the 2,752 

samples were grouped within a younger category. In addition, samples were classified as lower 

transmission if the clinical incidence of malaria in the month prior to sample collection was lower than 

the median clinical incidence. The counts of pfhrp2-negative samples within each group were 

subsequently compared using the Pearson chi-squared test with Rao-Scott corrections to account for 

the hierarchal survey design implemented within DHS surveys (Rao and Scott 1984). Pearson chi-

squared tests were used in a similar analysis that was conducted using samples collected from the 

Gash-Barka and Debug regions in Eritrea between 2013 – 2014, for which the dates of sample 

collection were made available to me (Menegon et al. 2017).   

Finally, the seasonal profiles for 598 first level administrative regions across sub-Saharan Africa were 

used to characterise the potential for estimates of the proportion of false-negative PfHRP2 RDTs due 

to pfhrp2 gene deletions to be unrepresentative of the annual average. For each region, 100 

simulation repetitions were conducted for 60 years to reach equilibrium first before fitting the 

frequency of pfhrp2 gene deletions in each simulation such that the annual average proportion of 

false-negative RDT results due to pfhrp2 deletions is equal to 5%. Each repetition was subsequently 

simulated for two further years, with 7,300 individuals seeking treatment sampled from each 8-week 

interval. This number approximates the recommended sample size within the WHO protocol for 

pfhrp2 deletion prevalence at 5% ± 0.5%. For each sample the proportion of false-negative PfHRP2-

based RDTs due to pfhrp2 gene deletions was recorded. For each sample a binomial confidence 

interval was calculated and the resultant percentage of intervals that did not include the annual 

prevalence of 5% was calculated. For each region the number of 8-week intervals for which a 

premature decision to either swap from a PfHRP2-based RDT or continue using a PfHRP2-based RDT 

was made in more than 75% of simulations was recorded and mapped. The raw results of this analysis 

were subsequently used to create a database that details the optimum sampling intervals for 

estimating the annual proportion of false-negative RDT results due to pfhrp2 deletions. 
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Figure 2.1 Relationship between seasonality, transmission intensity and proportion of clinical cases that 
are infected with only pfhrp2-deleted parasites. Graphs show in A – D and E - H the model predicted PCR 
prevalence and annual clinical incidence respectively at both a low and a moderate transmission intensity. In 
I – L and M - P the proportion of clinical cases only infected with pfhrp2-negative parasites is shown for both 
the whole population and in children under 5 years old respectively. Lastly, graphs Q - T show the population 
allele frequency of pfhrp2 gene deletions, which was set equal to 6% at the beginning of each simulation. 10 
simulation realisations are shown in each graph, with the mean shown with by the black line. Lastly, the 5% 
threshold for switching RDT provided by the WHO is shown with the dashed horizontal line in plots I – P. 
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2.3. Results 

Using the model, I first explored how the proportion of clinical cases only infected with pfhrp2-deleted 

parasites varies throughout a transmission season. I recorded the proportion of clinical cases that are 

PfHRP2-negative in four settings (a low and moderate transmission setting with both a low and highly 

seasonal transmission dynamic), which had a starting pfhrp2 deletion frequency of 6%. 6% was chosen 

to reflect the previously estimated frequency of pfhrp2 deletions prior to the introduction of RDTs in 

DRC (Watson et al. 2017). I initially assumed that the frequency of pfhrp2 deletions was not increasing 

over time before considering scenarios in which the selective pressure for pfhrp2 deletions causes an 

increase in the population frequency of phrp2 deletions. This decision allowed for the impact of 

seasonality on the proportion of clinical cases that are pfhrp2-negative to be isolated, before allowing 

comparisons to scenarios in which the proportion of clinical cases that are pfhrp2-negative is 

increasing also due to changes in the population frequency of phrp2 deletions.  

My predictions suggest that the misdiagnosis of clinical cases due to pfhrp2-negative RDT results is 

heavily dependent on transmission intensity (Figure 2.1). For the same population frequency of pfhrp2 

gene deletions (Figure 2.1Q-T), the observed proportion of clinical cases that are pfhrp2-negative is 

predicted to be higher in lower transmission settings (Figure 2.1I-P).  

 

Figure 2.2 Model predicted relationship between clonality of infection in asymptomatic and clinical cases 
against prevalence of malaria. The graphs show the proportion of clinical cases of malaria and asymptomatic 
individuals that are infected with only pfhrp2-deleted parasites, not infected with pfhrp2-deleted parasites 
or polyclonally infected (infected with both pfhrp2-deleted parasites and wild type parasites). These 
proportions are shown with respect to increasing prevalence of malaria, identifying the increased proportion 
of individuals that are polyclonally infected at high transmission intensities. For both plots, the population 
frequency of pfhrp2 gene deletions in the population is 5%, which is shown by the dashed black line. 
Consequently, at very low PCR prevalence, when the majority of infections contain only one infecting strain 
and the proportion of polyclonal infections tends to zero, the observed prevalence of the deletions will tend 
to the population frequency of 5%. 
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The annual average proportion of clinical cases that are pfhrp2-negative was equal to 5% and 3.25% 

in the low and moderate transmission setting respectively. This observation is attributable to the 

lower rate of superinfection in low transmission settings. The lower rate of superinfection reduces the 

number of polyclonal infections and increases the chance that an individual is only infected with 

pfhrp2-negative parasites (Figure 2.2). When I considered scenarios with a selective advantage for 

pfhrp2-deletions (Figure 2.3), the population frequency of pfhrp2 gene deletions increased over the 

two years observed (Figure 2.3Q-T) with a corresponding increase in the proportion of clinical cases 

that are pfhrp2-negative (Figure 2.3I-P). 

An increased proportion of individuals only infected with pfhrp2 gene deletions is predicted to occur 

at the beginning of the rainy season just before incidence starts to increase. During the rainy season, 

the observed proportion of cases expected to yield a false-negative RDT due to pfhrp2-deleted 

parasites (PfHRP2-negative) falls, with the lowest proportion observed after the end of the rainy 

season. These dynamics are more pronounced in highly seasonal transmission regions (Figure 2.1B, 

1F, 1J, 1N, 1R and 1D, 1H, 1L, 1P, 1T). In the highly seasonal settings the observed proportion of clinical 

cases that are PfHRP2-negative is predicted to fluctuate above and below the 5% threshold for 

switching RDT provided by the WHO (Figure 2.1J, 1L, 1N and 1P). Smaller fluctuations are seen in less 

seasonal transmission regions (Figure 2.1A, 1E, 1I, 1M, 1Q and 1C, 1G, 1K, 1O, 1S), with no fluctuations 

in the observed proportion of clinical cases that are PfHRP2-negative occurring above 5% in the 

moderate transmission setting (Figure 2.1K and 1O). Similar patterns were observed in scenarios with 

an increasing frequency of pfhrp2-deletions, with fluctuations in the proportion of clinical cases that 

were PfHRP2-negative observed in the highly seasonal settings (Figure 2.3J, 3L, 3N and 3P). The highest 

proportion of cases expected to yield a false-negative RDT due to pfhrp2-deleted parasites was still 

observed at the beginning of the rainy season. 

The specific 8-week interval during which samples are collected is predicted to impact the observed 

proportion of false-negative RDTs due to pfhrp2 gene deletions (Figure 2.4). In a moderate 

transmission setting, a clear seasonal pattern is predicted (Figure 2.4C), with sampling at the beginning 

of the transmission seasons resulting in significant overestimation of the annual average proportion 

of false-negative RDTs. Subsequently, sampling at the end of the rainy season is predicted to yield 

estimates that are most representative of the annual average. In comparison, surveillance in regions 

with low seasonality is predicted to yield estimates representative of the annual average throughout 

the transmission season (Figure 2.4B and 2D). In all settings, using a sampling scheme spanning the 

entire transmission season produced estimates that accurately estimated the annual average. A 

moderate increase in the proportion of false-negative RDTs is also predicted when sampling younger 

individuals, with the same patterns also seen within asymptomatic individuals. This observation  
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Figure 2.3 Impact of a selective advantage for pfhrp2-deleted parasites on the relationship between 
seasonality, transmission intensity and proportion of clinical cases that are infected with only pfhrp2-
deleted parasites. Graphs show in A – D and E - H, the model predicted PCR prevalence and annual clinical 
incidence respectively at both a low and a moderate transmission intensity. In I – L and M - P the proportion 
of clinical cases only infected with pfhrp2-negative parasites is shown for both the whole population and in 
children under 5 years old, respectively. Lastly, graphs Q - T show the population allele frequency of pfhrp2 
gene deletions, which was set equal to 6% at the beginning of each simulation before increasing due to 
selection. 10 simulation realisations are shown in each graph, with the mean shown with by the black line. 
Lastly, the 5% threshold for switching RDT provided by the WHO is shown with the dashed horizontal line in 
plots I – P. 
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reflects the increased probability that children younger than five years old yield symptoms after the 

first infection, due to their comparatively lower acquired clinical immunity. Similar seasonal dynamics 

were observed in the highly seasonal settings when I considered scenarios with a selective advantage 

for pfhrp2-deletions (Figure 2.5A, 5C). 

 

Figure 2.4 Proportion of false-negative PfHRP2 RDTs within clinical cases during 8-week intervals. Graphs 
show the proportion of clinical cases yielding false-negative PfHRP2 RDTs at 8-week intervals within a 
transmission season for both moderate (C, D) and low (A, B) transmission settings and high (A, C) and low (B, 
D) seasonality. In each panel the observed proportion pfhrp2-negative clinical cases is shown for the whole 
population and within children aged under 5 years old. Ten stochastic realisations are represented by the 
points in each plot, with the mean relationship throughout the transmission shown in black with a locally 
weighted scatterplot smoothing regression (loess). The annual average proportion of false-negative RDTs due 
to pfhrp2 gene deletions is shown with the horizontal dashed red line, and a sampling scheme that occurs 
throughout the year, with samples collected proportionally to clinical incidence, is shown with grey points 
circled in red. 
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Figure 2.5 Impact of a selective advantage for pfhrp2-deleted parasites on the observed proportion of false-
negative PfHRP2 RDTs within clinical cases during 8-week intervals. Graphs show the proportion of clinical 
cases yielding false-negative PfHRP2 RDTs at 8-week intervals within a transmission season for both moderate 
(C, D) and low (A, B) transmission settings and high (A, C) and low (B, D) seasonality. In each panel the 
observed proportion pfhrp2-negative clinical cases is shown for the whole population and within children 
aged under five years old. Ten stochastic realisations are represented by the points in each plot, with the 
mean relationship throughout the transmission shown in black with a locally weighted scatterplot smoothing 
regression (loess). The annual average proportion of false-negative RDTs due to pfhrp2 gene deletions is 
shown with the horizontal dashed red line, and a sampling scheme that occurs throughout the year, with 
samples collected proportionally to clinical incidence, is shown with grey points circled in red. 

Using data from a national survey of pfhrp2 gene deletions in the DRC, I found that the model-

predicted outcomes above were similar to those observed in the field (Figure 2.6) (Parr et al. 2016). 

Among 2752 PCR-positive P. falciparum cases in the DRC, individuals were more likely to be infected 

with only pfhrp2-negative parasites if the clinical incidence in the month prior to sample collection 

was lower (p = 4.1 x 10-6), and if the individuals were younger (p = 0.016). These findings were 

maintained when comparing across age and transmission groups, with samples collected during 
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periods of lower transmission found to be more likely to be pfhrp2-negative in both older and younger 

age groups (p = 6.6 x 10-5 and 5.6 x 10-4 respectively). Lastly samples collected in younger individuals 

were more likely to be pfhrp2-negative in both lower and higher transmission groups when compared 

to older individuals (p = 0.06 and 0.06 respectively). 

Lastly, I predicted and mapped the potential for estimates collected within 8-week intervals to be 

unrepresentative of the annual average proportion of false-negative RDTs due to phrp2 gene deletions 

across 598 first administrative regions in SSA (Figure 2.7). I predict that 66 regions possess at least one 

8-week interval for which a premature switch to a non PfHRP2-based RDT would have been made in 

more than 75% of simulations (Figure 2.7A) and 29 regions are predicted to possess at least one 8-

week interval for which a premature decision to continue using PfHRP2-based RDTs would have been 

made in more than 75% of simulations (Figure 2.7B). Out of these 29 regions, 25 are also present 

within the formerly identified 66 regions. The data for each administrative region can be viewed online 

at https://shiny.dide.imperial.ac.uk/seasonal_hrp2/. 

 

Figure 2.6 Impact of age and transmission intensity upon pfhrp2 deletion in the Democratic Republic of the 
Congo, 2013-2014. Graphs show the percentage of PCR-positive P. falciparum samples taken from children 
under the age of 5 years from the 2013-2014 Demographic and Health Survey in Democratic Republic of 
Congo that are pfhrp2-negative. Children who are younger than the median age in the 2,752 samples are 
grouped within the younger category. In addition, samples are classified as lower transmission if the incidence 
of malaria in the month prior to sample collection is lower than the median clinical incidence. The 95% 
binomial confidence intervals are indicated with the vertical error bars.  

https://shiny.dide.imperial.ac.uk/seasonal_hrp2/
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Figure 2.7 Predicted areas with the potential for collected estimates of the proportion of false-negative 
PfHRP2 RDTs due to pfhrp2 deletions to be unrepresentative of the annual average. The maps show in A) 
the number of 8-week intervals at which an administrative region would prematurely swap to a non PfHRP2-
based RDT due to overestimating the proportion of false-negative PfHRP2 RDTs due to pfhrp2 gene deletions 
in more than 75% of simulations. In B) the opposing trend is shown, with the number of 8-week intervals at 
which an administrative region would prematurely continue to use PfHRP2-based RDTs due to 
underestimating the proportion of false-negative PfHRP2 RDTs due to pfhrp2 gene deletions in more than 
75% of simulations. 
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2.4. Discussion 

This research characterises the potential for surveillance in highly seasonal areas within sub-Saharan 

Africa to produce estimates that fail to represent the annual average proportion of P. falciparum cases 

with false-negative HRP2 RDT results due to pfhrp2 deletions. These findings highlight the impact of 

both the seasonal timing and the age of individuals sampled when estimating the proportion of false-

negative RDTs due to pfhrp2 deletions. Policy decisions based on the proportion of clinical cases 

presenting with false-negative RDTs due to pfhrp2 gene deletions should thus be made with an 

awareness of the seasonal transmission dynamics of the region considered. 

My modelling predicted that there would be increased observation of false-negative HRP2 RDT results 

after periods of lower transmission and within younger individuals. This prediction is consistent with 

a large, nationally representative survey of pfhrp2-negative samples among asymptomatic subjects in 

the DRC (Parr et al. 2016). These predictions are also in agreement with other observations from Dioro 

in the Ségou region of Mali, where in 2012 more than 80% of smear-positive individuals had false-

negative RDTs when collected at the end of the dry season (Koita et al. 2013). The proportion of false-

negative RDTs then rapidly decreased to 20% within 3-4 weeks after the start of the rainy season. It 

is, however, likely that a proportion of these false-negative RDTs were due to the increased 

observation of lower parasitaemia at lower transmission intensities such as at the end of the dry 

season (Okell et al. 2012). In addition, findings from Eritrea also support the model-predicted 

outcomes. Eritrea is a region with lower malaria prevalence compared to the Ségou region of Mali. 

The resultant decrease in transmission intensity is likely to result in an increased proportion of 

monoclonal infections throughout the transmission season. Consequently, I would predict less 

variability in the number of false-negative RDTs due to pfhrp2 gene deletions at any given period 

within a transmission season. I also expect the observed prevalence of pfhrp2 deletions to be more 

stochastic due to the lower effective population size of the parasite. Indeed, infections due to pfhrp2-

deleted parasites identified in Eritrea between November 2013 and November 2014 were not more 

likely to have occurred after periods of lower transmission intensity (p = 0.56, n = 144, pfhrp2 deletions 

at 9.7%) (Menegon et al. 2017). 

Similar to the original publication (Watson et al. 2017), there are a number of modelling assumptions 

in this study. Firstly, there are modelling uncertainties when predicting the dynamics of false-negative 

RDTs due to pfhrp2-deleted parasites. To account for this uncertainty in this analysis, I have controlled 

for the drivers characterised in my earlier study by assuming there was no selective advantage 

associated with pfhrp2-deleted parasites and recording the number of individuals who would have 

been pfhrp2-negative and subsequently misdiagnosed. The absence of a selective advantage in this 
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way enabled the frequency of pfhrp2 deletions to remain constant, which ensured that any observed 

dynamics in the estimates of false-negative RDTs due to pfhrp2 deletions were due to the seasonality 

of transmission and not due to an increase in the population frequency of pfhrp2 deletions. However, 

I am aware that there is likely a selective advantage for pfhrp2 deleted parasites and subsequently I 

repeated the analyses with the selective advantage included. In these simulations I predicted a 

substantial increase in the frequency of pfhrp2 gene deletions (Figure 2.3Q-T), however clear seasonal 

dynamics, with an increased proportion of false-negative RDTs due to pfhrp2 deletions at the 

beginning of the transmission season, were still observed (Figure 2.5C). However, the observed 

dynamics were less clear in settings with the greatest increase in the frequency of pfhrp2 deletions 

(Figure 2.5B). 

Secondly, I assessed the potential for a region to yield unrepresentative estimates of the proportion 

of false-negative RDTs due to pfhrp2 deletions through comparisons to the annual average proportion. 

This decision reflected firstly the monitoring period defined in the WHO technical guidance, with 

follow up studies recommended after two years if the 95% CI for the proportion of P. falciparum cases 

with false-negative HRP2 RDT results due to pfhrp2/3 deletions is less than 5%, or one year if it does 

include 5%. It also reflected the modelling assumption that the population frequency of pfhrp2 

deletions is not increasing over time. However, in simulations in which a selective advantage to pfhrp2 

deleted parasites was included, a comparison to the annual average proportion is less suitable. For 

example, in Figure 2.5B, because I started the simulations in January the optimum sampling interval is 

simply the interval in the middle of the year, reflecting the constant increase in pfhrp2 deleted 

parasites. In these scenarios it could be argued that the correct comparison would be to the average 

proportion of false-negative RDTs due to pfhrp2/3 gene deletions in the year after sampling, which 

reflects how many cases could be misdiagnosed between sampling rounds. Unfortunately, this 

comparison is difficult without knowing how the proportion of false-negative RDTs due to pfhrp2/3 

gene deletions will change over time. However, I believe that it is more important to focus on the 

assumption that the strength of selection is negligible (see Figure 2.8). The rationale for this is that it 

is only in areas with a low selective pressure, for which the frequency of pfhrp2/3 deletions is constant 

over time, that one could repeatedly make an incorrect decision with regards to whether to switch 

RDT (Figure 2.8A). In areas with a selective pressure it is still possible to incorrectly estimate the annual 

average for the following year, however the presence of the selective pressure is likely to cause any 

decision made to be simply premature as the frequency of pfhrp2/3 deletions and subsequently false-

negative PfHRP2 RDTs will increase over time (Figure 2.8B). 
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Figure 2.8 The impact of an assumed selective pressure for pfhrp2/3-deleted parasites on the decision to 
switch RDT. The graphs show two hypothetical scenarios with two different regions shown in red and blue 
for each region. In A) there are strong seasonal dynamics but no selective pressure. The absence of a selective 
pressure causes that the mean proportion of false-negative RDTs due to pfhrp2/3 deletions over a one-year 
period to be constant and is shown with a horizontal dashed line. Consequently, there are time periods in 
which an incorrect decision to switch RDT could be made for the region in blue, and an incorrect decision to 
not switch RDT could be made for the region in red. In B) there are both seasonal dynamics and a selective 
pressure, which results in an increasing annual mean proportion of false-negative RDTs due to pfhrp2/3 
deletions over time. As in A) there are periods in which the observed proportion of false-negative RDTs due 
to pfhrp2/3 deletions is both higher and lower than the rolling mean shown. However, decisions made in 
these periods are premature rather than definitively incorrect as the selection pressure would eventually 
cause the proportion to be greater than 5%. 

Lastly, it is important to note again that the true strength of selection is unknown. The precise strength 

of selection is dependent on a number of factors such as the magnitude of any fitness costs associated 

with pfhrp2 deletion, the degree to which microscopy based diagnosis is used, the level of non-

adherence to RDT results, the treatment coverage and the prevalence of malaria in the region 

considered. Consequently, the results should not be interpreted as precise predictions of how 

unrepresentative future samples may be. They should instead be used to support surveillance efforts 

and to reinforce the need for longitudinal measures conducted at the same point within a transmission 

season. In addition, I recommend that if possible, sample collection in highly seasonal regions should 

not occur at the beginning of the transmission season, as this is predicted to lead to premature 

decisions to switch RDT irrespective of the strength of selection. It will, however, be possible after the 

samples have been collected to estimate the likely frequency of pfhrp2 gene deletions by 

incorporating estimates of the multiplicity of infection within the sampled population. This frequency 



65 
 

could then be used to estimate how the proportion of false-negative RDT results due to pfhrp2 

deletions could increase in response to decreases in the prevalence of malaria.  

2.5. Conclusion 

In this chapter, I have extended my previous model of pfhrp2 gene deletions to now include seasonal 

dynamics in transmission intensity. With these extensions, my model predicts that highly seasonal 

dynamics in malaria transmission intensity will cause seasonal dynamics in the observed proportion 

of false-negative RDT results due to pfhrp2 gene deletions. The observed proportion of false-negative 

RDTs due to pfhrp2 deletions is higher when monoclonal infections are more prevalent, with the 

highest prevalence observed when sampling at the start of the rainy season as individuals are less 

likely to already be infected. Similarly, the observed proportion of false-negative RDTs due to pfhrp2 

deletions is higher in younger individuals who have lower clinical immunity, as they are more likely to 

present with clinical symptoms after their first infection event. As the rainy season progresses, 

individuals are more likely to be superinfected and acquire wild type parasites, resulting in positive 

PfHRP2-based RDT results and a decrease in the observed proportion of false-negative RDTs due to 

pfhrp2 deletions. In response to these dynamics, it may be sensible for national malaria control 

programmes conducting surveillance for pfhrp2/3 deletions to choose a sampling interval towards the 

end of the transmission season, which is predicted to be most representative of the annual average 

proportion of false-negative RDTs due to pfhrp2 deletions. To support surveillance efforts, I have 

published an online database detailing the optimum sampling interval as well as the fluctuations 

throughout the transmission season for each administrative region. 

The pfhrp2 model developed here is written in the programming language R (R Core Team 2019). The 

language is easier to quickly develop models such as this one, however, the simulation time required 

to run this model for 60 years in a high transmission setting with a population of 100,000 individuals 

is ~8 hours. In addition, the structure that was used when writing the model developed with modelling 

pfhrp2 deletions and although it could be extended to track multiple strain types, the current model 

will be unsuitable if I want to model more involved parasite genetic traits, such as resistance or track 

identity by descent. Consequently, in the next chapter I will be developing a new model of malaria 

transmission. The model will still be based on the Imperial College transmission model, but it will be 

written more flexibly to accommodate parasite recombination, different parasite densities of multiple 

strains in one individual, vector based interventions and many other features.  
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Chapter 3. Distinguishing the role of superinfection and 

cotransmission upon Plasmodium falciparum complexities of 

infection 

 

The number of genetically different strains within an infected individual is determined by three main 

processes; how quickly the body can clear an infection, how quickly an individual is superinfected (an 

infection occurring within someone who is already infected), and how many genetically different 

strains are passed on within an infection event. Both superinfections and cotransmission events, 

where more than one genetically identifiable strain is passed on during an inoculation event, drive the 

increase in new within host genetic diversity. However, the role of cotransmission events, specifically 

quantifying the contribution of both cotransmission and superinfection towards the parasite genetic 

diversity is poorly understood. In this chapter, I develop a new individual-based model of malaria 

transmission that will enable these processes to be estimated. In doing so I am moving away from my 

earlier dual-strain model of malaria transmission to one that enables both more nuanced descriptions 

of parasite genetics and the full lifecycle of the parasite to be explicitly modelled, enabling neutral 

genetic variation to be modelled. In addition, these changes will enable complex drug resistance 

profiles to be modelled more flexibly in future chapters, rather than the simple resistant/wild type 

framework that were used in chapter 2.  

3.1.  Introduction 

The sexual life cycle of the P. falciparum parasite has been a topic of much debate (Mzilahowa et al. 

2007), with the outcomes of the sexual diploid state of the parasite within the zygote being 

questioned. A number of researchers have previously concluded that there is no “effective” sexual 

stage, and that the parasite displays properties of a clonal organism due to substantial levels of selfing 

(Ayala 1998; Razakandrainibe et al. 2005). However, the current understanding is that a brief sexual 

stage occurs within the mosquito midgut and can result in the production of new genetic variants. This 

finding has been confirmed with the advance of direct DNA sequencing of oocysts extracted from the 

mosquito (Paul et al. 1995). 

The number of potentially novel genetic variants produced, however, has been a topic of arguably 

more uncertainty. This has centred around whether the total number of genotypes present within a 

single oocyst can be at most 2 or 4: 
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“Our efforts to assemble and organize the known facts about P. falciparum meiotic 
recombination included close examination of the literature and consultation with a dozen 
prominent malariologists. This process revealed an unexpected gap in current biological 
knowledge, in the form of irreconcilable assumptions about whether at most one, two, or 
four genotypes might be represented within a single P. falciparum oocyst. Furthermore, 
the adherents of each set of assumptions seemed unaware that any such disagreement 
exists.” (McKenzie et al. 2001) 
 

The reason for the author’s considerable due diligence in assembling a conclusive theory on the 

outcome of the diploid stage is that it has significant impacts on the genetic structure of the parasite. 

If only one genotype was possible the speed at which the species could evolve would be substantially 

slower than if four genotypes were possible, and would have important implications into 

understanding how quickly the parasite may become resistant to new antimalarial drugs. The resultant 

consensus suggests that after fertilisation, the parasite is considered to be a diploid organism (2N). 

This is followed by an initial replication followed by an immediate two step meiotic division (Janse et 

al. 1986; Sinden 1991). This process can lead to up to 4 different genetic variants to be produced within 

a single oocyst if the male and female gamete were genetically different (Ranford-Cartwright et al. 

1991).  

The generation of new parasite genotypes within the mosquito can subsequently lead to multiple 

genetically distinct sporozoites being passed on during a successful bite. A few studies have measured 

the number of sporozoites in naturally infected mosquitoes. These estimates help to define the upper 

bound on the number of sporozoites that could be passed on and also how these limits may depend 

on transmission intensity. For example, a recent study conducted at a very low transmission site on 

the Thai–Myanmar reported a geometric mean of 57 sporozoites per mosquito (Pringle and Avery-

Jones 1966). However, earlier studies conducted in Papua New Guinea and Africa reported higher 

sporozoite numbers, with geometric means >4000 (Pringle and Avery-Jones 1966; Gibson 1987; Kabiru 

et al. 1997). There are fewer studies attempting to quantify the number of sporozoites passed on by 

An. gambiae during an infectious bite, with one estimate suggesting a geometric mean of 10 

sporozoites passed on (Beier et al. 1992). Importantly though, estimates of how many sporozoites 

successfully found a liver stage infection has not been empirically studied, although it is known to be 

more than one as shown by efforts to analyse the genetic relatedness within multiply infected 

individuals (Wong et al. 2017). Consequently, there is a need to estimate the percentage of 

sporozoites within a feed that survive to produce a liver stage infection and how this proportion 

contributes to within host genetic diversity.  

Here, I detail the development of an extended version of the Imperial College Transmission model to 

examine these processes. The extended version incorporates both cotransmission of multiple 
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sporozoites from mosquitoes tracked at the individual level, enabling the full parasite life cycle to be 

modelled.  

3.2. Methods 

3.2.1. P. falciparum Transmission Model 

An individual-based stochastic model with a fixed daily time step was developed to simulate the 

transmission dynamics of P. falciparum. Both the human and adult mosquito stages are modelled at 

an individual level, whereas parasites are modelled as discrete populations with each population 

relating to an infection event. The human transmission model is based upon previous modelling efforts 

(Griffin et al. 2010, 2014, 2015, 2016), which is described in its deterministic framework first, before 

detailing the human acquisition of immunity and the full set of equations detailing its stochastic 

implementation. The deterministic model described within the methods has been included as its 

equilibrium solution is used for model initialisation. Additionally, I developed a deterministic version 

of the earlier 2016 Griffin et al. model (Griffin et al. 2016) that incorporates interventions, which is 

used to indirectly incorporate the effects of intervention strategies as these are not modelled explicitly 

within the individual model.  

I continue to describe the mosquito transmission model, which is again based on earlier modelling 

efforts (Griffin et al. 2010, 2014, 2015, 2016), before describing the stochastic equations detailing the 

new implementation of the adult mosquito stage at an individual-based level. Extensions detailing 

how the parasite populations are incorporated follow, by first describing the genetic barcode that 

each parasite population possesses. I then describe the within host parasite populations, which 

includes considerations surrounding the contribution of coinfection and superinfection towards the 

model’s dynamics of within host multiplicities of infection, and how these relate to the probabilistic 

uptake of specific gametocyte strains by mosquitoes. This is followed by detailing the within-mosquito 

parasite populations, which explores the derivation of the distribution describing the model predicted 

oocyte intensities, and describes how recombination within the sexual stage is explicitly modelled.   

3.2.1.1. Human transmission model 

Individuals begin life susceptible to infection (state S) (Figure 3.1). At birth, individuals possess a level 

of maternal immunity that decays exponentially over the first 6 months. Each day individual i is 

probabilistically exposed to infectious bites governed by their individual force of infection (𝛬𝑖). 𝛬𝑖  is 

dependent on their pre-erythrocytic immunity, exposure to bites (dependent on both their age and 

their individual relative biting rate due to heterogeneous biting patterns in mosquitoes) and the size 



69 
 

of the infectious mosquito population. Infected individuals, after a latent period of 12 days (𝑑𝐸), 

develop either clinical disease (state D) or asymptomatic infection (state A). This outcome is 

determined by their probability of acquiring clinical disease (𝜙𝑖), which is dependent on their clinical 

immunity. Individuals that develop disease have a fixed probability (fT) of seeking treatment (state T). 

Treated individuals are assumed to always recover, i.e. fully-curative treatment, and then enter a 

protective state of prophylaxis (state P) at rate rT, before returning to susceptible at rate  𝑟𝑠. Individuals 

that did not receive treatment recover to a state of asymptomatic infection at rate rD. Asymptomatic 

individuals progress to a subpatent infection (state U) at rate rA, before clearing infection and returning 

to susceptible at rate rU. Additionally, superinfection is possible for all individuals in states D, A and U. 

Superinfected individuals who receive treatment will move to state T. Individuals who are 

superinfected but do not receive treatment in response to the superinfection will either develop 

clinical disease, thus moving to state D, or develop an asymptomatic infection and move to state A 

(except for individuals who were previously in state D, who will remain in state D). 

 

Figure 3.1 Transmission Model. Flow diagram for the human component of the transmission model, with 

dashed arrows indicating superinfection. S, susceptible; T, treated clinical disease; D, untreated clinical 

disease; P, prophylaxis; A, asymptomatic patent infection; U, asymptomatic sub-patent infection. All 

parameters are described and referenced within Table 1. Figure reproduced from Watson et al (CC BY 4.0) 

(Watson et al. 2017).  
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The movement between the human components of the transmission model is summarised with the 

following partial differential equations describing each compartment (t represents time and a 

represents age):  

𝜕𝑆

𝜕𝑡
+ 
𝜕𝑆

𝜕𝑎
=  −𝛬(𝑡 − 𝑑𝐸)𝑆 +

𝑃(𝑡)

𝑑𝑃
+
𝑈(𝑡)

𝑑𝑈
 

𝜕𝑇

𝜕𝑡
+ 
𝜕𝑇

𝜕𝑎
=  𝜙𝑓𝑇𝛬(𝑡 − 𝑑𝐸)(𝑆(𝑡) + 𝐷(𝑡) + 𝐴(𝑡) + 𝑈(𝑡)) −

𝑇(𝑡)

𝑑𝑇
 

𝜕𝐷

𝜕𝑡
+ 
𝜕𝐷

𝜕𝑎
=  𝜙(1 − 𝑓𝑇)𝛬(𝑡 − 𝑑𝐸)(𝑆(𝑡) + 𝐴(𝑡) + 𝑈(𝑡)) −

𝐷(𝑡)

𝑑𝐷
 

𝜕𝐴

𝜕𝑡
+ 
𝜕𝐴

𝜕𝑎
= (1 − 𝜙)𝛬(𝑡 − 𝑑𝐸)(𝑆(𝑡) + 𝑈(𝑡)) +

𝐷(𝑡)

𝑑𝐷
− 𝜙𝛬𝐴(𝑡) − 

𝐴(𝑡)

𝑑𝐴
 

𝜕𝑈

𝜕𝑡
+ 
𝜕𝑈

𝜕𝑎
=  
𝐴(𝑡)

𝑑𝐴
−
𝑈(𝑡)

𝑑𝑈
− 𝛬(𝑡 − 𝑑𝐸)𝑈(𝑡) 

𝜕𝑃

𝜕𝑡
+ 
𝜕𝑃

𝜕𝑎
=  
𝑇(𝑡)

𝑑𝑇
− 
𝑃(𝑡)

𝑑𝑃
 

When an individual enters a new infection state a waiting time is sampled from an exponential 

distribution for when the individual will move out of that infection state (except when individuals 

move into S). With the introduction of a fixed daily time-step, the day on which an individual 

transitions from state X to Y occurs is given by:  

𝐷𝑎𝑦(𝑋 → 𝑌) ~ 𝑓𝑙𝑜𝑜𝑟(𝐸𝑥𝑝(𝜆)) + 𝑡𝑛𝑜𝑤 + 1 

where 𝑡𝑛𝑜𝑤  is the current day, i.e. the day that the individual moved into state X, and 𝜆 is the transition 

rate.  The set of state transitions for individuals and their associated transition rates are given in Table 

3.1.  

 

Table 3.1 Human Infection State Transitions 

Process Transition Transition Rate 

Progression of untreated disease to asymptomatic infection D → A 𝑟𝐷 =
1

𝑑𝐷
 

Progression of asymptomatic infection to subpatent infection A → U 𝑟𝐴 =
1

𝑑𝐴
 

Progression of subpatent infection to susceptible U → S 𝑟𝑈 =
1

𝑑𝑈
 

Progression of treated disease to uninfected prophylactic period T → P 𝑟𝑇 =
1

𝑑𝑇
 

Progression from uninfected prophylactic period to susceptible P → S 𝑟𝑃 =
1

𝑑𝑃
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We assume that each person has a unique biting rate, which is the product of their relative age 

dependent biting rate, 𝜓𝑖, given by:  

𝜓𝑖(𝑎) =
∑ 𝜓𝑖(𝑎)
𝑛
𝑖=1

𝑛
(1 − 𝜌exp

𝑎
𝑎0) 

and an assumed heterogeneity in biting patterns of mosquitoes, 𝜁𝑖, which persists throughout their 

lifetime and is drawn from a log-normal distribution with a mean of 1,  

𝑙𝑜𝑔(𝜁𝑖)~ 𝑁 (
−𝜎2

2
, 𝜎2) 

where 1 − 𝜌 is the relative biting rate at birth when compared to adults and 𝑎0 represents the time-

scale at which the biting rate increases with age. The product of these biting rates is subsequently 

used to calculate the proportion of the whole population’s bites that person i receives on a given day, 

𝜋𝑖. Their daily entomological inoculation rate (EIR), 𝜖𝑖, is thus calculated by multiplying by the number 

of infectious mosquitoes taking a blood meal from a human that day, which in turn yields their force 

of infection, which are given by: 

𝜋𝑖 = 𝜁𝑖𝜓𝑖 

𝜖𝑖 = 𝐼𝑀.𝐹𝑒𝑒𝑑𝑖𝑛𝑔𝜋𝑖  

Λ𝑖 = 𝜖𝑖𝑏𝑖 

where 𝐼𝑀.𝐹𝑒𝑒𝑑𝑖𝑛𝑔 is the size of the feeding infectious mosquito population, and 𝑏𝑖 is the probability of 

infection given an infectious mosquito bite.  

The inclusion of individual mosquitoes results in the following stochastic implementation of infection. 

On any given day the number of infectious mosquitoes taking a blood meal from a human (𝐼𝑀.𝐹𝑒𝑒𝑑𝑖𝑛𝑔) 

will result in the same number of infectious bites. These bites are allocated by sampling from the 

multinomial distribution using the conditional binomial method (Davis 1993), where sample weights 

are equal to 𝜋𝑖. Upon receiving a successful infectious bite, an individual will move to an untracked 

infection state, I, which leads to either clinical disease (D), treated clinical disease (T) or asymptomatic 

infection (A). This leads to the following transition rates related to infection below. 

Table 3.2 Human Infection and Superinfection Transition Rates 

Process Transition Transition Rate 

Infection S → I 𝛬𝑖(𝑡 − 𝑑𝐸) 

Super-infection from untreated clinical disease, asymptomatic infection 

or subpatent infection 

D → I 

A → I 

U → I 

𝛬𝑖(𝑡 − 𝑑𝐸) 
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The probabilities of progressing from state I to D, T or U are determined by an individual’s probability 

of clinical disease, 𝜙𝑖, and the treatment coverage: 

𝑃𝑟𝑜𝑏(𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝐷𝑖𝑠𝑒𝑎𝑠𝑒) =  𝜙𝑖  

𝑃𝑟𝑜𝑏(𝑇𝑟𝑒𝑎𝑡𝑒𝑑 𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 | 𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝐷𝑖𝑠𝑒𝑎𝑠𝑒) =  𝑓𝑇 

The human population was assumed to have a maximum possible age of 100 years, with an average 

age of 21 years within the population yielding an approximately exponential age distribution typical 

of sub-Saharan countries. The day on which a human dies is thus allocated at birth by sampling from 

an exponential distribution with a mean equal to 21 years. When an individual dies, they are replaced 

with a new-born individual with the same individual biting rate due to heterogeneity in biting patterns. 

3.2.1.2. Immunity and Detection Functions 

We model 3 stages at which immunity may impact transmission, defined in the existing Griffin et al 

model (Griffin et al. 2016) as: 

1. Pre-erythrocytic immunity, 𝐼𝐵; reduction in the probability of infection given an infectious 

mosquito bite. 

2. Acquired and Maternal Clinical Immunity, 𝐼𝐶𝐴 and 𝐼𝐶𝑀 respectively; reduction in the 

probability of clinical disease given an infection due to the effects of blood stage immunity. 

3. Detection immunity, 𝐼𝐷; reduction in the probability of detection and a reduction in the 

probability of onwards transmission. 

Maternal clinical immunity is assumed to be at birth a proportion, 𝑃𝑀, of the acquired immunity of a 

20 year-old and to decay at rate 
1

𝑑𝑀
 . The remaining three types of immunity are described by the 

following partial differential equations, which describe how immunity increases due to exposure from 

zero at birth and decreases over time: 

𝜕𝐼𝐵
𝜕𝑡

+ 
𝜕𝐼𝐵
𝜕𝑎

=  
𝜖

𝜖𝑢𝐵 + 1
− 
𝐼𝐵
𝑑𝐵

 

𝜕𝐼𝐶𝐴
𝜕𝑡

+ 
𝜕𝐼𝐶𝐴
𝜕𝑎

=  
Λ

Λ𝑢𝐶 + 1
− 
𝐼𝐶𝐴
𝑑𝐶𝐴

 

𝜕𝐼𝐷
𝜕𝑡

+ 
𝜕𝐼𝐷
𝜕𝑎

=  
Λ

Λ𝑢𝐷 + 1
− 

𝐼𝐷
𝑑𝐼𝐷

  

where each 𝑢 term represents the time during which immunity cannot be boosted further after a 

previous boost and each 𝑑 term represents the duration of immunity. 
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The probabilities of infection, detection and clinical disease are subsequently created by transforming 

each immunity function by Hill functions. An individual’s probability of infection, 𝑏𝑖 , is given by: 

𝑏𝑖 = 𝑏0(𝑏1 +
1 − 𝑏1

1 + (
𝐼𝐵
𝐼𝐵0
)
𝜅𝐵
)  

where 𝑏0  is the maximum probability due to no immunity, 𝑏0𝑏1 is the minimum probability and 𝐼𝐵0 and 

𝜅𝐵  are scale and shape parameters respectively. 

An individual’s probability of clinical disease, 𝜙𝑖, is given by 

𝜙𝑖 = 𝜙0(𝜙1 +
1 − 𝜙1

1 + (
𝐼𝐶𝐴 + 𝐼𝐶𝑀
𝐼𝐶0

)
𝜅𝐶
)  

where 𝜙0  is the maximum probability due to no immunity, 𝜙1𝜙0 is the minimum probability and 

𝐼𝐶0 and 𝜅𝐶  are scale and shape parameters respectively. 

An individual’s probability of being detected by microscopy when asymptomatic, 𝑞𝑖 , is given by 

𝑞𝑖 = 𝑑1 + (
1 − 𝑑1

1 + (
𝐼𝐷
𝐼𝐷0
)
𝜅𝐷
𝑓𝐷

)  

where 𝑑1  is the minimum probability due to maximum immunity, and 𝐼𝐷0 and 𝜅𝐷 are scale and shape 

parameters respectively. 𝑓𝐷  is dependent only on an individual’s age is given by 

𝑑𝑓𝐷
𝑑𝑎

= 1 −
1 − 𝑓𝐷0

1 + (
𝑎
𝑎𝐷
)
𝛾𝐷

 

where 𝑓𝐷0  represents the time-scale at which immunity changes with age, and 𝑎𝐷  and 𝛾𝐷 are scale and 

shape parameters respectively.  

The probability that an infected individual infects a mosquito upon being bitten is proportional to both 

their infectious state and their probability of detection, with a lower probability of detection assumed 

to correlate with a lower parasite density. Individuals who are in state D (clinically diseased), state U 

(sub-patent infection) and state T (receiving treatment) contribute to an onward infection within a 

mosquito with probabilities 𝑐𝐷, 𝑐𝑈  and 𝑐𝑇. In state A, contribution to an onward infection within a 

mosquito occurs with probability 𝑐𝐴,  and is given by 𝑐𝑈 + (𝑐𝐷 − 𝑐𝑈)𝑞
𝛾𝐼 where 𝑞 is the probability of 
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being detected by microscopy when asymptomatic, and 𝛾𝐼 is a parameter that controls how quickly 

infectiousness falls within the asymptomatic state. 

3.2.1.3. Human Stochastic Model Equations 

Given the definitions above, the full stochastic individual-based human component of the model can 

be formally described by its Kolmogorov forward equations. As before, let 𝑖 index individuals in the 

population. Then the state of individual 𝑖 at time 𝑡 is given by {𝑗, 𝑘, 𝑡𝑘 , 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡}, where 𝑎 is age, 

𝑗 represents infection status (𝑆, 𝐷, 𝐴, 𝑈, 𝑇 or 𝑃),  𝑘 is the level of infection-blocking immunity and 𝑡𝑘  is 

the time at which infection blocking immunity was last boosted. Similarly, 𝑙 and 𝑡𝑙  denote the level 

and time of last boosting of clinical immunity, respectively, while 𝑚 and 𝑡𝑚 do likewise for parasite 

detection immunity. Let 𝛿𝑝,𝑞 denote the Kronecker delta (𝛿𝑝,𝑞 = 1 if 𝑝 = 𝑞 and 0 otherwise) and 𝛿(𝑥) 

denote the Dirac delta function. Defining 𝑃𝑖(𝑗, 𝑘, 𝑡𝑘 , 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡) as the probability density function 

for individual 𝑖 being in state {𝑗, 𝑘, 𝑡𝑘 , 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡} at time 𝑡, the time evolution of the system is 

governed by the following forward equation: 

𝜕𝑃𝑖(𝑗, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡)

𝜕𝑡
+
𝜕𝑃𝑖(𝑗, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡)

𝜕𝑎
= 

𝛿𝑗,𝑆[𝑟𝑃𝑃𝑖(𝑃, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡) + 𝑟𝑈𝑃𝑖(𝑈, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡)] 

+ 𝛿𝑗,𝐴[𝑟𝐷𝑃𝑖(𝐷, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡)] 

+ 𝛿𝑗,𝑈[𝑟𝐴𝑃𝑖(𝐴, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡)] 

+ 𝛿𝑗,𝑃[𝑟𝑇𝑃𝑖(𝑇, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡)] 

+ (1 − 𝑏𝑖)𝜖𝑖(𝑡 − 𝑑𝐸)[𝛿𝑗,𝑆 + 𝛿𝑗,𝐷 + 𝛿𝑗,𝐴 + 𝛿𝑗,𝑈]𝒪𝑏 ⋄ 𝑃𝑖(𝑗, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡) 

+ 𝑏𝑖𝜖𝑖(𝑡 − 𝑑𝐸)[𝛿𝑗,𝐴(1 − 𝜙𝑖) + 𝛿𝑗,𝐷𝜙𝑖(1 − 𝑓𝑇) + 𝛿𝑗,𝑇𝜙𝑖𝑓𝑇] 𝒪𝑏 ⋄ 𝒪𝑐 ⋄ 𝒪𝑑 ⋄ ∑ 𝑃𝑖(𝑗
′, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡)

𝑗′∈{𝑆,𝐴,𝑈}

 

+ 𝑏𝑖𝜖𝑖(𝑡 − 𝑑𝐸) 𝒪𝑏 ⋄ 𝒪𝑐 ⋄ 𝒪𝑑 ⋄ 𝑃𝑖(𝐷, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡) 

+ [𝑟𝐵𝑘
𝜕

𝜕𝑘
+ 𝑟𝐶𝐴𝑙

𝜕

𝜕𝑙
+ 𝑟𝐼𝐷𝑚

𝜕

𝜕𝑚
]𝑃𝑖(𝑗, 𝑘, 𝑡𝑘 , 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡) 

+ 𝜇 𝛿(𝑎)𝛿(𝑡𝑘 + 𝑇𝑏𝑖𝑔)𝛿(𝑡𝑙 + 𝑇𝑏𝑖𝑔)𝛿(𝑡𝑚 + 𝑇𝑏𝑖𝑔)𝛿𝑗,𝑆𝛿𝑘,0𝛿𝑙,0𝛿𝑚,0∑𝑃𝑖(𝑗
′, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡)

𝑗′

 

−[𝜇 + 𝑟𝑃𝛿𝑗,𝑃 + 𝑟𝑈𝛿𝑗,𝑈 + 𝑟𝐷𝛿𝑗,𝐷 + 𝑟𝐴𝛿𝑗,𝐴 + 𝑟𝑇𝛿𝑗,𝑃 + ℎ𝑖(𝑡 − 𝑑𝐸)[𝛿𝑗,𝑆 + 𝛿𝑗,𝐷 + 𝛿𝑗,𝐴 + 𝛿𝑗,𝑈]] 𝑃𝑖(𝑗, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡) 

Here 𝒪𝑏,  𝒪𝑐 and  𝒪𝑑 are commutative integral operators with the following action on a density 

(𝑗, 𝑘, 𝑡𝑘 , 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡) : 

 𝒪𝑏 ⋄ 𝑓 =  𝛿(𝑡 − 𝑡𝑘) ∫ 𝑓(𝑗, 𝑘 − 1, 𝑡 − 𝑢𝐵 − 𝜏, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡)𝑑𝜏
∞

0

+  𝜃 (
𝑡 − 𝑡𝑘
𝑢𝐵

) 𝑓(𝑗, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡) 

 𝒪𝑐 ⋄ 𝑓 =  𝛿(𝑡 − 𝑡𝑙) ∫ 𝑓(𝑗, 𝑘, 𝑡𝑘, 𝑙 − 1, 𝑡 − 𝑢𝐶 − 𝜏,𝑚, 𝑡𝑚, 𝑎, 𝑡)𝑑𝜏
∞

0

+  𝜃 (
𝑡 − 𝑡𝑙
𝑢𝐶

) 𝑓(𝑗, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡) 
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 𝒪𝑑 ⋄ 𝑓 =  𝛿(𝑡 − 𝑡𝑚) ∫ 𝑓(𝑗, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚 − 1, 𝑡 − 𝑢𝐷 − 𝜏, 𝑎, 𝑡)𝑑𝜏
∞

0

+  𝜃 (
𝑡 − 𝑡𝑚
𝑢𝐷

) 𝑓(𝑗, 𝑘, 𝑡𝑘, 𝑙, 𝑡𝑙 , 𝑚, 𝑡𝑚, 𝑎, 𝑡). 

Finally, 𝜃(𝑥) is an indicator function such that 𝜃(𝑥) = 1 if 𝑥 < 1 and 0 otherwise. 

For simulation, a discrete time approximation of this stochastic model was used, with a time-step of 

1 day. For each individual 𝑘, 𝑙 and 𝑚 are set to zero at birth, while 𝑡𝑘, 𝑡𝑙  and 𝑡𝑚 are set to a large 

negative value −𝑇𝑏𝑖𝑔 (to represent never having been exposed or infected so that their immunity will 

always be boosted upon their first exposure). Each immunity term increases by 1 for an individual 

whenever that individual receives an infectious bite (𝑘), or is infected (𝑙 and 𝑚), if the previous boost 

to 𝑘, 𝑙 and 𝑚 occurred more than 𝑢𝐵, 𝑢𝐶  and 𝑢𝐷 days earlier, respectively. Immunity levels decay 

exponentially at rate 𝑟𝐵, 𝑟𝐶𝐴 and 𝑟𝐼𝐷, where 𝑟𝐵, 𝑟𝐶𝐴 and 𝑟𝐼𝐷 are equal to 
1

𝑑𝐵
 ,
1

𝑑𝐶𝐴
 and 

1

𝑑𝐼𝐷
 respectively. 

3.2.1.4. Mosquito Population Dynamics  

The adult stage of mosquito development was modelled individually and is similarly described in its 

deterministic framework before exploring its stochastic implementation. Adult mosquitoes will begin 

life susceptible to infection (SM), and will seek a blood meal on the same day they are born and every 

3 days after that until the mosquito dies. Each feeding day, mosquito i will be exposed to a force of 

infection, 𝛬𝑀𝑖 , depending on the infection status and immunity of the human the mosquito is feeding 

on. The overall force of infection towards the mosquito population on a given day, 𝛬𝑀 , is thus 

represented by the sum of the onward infection contributions from each infected human, delayed 

by 𝑑𝑔, delay due gametocytogenesis, which is given by: 

𝛬𝑀 = 𝛼𝑘𝑄0 (∑𝜋𝑖𝑐𝐷

𝛴𝐷

𝑖=1

+∑𝜋𝑖𝑐𝑇

𝛴𝑇

𝑖=1

+∑𝜋𝑖𝑐𝐴

𝛴𝐴

𝑖=1

+∑𝜋𝑖𝑐𝑈

𝛴𝑈

𝑖=1

)(𝑡 − 𝑑𝑔) 

where 𝛼𝑘  is the daily rate at which a mosquito takes a blood meal, 𝑄0 is the proportion of bites that 

are on humans (anthropophagy) and 𝑑𝑔 represents the delay from emergence of asexual blood-stage 

parasites to sexual gametocytes that contribute towards onward infectivity. Infected mosquitoes then 

pass through a latent infection stage (EM) that will last 10 days representing the extrinsic incubation 

period for the parasite (dEM), before becoming infectious to humans (IM). Infectious mosquitoes remain 

infectious until they die. Whenever a mosquito dies, it is replaced with a new susceptible adult 

mosquito. Analogously to the human model, when a new adult mosquito emerges, the day on which 

it dies is drawn from an exponential distribution with a transition rate of 𝜇𝑀= 0.132 days. The 

differential equations summarising the adult stage of mosquitoes are given by: 
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𝑑𝑆𝑀
𝑑𝑡

= 𝜇𝑀𝑀𝑣 − 𝜇𝑀𝑆𝑀 − Λ𝑀𝑆𝑀 

𝑑𝐸𝑀
𝑑𝑡

= Λ𝑀𝑆𝑀 − 𝜇𝑀𝐸𝑀 − Λ𝑀(𝑡 − 𝑑𝐸𝑀)𝑆𝑀(𝑡 − 𝑑𝐸𝑀)𝑒𝑥𝑝
−𝜇𝑀𝑑𝐸𝑀  

𝑑𝐼𝑀
𝑑𝑡

= Λ𝑀(𝑡 − 𝑑𝐸𝑀)𝑆𝑀(𝑡 − 𝑑𝐸𝑀)𝑒𝑥𝑝
−𝜇𝑀𝑑𝐸𝑀 − 𝜇𝑀𝐼𝑀 

where 𝜇𝑀 is the daily death rate of adult mosquitoes, and Mv is the total mosquito population, i.e. SM 

+ EM + IM. 

3.2.1.5. Mosquito Stochastic Model Equations 

As with the human transmission model, the full stochastic individual-based mosquito component of 

the model can be formally described by its Kolmogorov forward equations. As before, let 𝑖 denote 

each mosquito in the population, and j denote their infection status. Let 𝛿𝑝,𝑞 denote the Kronecker 

delta function such that it equals 1 if 𝑝 = 𝑞 and 0 otherwise. Defining 𝑃𝑖(𝑗, 𝑡) as the probability density 

function for mosquito 𝑖 being in state {𝑗, 𝑡} at time 𝑡, the time evolution of the system is governed by 

the following forward equation: 

𝜕𝑃𝑖(𝑗, 𝑡)

𝜕𝑡
=  𝛿𝑗,𝐸𝑀[𝛬𝑀𝑖(𝑃𝑖(𝑆𝑀, 𝑡))] + 𝛿𝑗,𝐼𝑀[𝛬𝑀𝑖(𝑡 − 𝑑𝐸𝑀)(𝑃𝑖(𝑆𝑀, 𝑡))] 

+ 𝛿𝑗,𝑆𝑀𝜇𝑀[𝑃𝑖(𝑆𝑀, 𝑡) + 𝑃𝑖(𝐸𝑀 , 𝑡)+𝑃𝑖(𝐼𝑀 , 𝑡)] 

− 𝑃𝑖(𝑗, 𝑡) [𝜇𝑀  + 𝛬𝑀𝑖[𝛿𝑗,𝑆𝑀]  + 𝛬𝑀𝑖(𝑡 − 𝑑𝐸𝑀)[𝛿𝑗,𝑆𝑀]]  

3.2.1.6. Seasonality and Intervention Strategies 

In simulations in which no seasonality is assumed, 𝑀𝑣 remains constant throughout, i.e. whenever a 

mosquito dies it is always replaced. When seasonality is incorporated, the maximum value that 𝑀𝑣 

can be oscillates with a period of 365 days. This corresponds to a change in the birth rate of 

mosquitoes that reflects an assumed impact upon the seasonal carrying capacity of the environment 

as a result of rainfall patterns upon mosquito larval stage development. In these simulations, when a 

mosquito dies, it will only be replaced if the current total number of mosquitoes is less than the 

maximum value that 𝑀𝑣 can be for that day. In simulations designed to replicate regional settings, a 

rainfall curve, 𝑅(𝑡), was estimated from rainfall data from 2002 to 2009 for the related first-

administrative unit using the first three frequencies of the Fourier-transformed data (Garske et al. 

2013). The seasonal total mosquito population size, 𝑀𝑣(𝑡), is thus given by: 

𝑀𝑣(𝑡) = 𝑀𝑣0
𝑅(𝑡)

𝑅̅
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Where 𝑅̅ is the mean annual rainfall, and 𝑀𝑣0 represents the seasonal harmonic mean population 

size. 

The computational constraints introduced by modelling individual mosquitoes and parasite 

population genetic dynamics necessitated modelling intervention strategies indirectly. This was 

handled by assuming that an introduction of intervention leads to a decrease in the average age of 

the mosquito population throughout the duration of the intervention due to an increased mortality 

rate. As a result, the average age reflects a new composite mortality rate due to both interventions 

and external causes. Similarly it leads to an increase in 𝑄0 to reflect mosquitoes that are repelled as a 

result of interventions but do not die. The daily rate of change to these parameters in response to ITN 

and IRS coverage is calculated using an equivalent deterministic version of the earlier model that 

included interventions (Griffin et al. 2016), before being introduced as a time-dependent variable 

within the stochastic model. 

3.2.1.7. Importation Rate 

The non-spatial, closed population nature of the model will result in the eventual fixation of a single 

genetic barcode. As such, when conducting simulations designed to replicate regional settings, an 

estimate of the importation rate was calculated, yielding to a daily probability that an infection is due 

to an imported case. The importation rate represents the sum of two different flows of infection into 

a regional setting: 

1. Individuals who are infected outside the region while travelling to and from other areas 

2. Visiting travellers from outside the region who infect mosquitoes within the admin unit 

These two process are incorporated at the same stage within the model, whereby there is a temporally 

dependent daily probability that a generated recombinant genotype is due to an importation as 

follows:   

𝑃𝑟𝑜𝑏(𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛) = 𝛿𝑖𝑚𝑝𝑜𝑟𝑡𝑠(𝑡) 

where 𝛿𝑖𝑚𝑝𝑜𝑟𝑡𝑠(𝑡) is the population proportion of new infections resulting from importations on a 

given day. This parameter changes over time to reflect changes in regional seasonality (both within 

the region and neighbouring regions), and different rates of change in malaria prevalence across 

neighbouring regions (Cook et al. 2011). If the recombinant is due to an importation, then a random 

barcode is produced and passed on. This barcode will also be stored and associated with an oocyst 

within the mosquito considered if it was probabilistically determined to be due to the second flow of 

importation defined above, determined by the ratio of these two flows of infection. Predicted rates 
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of the two flows of infection above are calculated for each year between 2000 and 2015 using a fitted 

gravity model of human mobility (Marshall et al. 2018).  

3.2.2. Parasite Dynamics 

3.2.2.1. Parasite Genetic Barcode 

Parasites are modelled as discrete populations resulting from an individual infection event associated 

with a mosquito or a human. Each asexual parasite is characterised by one genetic barcode, which 

contains information relating to 24-SNPs distributed across the parasite genome. These SNPs 

represent an increasingly used general SNP-based molecular barcode that has been used for the 

identification and tracking of P. falciparum clones (Daniels et al. 2008). Sexual stages of the parasite 

lifecycle within the mosquito are represented by both a female and male barcode, thus defining the 

range of recombinants that could be produced. The within human parasite dynamics and model 

considerations are discussed first before exploring the within mosquito parasite life cycle and 

associated modelling implications. A schematic overview of the modelled parasite lifecycle stages is 

shown in Figure 3.2.  
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Figure 3.2 Parasite Dynamics within the transmission model. Individual mosquitoes are tracked, which allows 

for recombination to be modelled explicitly. Populations of parasite clones are tracked, and multiple oocysts 

are able to be formed from a feeding event, as well as multiple genetically distinct sporozoites onwardly 

transmitted. A barcode is associated with each parasite clone and can either represent biallelic single 

nucleotide polymorphisms, or unique identities that allow identity by descent to be calculated. 

 

In simulations modelling identity by descent (IBD), I extend the barcode to consider 24 “identity-loci”. 

An identity locus can take any integer value required, allowing true identities to be compared. In the 

SNP-loci barcode, each locus can only be 0 or 1, representing the minor and major allele for that 

barcode loci. 

3.2.2.2. Within Human Parasite Dynamics 

During a successful mosquito to human infection event, a number of asexual parasite barcodes may 

be introduced into the human. All introduced barcodes are assumed to be able to contribute to 

onward infectiousness from humans to mosquitoes after 𝑑𝐸 + 𝑑𝑔 days, i.e. the time taken for the liver 
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stage infection and gametocytogenesis. If the individual’s pre-erythrocytic immunity was boosted in 

the last 𝑢𝐵 days no new parasite barcodes will be passed to the individual, otherwise more than one 

different asexual parasite barcode may be introduced during an infection event, representing 

cotransmission of genetically related parasites (assuming the mosquito was infected with more than 

one sporozoite genotype). The precise distribution describing the number of genotypes is unknown 

(Wong et al. 2017), but the mean number of sporozoites within an innoculation event is well 

characterised by a geometric distribution with mean equal to 10 (Pongtavornpinyo et al. 2009). The 

geometric mean will then be used to estimate the proportion of sporozoites that are successful, 𝜉, 

which yields the maximum number of successful sporozoites in an individual with no pre-erythrocytic 

immunity. If this number is less than 1, then a new total number of sporozoites is drawn until the 

maximum number of sporozoites after incorporating 𝜉 is greater than 0. The observed number of 

successful sporozoites is then calculated by conducting Bernoulli trials for all but one of the successful 

sporozoites (as I assume one has to survive to found the infection) to see if they are successful, using 

the individual’s probability of infection, 𝑏𝑖. In summary this can be written as: 

𝑇𝑜𝑡𝑎𝑙𝑠𝑝𝑧 ~ 𝐺𝑒𝑜𝑚(𝑝𝑠𝑝𝑧) 

𝑀𝑎𝑥𝑠𝑝𝑧 = 𝑟𝑜𝑢𝑛𝑑(𝑇𝑜𝑡𝑎𝑙𝑠𝑝𝑧 . 𝜉) 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑠𝑝𝑧 = 1 + ∑ 𝑏𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑏𝑖)

𝑀𝑎𝑥𝑠𝑝𝑧−1

1

   

There is no assumed maximum number of parasites, with individuals assumed to clear strains on the 

day that they would have moved from a subpatent infection to susceptible for the strain considered, 

i.e. each acquired strain follows an assumed trajectory in parasitaemia representative of a normal 

infection cycle, with a mean duration of infectiousness equal to 𝑑𝐴 + 𝑑𝑈. Acquired strains can thus 

move “infection state” independently of the human’s infection state. For example, a given individual 

is infected on day 0 and develops an asymptomatic infection. The individual is scheduled to become 

subpatent on day 200, but they were bitten on day 150 and developed clinical symptoms and moved 

to state D. When this happens, the parasite density of the strain acquired on day 0 does not change 

and this strain will become a subpatent strain on day 200. After day 200, its probability of being 

onwardly transmitted is thus equal to 𝑐𝑈 . After the parasite has moved to become a subpatent strain, 

the day at which the strain would have been cleared, i.e. the day the individual would have moved 

from state U to S if they had not been superinfected, is drawn and assigned to the parasite. On this 

drawn day the subpatent parasite strain is assumed to have been cleared. By tracking parasites in this 

way I am able to track the relative parasitemias of each acquired strain, enabling more accurate 
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sampling of within host parasite genetic diversity when passing on gametocytes to mosquitoes as well 

as enabling an equilibrium between clearing old strains and acquiring new strains, which represents 

the multiplicity of infection. This is shown in Figure 3.2, which also details the key features of the SNP 

barcode. 

3.2.2.3. Within Mosquito parasite dynamics 

When a mosquito is infected, the number of oocysts formed is sampled from a zero-truncated 

negative binomial distribution. The choice of a zero truncated negative binomial represents the 

increasingly identified zero-inflated negative binomial that describes the relationship between oocyst 

prevalence and mean oocysts per mosquito in SMFA studies (Churcher et al. 2012a; Stone et al. 2013, 

2014). The related negative binomial distribution for the distribution of oocysts is given by  

𝑋𝑜𝑜𝑐𝑦𝑠𝑡𝑠 ~ 𝑁𝐵(𝑠𝑖𝑧𝑒𝑜𝑜𝑐𝑦𝑠𝑡𝑠, 𝑠ℎ𝑎𝑝𝑒𝑜𝑜𝑐𝑦𝑠𝑡𝑠)   

where 𝑋𝑜𝑜𝑐𝑦𝑠𝑡𝑠 represents the number of oocysts that will be formed, with mean equal to 2.5 and a 

shape equal to 1, which captures the mean and range of oocysts observed in natural P. falciparum 

infections (Churcher et al. 2013; Stone et al. 2013, 2014). For each oocyst formed, two barcodes are 

sampled from the infected host representing the female and male gametes that led to the oocysts 

formation. These two barcodes will result in up to 4 different potential genotypes (reflecting the 

immediate two step meiotic division that takes place after zygote formation) of sporozoite to be 

produced by the oocyst. When an infectious mosquito seeks a blood meal and leads to an onward 

infection, a value for 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑠𝑝𝑧 is sampled. The oocyst source for each onward infection within a 

coinfection is sampled from oocysts that have ruptured, i.e. the infection event that led to the oocyst 

occurred more than 10 days earlier. At this point recombination is simulated by randomly choosing 

either the male of female allele at each position in the barcode. The random sampling in this 

represents the assumed independent segregation events resulting from the absence of genetic linkage 

between barcode loci. Once a recombinant has been simulated it is stored and associated with the 

oocyst that generated it.  If the same oocyst is chosen to lead to an additional infection, then the 

previously generated recombinant has a 25% chance of being onwardly transmitted and there is a 75% 

chance that a new recombinant is generated and subsequently saved. This process will continue until 

four recombinants have been simulated, at which point they each have a 25% chance of being 

onwardly transmitted if that oocyst is chosen to contribute a sporozoite to an onward infection. This 

process assumes that sporozoites will remain onwardly-transmissible for the remainder of the 

mosquito’s life, with no effect upon their relative probability of being onwardly transmitted in relation 

to sporozoites that resulted from a more recently ruptured oocyst. It also assumes that each oocyst 
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contributes comparable numbers of sporozoites, such that the probability of a sporozoites originating 

from each oocyst is the same for all oocysts. 

3.2.3. Model Parameter Values   

All model parameters are shown in Table 3.3 with previously fitted model parameters sourced from 

Griffin et al. 2014 (Griffin et al. 2014), 2015 (Griffin et al. 2015) and 2016 (Griffin et al. 2016).   

Table 3.3 Parameter estimates 

Parameter Symbol Estimate 

Human infection duration (days) 

Latent period 𝑑𝐸 12 

Patent infection 𝑑𝐴 200 

Clinical disease (treated) 𝑑𝑇 5 

Clinical disease (untreated) 𝑑𝐷 5 

Sub-patent infection 𝑑𝑈 110 

Prophylaxis following treatment 𝑑𝑃 25 

Treatment and Importation Parameters 

Probability of seeking treatment if clinically diseased 𝑓𝑇  Variable 

Importation Rate 𝛿𝑖𝑚𝑝𝑜𝑟𝑡𝑠 0.01 

Infectiousness to mosquitoes 

Lag from parasites to infectious gametocytes 𝑑𝑔  12 days 

Untreated disease 𝑐𝐷  0.0680 day-1 

Treated disease 𝑐𝑇 0.0219 day-1 

Sub-patent infection 𝑐𝑈 0.000620 day-1 

Parameter for infectiousness of state A 𝛾1 1.824 

Age and heterogeneity 

Age-dependent biting parameter 𝜌 0.85 

Age-dependent biting parameter 𝑎0 8 years  

Daily mortality rate of humans 𝜇 0.000180 

Variance of the log heterogeneity in biting rates 𝜎2 1.67 

Immunity reducing probability of infection 

Maximum probability due to no immunity 𝑏0 0.590 

Maximum relative reduction due to immunity 𝑏1 0.5 
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Inverse of decay rate 𝑑𝐵  10 years 

Scale parameter 𝐼𝐵0 43.879 

Shape parameter 𝜅𝐵 2.155 

Duration in which immunity is not boosted 𝑢𝐵  7.199 

Immunity reducing probability of clinical disease 

Maximum probability due to no immunity 𝜙0 0.791 

Maximum relative reduction due to immunity 𝜙1 0.000737 

Inverse of decay rate 𝑑𝐶𝐴 30 years 

Scale parameter 𝐼𝐶0 18.0237 

Shape parameter 𝜅𝐶  2.370 

Duration in which immunity is not boosted 𝑢𝐶  6.0635 

New-born immunity relative to mother’s 𝑃𝑀  0.774 

Inverse of decay rate of maternal immunity 𝑑𝑀  67.695 

Immunity reducing probability of detection 

Minimum probability due to maximum immunity 𝑑1 0.161 

Inverse of decay rate 𝑑𝐼𝐷  10 years 

Scale parameter 𝐼𝐷0 1.578 

Shape parameter 𝜅𝐷 0.477 

Duration in which immunity is not boosted 𝑢𝐷  9.445 

Scale parameter relating age to immunity 𝑎𝐷  21.9 years 

Time-scale at which immunity changes with age 𝑓𝐷0 0.00706 

Shape parameter relating age to immunity 𝛾𝐷 4.818 

Mosquito Population Model 

Daily mortality of adults 𝜇𝑀 0.132 

Daily biting rate 𝛼𝑘  0.333 

Anthropophagy 𝑄0 0.92 

Extrinsic incubation period 𝑑𝐸𝑀  10 days 

Negative Binomial shape parameter for oocyst distribution  𝑠ℎ𝑎𝑝𝑒𝑜𝑜𝑐𝑦𝑠𝑡𝑠 2.5 

Negative Binomial size parameter for oocyst distribution 𝑠𝑖𝑧𝑒𝑜𝑜𝑐𝑦𝑠𝑡𝑠 1 

Human Parasite Parameters   

Geometric probability of total sporozoites in an infectious bite  𝑝𝑠𝑝𝑧 1/10 

Percentage of sporozoites successfully reaching blood-stage 𝜉 20% (fitted) 
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3.2.4. Model Fitting 

My extensions to the transmission model introduced a new parameter, 𝜉, which determines the 

percentage of the total sporozoites passed on within a feeding event that survive to yield a blood-

stage infection and subsequently produce gametocytes. To fit this parameter I compared the model 

predicted relationship between the complexity of infection (COI) and age utilising previously SNP 

genotyped samples from five sites across Kenya (Omedo et al. 2017b) and Uganda (Chang et al. 2017), 

collected between 2008-2010 and 2012-2013 respectively. In brief, dried blood spots were collected 

and samples taken from individuals with evidence of asexual parasitemia by microscopy were selected 

for Sequenom SNP genotyping. Genotyping was conducted using the Sequenom MassARRAY iPLEX 

platform, yielding minor and major allele frequencies.   

We applied THE REAL McCOIL proportional method to the SNP genotyped samples to estimate each 

individual’s COI (Chang et al. 2017). THE REAL McCOIL is a Bayesian Markov chain Monte Carlo method 

for jointly estimating the complexity of infection of individuals from SNP genotyped samples as well 

as the population allele frequencies of the genotyped SNPs. I developed an extended version of the 

published implementation of THE REAL McCOIL, which uses dynamically-allocated memory containers 

to allow the processing of larger sample sizes and SNPs than the original implementation. The 

developed software, McCOILR, is available at https://github.com/OJWatson/McCOILR. 

 Samples were filtered first by excluding loci with more than 20% missing samples, followed by 

samples with more than 25% missing loci. We performed thirty repetitions of THE REAL McCOIL for 

each sample, with a burn-in period of 104 iterations followed by 106 sampling iterations. Sequencing 

measurement error was estimated along with COI and allele frequencies, the maximum observable 

COI was set equal to 25 and default priors were assigned for each parameter and I used standard 

methodology to confirm convergence between chains (Gelman and Rubin 1996). The observed 

relationship between COI and age was compared to the model predicted relationship for each 

administrative region studied. The model predicted relationship was created by conducting 

simulations calibrated to estimates of the administrative malaria prevalence from 2000 to 2015 (Bhatt 

et al. 2015), exploring values of 𝜉 between 0.5% - 50%.  For each region, 10 stochastic realisations of 

100,000 individuals were simulated with a burn-in period of 50 years to ensure both an 

epidemiological and genetic equilibrium was reached by year 2000. For each of the five administrative 

regions of interest, I incorporate the historic scale up of insecticide treated nets and indoor residual 

spraying between 2000 and 2015, using data previously collated for the World Malaria Report (World 

Health Organization 2015d), and estimates for the coverage of treatment modelled using DHS and 

MICS survey data (Cohen et al. 2012b). Seasonality for each region was included by altering the total 
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number of mosquitoes using annually fluctuating seasonal curves fitted to daily rainfall data from 2002 

to 2009 (Cairns et al. 2012). Lastly, I introduce rates of importation of infections that are calculated 

for each year between 2000 and 2015 using a fitted gravity model of human mobility (Marshall et al. 

2018). These sources represent infections acquired from individuals travelling out of the region and 

returning with an infection, and also mosquitoes being infected by individuals travelling from outside 

into to the region of interest.  

We calculated the “distance” between our model predictions and the observed data, 𝐼(𝜉), using the 

Kullback-Leibler (KL) divergence (Burnham et al. 2002). Using an individual’s age and estimated COI, 

the distance between the observed and predicted distributions of COI for each age is given by: 

𝐼(𝜉𝑖) ≔ 𝐼(𝑝𝐶𝑂𝐼𝑖(𝜉), 𝑜𝐶𝑂𝐼𝑖) = ∑ 𝑝𝐶𝑂𝐼𝑖(𝜉)𝑙𝑛 (
𝑝𝐶𝑂𝐼𝑖(𝜉)

𝑜𝐶𝑂𝐼𝑖
)

25

𝐶𝑂𝐼=1

 

where 𝑜𝐶𝑂𝐼𝑖 is the observed distribution of COI at age 𝑖 and 𝑝𝐶𝑂𝐼𝑖(𝜉) is one realisation of the model 

predicted distribution of COI at age 𝑖 for a given frequency of successful sporozoites 𝜉 (with only 

parasites that would have been detected by PCR being assumed to be detected by SNP genotyping). 

The total distance for a given value of 𝜉 is subsequently given by: 

∑(
∑ 𝐼(𝜉𝑖)𝑤𝑖
𝑛𝑖
𝑖

∑ 𝑤𝑖
𝑛𝑖
𝑖

)

5

𝑟 𝑟

 

where 𝑤𝑖 is the weight for age 𝑖 (equal to the number of observations at age 𝑖) and 𝑛𝑖 is the total 

number of unique sampled ages in administrative region 𝑟. This can be interpreted as the sum of the 

weighted KL divergence means within a region, with weights equal to the number of observations at 

each age. Each region thus contributes equally to the total distance, despite the difference in the 

number of individuals in each region.  

Further model fit validation was conducted by incorporating a comparatively larger collection of 

estimates of the COI estimated using msp2 genotyping, which is more commonly referred to as 

multiplicity of infection (MOI). msp2 genotyping is known to underestimate COI in individuals with 

very high COIs, with COIs > 7 difficult to observe (Gupta et al. 2010). Consequently, to distinguish these 

estimates I refer to these as msp2 COI. We compiled P. falciparum malaria msp2 COI data where there 

were estimates of both the malaria prevalence and the msp2 COI of study participants. This was 

conducted by updating a previous review (Karl et al. 2016), using the same search terms of “falciparum 

multiplicity infection prevalence msp2”. Analogous relationships were predicted using the fitted 

model, with the model predicted msp2 COI estimated by assuming that any observable COI from the 
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model greater than 7 results in an msp2 COI of 7, which reflects the limits of resolution when using 

msp2 genotyping (Gupta et al. 2010).  

3.2.5. Contribution of superinfection and cotransmission to within host genetic diversity 

The parameterised model was used to characterise the relative contribution of cotransmission events 

and superinfection towards within host parasite genetic diversity. Ten stochastic realisations of 

100,000 individuals were simulated for 50 years at 15 different transmission intensities. The 

proportion of highly identical parasite strains (>50% of loci are IBD in pairwise comparisons between 

all unique parasite strains within an individual) within simulations was recorded in the last year of the 

simulations and used to estimate the proportion of within host genetic diversity that is due to 

cotransmission events rather than superinfection. Lastly, the simulations described will be used to 

compare the model predicted relationship between the mean IBD within samples and the proportion 

of samples that are multiply infected (COI > 1). This relationship has been recently explored using 

whole genome sequence data (Zhu et al. 2019) and subsequently provides another opportunity to 

assess the realism of the parameterised model. 

3.3. Results 

3.3.1. Complexity of Infection Data 

First, I used THE REAL McCOIL (Chang et al. 2017) to estimate the COI from SNP genotyped samples 

collected previously from individuals with evidence of asexual parasitemia by microscopy from regions 

in Kenya and Uganda. These two datasets were selected as they recorded both the age of the sampled 

individuals and SNP intensities at a sufficiently large number of loci enabling the relationship between 

COI and age to be estimated. After excluding SNP loci with more than 20% missing data and 

subsequently removing samples with more than 25% missing SNP data from further analysis, the COI 

was estimated for 2419 samples from 95 primary schools in Western Kenya (1363 from Nyanza 

province and 1056 from Western province) and 584 samples from representative cross-sectional 

household surveys in three sub-counties in Uganda (462 from Nagongera in Tororo District, 74 from 

Kihihi in Kanungu District, and 48 Walukuba in Jinja District). 

3.3.2. Model Fitting 

The developed model was extended to include individual mosquitoes, enabling parasite populations 

and their genotypes to be tracked throughout the full lifecycle. This extension allows for the potential 

formation of multiple oocysts from an infectious event and multiple genetically distinct sporozoites to 



87 
 

be onwardly transmitted. The extensions require the parameterisation of the proportion of 

sporozoites from an infectious bite that survive to found a blood stage infection. This process will 

ultimately affect the level of new parasite genetic diversity introduced and may alter the observed 

COI. The model was parameterised using the earlier estimated relationships between COI and age in 

the five regions across Uganda and Kenya (Figure 3.3). I estimate that 20% of sporozoites onwardly 

transmitted within an infectious bite successfully progress to a blood-stage infection and produce 

gametocytes that may contribute to future mosquito infections. The model captures the observed 

peak in COI observed at age 7-8 (Figure 3.3a); however, the comparatively fewer samples at higher 

ages make it difficult to confirm that this is the true peak in COI. Additionally, this observed peak in 

COI also likely reflect the limits of detection, with more accurate model predictions occurring under 

the assumption that sub-patent parasite strains would not be detected (Figure 3.3b). Model fitting 

also showed that sensitivity to the percentage of sporozoites that survive is negligible between values 

of 15-20%, with the confidence intervals for the most likely parameter value of ζ (the % of sporozoites 

per infections surviving and eventually producing gametocytes) overlapping intervals for values of ζ 

ranging from 0.1 to 0.29 (Figure 3.3). Model fits were consistently better across the parameter range 

explored under the assumption that only PCR detectable infections contribute to the observed COI. 

To further assess the fitted model, I wanted to incorporate estimates of COI based on msp2 

genotyping, which is more commonly measured. Estimating COI by msp2 genotyping, however, does 

underestimate COI in individuals with high COI, with COIs > 7 difficult to resolve. I updated a previous 

literature review of paired estimates of msp2 COI and parasite prevalence by PCR, which yielded 105 

results. The fitted model predicts an increase in msp2 COI with increasing malaria prevalence in 

agreement with the data collected within the literature search (Figure 3.3c). However, there are 

notably larger uncertainties in the recorded msp2 COI at higher prevalence ranges in the studies 

found.  
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Figure 3.3 Relationship between complexity of infection and age. a) One realisation of the model predicted 

relationship between complexity of infection (COI) and age compared to the observed relationship estimated 

using THE REAL McCOIL. Each point represents an individual, with a local regression fit plotted in red. The 

relationship shown represents the selected best model fit, which estimates that 20% of sporozoites 

successfully progress to blood-stage infection in an individual with no immunity. In b) the results of the model 

fit are shown, with each point representing the mean Kullback-Leibler divergence and the whiskers 

representing the 95% confidence interval. Results of model fitting are shown for the assumption that sub-

patent infections are either detected (red) or not detected (blue). In c) the model predicted relationship 

between COI measured by msp2 genotyping and PCR prevalence is shown in red, with the point-ranges 

showing observed values of COI by msp2 genotyping from the literature review. 

3.3.3. Population genetic properties of the fitted transmission model 

Using the fitted model, I first explored basic population genetic properties of the model to examine 

the relationships between population size, transmission intensity and genetic diversity within a closed 

population and no importation. This scenario enables the rate at which genetic diversity is lost due to 

genetic drift to be estimated. The rate of fixation was predicted to be substantially faster at lower 

transmission settings, reflecting the decreasing rate of recombination due to an increasing probability 

of infected individuals being monoclonally infected (Figure 3.4).  
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Figure 3.4 Genetic fixation under neutral selection. Each heatmap shows the human parasite population, 
with each row representing a unique parasite genetic barcode within a human, and each column representing 
one of the 24 SNPs of the barcode. The populations were initialised with an allele frequency of 50% at each 
barcode locus and simulated under the assumption that there is no importation of new genetic strains. 
Consequently, genetic drift causes genetic diversity to be lost over time, with the allele frequency of each 
barcode locus tending towards 0% (yellow) or 100% (red) after 100 years. The loss of diversity is greater at 
lower transmission intensities, as shown by increasing transmission intensities depicted in the rows of the 
plot, and at lower population sizes, as shown by the final column which was simulated using a population of 
10,000 individuals rather than 100,000 individuals.  

To further examine the impact of transmission intensity, I explored a scenario in which a fixed rate of 

3% importation was assumed to yield a genetic equilibrium. A population of 10,000 individuals was 

simulated for 100 years with an EIR = 10 and a treatment coverage of 20%. After 100 years, the 

treatment coverage was increased by 1% for 35 years from 20% to 55% (Figure 3.5). Every 2 years 200 

parasites were sampled and the frequency of each parasite genotype was calculated and plotted over 

time. After the increase in transmission intensity, a slight decrease was observed in the number of 

barcodes that occurred only once in the sample. During the same period, PCR prevalence decreased 

from 35% to 25%, suggesting that parasite genetic diversity is associated to malaria prevalence.   
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Figure 3.5 Decreasing parasite barcodes upon scale up of treatment. Each column in the graph shows 200 
randomly sampled barcodes, with unique barcodes shown in grey and barcodes that appear more than once 
shown in various colours. Treatment coverage was scaled up from 20% to 55% from year 25 to 60, during 
which PCR prevalence of malaria decreases and a subtle decrease in the number of unique barcodes 
observed. 

3.3.4. Contribution of cotransmission events to within host parasite diversity 

Using the fitted model, I explored the relationship between the proportion of within host parasite 

strains that are highly related to other within host strains, with highly related parasite strains 

indicative of cotransmission events. The model predicted proportion of within host parasite diversity 

that is due to cotransmission events was shown to increase at lower transmission intensities (Figure 

3.4a). I predict that at PCR prevalence less than 11.5%, more than 50% of strains within 

polygenomically infected individuals of all ages result from cotransmission events, rather than 

superinfection. This is based on the assumption that highly related parasites, which are more than 

50% IBD with other parasites, have originated from a recent common ancestor, and as such reflects 

the proportion of within host genetic diversity that is due to cotransmission events rather than 

superinfection. I also predict this relationship is dependent on the age of individuals sampled, with 
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parasites within younger individuals more likely to be more highly related. This reflects the decreased 

chance that younger individuals will have been superinfected, which increases the likelihood that any 

polyclonal individuals are the result of a cotransmission event. In Figure 3.5b, the model predicted 

relationship between mean IBD in mixed infections and the fraction of mixed infections is shown. The 

model predicted relationship is comparable to estimates of IBD from whole genome sequence data 

collected from sites across Africa and Asia as part of the Pf3k study (Zhu et al. 2019). However, the 

model predicts significantly lower mean IBD in settings with a high fraction of mixed infections 

compared to the estimates based on the whole genome sequencing data, with samples from sites in 

Ghana, Malawi, Mali and the Democratic Republic of the Congo exhibiting higher mean IBD than 

predicted by the model.  

 

Figure 3.6 Contribution of superinfection and cotransmission to within host parasite relatedness. Model 

predicted relationship between the mean within host proportion of highly identical parasite strains (>50% of 

loci comparisons are identical by descent (IBD)) against PCR prevalence. The relationship is shown for all ages 

and for three age groups: 0-5 years, 5-15 years and 15+ years. 95% confidence intervals are shown with 

vertical error bars. In b) the mean IBD in mixed infections (COI > 1) is shown against the proportion of mixed 

infections. The model predicted relationship is shown with the green points and the black curve. The model 

estimates are compared to estimates of IBD from whole genome sequence data collected in sites across Africa 

and Asia, which were estimated previously in Zhu et al (Zhu et al. 2019). Populations are coloured by 

continent, with size reflecting sample size and error bars showing ±1 standard error of the mean. 

Abbreviations: SN-Senegal, GM-The Gambia, NG-Nigeria, GN-Guinea, CD-The Democratic Republic of Congo, 

ML-Mali, GH-Ghana, MW-Malawi, MM-Myanmar, TH-Thailand, VN-Vietnam, KH-Cambodia, LA-Laos, BD-

Bangladesh.   
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3.4. Discussion 

In this chapter I have extended a previously developed model of malaria transmission to include 

individual mosquitoes and discrete parasite populations. The percentage of sporozoites that are 

successful within an infectious bite was estimated to be 20% (95% CI 10%-29%), and was estimated 

by fitting the model to 3003 paired measures of the complexity of infection and age of individuals in 

5 sites across Kenya and Uganda. The fitted model was used to initially estimate the proportion of the 

within host parasite genetic diversity that is the result of cotransmission events resulting in the 

acquisition of highly identical parasite strains, as opposed to strains acquired through superinfection 

events. I predict that for malaria prevalence greater than 11.5%, the majority of genetic variation 

within hosts is generated through superinfection events. To my knowledge this is the first attempt to 

characterise this relationship across the full transmission intensity spectrum seen within sub-Saharan 

Africa and represents a move towards standardising which genomic metrics should be used at 

different transmission ranges.  

The main parameter fitted in the developed transmission model was the percentage of sporozoites 

from an infectious bite that survive to found an infection. The decision to include this parameter was 

prompted by an analysis of polyclonal infections in Senegal, which demonstrated that cotransmission 

of genetically related strains contributed towards within host genetic diversity (Wong et al. 2017). The 

relatedness within polyclonal infections was found to be significantly greater than would have been 

expected solely by random reassortment due to superinfection. However, the specific contribution of 

both coinfection and superinfection was unable to be quantified and was simply shown to be present 

to an unknown degree. In addition, how these two processes determine the population level of 

genetic diversity and complexity of infection (COI) was suggested as being likely dependent on the 

transmission intensity of the region of study.  

In my model, I have assumed that the absolute number of sporozoites passed on during an inoculation 

event is independent of the transmission intensity. Consequently, this leads to superinfection 

contributing more to parasite diversity within hosts at higher transmission intensities. This 

observation has been previously hinted at by a study of kinship within multiple genotype infections in 

Malawi and Thailand, in which superinfection was shown to be the major driver of multiple infections 

in Malawi, whereas both mechanisms contributed comparably in Thailand due to the lower 

transmission intensity (Nkhoma et al. 2012). This relationship was shown with the fitted model in 

Figure 3.6a, with the proportion of highly related parasites within an infection decreasing at higher 

transmission intensities. Similarly, the model predicted an exponential relationship between mean IBD 

in mixed infections and the proportion of mixed infections (Figure 3.6b). The exponential relationship 
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was similar to findings in a recent study of IBD, which used whole genome sequence data to explore 

this relationship (Zhu et al. 2019). However, the model predicted significantly lower IBD at higher 

transmission settings (settings with a higher fraction of mixed infections) than observed in the data 

presented in Zhu et al. There are a number of reasons for this. Firstly, the whole genome sequence 

data was collected from individuals of unknown age as part of a convenience sample. If the samples 

were collected exclusively from younger individuals, the results in Figure 3.6a would suggest that the 

mean IBD would be higher than if the samples were collected across all ages. Secondly, in the study 

by Zhu et al., the estimated COI across all sites was less than 2, which is significantly lower than COI 

estimates from the sites in Kenya and Uganda in Figure 3.3. Given that some of the African study sites 

in Zhu et al. are in areas of high transmission intensity, it seems likely that the convenience sampling 

scheme used has selected for individuals with lower COIs. One explanation could be that the 

individuals chosen for sequencing receive treatment more regularly, which reduces the probability of 

parasite strains from superinfection events being present at the time of sampling. This could be due 

to their age, or due to their enrolment in the study that resulted in them being selected for sequencing. 

Ultimately, without this metadata it is very difficult to draw any conclusions about the validity of the 

model predictions in Figure 3.6b, although the broad similarity is encouraging. The importance of 

individual-level metadata will be further explored in chapter 4.  

The developed model was also shown to be sufficient for recovering expected behaviour under simple 

population genetic models. For example, the rate at which genetic diversity is lost and the effective 

population size decreases was confirmed to be affected by both the transmission intensity, which 

promotes recombination events, and the human population size. Lastly, the impact of changing 

transmission intensity was briefly examined through the impact on the frequency of unique parasite 

barcodes after the scale up of treatment coverage. This brief assessment showed that parasite genetic 

variation is affected by changes in malaria prevalence and will be explored in greater detail in chapter 

4.  

This study has some important limitations. Firstly, we assumed there is only one parameter detailing 

the percentage of sporozoites that successfully progress to a blood-stage, which is the same for all 

study sites considered. This is likely a simplification, but our observation of 20% sporozoites surviving 

from an individual mosquito feed is comparable to Bejon et al’s observation of 25% (14 sporozoites 

surviving from an assumed total of 55 sporozoites resulting from five mosquito bites) of sporozoites 

successfully progressing to blood-stage infection (Bejon et al. 2005). This estimate is also comparable 

with the two other attempts within the literature that look at estimating the number of successful 

sporozoites arising from an infectious mosquito bite. Both methods used similar approaches from 

vaccine efficacy studies, and estimated that 14 (Bejon et al. 2005) and 16 (White 2012) sporozoites on 
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average successfully progress to blood-stage infection from a total of 5 infectious bites. It is, however, 

higher than estimates based on transmission efficacy studies (Smith et al. 2010a). The model fitting, 

however, revealed that the sensitivity to this parameter was low, with the confidence intervals for a 

value of ζ equal to 0.20 overlapping intervals for values of ζ ranging from 0.1 to 0.29. This is highlighted 

when we re-examined the model predicted relationship between msp2 COI and prevalence with these 

values, which showed only slight changes to the predicted COI (Appendix Figure 3.1). The fitted 

estimate was also based on model fits to the administrative mean prevalence as opposed to the 

recorded prevalence in the specific study sites. For example, the study site in Jinja District, Walukuba, 

was observed to have the lowest parasite prevalence of all three study sites in Uganda (Nankabirwa 

et al. 2015). If we had used this prevalence value as opposed to the administrative prevalence value, 

the parameterised model would have failed to predict the pattern of COI in Walukuba (Appendix 

Figure 3.2), which may suggest that this study site exhibits higher heterogeneity in the force of 

infection.  

Secondly, although the developed model enables the simulation of parasite genetics, the model does 

not attempt to fully model the impact of different parasite variants on the acquisition of immunity. 

Instead the acquisition of immunity is still modelled through exposure to infectious bites rather than 

via exposure to specific parasite variants. Efforts to characterise and define the genetic diversity of P. 

falciparum have shown that the parasite is capable of maintaining considerable levels of genetic 

diversity. This is most noticeable among gene families such as the var genes (Verity et al. 2018), which 

are reflective of balancing selection maintaining phenotypic variation within the host and involved in 

moderation disease outcomes (Bopp et al. 2013). Developing mathematical models of infectious 

diseases that capture the full range and effects of pathogen genetic diversity, however, has been 

noted previously as one of three major challenges in the modelling of infectious diseases (Childs et al. 

2015). Although I do not attempt to model immunity through exposure to different var repertoires, 

the model is sufficient to capture the level of within host parasite genetic diversity, as measured by 

the complexity of infection at different ages. In addition, my developed model addresses a number of 

other limitations and challenges posed in the review of modelling challenges presented by Childs et al 

(Childs et al. 2015), including: 

 The generation of genetic diversity via recombination. 

 Modelling frameworks enabling differential infectiousness of each parasite strain in multiply 

infected individuals. 

 Altered clearance rates of parasite strains acquired from different infections. 

 The role of superinfection on the duration and dynamics of an individual’s relative 

infectiousness to mosquitoes.  



95 
 

The extension made in addressing the above challenges has introduced a number of modelling 

assumptions. Competition between parasite strains within a multiply infected individual is not 

modelled, which if included would also impact how the genetic variation within an infected individual 

may be passed over to the next human host (Conway et al. 1999; Gog et al. 2015). If between strain 

competition is sufficiently high to cause a substantial decrease in either the duration of an individual 

strain’s infection or the rate at which new strains can be acquired, then the estimated frequency of 

sporozoites that survive is likely a conservative estimate. However, studies attempting to measure 

between strain competition are limited as a result of the complicated experimental set up. Most 

studies examine the complexity of infections using msp1/2 genotyping and measure patient 

parasitaemia, which often shows that parasite density does not increase with increasing complexities 

of infection (Bell et al. 2006; Nkhoma et al. 2018a). These findings are often suggested to indicate 

within host competition and that the overall infectiousness of an infected individual does not change 

with regards to the number of genetically distinct strains. However, they do not give an indication of 

how the relative infectiousness of each strain is affected in mixed infections. For example, does the 

initial strain dominate through early monopolisation of within host resources? Or are there sufficient 

distinct niches within an individual that enable multiple parasite strains to exist in parallel but simply 

at lower parasite densities? Other individual factors are also shown to be of arguably more 

importance, such as patient age and temperature, with respect to onward infectiousness of an 

individual (Sondo et al. 2019). To measure the individual parasite densities of different strains, murine 

models of malaria dynamics have been used to some success for looking at mechanistic basis of within 

host competition (Sondo et al. 2019). However, these studies have often focussed on questions 

relating to competitive suppression and release with respect to antimalarial resistance, due to the 

profound effects that it would have on the speed at which resistance may spread (Huijben et al. 2011; 

Bushman et al. 2016, 2018). Consequently, at this stage it seemed not tractable to include within host 

competition that altered the relative infectiousness beyond the level expected based on the expected 

duration of infection of the individual parasite strain. 

3.5. Conclusion 

In this chapter I have developed a new individual-based model of the transmission of malaria for the 

simulation of parasite genetics. The model represents an extension of the version of the Imperial 

College transmission model previously developed for the simulation of pfhrp2 gene deletions, which 

now allows parasites to be modelled more flexibly by tracking parasites using a genetic barcode. The 

extended model required the parameterisation of an additional parameter governing the percentage 

of sporozoites that survive from an infectious event. The parameter was fit through comparison to 
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estimated relationships of the complexity of infection against age from five sites in Uganda and Kenya. 

Estimates of COI were produced using my developed wrapper for THE REAL McCOIL method, which 

now enables larger numbers of samples and loci to be handled. The fitted parameter was found to be 

equal to 20%, which is in line with previous estimates calculated from both vaccine efficacy studies 

and human challenge experiments. The fitted model was used to highlight that the model is able to 

reproduce expected population genetics results related to the loss of genetic diversity over time due 

to genetic drift as well as due to decreasing malaria prevalence resulting from increased treatment 

coverage. Lastly, the model was used to characterise the level of identity by descent between parasite 

strains within polyclonally infected individuals. Using this approach, I predicted that for malaria 

prevalence greater than 11.5% PCR PfPR, the majority of genetic variation within hosts is generated 

through superinfection events.  My characterisation of the relationship between the level of highly 

related parasite strains within an individual and transmission intensity is the first to use a 

mathematical modelling approach to explore this dynamic. This has important implications in 

understanding how changes in transmission intensity will affect the level of inbreeding within the 

parasite population. These ideas will be developed further in chapter 4, in which multiple summary 

measures of parasite genetic diversity will be reviewed in an evaluation of how parasite genetics could 

be used as a tool for the surveillance of malaria.  
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3.6. Appendix 

3.6.1. Appendix Figures 

 

Appendix Figure 3.1 Model predicted relationship msp2 COI and PCR prevalence. The blue solid line shows 

the relationship for the fitted value of ζ equal to 0.20. The dashed lines above and below this in blue show 

the relationship for values of ζ equal to 0.29 and 0.10 respectively. The point-ranges in black show the 

observed values of COI by msp2 genotyping from the literature review. 

 

 

Appendix Figure 3.2 COI vs age using sub-county prevalence. The fitted model predicted relationship 

between COI and age for Walukuba, if the prevalence simulated was assumed to be equal to the prevalence 

within the sub-county surveyed, rather than the prevalence for the administrative region. Model fitting 

conducted in Figure 3.3a used the administrative region prevalence as estimated by the Malaria Atlas Project, 

which resulted in good agreement between COI and prevalence. 
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Chapter 4. Evaluating the performance of malaria genomics 

for inferring changes in transmission intensity using 

transmission modelling 

 

In the previous chapter I detailed the development of a new mechanistic model of malaria 

transmission that enabled the simulation of malaria genetics. The model was used to explore the 

contribution of superinfection and cotransmission events towards within host parasite genetic 

diversity. In this chapter, I continue to use the same model to explore how a number of measures of 

parasite genetic diversity correlate to changes in transmission intensity and define their individual 

statistical power. Finally, I show how different metrics can be combined to predict the prevalence of 

malaria while highlighting the increased predictive accuracy when patient meta data is also recorded. 

4.1. Introduction 

Molecular tools are increasingly being used to understand the transmission histories and phylogenies 

of infectious pathogens (Hall et al. 2015). Using phylodynamic methods it is now possible to estimate 

the historic prevalence of infection directly from molecular data, even in organisms with relatively 

complex lifecycles (Volz et al. 2009). However, these tools typically rely on pathogens having an 

elevated mutation rate and not undergoing sexual recombination, which allows for the application of 

coalescent theory (Grenfell et al. 2004). Consequently, these techniques are yet to be adapted for the 

study of P. falciparum malaria, which is known to undergo frequent sexual recombination. In addition, 

malaria transmission between both the human and the mosquito hosts involves a series of population 

bottlenecks (Vaughan 2007; Churcher et al. 2010), which combined with the rapid sexual stage 

involving a single two-step meiotic division (Bennink et al. 2016), have marked effects on the 

population genetics of P. falciparum (McKenzie et al. 2001; Chang et al. 2013). This is extenuated by 

evidence of cotransmission of multiple clonally related parasites (Wong et al. 2017), which combined 

with host mediated immunity (Barry et al. 2007; Portugal et al. 2011) and density-dependent 

regulation of superinfection (Bruce et al. 2000; Pinkevych et al. 2013) result in a complicated network 

of processes driving the genetic diversity of the parasite population within an individual host.  

Despite this substantial complexity, an increasingly nuanced understanding of the processes shaping 

parasite genetic diversity is appearing, with multiple genetic metrics proving promising for inferring 

transmission intensity (Daniels et al. 2013; Nkhoma et al. 2013). For example, measures of the 

multiplicity of P. falciparum infections have been shown to be useful for identifying hotspots of 
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malaria transmission (Bejon et al. 2010; Karl et al. 2016). The spatial connectivity of parasite 

populations has also been shown to be well predicted by pairwise measures of identity by descent 

(Omedo et al. 2017a; Taylor et al. 2017). More recently, it has been shown that malaria genotyping 

could be used to enhance epidemiological surveillance (Daniels et al. 2015), however, two main 

challenges have been identified before molecular tools could be used in an operational context. The 

first is that our understanding of the relationship between transmission intensity and within host 

parasite genetic diversity is incomplete. Combined models of both population genetics and malaria 

epidemiology would allow us to develop a more detailed view of both processes, yet these two 

approaches are largely explored separately. Recent efforts have been made to incorporate both 

modelling scales within one framework (Nguyen et al. 2015), with the concomitant modelling of 

resistance evolution both within and between hosts yielding important insights into the evolution of 

drug resistance (Legros and Bonhoeffer 2016). However, the realism of either the transmission process 

or the genetic evolutionary process has been limited in these models, with the representation of 

recombination and the parasite lifecycle within the mosquito often simplified. This makes the 

generalisability of using molecular tools for surveillance difficult. More realistic models are 

subsequently needed to better understand the relative contribution of superinfection and 

cotransmission of genetically related parasites towards the parasite genetic diversity observed within 

humans, which is known to depend on transmission intensity (Nkhoma et al. 2018b; Wong et al. 2018). 

The second challenge is to understand in what situations molecular tools will offer advantages over 

traditional surveillance, and how many samples are needed for reliable inference.  

Here I use the mathematical transmission model developed in chapter 3 to address these challenges. 

Using the fitted model, I characterise how six measures of parasite genetic diversity respond to 

changes in transmission intensity. I continue by conducting a power analysis, assessing the ability of 

each metric to detect changes in transmission intensity as a function of the number of available 

samples. I conclude by building an ensemble statistical model, which demonstrates how routinely 

collected clinical genotype samples could be used for accurate prediction of malaria prevalence using 

as few as 200 SNP genotyped samples. 

4.2. Methods 

4.2.1. Impact of changes in transmission intensity on parasite genetic diversity 

The effect of declines in transmission intensity on four measures of within host genetic diversity was 

explored. The four measures considered are: 
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 Mean COI - the number of genetically distinct parasite strains within an individual 

 % Polygenomic - the percentage of polygenomic infections, i.e. COI >1 

 % Unique - the percentage of unique parasite genotypes 

 COU – coefficient of uniqueness, which is a newly defined metric given by:  

𝐶𝑂𝑈 = 1 −
(∑ 𝑥𝑖

2)𝑛
𝑖 −

1
𝑛

(1 −
1
𝑛
)

;      0 ≤ 𝐶𝑂𝑈 ≤ 1 

where 𝑥𝑖  is the frequency at which barcode 𝑖 occurs within a sample of size 𝑛. COU = 0 when all 

barcodes within a sample are identical, and COU = 1 when all barcodes within a sample are unique.  

Ten stochastic realisations of 100,000 individuals were simulated for 50 years with an initial parasite 

prevalence measured by PCR equal to ~70% and a fixed importation rate to ensure both a genetic and 

epidemiological equilibrium. Once at equilibrium, three differing levels of intervention scale-up (low, 

medium, high) were introduced that led to an absolute reduction in parasite prevalence from 70% to 

45%, 20% and 5% respectively after 10 years. The scale-up of interventions resulted in an increase in 

the coverage of ITNs (maximum after 10 years: 30%, 60%, and 90%), IRS (maximum after 10 years: 

20%, 40% and 60%) and treatment (maximum after 10 years: 15%, 30%, 45%). For all simulations, the 

monthly mean for each genetic marker was recorded for the whole population as well as within three 

age ranges (0-5 years old, 5-15 years old and over 15 years old), and within individuals who were 

asymptomatic or symptomatic at the time of sample collection.   

An identical analysis was conducted at a lower starting prevalence, with maximum reductions in 

parasite prevalence by PCR from 35% to 20%, 2% and ~0% after 10 years, in order to assess the change 

in two measures of identity by descent (IBD), pIBD and iIBD (defined below). The population mean IBD 

(pIBD) I define as the mean number of loci in pairwise comparisons between samples that are identical 

across all loci in terms of their 24-locus identity barcode (focusing on genotypes that could be detected 

by microscopy only), i.e. it is the mean proportion of shared ancestry between samples. The individual 

mean IBD (iIBD) is the mean number of identical loci of the 24-locus identity barcode within individuals 

who are polygenomically infected. If all sampled individuals are monogenomic, then iIBD is set equal 

to 1. 

4.2.2. Statistical power analysis of parasite genetic measures 

To evaluate the utility of the considered measures of parasite genetic diversity, I conducted an analysis 

to characterise the predictive power of each metric for detecting changes in transmission intensity, 

and their sensitivities to the sample size chosen. In an analogous design to earlier simulations, I 
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measured sample mean measures of the COI, % Polygenomic, % Unique, COU, iIBD and pIBD at yearly 

intervals for the first five years after the initiation of the ten-year scale-up of interventions.  

Sensitivity to the sample size of each metric was assessed by sequentially sampling subsets of the data 

and comparing the mean difference in metrics. Sample sizes between 10 and 600 individuals were 

explored, with 100 samples drawn from a stochastic realisation at years 0, 1, 2, 3, 4 and 5, and 

comparisons made between years 1-5 and year 0, i.e. 0-1, 0-2, ... 0-5. All samples were collected from 

individuals aged between 5-15 years old. One-tailed Monte Carlo p-values were generated for each 

subsample by 1000 permutations of the years that samples were collected from. The power of each 

metric was defined as the proportion of subsamples for which 95% of the permuted mean differences 

were greater or less than the observed mean difference, with the direction of the tail dependent on 

whether the metric is expected to decrease or increase respectively in response to a decrease in 

transmission intensity.  The overall power for each metric was calculated as the mean power of ten 

stochastic realisations, and repeated at two different starting parasite prevalence by PCR (~45% and 

~22.5%). Metrics based on comparisons of IBD were only assessed for the lowest starting parasite 

prevalence. The performance of each metric was also explored under the assumption that it was not 

possible to phase all genotypes within the samples collected, and that only the dominant genotype 

was able to be called.  

4.2.3. Statistical modelling of the predictive performance of malaria genomics for 

surveillance  

A statistical model was constructed to predict malaria prevalence using the genomic metrics explored 

thus far, with three different assumptions about the availability of patient metadata (no metadata, 

patient age only, and both patient age and symptomatic status of infection). To assess the utility of 

such a model for surveillance, samples of 200 individuals were taken from a range of simulations that 

span the transmission, seasonality and intervention coverage range seen in sub-Saharan Africa. I used 

the sampled mean measures of the genomic metrics discussed, and where available summaries of the 

age and clinical status of samples to create my model simulated datasets. 25% of simulated datasets 

were held back for out-of-sample testing.  

I used an adapted workflow from previously published data science workflow for building an ensemble 

model for predicting malaria prevalence (Bhatt et al. 2016). Three different statistical models (gradient 

boosted trees, elastic net regression model and random forests) were fit to the model simulated data. 

The predictions of these level 1 models were subsequently used to train an ensemble model using a 

linear optimisation based on the root mean squared error (RMSE) of the level 0 models. When training 

both the level 1 models and the ensemble, K-fold cross validation sets were performed 25 times and 
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subsequently averaged to reduce any bias from the cross validation set chosen. The averaged cross 

validation results were used to assess the performance of the ensemble model on the testing dataset 

by comparing the RMSE, mean absolute error and the correlation under the different assumptions 

about the availability of patient metadata. Lastly, the trained ensemble model was used to predict the 

prevalence of malaria for the study sites considered within Uganda and Kenya.  

4.3. Results 

4.3.1. The impact of intervention strategies on parasite genetic diversity  

Using the parameterised model, I first modelled how a reduction in transmission would affect four 

genetic metrics as the prevalence of malaria declined due to the scale up of interventions (Figure 4.1). 

The genetic metrics explored were: 1) the population mean complexity of infection (COI); 2) the 

percentage of samples that are polygenomic (COI > 1); 3) the percentage of unique parasite 24-SNP 

barcodes and 4) the coefficient of uniqueness (COU) (Figure 4.1).  

The model was initiated at 70% PCR prevalence before three levels of intervention scale-up (low, 

medium and high) were simulated, reducing prevalence to ~45%, ~20% and ~5% respectively after ten 

years. I predict that all four metrics decline proportionally with declining malaria prevalence (Figure 

4.1a). The model predicts that the specific relationship depends on the population chosen for genetic 

testing, with increasing COI predicted in older ages. The percentage of unique samples varied greatly 

depending on the on the sub-population sampled, reflecting difference in the absolute numbers of 

individuals that fall within each sub-population. Samples taken from individuals with asymptomatic 

malaria were predicted to have the highest COI and percentage of polygenomic samples. Across the 

scenarios simulated, metrics based on the complexity of infection (COI and % Polygenomic) showed a 

higher level of correlation with changes in the prevalence of malaria than measures based on the 

uniqueness of samples (COU and % Unique) (Table 4.1). In addition, samples collected only from 

patients with symptomatic malaria led to metrics that were the least correlated with reductions in 

prevalence, resulting from the decreased number of available samples. This effect was most 

noticeable when assessing the % of unique samples within clinical samples, which had a correlation 

coefficient of 0.24 with PCR prevalence (Table 4.1).    
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Figure 4.1 Age and sampling dependent impact of changes in transmission intensity upon genetic metrics 
of transmission intensity.  In a) the top plot shows the change in PCR prevalence after the introduction of 3 
different levels of intervention scale up, with both the 10 individual stochastic realisations and the mean local 
regression smoothed relationship shown. The following four rows show the population mean percentage of 
the population that are polygenomically infected, the complexity of infection (COI), the percentage of samples 
that are genotypically unique (% Unique) and the coefficient of uniqueness (COU) for the prevalence declines 
seen in the first row. The metrics are stratified into columns by the sampling scheme chosen. In b) the top 
plot shows the change in PCR prevalence, which reaches <1% in the highest intervention arm. The following 
rows show the within host identity by descent (iIBD) mean across the 24 identity loci considered, and the 
population mean pairwise measure of IBD (pIBD). In both the same sampling stratification is used as in a). In 
all plots the vertical dashed black line shows the time from which the scale up of interventions starts (Time = 
0 years). 
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I also assessed measures of parasite genetic diversity based on comparisons of the number of loci that 

are identical-by-descent (IBD), which included the within host pairwise mean proportion of loci that 

are IBD (iIBD) and the population pairwise mean proportion of loci that are IBD (pIBD). I predict that 

both metrics increase in response to declines in prevalence, however, I predict that pIBD only 

increases substantially at PCR prevalences less than 15% (Figure 4.1b). Consequently, metrics based 

on IBD were explored at a lower starting prevalence of 35% PCR prevalence before the scale up of 

interventions. The shape of the increase in iIBD was predicted to be dependent on the population 

sampled (Figure 4.1b), with iIBD increasing quicker in symptomatic individuals. iIBD, however, 

becomes less informative as transmission intensity declines, with individuals less likely to be infected 

with multiple strains due to the lower rates of superinfection.  

Table 4.1 Kendall rank correlation coefficients between genetic diversity metrics and parasite prevalence. 

Coefficients are bound between -1 and 1, with 1 indicating perfect ranked positive correlation and -1 

indicating perfect ranked negative correlation. 

Sampled % Polygenomic  COI  % Unique  COU  iIBD  pIBD  

All 0.97  0.96 0.83 0.93 -0.89 -0.86 

0-5 0.96 0.96 0.73 0.93 -0.80 -0.86 

5-15 0.97 0.96 0.83 0.93 -0.86 -0.86 

15+ 0.97 0.96 0.83 0.92 -0.84 -0.86 

Clinical 0.87 0.91 0.24 0.75 -0.64 -0.85 

Asymptomatic 0.97 0.96 0.83 0.93 -0.89 -0.86 

4.3.2. Power Analysis 

To evaluate the performance of each metric for detecting annual changes in the prevalence of malaria, 

I calculated the statistical power for each metric at different sample sizes, focussing on samples 

collected from children aged between 5-15 years old. I estimate that after 5 years of intervention scale 

up, corresponding to an absolute decrease in malaria prevalence by PCR of 20%, no more than 350 

samples are required for each metric explored (except for iIBD) to detect the change in transmission 

intensity 80% of the time (Figure 4.2). The predictive power, however, declined across all metrics when 

the effect size, i.e. the decrease in prevalence, decreased. With 600 samples, each metric had less 

than 40% power to detect the decrease in prevalence after 1 year. The performance of each metric 

was additionally dependent on the starting prevalence, with metrics based on the uniqueness of 

samples (COU and % Unique) predicted to be more powerful at lower starting prevalences compared 

to higher prevalences (Figure 4.2b). Metrics based on measures of IBD were overall less powerful, with 
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the predictive power of iIBD being less than 80% across all years and sample sizes (Figure 4.2c). pIBD 

only exhibited a predictive power greater than 80% when detecting the largest change in prevalence 

between 22.5% and 8%, requiring over 225 samples.  

 

Figure 4.2 Predictive power of genetic metrics. The distribution of sample means of six metrics of parasite 
genetic diversity were compared for five years following the initiation of the scale up of intervention 
coverage. For each sample size, the power is defined as the proportion of 100 subsamples comparing year 0 
and years 1-5 for which a significant difference in the mean was observed, estimated using one-tailed Monte 
Carlo p-values generated by 1000 permutations of the years’ samples were collected in. In a) the metrics 
assessed are the percentage of samples that are polygenomic, the complexity of infection (COI), the 
percentage of barcodes within samples that are unique, and the coefficient of uniqueness (COU). The power 
of each metric was compared across five years in which a 20% absolute decrease in parasite prevalence from 
45% was observed. The same information is shown in b), but for a 14.5% absolute decrease in prevalence 
from 22.5% over 5 years. In c) the metrics considered are the mean within host identity by descent (iIBD) and 
the population mean pairwise measure of IBD (pIBD). In each plot 80% power is shown with the horizontal 
dashed line. 
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The power of COU, % Unique and pIBD were noticeably worse when it was assumed that samples from 

polygenomically infected individuals could not be phased (Appendix Figure 4.1). Under this 

assumption I assume that it is not possible to observe the genotype of each strain and consequently 

only the major haplotype within an individual is available, i.e. calling the most abundant allele at each 

locus of the barcode, which negates our ability to measure an individual’s iIBD as we are only able to 

observe one parasite genotype per individual. Across the full range of malaria prevalence simulated, 

measures of COI and COU were consistently predicted to be the most powerful, with % unique samples 

and IBD metrics demonstrating increased power to detect changes in transmission in areas with lower 

baseline transmission intensities where I predict the genetic variation to be lower.  

4.3.3. Statistical model for predicting transmission intensity 

In order to translate the information I have characterised into an effective tool for assisting 

surveillance programs, a statistical model was created to predict malaria prevalence using genomic 

metrics derived from parasite SNP genotyping. Due to the difficulty in phasing high complexity 

infections, I assumed that all collected samples were unphased and as such I did not focus on metrics 

based on IBD when building our data set for training our statistical model.  

 

Figure 4.3 Ensemble statistical model predicted malaria prevalence vs observed prevalence. In a) the 

performance of the trained ensemble statistical model is shown, with the model predicted prevalence in red 

showing the predictions for the out-of-sample test dataset composed of model simulations held back from 

model fitting. The blue points show the predicted prevalence for the 5 administrative regions considered 

earlier. In b), the performance of the ensemble model is shown under different assumptions about the 

availability of patient metadata within simulated data. 
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The fitted ensemble model performed well on out-of-sample simulation datasets, and was able to 

identify the underlying model behaviour used to generate the training dataset (Figure 4.3a). The best 

performing model provided accurate predictions of malaria prevalence when tested on SNP genotype 

data from the five administrative regions, with an observed mean absolute error equal to 0.055 for 

these five locations. The performance of the model was enhanced when sample metadata was 

available (Figure 4.3b), with the ensemble model trained and tested using data with no age or clinical 

status information consistently performing worse. Similar patterns were also observed when assessing 

the performance of each of the level 1 models in the ensemble model (Appendix Table 4.1). As in the 

power analysis, across the range of malaria transmission intensities assessed, measures of COI and 

COU were observed to be the most informative metrics and sample metadata was observed to 

contribute 28% towards the total model importance (Figure 4.4). 

 

Figure 4.4 Importance of predictor variables within trained ensemble model. The newly defined measure, 
the coefficient of uniqueness (COU), was observed to be the most important metric, with the six metadata 
variables (age and clinical status) being the least important. The six metadata metrics contribute 28% of the 
total model importance, which shows why the inclusion of metadata yields better model predictions. 

4.4. Discussion 

The substantial reduction in the cost of generating genomic datasets over the last ten years and the 

establishment of scientific networks committed to generating and sharing genomic data has resulted 

in an abundance of sequenced P. falciparum genomes. This effort has resulted in the identification of 

loci associated with emerging drug resistance mechanisms (Cheeseman et al. 2012) and assisted in 
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developing putative novel drug targets (Ludin et al. 2012). Another potential use of malaria sequencing 

efforts is understanding how malaria genomes can be used to study transmission. Simple population 

genetics principles predict that in a closed population a reduction in transmission intensity will 

typically be accompanied by a reduction in parasite genetic diversity, resulting from reduced 

opportunities for outcrossing to occur within the sexual stages of the parasite’s life cycle. However, 

there is as yet no consensus in the use of parasite genetics for inferring transmission intensity. There 

is a need to understand the contribution of superinfection and cotransmission towards the within host 

parasite genetic diversity, which is often highlighted within critiques of early attempts to utilise 

modelling approaches for transmission intensity inference (Greenhouse and Smith 2015). 

Our newly defined measure of parasite diversity, the coefficient of uniqueness (COU), alongside COI 

were consistently powerful statistical tools for detecting changes in malaria prevalence. This is hardly 

surprising, as one should consider that the % unique samples and the % of polygenomic samples are 

simply the extreme cases of these metrics, and so I would expect them to contain less information. 

Additionally, the power analysis conducted was under the assumption that all samples that could be 

detected by PCR can be effectively phased. This is an overly ambitious assumption, and it is more 

correct to assess these metrics under the assumption that polygenomic samples cannot be phased 

(Appendix Figure 4.1). However, the increase in statistical power when we are able to phase samples 

should highlight a need within the research field for methods to compare unphased parasite samples, 

with the majority of samples at higher transmission intensities predicted to have a COI greater than 1.  

In the absence of being able to phase polyclonal samples, however, the observed genomic metrics 

were still informative within the ensemble statistical model developed to translate parasite genetic 

information into estimates of malaria prevalence. For example, variable importance was observed for 

each predictor variable, however, COU and COI accounted for nearly half the variance explained. 

There is also a degree of compensation afforded between metrics, i.e. where one metric becomes less 

informative, another metric becomes more predictive. For example, at PCR PfPR less than 10%, COI 

and the % of samples that are polygenomic will become substantially less informative, whereas IBD 

measures will start being more informative. This is further demonstrated by only needing 200 samples 

within our statistical ensemble model to produce accurate predictions of the prevalence of malaria, 

with the addition of individual level metadata yielding further gains in model performance (Figure 

4.4b). As more samples are added only modest improvements in model predictive performance are 

observed (Appendix Figure 4.2). The importance of meta data, specifically the age of individuals, is 

highlighted in the findings of the model predicted COI between age groups. In Figure 4.2, I compared 

the COI between asymptomatic and symptomatic individuals, in which I predicted across all ages that 

asymptomatic individuals have higher COI. However, this finding does not hold when I compare the 
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COI between symptomatic and asymptomatic individuals at different age groups and across different 

transmission intensities. For example, in the model fitting conducted in chapter 3, the model predicted 

that younger, symptomatic children in regions with lower transmission have higher COI than 

asymptomatic younger children (Appendix Figure 4.3). This finding is reversed, however, at higher 

transmission intensities reflecting the interaction between acquired clinical immunity and rates of 

superinfection.  

This study has some important limitations. Firstly, from the model fitting conducted earlier, I assumed 

there is only one parameter detailing the percentage of sporozoites that successfully progress to a 

blood-stage, which is the same for all study sites considered. In chapter 3, I discussed how this is a 

likely oversimplification and that this parameter may also depend on the transmission intensity as well 

as spatial heterogeneity in the force of infection. I continued to discuss how if I conducted model 

fitting using the prevalence recorded in Walukuba as opposed to the administrative region’s 

prevalence then the current model fit would not have captured the COI against age relationship. 

However, the fact that the model-predicted COI closely matches the observed data when using the 

administrative region’s prevalence may suggest that parasite genetic metrics are more representative 

of the prevalence at larger spatial scales, which in turn may reflect human mobility between areas of 

differing transmission intensity and parasite genetic diversity. This point is worth highlighting as this 

feature could be of benefit from a surveillance point of view. For example, 200 samples collected in 

one area may be able to give accurate measures of malaria prevalence within a large area. This could 

be of particular utility in areas where community surveillance is not feasible, in which samples 

collected from symptomatic patients attending public health facilities could provide additional 

information in helping to translate clinical incidence into measures of parasite prevalence. 

Secondly, I did not explicitly model the scale-up of vector based interventions, instead incorporating 

the effects of insecticide treated nets and indoor residual spraying through their impact on the 

average age of the mosquito population and the rate of anthrophagy. This assumption will cause each 

individual to experience the same relative reduction in molecular force of infection, i.e. the number 

of new P. falciparum clones acquired over time. Consequently, model predictions are likely to 

underestimate the variance in the reduction of within host parasite genetic diversity resulting from 

vector based interventions. This effect would lead to a decrease in the statistical power of the genetic 

metrics considered and subsequently the sample sizes presented within the power analysis are likely 

on the lower end of the sample sizes required for a given predictive power.  

Thirdly, while the developed statistical model provided accurate estimates of malaria prevalence 

overall for the five regions, the prediction for Jinja was noticeably worse, which reflects the high COI 
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observed in that region given its comparatively low prevalence. While I was able to replicate the COI 

age relationship for this region during model parameterisation, this was largely due to the fact that 

the historic prevalence for the region was much higher. For this reason, the model predicts that 

individuals in the region will have higher acquired immunity and will subsequently be able to harbour 

more infections before developing a fever and potentially being treated and thus clearing infections. 

The developed statistical model, however, did not include any covariates for historic prevalence or 

genetic diversity. Subsequently, predictions made by this model largely reflect the mean diversity 

expected for a given prevalence and will suffer when making predictions for regions that have 

experienced a recent and large decline in prevalence. Consequently, as more genetic data is collected 

over time it should become increasingly feasible to extend the methods presented here to better 

handle rapid declines in prevalence and incorporate historic measures of genetic diversity. Lastly, in 

our model I have only considered neutral genetic markers that are unlinked. While these loci are 

informative for capturing standing genetic diversity, I have not considered how selective events may 

shape the genetic diversity. For example, if drug resistance were to spread quickly through an area it 

is likely that this would cause a decrease in genetic diversity in neighbouring regions (Imwong et al. 

2017b). However, the precise impact that this will have on the metrics explored in this study will 

depend on both how quickly recombination will result in linkage disequilibrium decay and the strength 

of the selective sweep. Although these were not assessed in this paper, it would be possible to adapt 

our model to consider loci under selection and simulate how known factors that affect the speed of 

selection, such as transmission intensity, treatment rates and the metabolic costs associated with 

resistance, impact genetic metrics.  

One remaining question, however, is that although this study has explored if parasite genetics could 

be a used for malaria surveillance, I have not explored whether they should. Any assessment of 

parasite genetics for surveillance must include an assessment of the costs of carrying out the analysis. 

For example, what are the cost comparisons for collecting 200 high quality blood samples to conduct 

SNP genotyping versus conducting a household survey in the same administrative region? Is the 

accuracy comparable to a household survey with this many samples? Additionally, how does the use 

of parasite genetics compare to using incidence data? Incidence data is more readily available, 

however, it is reliant on the accuracy of estimates of the population size. In situations where this is 

not possible, such as migratory populations and clinics with unknown health facility catchment areas, 

there may be a niche for parasite genetics. However, it is more likely that genetics will support current 

estimations based on converting incidence data to prevalence. In the study by Daniels et al. (Daniels 

et al. 2015), an increase in clinical incidence was observed in Senegal during a time of increased 

intervention scale up. In this instance, parasite genotyping was able to assess if transmission was 
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increasing or whether the increase in incidence was due to improved case reporting and access to 

treatment. Following studies evaluating the benefit of parasite genetics for surveillance will thus need 

to delineate both the circumstances in which genetics can support current surveillance methods, such 

as clinical incidence data, and map the regions in which accurate estimations of population sizes are 

not currently available and are unlikely to be possible in the future, such as displaced populations due 

to conflict. Additionally, any evaluation should also consider comparisons to alternative surveillance 

methods that may also be possible. A recent study exploring ante-natal care (ANC) clinics in Eastern 

Democratic Republic of Congo demonstrated that ANC prevalence could also be used for retrospective 

surveillance and evaluation of the impact of malaria interventions (Hellewell et al. 2018). This 

approach also has the benefit of being largely unbiased by population size due to the widespread and 

routine malaria testing conducted in ANC clinics regardless of symptoms.  

The 2018 world malaria report shows that the reductions in the global burden of malaria made since 

2000 may be stalling, with 2 million more cases of malaria estimated in 2017 compared to 2016 (World 

Health Organization 2018c). These declines have necessitated the development of new tools to 

enhance current surveillance efforts. In this study, I have shown that that malaria genetic metrics 

could provide an additional toolkit for operational surveillance. In particular, a combination of metrics 

focussed on the complexity of infections, the frequency and uniqueness of genotyped barcodes and 

measures of identity by descent could be used for inferring the prevalence of malaria across the 

current range of malaria prevalence observed in SSA. It is important to highlight that there is still a 

need to understand the cost-effectiveness of these tools compared to current surveillance methods. 

In most endemic areas, routinely reported incidence data provides a temporally and spatially rich 

measure of malaria transmission. However, the methods developed here could complement 

measures of malaria incidence in areas where only clinical incidence data is available or areas in which 

the spatial coverage is poor. It is hoped that these findings, in particular the importance of sample 

metadata and quantifying the contribution of cotransmission and superinfection events have in 

shaping genetic diversity, can guide future efforts by the wider community for utilising malaria 

genotyping for epidemiological surveillance. 
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4.5. Conclusion 

In this chapter I have used the model fitted in chapter 3 to predict how six measures of the parasite 

genetic diversity within individuals changes in response to transmission intensity. Once characterised, 

I built a statistical model that combines the information within each metric to predict the current 

prevalence of malaria. The increased prediction accuracy of the model when the age and clinical status 

of the sampled individuals is available is hoped to reinforce the need for patient metadata to be 

recorded and made available within all future attempts to use parasite genetics for surveillance. 

Although we have provided a use case for parasite genetics, I have explored in the discussion a number 

of reasons as to why genetics for surveillance may not be advised: cost effectiveness, limitations 

compared to alternative surveillance methods such as ANC surveillance and incomplete 

characterisation of the impact of varying spatial connection between populations. These are issues 

that still need to be addressed before recommendation about genetics for surveillance can be made. 

In the next two chapter, I will pivot how the developed model will be used in order to address 

questions regarding antimalarial resistance.  
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4.6. Appendix 

4.6.1. Appendix Figures 

 

Appendix Figure 4.1 Predictive power of six metrics of parasite genetic diversity with respect to sample size 

under the assumptions that samples are unable to be phased. The same methods as those detailed in Figure 

4.2 were used, with the only difference being that samples could not be phased and only the major haplotype 

could be called for an individual. iIBD is unable to be measured if samples cannot be phased and is 

subsequently crossed out. For pIBD, % Unique and COU it was assumed that the highest parasitaemia barcode 

was detected from each polygenomically infected individual. Lastly, there was no assumed difference in the 

ability to detect polygenomic samples or estimate the COI with unphased samples. 
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Appendix Figure 4.2 predictive performance of the ensemble model under different assumed sample sizes. 

Measures of the model error, root mean squared error (RMSE) and mean absolute error (MAE) as well as 1-

R^2 are shown for sample sizes between 10 and 400. Model performance improves quickly over sample size 

ranges between 10 and 100, before slowing, with only very modest increases seen in model performance for 

sample sizes larger than 200. 

 

 

Appendix Figure 4.3 Age and symptomatic status stratified COI from model fitting. Each plot shows the 

mean COI and 95% confidence interval for the study sites used in the model fitting. COI is stratified by age 

group and symptomatic status, showing that on the whole COI is higher in asymptomatic individuals, 

however, in lower transmission areas COI is higher in symptomatic young children. 
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4.6.2. Appendix Tables 

 

  

Appendix Table 4.1 Statistical Model Performance 

Meta Data Model RMSE* MAE* R2* 

None Elastic Net 0.0276 (157.71%) 0.0225 (173.08%) 0.9935 (99.61%) 

None Gradient Boosted Trees 0.0214 (122.29%) 0.0159 (122.31%) 0.9961 (99.87%) 

None Random Forest 0.0211 (120.57%) 0.0151 (116.15%) 0.9962 (99.88%) 

None Weighted Mean Ensemble 0.0204 (116.57%) 0.0151 (116.15%) 0.9965 (99.91%) 

Age Elastic Net 0.0311 (177.71%) 0.0245 (188.46%) 0.9921 (99.47%) 

Age Gradient Boosted Trees 0.02 (114.29%) 0.0152 (116.92%) 0.9967 (99.93%) 

Age Random Forest 0.0197 (112.57%) 0.0143 (110%) 0.9968 (99.94%) 

Age Weighted Mean Ensemble 0.0195 (111.43%) 0.0144 (110.77%) 0.9969 (99.95%) 

Age and Clinical Status Elastic Net 0.0278 (158.86%) 0.0219 (168.46%) 0.9934 (99.6%) 

Age and Clinical Status Gradient Boosted Trees 0.0178 (101.71%) 0.0141 (108.46%) 0.9974 (100%) 

Age and Clinical Status Random Forest 0.0178 (101.71%) 0.013 (100%) 0.9973 (99.99%) 

Age and Clinical Status Weighted Mean Ensemble 0.0175 (100%) 0.013 (100%) 0.9974 (100%) 

* Absolute value (% relative to best performing model) 
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4.6.3. Appendix Methods 

4.6.3.1. Generalisation Methods 

I chose to use 3 different statistical models (gradient boosted trees, elastic net regression model and 

random forests) to be used as level 0 models. I chose these 3 models due to their differences in their 

approaches, their consistent use for model fitting and consequent proven record of predictive 

accuracy and their ease of implementation. All models were applied using the R package 

caretEnsemble (Deane-Mayer and Knowles 2016), which flexibly allows the user to specify the desired 

models, how to control their fitting through cross-validation and how to combine them within an 

ensemble model.  

4.6.3.1.1.  Elastic net regression 

Elastic net regressions are a form of penalised linear regression (Zou and Hastie 2005). The coefficients 

of the regression are found by minimising the prediction residuals and introducing two penalisation 

terms on the coefficients, given by: 

𝑓𝑀(𝑥) = 𝑋
𝑇𝛽̂ 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽‖𝑦 − 𝑓𝑀(𝑥)‖
2 + 𝐿1‖𝛽‖ + 𝐿2‖𝛽‖

2 

Where f(x) is our base linear regression and 𝐿1  and 𝐿2 are the two penalisation terms, which are the 

penalisation terms for both lasso and ridge regression respectively. The use of lasso regression 

enforces penalties both on the absolute size of the coefficient by 𝐿2 regularisation and on the number 

of coefficients by 𝐿1 regularisation. This is advantageous by helping to shrink the coefficients in the 

resultant linear model, which enables greater generalisation.  

4.6.3.1.2.  Random forests and Gradient Boosted Trees 

Random forests and gradient boosted trees are two approaches that use an ensemble of regression 

trees (Breiman 1984). Trees are used to translate input variables into a prediction by partitioning the 

parameter space defined by our covariates, into J distinct regions in parameter space, 𝑅𝑗, which reflect 

the tips of the tree. Each region is assigned a constant, 𝑞𝑗  that translates the region to a particular 

predictive value, 𝑓(𝑥). A tree is subsequently expressed as: 

𝑇(𝑥; 𝜃) =  ∑𝑞𝑗𝕀(𝑥 ∈ 𝑅𝑗)

𝐽

𝑗=1
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Where 𝕀 is the indicator function, such that the subset 𝑥 of the set of regions 𝑅𝑗 is a function 

𝕀𝑥: 𝑅𝑗  → {0,1}, and 𝜃 are the coefficients of the decision tree.   

Random forests combine the predictions of multiple randomly created decision trees via bagging 

(Hastie et al. 2009), in which bootstrapped samples of both the data and the covariates are used to 

average the ensemble of trees: 

𝑓𝑀(𝑥) =
1

𝐵
∑𝑇(𝑥; 𝜃𝑏)

𝐵

𝑏=1

 

Where 𝐵 is the total number of bootstrapped repetitions. Cross validation is used to find the optimal 

number of bootstrapped trees (Breiman 2001).  

Gradient boosted trees iteratively update the regression tree by fitting to the residuals of the current 

tree. The resultant boosted tree model can be expressed as the addictive model of the decision trees, 

with the coefficients of each fitted tree found by using function gradient descent in which the negative 

gradient of the loss function in each tree model is used as the value of the residual in the boosting 

algorithm (Friedman 2011). This is given by: 

𝑓𝑀(𝑥) =  ∑ 𝑇(𝑥; 𝜃𝑚)

𝑀

𝑚=1

 

𝜃𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑚∑𝐿(𝑦𝑖 , 𝑓𝑚−1(𝑥𝑖)  +  𝑇(𝑥𝑖;  𝜃𝑚))

𝑀

𝑖=1

 

For both random forests and the gradient boosted trees, extra model fitting parameters, such as the 

samples per tree node and the depth of the tree, were found using a grid search. 
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Chapter 5. Improving antimalarial cycling through increased 

diagnostic testing 

 

In the last chapter I demonstrated how the transmission model developed in chapter 3 could be used 

to characterise how parasite genetics could be used for inferring malaria prevalence. The desire to 

include parasite genetics in surveillance is, however, arguably more invested in understanding how to 

detect antimalarial resistance and how best to slow its spread and prevent its emergence in Africa. 

The modelling framework developed in chapter 3 is well suited to answering questions related to 

antimalarial resistance by altering the parasite genetic barcode to instead model known loci 

associated with drug resistance. In this chapter I extend my transmission model to incorporate 

antimalarial resistance before using the extended model to review different drug strategies for 

preventing the spread of resistance. These include contrasting multiple first line therapies against 

sequential cycling of first line therapies before investigating how these strategies could be improved 

by reducing the treatment of non-malarial fevers.  

5.1. Introduction 

Artemisinin resistance has now emerged in the Greater Mekong Subregion (GMS) and is beginning to 

spread throughout the region. In 2012, mutations in the P. falciparum gene that encodes Kelch 13 

(K13) were identified as the source of artemisinin resistance (Cheeseman et al. 2012). Efforts to 

sequence parasites in the GMS have revealed that clinically relevant parasites with K13 mutations are 

common in Asia (Ménard et al. 2016). However, parasites found to have K13 mutations in Africa have 

not been associated with a reduction in the efficacy of artemisinin and do not exhibit delayed parasite 

clearance (Wwarn and Group 2019). Genomic analysis of whole genome sequences from samples 

collected across Africa revealed that, although K13 mutations were present, they appeared to have 

arisen under neutral evolution (Amato et al. 2016). This suggests that although there is a large pool of 

K13 polymorphisms, which have been observed in longitudinal studies in both Rwanda (Tacoli et al. 

2016) and Uganda (Ocan et al. 2016), they are not currently associated with artemisinin resistance, 

Consequently, the drug resistant phenotype observed in Asian K13 mutant parasites is likely reflective 

of additional resistance mechanisms occurring in the GMS (Fairhurst 2015).  

The emergence of artemisinin resistance in GMS has been largely attributed to increased use of 

artemisinin-derivatives compared to Africa. Artemisinin-derivatives were adopted for first line 

treatments earlier in the GMS that Africa, with delays to ACTs being recommended as first line 

therapies due to some donors and international organisations being reluctant to support and fund 
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their comparatively higher cost (Attaran et al. 2004). In 2006, the WHO recommended ACTs as first 

line therapies, however, many countries in the GMS had been using artemisinin-derivatives prior to 

the 21st Century. Both the early adoption and the lack of availability and consensus on combination 

therapies likely increased the rates of artemisinin monotherapy being used in the GMS. For example, 

despite the national switch to artesunate-mefloquine (ASMQ) in 2000, one report revealed that 78% 

of all artemisinin delivered in Cambodia in 2002 was as a monotherapy (Yeung et al. 2008). 

Additionally, parasites in the GMS have now been shown to have acquired partner drug resistance, 

with copy number amplification of the plasmepsin 2 and plasmepsin 3 genes linked to piperaquine 

resistance (Witkowski et al. 2017; Amato et al. 2018). However, this was perhaps unsurprising, as 

piperaquine was used as a monotherapy within the GMS in the 1970s and 1980s in response to 

chloroquine resistance before itself being replaced due to observed piperaquine resistance (Davis et 

al. 2005). However, the emergence of the KEL1/PLA1 lineage in 2017, which is resistant to 

dihydroartemisinin-piperaquine (DHA-PPQ), shows that the parasite has been able to acquire 

multidrug resistance while offsetting any potential fitness costs associated with resistance and spread 

across the GMS (Imwong et al. 2017a).  

The evidence is now clear that extensive use of antimalarials, in particular as monotherapies, will drive 

the emergence of drug resistance. However, what is not clear is the contribution of other likely drivers 

of resistance and how they differ depending on the stage of resistance development. Resistance 

development is often characterised by three distinct stages: emergence, spread and fixation (Figure 

5.1). At each phase the processes driving the increase in resistance are likely to differ and so 

understanding which factors are important at each stage is key. For example, in efforts to prevent 

emergence the short half-life associated with artemisinin was suggested to reduce the window for 

selection due to the short drug elimination phase (Stepniewska and White 2008). Drugs with longer 

half-life, however, are more likely to enable parasites to be exposed to sub-optimal drug 

concentrations during reinfections and are consequently believed to be more susceptible to resistance 

(Hastings and Hodel 2014). Changes in drug concentrations resulting from increasing the number of 

doses have been identified as a possible factor in the probability  of resistance emerging (Kay et al. 

2015). Patient adherence to drug courses is cited as a cause of antibiotic resistance emergence (Wahl 

and Nowak 2000). The same is true for malaria, with poor compliance well-documented in malaria 

(Bruxvoort et al. 2014). This results in drugs falling below inhibitory concentrations, which reduces the 

therapeutic efficacy of antimalarials (Challenger et al. 2017) and may contribute to the emergence of 

resistance (White and Pongtavornpinyo 2003; Keoluangkhot et al. 2008). There are fewer studies, 

however, examining the factors associated with the spread of antimalarial resistance. In particular, 
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there is interest to see how drug strategies may be optimised to hinder the development of 

antimalarial resistance.  

 

Figure 5.1 Stages of drug resistance development. Drug resistance development is often typified by three 

phases describing the speed at which resistance increases. Prior to emergence, mutations must first arise that 

confer drug resistance. Due to the rarity of these events and the low effective population size of mutant 

strains during emergence, this stage may vary in its length due to stochastic effects. After mutant strains have 

persisted through a number of transmission cycles, the spread of resistance occurs leading to the rapid 

increase in mutation frequency. Following spread, the increase in resistance mutations slows until they reach 

fixation.  

One area of research is how drug distribution strategies may impact drug resistance. To answer these 

questions, mathematical models are often used to evaluate how different treatment strategies may 

impact the dynamics of resistance (Kouyos et al. 2014). However, the range of contributing factors 

means that there is no clear consensus, with models predicting very different evolutionary outcomes 

depending on the amount of drug used, the number of drugs available and the force of infection in 

the population (Zur Wiesch et al. 2011). One strategy that has been proposed for combatting 

antimalarial resistance is the use of multiple first line therapies (MFT), where different patients are 

allocated to different artemisinin combination therapies (ACTs). The use of multiple drugs with 

differing mechanisms of action is hoped to protect against the emergence of resistance, with some 

modelling studies suggesting MFT is advantageous to the current strategy of cycling through ACTs 

when treatment failures rise above 10% (Boni et al. 2008; Nguyen et al. 2015). However, alternative 

modelling studies predict little benefit to switching MFT, with any specific benefit dependent on a 

number of factors, including transmission intensity, the ratio of drugs used and the ability to maintain 

stocks of multiple drugs (Maude et al. 2009; Smith et al. 2010b; Antao and Hastings 2012). In addition, 

most modelling focus has been on the emergence of resistance with little attention on the spread of 

resistance, which is now established in most countries in the GMS. This lack of consensus resulted in 
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the technical expert group established by the WHO Malaria Policy Advisory Committee investigating 

drug resistance and containment to not recommend MFT in 2013 (World Health Organization 2013). 

Another strategy, which many countries are also implementing, is to improve the current method of 

cycling first line therapies by reducing the presumptive treatment of fevers with antimalarials. 

Reducing overprescription may arguably be preferable for many control programmes compared to 

MFT, with increased costs associated with procuring and maintaining stock for multiple drugs. In 

addition, overprescription may represent a significant driver of resistance. In 2014, only 35.7% of self-

reported fevers in sub-Saharan Africa were estimated to be accompanied by a malaria infection 

(Dalrymple et al. 2017). However, due to the historic burden of malaria in many countries many fevers 

are assumed to be due to malaria and are presumptively treated with antimalarials (Odaga et al. 2014). 

Presumptive treatment will lead to the overprescription of antimalarials, which can occur in scenarios 

where either RDTs are not available or the outcome of the RDT result is ignored (Umlauf 2017). This 

may then lead to sub-optimal drug concentrations in the population, which increases selection for 

partner drug resistance. Ensuring that all non-malarial fevers (NMFs) are only treated on the basis of 

a diagnostic test result is likely to reduce the selective pressure. The size of this reduction, however, 

is hypothesised to be dependent on transmission intensity (Figure 5.2), with higher transmission 

settings more likely to select for resistant parasites during reinfection events. Consequently, it is 

important to understand the transmission ranges at which reducing overprescription is beneficial in 

the long term because presumptive treatment of NMFs is known to lead to a reduction in clinical cases 

due to the period of prophylactic protection conferred. To answer this, I have extended the 

transmission model to investigate whether reducing overprescription of antimalarials could be as 

effective as MFT in slowing the spread of drug resistance. I have incorporated treatment with multiple 

ACTs and have adapted the malaria parasite barcode to model their resistance and fitness phenotypes. 

I scan across transmission intensity and treatment coverage gradients, evaluating the effectiveness of 

each strategy by comparing the mean number of treatment failures. I continue by characterising how 

both MFT and sequential cycling could be improved by reducing overprescription and increasing the 

number of ACTs available for use within MFT strategies. 
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Figure 5.2 Hypothesis for increased benefit of reducing overprescription in high transmission settings. The 

diagram shows the outcomes for groups of asymptomatic individuals (red boxes) and susceptible individuals 

(blue boxes) after suffering a non-malarial fever (NMF). In a) 100% of NMFs will be treated regardless of 

infection state. Consequently, both groups are treated (purple boxes), with individuals infected with wild type 

parasites (black circles) successfully being treated and moving into a prophylactic state (green box). Resistant 

parasites (red circles) are less likely to be cleared and will lead to a continued asymptomatic infection. In a) 

the transmission intensity is low and so both groups of individuals will eliminate the partner drug before being 

reinfected. However, in b) the transmission intensity is assumed to be higher, which leads to reinfection 

occurring while individuals are still in a prophylactic state. Consequently, the partner drug is likely to prevent 

wild type parasites from being passed on, whereas resistant parasites are more likely to lead to an infection. 

This results in the population in b) having a higher frequency of resistant strains after reinfection compared 

to a). Lastly, in c) all NMFs are assumed to receive a diagnostic test. This decreases the probability that 

individuals will be in a state of prophylaxis during reinfection. Compared to setting b), this will lead to both 

an increased number of new infections as well as a decrease in the frequency of resistant parasites. 
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5.2. Methods 

5.2.1. Transmission model extensions for modelling antimalarial resistance 

5.2.1.1. Barcode Alterations 

In order to model antimalarial resistance, I have adapted the parasite barcode for the simulation of 

resistance. In the new formulation, each position in the barcode represents either the absence 

(barcode position is equal to 0) or presence (barcode position is equal to 1) of a resistance mutation 

associated with resistance to a particular drug. For example, Table 5.1 shows how a barcode with three 

loci can be used to represent resistance to DHA-PPQ and ASMQ.  

Table 5.1 Example barcode alterations to model antimalarial resistance. Example explores resistance to 

piperaquine (PPQ), artesunate (AS) and mefloquine (MQ). 

Artemisinin 
Resistance 

Piperaquine 
Resistance 

Mefloquine 
Resistance 

Phenotype 

0 0 0 Wild type parasite. Fully susceptible. 

1 0 0 Resistant to artemisinin 

0 1 0 Resistant to PPQ 

0 0 1 Resistant to MQ 

1 1 0 Resistant to DHA-PPQ 

1 0 1 Resistant to ASMQ 

0 1 1 Resistant to PPQ and MQ 

1 1 1 Multidrug resistant to DHA-PPQ and ASMQ 

As before, barcodes are used to track populations of parasites that are introduced from an infectious 

mosquito bite. Previously, all barcode loci were assumed to be genetically unlinked and to 

consequently segregate independently during recombination. This assumption is still maintained 

when modelling resistance, with genes known to confer resistance to the five first line ACTs 

recommended by the WHO each occurring on different chromosomes.  

Antimalarial resistance is assumed to introduce a fitness cost to resistant parasites compared to wild 

type parasites. Fitness costs are associated with each resistance locus and are assumed to be 

multiplicative. The fitness cost manifests as a reduction in parasite density that is assumed to reduce 

the probability of the resistant parasite being passed on to a mosquito. This can be expressed 

mathematically as follows. Let 𝑏 =  [𝑏1, 𝑏2, … , 𝑏𝑚] describe the vector of barcode loci for a barcode 

of length 𝑚. For example, the ASMQ resistant strain in Table 5.1 is represented by the vector [1, 0, 1].  
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If 𝜈𝑗  is the resistance cost associated with barcode locus 𝑗, then the comparative fitness cost due to 

resistance, 𝑟, for the given parasite is simply: 

𝑟 =∏𝜈𝑗

𝑚

𝑖=𝑗

 

In this study, the wild type allele at each locus Is assumed to have no fitness cost (𝑣𝑗 = 1) and thus 

𝑟 = 1 for the wild type parasite in Table 5.1.  

When selecting which parasite strains contribute to an onward infection, the number of oocysts 

formed from the bite is first drawn from the negative binomial defined in chapter 3 before sampling 

parasites from the infected individual to contribute to the oocysts. The probability vector that 

describes the relative probability that a given strain will be chosen in an individual with 𝑛 

gametocytogenic parasite strains is now given by: 

𝑐𝑟 = [𝑐1𝑟1, 𝑐2𝑟2, … 𝑐𝑛𝑟𝑛] 

𝑟𝑖 is the fitness cost associated with parasite strain 𝑖 and 𝑐𝑖 is the contribution of parasite 𝑖 to onward 

infection, which will be either 𝑐𝑇 , 𝑐𝐷, 𝑐𝐴 or 𝑐𝑈 depending on the infection status of strain 𝑖, denoted 

here as 𝑋𝑖. The probability that an infected individual infects a mosquito is still determined by the set 

of parameters determining the onward contribution to transmission, {𝑐𝑇 , 𝑐𝐷, 𝑐𝐴, 𝑐𝑈}, which are based 

on the infection status of the individual, denoted here as 𝑌. However, if the strains responsible for the 

human’s current infection state, i.e. all strains that match the human’s infection state, are resistant 

then the probability of onward transmission is determined by the highest onward contribution of 

these strains, which is given by: 

𝑚𝑎𝑥 {𝑐𝑟𝑖 ∶ 𝑋𝑖 = 𝑌} 

In this way, fitness costs both affect the relative probability that a resistant strain is transmitted 

compared to a wild type strain in a mixed infection, while also reducing the probability that 

transmission occurs in individuals where the highest parasite density strain is resistant.  

5.2.1.2. Clinical and Treatment Outcomes 

In previous chapters, treatment was assumed to be 100% effective, i.e. all individuals who were 

treated would move to being treated, before recovering to a state of prophylaxis and eventually 

returning to being susceptible. With the addition of resistance, the treatment efficacy now varies and 

is determined both by the genotype of the parasite strains, the parasite density of each strain and the 

drug used to treat the infection. 
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Using the same representation of a parasite genotype as in Table 5.1, the efficacy of drug 𝑧 can be 

expressed by the vector 𝑒𝑧 =  [𝑒𝑧1, 𝑒𝑧2, … , 𝑒𝑧2𝑛] for simulations in which the number of loci being 

modelled is equal to 𝑛. 𝑒𝑧1 represents the efficacy of the drug against the wild type parasite, i.e. the 

barcode vector 𝑏 represented by a vector of length 𝑛 filled with zeros. The probability that any given 

strain is cleared by drug 𝑧 can be expressed as 𝑒𝑧𝛽(𝒃), where 𝛽(𝑏) is an adapted conversion of binary 

to decimal integers and is given by: 

𝛽(𝑏) = (∑𝑏𝑗 . 2
𝑗−1

𝑚

𝑗=1

) − 1  

Importantly, 𝑒𝑧 reflects the probability that the drug will clear a parasite that has led to a symptomatic 

infection, i.e. the parasite strain is at a sufficiently high parasite density to trigger symptoms and seek 

treatment. Parasites from previous infections, however, are assumed to be at a lower parasite density 

and will be more likely to be cleared by the drug. In the model, the infection state of each strain, 𝑋𝑖, 

as well as the day the strain was acquired, 𝑡0, and the time the strain will move out of the infection 

state, 𝑡1, is tracked. This information is used to define the probability that strain 𝑖 will recrudesce after 

treatment, 𝑃(𝑅𝑒𝑐𝑟𝑢𝑑𝑒𝑠𝑐𝑒)𝑖, which is given by: 

𝑃(𝑅𝑒𝑐𝑟𝑢𝑑𝑒𝑠𝑐𝑒)𝑖 =

{
 

 
𝑒𝑧𝛽(𝑏𝑖) ,                          𝑋𝑖 = 𝑌

𝑒𝑧𝛽(𝑏𝑖) (
𝑡1 − 𝑡𝑐
𝑡1 − 𝑡0

) ,       𝑋𝑖 = 𝐴

0 ,                                    𝑋𝑖 = 𝑈

 

where 𝑡𝑐  is the current time. 𝑃(𝑅𝑒𝑐𝑟𝑢𝑑𝑒𝑠𝑐𝑒)𝑖 assumes that parasites below ~200p/µl (state U) will 

always be cleared regardless of the parasite phenotype. 𝑃(𝑅𝑒𝑐𝑟𝑢𝑑𝑒𝑠𝑐𝑒)𝑖 also assumes that the 

probability that an asymptomatic parasite above ~200p/µl (state A) will recrudesce is linearly related 

to the age of the infection and is at its highest when it first enters state A. 

The probability that a treated infection will be successfully cleared by drug 𝑧, 𝑃(𝐶𝑙𝑒𝑎𝑟𝑒𝑑), is equal to 

one minus the highest probability of a strain recrudescing, which is given by: 

𝑃(𝐶𝑙𝑒𝑎𝑟𝑒𝑑) =  1 − 𝑚𝑎𝑥 {𝑃(𝑅𝑒𝑐𝑟𝑢𝑑𝑒𝑠𝑐𝑒)𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑛} 

This assumes that the multiplicity of infection does not directly affect the probability that an individual 

will be cleared, i.e. only one Bernoulli trial with probability 𝑃(𝐶𝑙𝑒𝑎𝑟𝑒𝑑) is used to determine if all 

parasite strains were cleared.  
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If an individual fails treatment, it is assumed that they will recrudesce to yield a late parasitological 

failure (LPF) and move into state A after the prophylactic period of the drug has finished. Whether 

each parasite strain in a multiply infected individual recrudesces during a LPF is dependent on 

𝑃(𝑅𝑒𝑐𝑟𝑢𝑑𝑒𝑠𝑐𝑒)𝑖. Bernoulli trials are conducted for each parasite strain except for one random strain 

for which 𝑃(𝑅𝑒𝑐𝑟𝑢𝑑𝑒𝑠𝑐𝑒)𝑖 = 𝑃(𝐶𝑙𝑒𝑎𝑟𝑒𝑑), which ensures that one of the most likely strains to 

recrudesce did actually recrudesce and cause a LPF. 

If an individual successfully clears all parasites, they will either move directly into a state P or they will 

remain in the treated compartment for a longer duration resulting from slow parasite clearance (SPC). 

SPC is assumed to always occur if any of the pre-treatment strains that contributed to the clinical 

disease were resistant to any component of the drug.  The duration of SPC was set equal to 10 days 

based on previous modelling studies estimating parasite clearance rates associated with SPC (Slater 

et al. 2016). During SPC it is assumed that all parasite strains not resistant to the drug given have 

cleared and will thus not contribute to onward infection during SPC. 

Lastly, individuals in state P can only be reinfected by wild type parasites when they progress from 

state P to state S. In this study, the transition rate from state P -> S is now dependent on the ACT used, 

reflecting the different half-lives of available partner drugs. In addition, resistant strains are assumed 

to be able to infect individuals who are in state P if the strain is resistant to the partner drug used 

when treating the individual. The probability of reinfection in state P increases as the partner drug 

wanes and is modelled by assuming the reduction in chemoprophylaxis due to resistance halves the 

mean duration of prophylaxis, broadly in alignment with estimates of the protective duration from 

pooled analyses of the duration of chemoprophylaxis in regions with known resistance (Bretscher et 

al. 2019).  

5.2.1.3. Non-malarial fevers 

An age-dependent NMF rate was included to examine the impact of overprescription of antimalarials 

due to presumptive treatment of NMF. NMF is incorporated through the defined vector 𝑛𝑚𝑓 =

[𝑛𝑚𝑓1, 𝑛𝑚𝑓2, … , 𝑛𝑚𝑓𝑛] of age dependent NMF rates and the set 𝑁𝑀𝐹𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 =

{ [0, 𝑎𝑔𝑒1), [𝑎𝑔𝑒1, 𝑎𝑔𝑒2), … , [𝑎𝑔𝑒𝑛, 100)} of right-open age intervals that divide the population into 

𝑛 age brackets with the population’s maximum age set to 100 years. At the beginning of a simulation, 

the waiting time until the next NMF for each individual is drawn from an exponential distribution with 

rate 𝑛𝑚𝑓𝑖 depending on their age. The outcome of a NMF depends on the individual’s infection status, 

the assumed treatment coverage and the probability that treatment is based on the outcome of a 
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malaria diagnostic test, 𝑓𝑡𝑒𝑠𝑡. The probability that an individual will be treated after suffering a NMF, 

𝑃(𝑁𝑀𝐹𝑇), is given by: 

𝑃(𝑁𝑀𝐹𝑇) = {

𝑓𝑇(1 − 𝑓𝑡𝑒𝑠𝑡) ,                      𝑌 ∈ {𝑆, 𝑈}

𝑓𝑇  ,                                          𝑌 = 𝐷
𝑓𝑇𝑞𝑖  ,                                       𝑌 = 𝐴

0 ,                                            𝑌 ∈ {𝑇, 𝑃}

 

Individuals currently treated or in prophylaxis are assumed above to not receive further antimalarial 

treatment when presenting with a NMF. Susceptible and subpatent individuals who seek treatment 

due to a NMF will only receive treatment if they first seek treatment and are then treated not based 

on a diagnostic test. Asymptomatic individuals will only be treated if they first seek treatment and if 

they would be detected using microscopy or RDT, 𝑞𝑖, which is defined in chapter 3. Lastly, diseased 

individuals who seek treatment due to a NMF will always receive treatment. After the NMF has been 

resolved a new day is drawn for the next NMF. 

𝑛𝑚𝑓 and 𝑁𝑀𝐹𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 were sourced from a previous study on pfhrp2 deletions, in which NMF was 

sourced from Demographic and Health Surveys in sub-Saharan Africa that surveyed whether 

individuals had been previously sick with a fever in the last 2 or 4 weeks and if and where they sought 

treatment for that fever (Watson et al. 2017). Briefly, surveys were subset based on the 

representativeness of the ages sampled before creating an age-bracketed annual rate of fever that led 

to treatment being sought. I used smaller age brackets at younger ages in order to capture the 

increased variability in fever at very young ages, before scaling the estimated rates by 35.7% to 

represent the likely NMF rate, as estimated from a large scale estimate across Africa (Dalrymple et al. 

2017).  

5.2.2. Drug policy strategies and parameter values 

In a previous study by Nguyen et al., three different population-level treatment strategies were 

assessed in terms of how effectively they reduced the number of treatment failures and the 

emergence of artemisinin resistance (Nguyen et al. 2015). Building on this study, I have adapted the 

strategies they introduced to assess how effective each strategy is in slowing the continued spread of 

antimalarial resistance in a population. In addition, I introduce NMFs and examine how assumptions 

about the proportion of suspected malaria fevers that are tested before being treated impacts the 

performance of the strategies.  

The first strategy is designed to reflect the current strategy in most countries in which drugs are 

sequentially cycled when the 60-day average treatment failure reaches the WHO-defined threshold 
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of 10% (World Health Organization 2010a). A one-year delay to switching first line ACT is included to 

reflect the time taken for national malaria control programmes to switch first line drugs. In this 

strategy I assume that 50% of suspected malaria fevers are treated on the basis of a diagnostic test, 

with the remaining 50% of suspected cases always treated. The second strategy is identical to the first 

strategy but with 100% of suspected malaria fevers treated on the basis of a diagnostic test. In both 

cycling strategies, if the last drug to be cycled reaches 10% treatment failure then the first drug used 

will be used next. The last strategy uses MFT, in which there is an equal probability that an individual 

is treated with any of the drugs available for MFT. In this strategy I assume that 50% of suspected 

malaria fevers are treated on the basis of a diagnostic test. The designed scenarios thus allow for the 

impact of increased diagnostic testing to be assessed when comparing strategy one vs two, while 

strategy three allows us to compare how effective MFT is vs sequential cycling in slowing the 

continued spread of resistance in a population.  

I have assumed initially that three ACTs are available within the treatment strategies above: DHA-PPQ. 

ASMQ and AL which are cycled in this order. The order was chosen to reflect the emergence of 

artemisinin resistance in the GMS, with a number of countries recently switching from DHA-PPQ to 

ASMQ in response to rising DHA-PPQ treatment failure (Alonso 2017). For each ACT, resistance to the 

artemisinin component is encoded by the first barcode locus. Partner drug resistance is encoded with 

a different locus for each drug. One locus is thus assumed to be sufficient to confer resistance to each 

of the partner drugs, with a fitness cost of 0.99 assumed for each resistance locus as used in Nguyen 

et al. (Nguyen et al. 2015). 100 stochastic realisations of populations of 100,000 individuals were 

simulated for 40 years, with the first 20 years reflecting a period of “burn-in” ensuring an equilibrium 

is reached in simulations. After the burn in, the population is seeded with 10% artemisinin resistance 

and 1% resistance for each partner drug used. The frequency of resistance alleles and the percentage 

of treatment failures are recorded and summarised for the following 20 years and compared alongside 

any changes in the PCR prevalence of malaria. When comparing between settings with different 

treatment coverages, I assume that a clinical case not treated due to not seeking treatment in the first 

place (1 − 𝑓𝑇)  is counted as a treatment failure to allow fair comparisons between settings. 

Otherwise, polices with the lowest treatment coverage would appear optimal due to treating the 

fewest people and selecting for resistance the least.  

Sensitivity analyses were conducted by scanning over a range of values for the transmission intensity 

(EIR: 0.25 - 10), treatment coverage (𝑓𝑇: 0.5 – 0.9), the assumed percentage of NMF that are treated 

on the basis of a diagnostic test (𝑓𝑡𝑒𝑠𝑡: 0.5 – 1.0), the number of ACTs available within MFT (2 – 5 first 

line therapies). The two additional ACTs to be included are artesunate-amodiaquine (ASAQ) and 

artesunate + sulfadoxine–pyrimethamine (AS+SP).  
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Parameters for drug efficacies were sourced from paired phenotype-genotype studies for which the 

proportion of treated cases that resulted in recrudescent events was measured amongst each 

resistant parasite genotype, i.e. wild type, artemisinin resistance, partner drug resistance and 

multidrug resistance. Where these studies are not available for an ACT, drug efficacies were first 

sourced from studies in which the drug was used in populations with assumed resistance to only one 

of the components. In the case of ASAQ and AS+SP, the decrease in efficacy from artemisinin 

resistance was set equal to the decrease for ASMQ, for which suitable phenotype-genotype studies 

were available. These measures were then combined to estimate the drug efficacy against multidrug 

resistant parasites by taking the squared product of the relevant monotherapy efficacies, which was 

found to reflect the conversion for ACTs in which complete phenotype-genotype studies were 

available. Consequently, modelling results are used primarily to answer questions related to the 

treatment strategies rather than performance of any one ACT. The efficacy and prophylactic 

properties assumed for each drug are shown in Table 5.2. 

Table 5.2 Antimalarial efficacy and prophylactic properties 

Drug Duration of prophylaxis (days) Efficacy* Efficacy References 

DHA-PPQ 25 (Okell et al. 2014) 0.985, 0.966, 0.786, 0.577 (Straimer et al. 2015) 

ASMQ+ 25 (Okell et al. 2014) 0.983, 0.962, 0.743, 0.510 (Price et al. 2004) 

AL+ 13 (Bretscher et al. 2019) 0.964, 0.951, 0.851, 0.653 
(Price et al. 2006; 

Ndounga et al. 2015) 

ASAQ+ 15 (Bretscher et al. 2019) 0.968, 0.947, 0.821, 0.604 (Mohamed et al. 2017) 

AS+SP+ 25 (Watkins et al. 1997) 0.971, 0.950, 0.731, 0.482 (Alker et al. 2008) 

* Probability of clearing a wild type, artemisinin resistant, partner drug resistant and multidrug resistant 

parasite  

+ Efficacy not based on complete phenotype-genotype study  
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5.3. Results 

5.3.1. Impact of increasing diagnostic testing of non-malarial fevers on spread of resistance  

In Figure 5.2, reducing overprescription was hypothesised to reduce the selective pressure for 

resistance in higher transmission settings, with selection increasingly occurring during reinfection of 

recently treated individuals. However, reducing presumptive treatment of NMFs will initially result in 

higher malaria prevalence due to fewer people being protected by waning partner drug 

concentrations. The extended transmission model was first used to characterise the trade-off 

between these two processes by quantifying the impact of increasing diagnostic testing of NMFs.  

Figure 5.3 shows an example of these processes at two different transmission intensities, EIR = 1.5 

and 4, which corresponds to a PCR PfPR of 15% and 25% respectively. In treatment strategies in which 

100% of NMFs are treated on the outcome of diagnostic testing an absolute increase in PCR PfPR of 

~2.5% is observed prior to the spread of resistance. In the lower transmission setting (Figure 5.3a), the 

change in treatment failure over time is comparable between both sequential cycling strategies, with 

the average useful therapeutic lifespan of DHA-PPQ equal to ~5 years, after which 10% treatment 

failure is observed. In the higher transmission setting the same therapeutic lifespan is observed when 

100% of NMFs are tested (Figure 5.3b). However, when only 50% of NMFs are tested the therapeutic 

lifespan is approximately one year shorter, with 10% treatment failure occurring after four years on 

average. The increased speed of resistance spread results in the PCR PfPR after 20 years being higher 

in the 50% diagnostic testing cycling strategy. The MFT strategy is predicted to cause a constant 

increase in the frequency of resistance across all resistance loci. In the MFT strategy, the frequency of 

artemisinin resistance initially increases at a comparable rate to the cycling strategies. However, after 

7.5 years (EIR = 4) and 10 years (EIR = 1.5) the frequency of artemisinin resistance in the MFT strategy 

increase quicker than the cycling strategies. Partner drug resistance increases at a constant rate in the 

MFT strategy, which is predicted by the different treatment efficacy associated with partner drug 

resistance as well as the different duration of post treatment prophylaxis. Treatment failure and PfPR 

initially increase more slowly in the MFT strategy, however, in both transmission settings the final 

prevalence of malaria after 20 years is highest in the MFT strategy. 
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Figure 5.3 Increase in drug resistance mutations in response to multiple first line therapies (MFT) and 

sequential cycling. The graphs show the change in allele frequency of artemisinin resistance and the 

frequency of partner drug resistance for each partner drug at two different transmission intensities; a) EIR = 

1.5 and b) EIR = 4 with a high assumed treatment coverage of 70%. The change in treatment failure and 

prevalence of malaria by PCR are shown below for each setting. 100 simulation repetitions are shown for 

each scenario with the median trend shown in bold. 50% of non-malarial fevers are assumed to be treated 

regardless of infection status in the cycling (red) and MFT (green) scenario, whereas one cycling scenario 

(purple) assumes 100% testing of non-malarial fevers. Resistance is assumed to not be under selection prior 

to year 0, shown with the vertical dashed line. 
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Figure 5.4 Effect of treatment coverage and transmission intensity on treatment failure due to resistance. 
The graphs show the average percentage of treatment failures over 20 years against EIR. 100 simulation 
repetitions were conducted for each strategy and the mean and 95% confidence interval for each treatment 
strategy shown. Each graph shows a different treatment coverage: 50%, 70% and 90% from left to right. 

Using the same simulation set up we compared each treatment strategy by calculating the mean 

treatment failure over the 20-year study period. The percentage of treatment failures was predicted 

to be greatest in the MFT strategy across all transmission intensities and treatment coverages 

explored (Figure 5.4). In the lowest treatment coverage explored (  = 50%), treatment failure was 

significantly higher than both cycling strategies, with the 95% confidence interval for the percentage 

of treatment failures only overlapping with the 50% diagnostic testing strategy at the highest 

transmission intensity explored (EIR = 10). In the same setting, the sequential cycling strategies were 

not significantly different at lower transmission intensities (EIR < 3), however, above this EIR, 

treatment failure was significantly lower when all NMFs received diagnostic testing. Similar 

relationships were seen with increasing treatment coverage, although the difference in treatment 

failure between each strategy decreased. Lastly, the transmission intensity at which cycling with 100% 

diagnostic testing yields a significantly lower overall treatment failure rate compared to only 50% 

diagnostic testing occurs at lower EIRs with increasing treatment coverage.  

In Figure 5.5 the speed of selection for artemisinin resistance is shown for each treatment strategy 

across the range of transmission intensities and treatment coverage explored earlier. Similar findings 

are observed with respect to the optimum treatment strategy, with 100% testing of NMFs consistently 

yielding the lowest frequency of artemisinin resistance. However, the differences between the 

treatment strategies are less pronounced than when examining treatment failures in Figure 5.4. In 

particular, with 50% assumed treatment coverage, MFT and cycling with 50% diagnostic testing are 
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not statistically different between an EIR 5 – 9, with MFT having a statistically lower frequency of 

artemisinin resistance when EIR = 10 (MFT 95% CI: 70.8%-72.9%, Cycling 95% CI: 73.5%-75.2%).  

 

Figure 5.5 Speed of selection for artemisinin resistance under three treatment strategies. The graphs show 

the mean and 95% confidence interval for the maximum frequency of artemisinin resistance after 20 years 

from 100 simulation repetitions. Selection for artemisinin is predicted to be greatest in higher transmission 

settings. Each graph shows a different assumed treatment coverage, with selection increasing with increasing 

treatment coverage. 
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5.3.2. Improving current treatment strategies 

To investigate how MFT could be improved, additional first line therapies were included in the MFT 

strategy up to a maximum of five ACTs available. Each ACT was assumed to be equally likely to be 

used, with 10% starting artemisinin and 1% starting partner drug resistance again assumed. As would 

be expected, for each additional ACT available the percentage of treatment failures over 20 years 

decreased (Figure 5.5). The rate at which treatment failure increased with increasing EIR was 

comparable across each MFT strategy above an EIR equal to 2.5. However, in scenarios with only two 

or three ACTs available the percentage of treatment failures increased quickest with respect to EIR for 

values of EIR less than 2.5. MFT was also predicted to outperform sequential cycling of three ACTs 

with 100% diagnostic testing of NMFs when four or more ACTs were available for MFT, although 

treatment failure was comparable between MFT with four first line therapies and the cycling strategy 

when treatment coverage was equal to 50%. 

 

Figure 5.6 Benefit of increasing the number of first line therapies available within multiple first line 
therapies.  Average treatment failures over a twenty-year period are shown for four different MFT strategies, 
which had two, three, four or five available first line therapies. In each strategy the same proportion of each 
drug was used and they are compared against a sequential cycling strategy using three drugs with 100% 
diagnostic testing of non-malarial fevers. 100 simulation repetitions were conducted for each strategy and 
the mean and 95% confidence interval for each treatment strategy shown. 

In Figure 5.7, the benefit of increased diagnostic testing of NMFs is summarised across the 

transmission and treatment coverage ranges explored, with 50% - 100% NMF testing assessed. As 

demonstrated earlier, the benefit of increasing diagnostic testing is marginal in low transmission 

settings. The largest absolute decrease in mean treatment failure due to increased diagnostic testing 



135 
 

was equal to 6%, which reflects increasing NMF testing from 50% to 100% in the highest transmission 

settings explored with 50% treatment coverage. Smaller reductions in treatment failure due to 

increased diagnostic testing were predicted when treatment coverage was at its highest, with the 

maximum mean treatment failure equal to 18.4% when treatment coverage was equal to 90%.  

 

Figure 5.7 Impact of increasing the proportion of non-malarial fevers tested with an RDT within sequential 

cycling scenarios. Each heatmap square shows the mean percentage of treatment failures over 20 years 

across 100 simulation repetitions for a given EIR, treatment coverage and assumed proportion of non-malarial 

fevers tested with an RDT. Increasing the proportion of non-malarial fevers tested is shown to decrease the 

percentage of treatment failures over time.  

5.4. Discussion 

The results demonstrate a significant decrease in the continued spread of antimalarial resistance 

through increasing diagnostic testing of NMF at higher transmission intensities. By ensuring that all 

suspected cases of malaria receive a test before being treated, the amount of overprescription of 

antimalarials is reduced and the selection of resistant parasites during the elimination phase of 

partner drugs is decreased. This finding confirms the hypothesis that this effect occurs more 

frequently with increasing malaria prevalence due to the higher transmission intensity increasing the 

probability that infection events occur when partner drug concentrations are sufficiently high to 

prevent infection by wild type parasites but not resistant strains. This effect was shown to occur at 

values of EIR greater than 3, which corresponds to ~17.5 all-age prevalence by PCR. 
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My results predict that while MFT initially yields lower treatment failure rates, over a 20-year period 

MFT is predicted to lead to an increase in treatment failure. The difference between MFT and 

sequential cycling was greater in lower transmission settings with the lowest treatment coverage, with 

the differences between the treatment strategies increasingly non-significant at higher treatment 

coverages in higher malaria prevalence settings. MFT was predicted to be significantly improved with 

each additional ACT available to be used. Multiple drugs will force parasites to acquire multiple 

resistance mutations, which is both slower and introduces compounded fitness costs weakening the 

transmission efficacy of resistant parasites. In particular, the largest consecutive decrease in 

treatment failures was observed when increasing from three to four first line therapies available. With 

four available ACTs the mean treatment failure over the 20-year study period is predicted to be less 

than or equal to 15% across all transmission intensities and treatment coverages explored. MFT with 

four available drugs is predicted to have lower treatment failures over 20-years compared to cycling 

three drugs with 100% testing of NMFs at treatment coverages greater than 70%, with MFT requiring 

five first line ACTs to be significantly better than sequential cycling with three ACTs. 

The study settings explored were based on a similar study by Nguyen et al., which concluded that MFT 

was a superior strategy compared to sequential cycling for tackling resistance (Nguyen et al. 2015). In 

their study, however, they primarily focussed on the emergence of resistance, i.e. how effectively can 

resistance arise and persist in a population that does not currently have resistance to the point where 

it is established, with “established” interpreted in their study as 1% population allele frequency. In this 

study we chose to continue these scenarios by considering the continued spread of resistance, which 

represents the next stage in the development of drug resistance (Mackinnon 2005). During the spread 

of resistance, as opposed to the emergence, I predict that the use of MFTs is not a superior strategy 

and shows at best a comparable ability to slow the spread of resistance.  

The different conclusions made with regards to the benefit of MFT between the studies could be due 

to a number of reasons. Firstly, in my study I focussed on the continued spread of resistance as 

opposed to emergence. It is entirely plausible that cycling strategies and MFT strategies will have 

different benefits depending on the stage of resistance development. Secondly, there are a number 

of model differences between my study and the study by Nguyen et al. Most importantly is the 

presence of partial resistance in my model, whereas in their study resistance afforded complete lack 

of drug effect on the parasite. Unfortunately, this difference could not be incorporated in a sensitivity 

analysis in the current scenarios due to the focus on the spread rather than emergence of resistance. 

For example, the simulation is seeded with 10% artemisinin resistance, which would instantly yield 

10% treatment failure under the assumption of complete resistance and so all cycling methods would 

be cycling every year by default. Future work will address this issues by exploring spread with starting 
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artemisinin resistance at 1%. I could, however, explore other modelling differences, such as the 

inclusion of cotransmission events in my model, which may affect selection of resistance. For example, 

consider the case when three parasite strains with different resistance mutations are introduced in 

the same bite. In an MFT strategy, whatever drug is chosen will encounter a parasite that is resistant 

to the drug, increasing the probability the individual will fail treatment. If only one parasite strain is 

introduced, then there is a one in three chance that the MFT chosen will encounter a resistant 

parasite. Additionally, cotransmission events will increase the chance that an individual is polyclonally 

infected, which increases the opportunity for recombination and may lead to faster build-up of 

multidrug resistant parasites. These assumptions were explored by adding two additional scenarios in 

which firstly no cotransmission occurred, i.e. only 1 strain is passed on, and secondly where 

cotransmission is tripled, i.e. three-times as many sporozoites are expected to survive from an 

infectious bite. These scenarios were explored at lower transmission settings (EIR = 0.25-2) focussing 

on prevalence settings similar to those explored in Nguyen et al. Assumed cotransmission levels were 

predicted to have no effect on mean treatment failures, regardless of the treatment strategy or 

transmission intensity. It is thus unlikely that the difference in performance of MFT vs cycling is due to 

this additional modelling complexity and is instead more likely to depend on the inclusion of partial 

resistance.  

 

Figure 5.8 Effect of changing the level of cotransmission on treatment failures across different treatment 
strategies.  The plots show the mean and 95% confidence interval for the average treatment failure over 20 
years. A range of transmission intensities and treatment coverages are shown. Overall no consistent 
relationship was observed between the assumed number of sporozoites transmitted in an infectious bite and 
the performance of each of the treatment strategies explored.  
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There are a number of modelling assumptions that had to be introduced in order to conduct this 

analysis. The drug efficacies estimated for each of the ACTs used are overly simplified and should not 

be used to infer the specific performance of any one ACT. This is firstly because paired genotype-

phenotype studies have not been conducted for each ACT and consequently the efficacies for all ACTs 

except DHA-PPQ were estimated using experimental set ups which are not ideal. Secondly, the 

representation of resistance to each ACT being encoded by two separate loci is overly simplified and 

does not capture possible compensatory mutations in the genetic background (Amato et al. 2016). For 

example, the pfmdr1 gene has been linked to the efficacy of a number of antimalarials. This is 

dependent both on copy number variations (Borges et al. 2011), and specific SNPs in pfmdr1 

(Nwakanma et al. 2014). Additionally, both AL and ASAQ have been demonstrated to exert opposing 

selective pressures on pfmdr1. ASAQ selects for the YYY haplotype at positions 86, 184 and 1246 and 

AL selects for the NFD haplotype (Dokomajilar et al. 2006; Humphreys et al. 2007), which has been 

shown to be predicted by a country’s first line ACT policy (Okell et al. 2018b).  Although not modelled 

here, this relationship could be modelled in the future to explore whether the differential selection of 

opposing haplotypes could be harnessed to increase the therapeutic lifespan of ACTs. However, our 

current understanding of the drug efficacies of each ACT on all possible relevant parasite haplotypes 

is incomplete. Moving forwards, it will be necessary to conduct a systematic review of all phenotype-

genotype studies available to construct more suitable values, which will likely require a PK-PD 

modelling approach to infer efficacies again where the data is not available. Although these intricacies 

were not included in my model, the framework developed is suitably flexible to extend the number of 

loci associated with resistance, with the model previously being used to easily track parasite barcodes 

of 576 loci when simulating parasite identities by descent. 

The model also included other assumptions related to the role of pre-existing parasite strains on 

treatment outcomes. I assumed that the outcome of superinfection events is regardless of pre-existing 

strains from current asymptomatic infections did not alter treatment outcomes. This assumption is 

based on recent studies using malaria genotyping in longitudinal studies in Malawi that show that 

persistent asymptomatic infections do not alter the probability of new infections triggering a 

symptomatic infection (Buchwald et al. 2019), which builds on studies showing that pre-existing 

asymptomatic infections do not offer protection against new infections (Portugal et al. 2017). It was 

also assumed that the multiplicity of infection did not affect treatment outcome. However, alternate 

studies have shown that the multiplicity of infection is associated with subsequent risk of 

recrudescence in the DRC and Uganda (Dokomajilar et al. 2006; Humphreys et al. 2007). However, the 

increased number of strains in these infections are likely to be due to cotransmission events and not 
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due to low density asymptomatic infections. Subsequently, the assumption that the risk of 

recrudescence is independent of the number of parasite strains passed on may be incorrect.  Lastly, 

my model did not model recrudescent infections due to treatment failure leading to new clinical cases 

and assumed that all recrudescent infections were asymptomatic. Although there is evidence that 

recrudescence can lead to a symptomatic infection (Mohamed et al. 2017), it is unclear how many of 

these cases are due to incomplete drug adherence, which has been shown to decrease treatment 

efficacy (Challenger et al. 2017).  

The repeated emergence of antimalarial resistance has prompted policy makers to consider how drug 

treatment strategies can be improved to prevent resistance emergence. The continued spread of 

resistance, however, is equally pressing, with new reports since parameterising this model showing 

that DHA-PPQ treatment failure rates have increased in the last two years (Portugal et al. 2017). With 

no replacements in development for the artemisinin component in ACTs we need to manage the 

current spread of artemisinin resistance. Drug treatment strategies can be optimised for this, with the 

findings predicting that current strategies cycling first line therapies after 10% treatment failure has 

been reached can be further optimised by reducing the presumptive treatment of non-malarial fevers. 

Although there is additional prophylactic protection conferred by this practice, over a 20-year study 

period I predict that this will be offset by the increased spread of resistance in most transmission 

settings. Alternatively, the use of multiple first line therapies can be highly effective in slowing the 

spread of resistance. However, at least four ACTs need to be used to sufficiently increase the fitness 

cost barriers associated with resistance. Control programs are consequently recommended to assess 

if the logistics and costs of maintaining stocks of at least four ACTs are feasible. If not, increasing 

diagnostic testing is recommended as a strategy to slow the continued spread of resistance. 

5.5. Conclusion 

In this chapter I have extended the transmission model developed in chapter 3 to consider antimalarial 

resistance. These extensions introduced a number of additional modelling assumptions and 

highlighted the need for a greater understanding of the relationships between parasite resistance 

genotypes and phenotypes, as well as the impact of asymptomatic infections on treatment outcomes. 

Despite these challenges, the developed model was able to answer questions related to the optimum 

drug treatment strategies for slowing the spread of antimalarial resistance. The representation of 

resistant parasites with the barcode is also flexible enough to be extended to capture any epistatic 

relationships between resistance loci. Given the increasing number of genotype-phenotype studies 

being conducted as part of endeavours such as the Tracking Resistance to Artemisinin Collaboration, 

the model can hopefully be more completely parameterised and allow a more complete model of 
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parasite phenotypes to be included. In addition, the model incorporates a more nuanced 

characterisation of resistance phenotypes compared with previous modelling efforts that focussed on 

the emergence of drug resistance as opposed to its spread. Understanding the emergence of drug 

resistance is also highly important and will be explored in the next chapter by modelling the 

importation of resistant parasites into susceptible populations.  
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Chapter 6. Transmission of invasive artemisinin resistant 

parasites: a modelling study 

 

The potential spread of artemisinin resistance out of the Greater Mekong Subregion (GMS) poses a 

threat to continued reductions in the burden of malaria in Africa. To date the multidrug resistant co-

lineage of P. falciparum, KEL1/PLA1, has spread from Western Cambodia along the northern border 

with Thailand before spreading south along the Eastern border of Cambodia shared with Laos and 

Vietnam (Imwong et al. 2017a). The spread of a single dominant co-lineage, which expresses both 

artemisinin and piperaquine resistance, has prompted debate over whether the potential 

transnational spread of this lineage is a public health emergency of international concern (Alonso 

2017). One area of research that has yet to be explored though is by what routes and how quickly 

could a multidrug resistant lineage invade other countries. Clearly, KEL1/PLA1 has been able to spread 

across multiple neighbouring countries, however, it was not found to have spread to Myanmar (Amato 

et al. 2018). This is primarily believed to be due to artemethur-lumefantrine being used primarily in 

Myanmar thus reducing the selective advantage of PLA1. However, dihydroartemisinin-piperaquine is 

increasingly used due to concerns of treatment failure associated with increased mdr1 copy numbers. 

Alternatively, KEL1/PLA1 may have failed to spread to Myanmar because malaria parasites have 

evolved to be adapted to the local vector population (Molina-Cruz et al. 2015). Consequently, invasive 

parasite strains that are not adapted to the vector population may be less able evade the mosquito 

immune response and be transmitted through the mosquito. 

In this chapter, I extend the resistance changes made to the model in chapter 5 to explore how parasite 

adaptation to the vector population impacts the speed at which an invasive parasite strain can spread 

within a new population. This work incorporates experimental data from collaborators in the 

Department of Life Sciences at Imperial College London, in which the fitness costs and resistance 

phenotype of artemisinin resistance has been examined using standard membrane feeding assays. 

The experimental methods included in sections 6.2.1 and 6.2.2 were not conducted by myself and 

were conducted by Kathrin Witmer, Farah Dahalan and other members of Jake Baum’s research group. 

These sections are included to increase understanding of the experimental data and my involvement 

in the downstream statistical analysis. I use mixed effects models to estimate key parameters from 

the SMFA studies, before incorporating them within the transmission model. The model is used to 

characterise the impact on the speed with which invasive parasite lineages (i.e lineages that are not 

adapted to the vector population into which they are invading) could successfully spread within a non-

resistant population.  
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6.1. Introduction 

The development of artemisinin and its derivatives has radically changed the treatment of severe 

malaria, affording an effective treatment when previous first line treatments were failing due to 

resistance (Tu 2011). Artemisinin was first identified from a reference to the ability of qinghao, the 

Chinese name for the herb Artemisia annua L., made in Ge Hong’s A Handbook of Prescriptions for 

Emergencies (Tu 2011). The method of action of artemisinin is still uncertain, however the prominent 

theory is that parasite metabolism of haemoglobin causes iron-mediated activation of artemisinin that 

results in the drug being both highly reactive and rapidly consumed (Tilley et al. 2016). This mechanism 

of action causes artemisinin to have a very short half-life and therapeutic window, and consequently 

it is partnered with alternative antimalarial compounds that have a longer half-life and increase the 

probability of completely clearing an individual’s parasites (Ashley and White 2005). Partnering 

artemisinin derivatives with a partner drug also decreases the probability of resistance emerging, as 

has been shown in the deployment of antituberculosis and antiretroviral drugs (Group 2004). 

Despite efforts to slow the emergence of artemisinin resistance, the first documented cases of 

artemisinin resistance were made in Western Cambodia between 2008-2009 (Noedl et al. 2008; Das 

et al. 2009). Patients presented with delayed parasite clearance and increasing rates of 28-day 

parasitological failure, which suggested that new drug resistant parasite lineages were emerging. The 

Greater Mekong Subregion (GMS) is now the established origin of artemisinin resistance, with 

resistance to dihydroartemisinin-piperaquine (DHA-PPQ) spreading throughout the region (Hamilton 

et al. 2019). In addition, independent emergence of artemisinin resistance has now been identified in 

New Guinea, with identity by descent comparisons showing shared ancestry with parasites from 

Indonesian Papua as well as the gradual acquisition of a complex set of resistance variants (Miotto et 

al. 2019). The speed with which artemisinin resistance has emerged in South-East Asia has led to the 

concern that it may arrive in Africa, which could reverse recent declines in malaria-related mortality 

rates. Although there are still a number of therapeutically effective artemisinin combination therapies 

(ACTs), there is evidence that the spread of artemisinin resistance will lower the evolutionary 

threshold for further resistance mechanisms to evolve to currently efficacious partner drugs (Dondorp 

et al. 2010). Consequently, artemisinin resistance poses a threat by both reducing the number of 

effective frontline treatment and shortening the therapeutic lifespan of current frontline treatments. 

Identification of the genetic determinants of artemisinin resistance occurred in 2012, which showed 

that the resistance phenotype is associated with polymorphisms in the propeller region of the Kelch 

13 (K13) P. falciparum protein (Cheeseman et al. 2012). Since this discovery, numerous K13 single 

nucleotide mutations have been observed that exhibit a reduction in the rate at which parasites are 
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cleared by artemisinin. Four specific K13 mutations, C580Y, R539T, I543T, Y493H, have been shown 

directly to confer artemisinin resistance through the use of genome editing (Menard and Dondorp 

2017). In addition, these mutations have increased at different rates within the GMS, suggesting that 

either the level of resistance conferred impacts the rate at which resistance may spread (Anderson et 

al. 2016), or that these specific mutations are aligned with different compensatory mechanisms in the 

genomic background that may offset any fitness cost associated with K13 mutations (Nair et al. 2018). 

The precise mechanism through which each K13 mutation confers artemisinin resistance is unknown, 

however, parasites with K13 mutations (K13mut parasites) exhibit an upregulation in the unfolded 

protein cell stress response (Mok et al. 2015). Consequently, it is likely that K13mut parasites may be 

able to better resist the impact of drug damage on cellular function. 

The phenotype exhibited by drug resistant parasites is associated with a decreased clearance rate, 

which ultimately increases the probability that treatment failure occurs. Treatment failure can broadly 

be considered in three forms, each of which affords different degrees of transmission advantage to 

the resistant parasite. The first is that the uncleared parasite population increases in density triggering 

an additional symptomatic fever, often referred to as a late clinical treatment failure (Slater et al. 

2016). The second occurs when uncleared parasites trigger a longer asymptomatic infection leading 

to a late parasitological failure. Lastly, resistant parasites that are successfully cleared by treatment 

are likely to have been cleared some days after a wild type parasite would have been cleared, which 

is referred to as slow parasite clearance. Although slow parasite clearance is not considered a 

treatment failure based on a 28-day follow up assessment of parasitaemia, each outcome results in 

an increased duration of infection for the resistant parasite, which increases the probability that a 

resistant parasite may be onwardly transmitted to a mosquito.  

Artemisinin resistant parasites are also afforded increased transmission potential resulting from the 

effect of artemisinin on parasite gametocytes. Gametocytes mature over a 10-12 day period and are 

dependent on the size of the asexual parasite population (Bruce et al. 1990), with evidence that there 

is a delay from emergence of blood-stage parasites to onward infectivity (Ross et al. 2006a). Timing of 

sexual commitment is the result of a number of factors not limited to the balance between asexual 

parasite density (Smith et al. 2000), within host parasite genetic diversity (Bousema et al. 2008; 

Sowunmi et al. 2009) and human host factors such as anaemia and immunity (Sowunmi et al. 2009; 

Carter et al. 2013). In addition, the resultant sex ratio formed have been suggested to optimise the 

transmission strategy of the parasite (Paul et al. 2002), with gametocyte sex ratios typically female 

biased, but with increased male ratios occurring between different parasite clones, in the presence of 

competing clones (Ranford-Cartwright et al. 1993; Reece et al. 2008), throughout the course of an 

infection (Paul et al. 2000) and differing across geographic regions (Robert et al. 1996, 2003) and 
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timings within a transmission season (Sowunmi et al. 2008). There is evidence, however, that drug 

resistant strains, due to their comparatively lower parasite densities (Reece et al. 2010), commit to 

sexual stages earlier and exhibit increased male sex ratios (Bell et al. 2012). In addition, drug resistant 

parasites, in the presence of drugs, have been observed to have increased gametocyte carriage 

compared to wild type parasites (Lin et al. 2018). Consequently, artemisinin resistant strains may be 

more likely to be onwardly transmitted within a recently treated infection. In addition, artemisinin-

derivatives have been shown to have transmission-blocking activity on K13 wild type (K13WT) parasites 

through the selective targeting of exflagellation (Delves et al. 2012; Nair et al. 2018). K13mut field 

isolates that exhibit decreased clearance rates by dihydroartemisinin (DHA) have also shown 

resistance to the impact on exflagellation rates (Lozano et al. 2018). These findings, combined with 

the increased commitment to sexual stages and the proteomic evidence of the K13 protein in 

gametocytes (Lasonder et al. 2016), suggest that K13 mutations may have a role both in mature 

gametocyte stages and in increasing the probability of transmission to the mosquito.  

P. falciparum parasites have also exhibited evolution to evade the immune system of mosquitoes, 

enabling successful infection and subsequent onwards transmission. There are more than 70 different 

Anopheles species worldwide that enable P. falciparum transmission (Sinka et al. 2012), which have 

resulted in the evolution of specific parasite-vector adaptations that afford different degrees of 

compatibility between the parasite and vector (Molina-cruz and Barillas-mury 2014). For example, a 

strain of P. falciparum, Pf NF54, originating from Africa has been shown to be ineffective at infecting 

An. albimanus (Baton and Ranford-cartwright 2012), which is an important malaria vector within 

central America (Sinka et al. 2010). Similarly, isolates of P. falciparum originating from South-East Asia 

have been shown to effectively infect An. stephensi, which is a major vector in India, however they 

are less effective at infecting An. gambiae. Recent evidence has shown that the mosquito immune 

system has selected for different Pfs47 haplotypes of P. falciparum, each of which is adapted to the 

global distribution of Anopheles mosquitoes (Molina-Cruz et al. 2015). Importantly, the Pfs47 protein 

is expressed on the surface of female gametocytes. This method of expression may enable a route by 

which male gametocytes of an invading P. falciparum strain, which are not adapted to the local vector 

population, can evade the immune system of the mosquito and fertilise a local female gametocyte. 

This situation may arise naturally if a human coinfected with both an invading K13mut strain and a local 

K13WT strain is treated with an ACT, with the artemisinin component sterilising K13WT male 

gametocytes more substantially than K13mut parasites. 

Here, I fit statistical models to data comparing the transmission capabilities of one K13mut isolate versus 

a geographically-matched K13 wild type (K13WT) isolate to estimate the impact that artemisinin has on 

the ability of the parasite to transmit to mosquitoes. Estimated parameters governing the relative 
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fitness costs associated with K13 mutations and the decreased sensitivity to artemisinin are 

incorporated into the transmission model developed in chapter 5, with extensions to incorporate the 

adaptation of parasites to different populations of mosquitoes. Through simulating a range of 

epidemiological settings I test whether artemisinin resistance confers an additional selective 

advantage in terms of local adaptation through the decreased impact of artemisinin on sexual stages 

of the parasite.  

6.2. Methods 

6.2.1. Standard Membrane Feeding Assays 

Asexual blood stage parasites and gametocytes were cultured using a previously described method 

(Delves et al. 2016) with the following modifications. Asexual blood stage cultures were maintained in 

asexual culture medium (RPMI 1640 with 25mM HEPES (Life Technologies), 50 µg L-1 hypoxanthine 

(Sigma), 5% A+ human serum (Interstate Blood-Bank) and 5% AlbuMAX II (Life Technologies)). 

Gametocyte cultures were maintained in gametocyte culture medium (RPMI 1640 with 25mM HEPES 

(Life Technologies), 50 µg L-1 hypoxanthine (Sigma), 2 g L-1 sodium bicarbonate (Sigma), 5% A+ human 

serum (Interstate Blood-Bank) and 5% AlbuMAX II (Life Technologies)).  

Gametocytes were induced and maintained as mentioned above. At day 14 post induction, 

gametocytes were spun down at 38°C and resuspended in 5ml of suspended animation buffer (SA) 

(Nijhout and Carter 1978). Gametocytes were purified using magnetic-activated cell sorting (MACS) 

before being resuspended in gametocyte medium including 25x106 fresh red blood cells. 

Dihydroartemisinin (DHA) was added to ensure the desired end concentration within a 10ml 

gametocyte culture. DHA was again added after 24 hours to give a double-dosing regimen within a 48-

hour period. After 48 hours, human serum and fresh blood were mixed with the parasite culture 

before being fed to adult Anopheles stephensi mosquitoes using a 3D printed feeder (Witmer et al. 

2018).  

6.2.2. Oocyst counts and size 

On day 10, mosquitoes were dissected and midguts stained in 0.1% Mercurochrome before being 

inspected using a 10x magnification to count oocysts. To measure oocyst size, midguts of Anopheles 

stephensi fed on P. falciparum-infected blood were dissected and fixed with 4% formaldehyde, 

permeabilized with 0.1% Triton X-100 for one hour, blocked with 3% BSA for 30 minutes and stained 

with 1ug/ml in DAPI for 3 minutes. Midguts were washed with 1xPBS and mounted in Vectashield. 

Images were acquired on a Nikon Ti Eclipse inverted fluorescence microscope. Images of P. 
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falciparum-infected midguts were captured using Z-stack imaging and processed in ND processing 

using the Maximum Intensity Projection. Oocysts were automatically detected using Automated Spot 

Detection based on the intensity of the oocysts compared to midgut cells (NIS-Elements) and the 

prevalence and intensity of oocysts recorded.  

6.2.3. Statistical Modelling of Oocyst Intensity and Prevalence 

To assess the impact of artemisinin on the ability of each parasite line to form oocysts, I used 

generalised linear mixed effects models in order to incorporate data from different experimental 

replicates within the same modelling framework. These models have previously been used to model 

malaria transmission blocking interventions (Churcher et al. 2012b). We modelled either oocyst 

intensity or prevalence as the response with treatment (DHA concentration) included as a fixed effect 

and 0µM DHA represented by control groups treated with DMSO. The parasite line treated (K13WT or 

K13mut) was included as a fixed effect to assess the differential impact of artemisinin on transmission 

success. The impact of treatment between experimental replicates was allowed to vary at random 

between replicates. A logistic regression (binomial error structure) was used to model the prevalence 

of mosquito infection, i.e. the presence or absence of oocysts, and a zero-inflated negative binomial 

distribution was used to model the intensity of infections, i.e. the numbers of mosquito oocysts 

(Blagborough et al. 2013). 95% confidence interval estimates were generated for the impact of drug 

concentration by bootstrapping methodology with 100,000 replicates. 

6.2.4. Transmission modelling of male gametocyte sterilisation 

Using the results from the statistical models, I extended the transmission model developed in chapter 

5 to incorporate the effects of artemisinin on the development of male gametocytes and subsequent 

oocyst formation. Previously in the model, two parasite barcodes would be sampled from an infected 

individual if a feeding mosquito was infected by the individual. The barcodes are chosen based on 

their relative parasite densities, which we define as 𝑐 = {𝑐1, 𝑐2…𝑐𝑛}, where 𝑛 is the total number of 

parasite strains in the individual and 𝑐𝑖 is the infectiousness of parasite strain 𝑖 to the mosquito. In 

accordance with the laboratory data, parasites that are resistant are assumed to have fitness costs 

that reduce their parasite density, which reduces their probability of being passed on to a mosquito. 

As in chapter 5, fitness costs are multiplicative with a fitness cost associated with each locus in the 

parasite barcode that confers a resistance phenotype. The resultant probability vector for each 

parasite strain being sampled is given by 𝑐𝑟 = {𝑐1𝑟1, 𝑐2𝑟2…𝑐𝑛𝑟𝑛}, where 𝑟𝑖 is the fitness cost 

associated with parasite strain 𝑖.  
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To incorporate the effects of male gametocyte sterilisation, I adapted this process to consider the first 

barcode sampled from the infected individual to be the female gametocyte and the second to now be 

the male gametocyte. Female gametocytes are still sampled at random with probability 𝑐𝑟, whereas 

male gametocytes are sampled using an adapted probability vector, 𝑐𝑟𝑚𝑎𝑙𝑒  given by: 

𝑐𝑟𝑚𝑎𝑙𝑒 = 𝑐𝑟𝑠 

Where 𝑠 = {𝑠1, 𝑠2…𝑠𝑛} and 𝑠𝑖 is the potential sterilising effect of artemisinin on strain 𝑖, which 

incorporates the effect of artemisinin on developing male gametocytes and is given by: 

𝑠𝑖 = {

1, 𝑖𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑏𝑒𝑒𝑛 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑎𝑟𝑡𝑒𝑚𝑖𝑠𝑖𝑛𝑖𝑛 𝑖𝑛 𝑙𝑎𝑠𝑡 12 𝑑𝑎𝑦𝑠 

1, 𝑖𝑓 𝑠𝑡𝑟𝑎𝑖𝑛 𝑖 𝑖𝑠 𝐾13𝑚𝑢𝑡𝑎𝑛𝑑 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑎𝑟𝑡𝑒𝑚𝑖𝑠𝑖𝑛𝑖𝑛 𝑖𝑛 𝑙𝑎𝑠𝑡 12 𝑑𝑎𝑦𝑠

𝑠, 𝑖𝑓 𝑠𝑡𝑟𝑎𝑖𝑛 𝑖 𝑖𝑠 𝐾13𝑊𝑇  𝑎𝑛𝑑 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑎𝑟𝑡𝑒𝑚𝑖𝑠𝑖𝑛𝑖𝑛 𝑖𝑛 𝑙𝑎𝑠𝑡 12 𝑑𝑎𝑦𝑠

 

where 𝑠 is the degree of sterilisation exerted by artemisinin. The 12-day duration reflects that 

artemisinin is known to target immature gametocytes in stages I-III due to their metabolic similarity 

to asexual parasite stages (Kumar and Zheng 1990; Lelièvre et al. 2012). In addition, artemisinin has 

been shown to sterilise male wild type gametocytes, which causes mature male gametocytes exposed 

to artemisinin to not undergo exflagellation in the mosquito and fail to form oocysts (Lozano et al. 

2018). Consequently, an individual will only be infectious to mosquitoes after 12-days, with two days 

for artemisinin to clear and ten days for new mature gametocytes to be produced.  

To explore the impact of male gametocyte sterilisation on the speed at which an invasive K13mut 

parasite is able to invade a new population, I simulated a scenario of constant importation of a K13mut 

parasites with plasmepsin 2-3 duplications (referred to from here as K13mut/PLAmut parasite) into a 

region in which DHA-PPQ is the front-line ACT used. I assumed that 0.5% of new cases in the region 

were due to importations of double-mutant K13mut/PLAmut parasites.  

To incorporate the results of the SMFA statistical modelling, the number of oocysts formed from a 

bite varied depending on the resistance profile of the parasite strains in the infecting human, i.e. the 

mean number of oocysts formed from an individual with only resistant parasites is different than for 

an individual with wild type parasites. Similarly, the mean number of oocysts formed from a bite on 

an individual treated with artemisinin in the last 10 days was estimated from the findings of the SMFA. 

Lastly, we used a range of values for 𝑠 that include the mean estimated value from the SMFA as well 

as 0% sterilisation and 90% sterilisation as extreme cases to assess for the maximum predicted effect 

that could be associated with sterilisation of male K13WT gametocytes by DHA. Lastly, it is assumed 

that K13mut parasites commit to sexual stages 5 days earlier than K13WT parasites, resulting from 

increased transmission advantage that has been observed for resistant parasite strains in the absence 

of drug pressure (Mockenhaupt et al. 2005). 
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I simulated populations of 100,000 individuals for 120 years. The first 40 years reflect a period of 

“burn-in” ensuring an equilibrium is reached in simulations, before starting 80 years in which invasive 

K13mut/PLAmut parasites could be imported. I explore a range of different transmission intensities (EIR 

= 0.5, 0.75, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) and treatment coverages (fT = 30%, 50%, 70%). The population 

allele frequency of each locus and the frequency of each parasite strain was tracked and the time at 

which the 60-day mean population frequency of the double mutant increased reached 2.5%, 5%, … 

72.5%, 75% was recorded to give 30 measures of the speed of resistance invasion.  

6.2.5. Transmission modelling of parasite adaptation to vector populations 

To incorporate the role of parasite adaptations to local vector populations, I extend the parasite 

barcode to include an additional locus that confers the ability for ookinetes to successfully infect the 

local vector. Female gametocytes that do not possess this locus are assumed to be less capable of 

forming oocysts, with the probability that the ookinete will not develop into an oocysts given by 𝑝𝑉𝐴. 

For example, I draw the number of oocysts that will form from a transmission event from a zero 

truncated negative binomial distribution. For each oocyst that would be formed, I sample a female 

gametocyte with probability 𝑐𝑟 and a male gametocyte with probability 𝑐𝑟𝑚𝑎𝑙𝑒. If the female 

gametocyte does not possess the locus conferring local vector adaptation, the oocyst is assumed to 

have been formed with probability 𝑝𝑉𝐴. I used three values of 𝑝𝑉𝐴 (0.1, 0.5, 1.0), which were chosen 

to explore both the most likely value suggested from studies of Pfs47 (Molina-Cruz et al. 2015), as well 

as extreme values representing an absence of vector of adaptation (𝑝𝑉𝐴 = 1) and severe adaptation 

(𝑝𝑉𝐴 = 0.1). 

The locus associated with local vector adaptation represents the gene Pfs47, which is 151kb away 

from the gene for K13 (Molina-Cruz et al. 2015). Consequently, we have adapted our recombination 

model such that the probability of a recombination event occurring is no longer independent between 

all loci in the parasite barcode. Using estimates of the recombination rate equal to 13.5kb/cM (Miles 

et al. 2016) and Haldane’s mapping function (Haldane 1919) under the assumption of no interference 

we assume the probability of a recombination event happening between the locus encoding for 

artemisinin resistance and the locus encoding for local vector adaptation to be equal to 0.091 per 

meiosis event. For clarity we are assuming vector adaptation is encoded solely by the Pfs47 locus and 

that the locus is biallelic, i.e. it is adapted to the vector population or it is not. To explore this 

assumption, we also model the case where the locus conferring vector adaptation is not under genetic 

linkage with K13. The same population settings as previously described are simulated, with three 

values of 𝑝𝑉𝐴 (0.1, 0.5, 1.0) chosen to explore the impact of vector adaptation, with  𝑝𝑉𝐴 = 1.0 acting 

as a control, i.e. there is no parasite adaptation to local vector populations.  



149 

6.3. Results 

6.3.1. Transmission of field isolates with different K13 genotypes under DHA drug selection 

Two parasite isolates, a K13WT (ANL1) and a K13mut isolate (APL5G) with evidence of high rates of 

mosquito infection were selected for further assessment via SMFA. The APL5G isolate possessed both 

the C580Y K13 mutation as well as amplification of the plasmepsin 2-3 gene cluster conferring 

piperaquine resistance. For a given gametocyte density, APL5G parasites yielded lower mean 

intensities and prevalence of oocysts in the absence of DHA (DMSO) compared to ANL1 parasites, 

potentially suggestive of a fitness cost (Figure 6.1). A significant decrease in both the oocyst intensity 

(incidence rate ratio = 0.73, 95% CI: 0.66-0.80) and prevalence (odds ratio = 0.46, 95% CI: 0.41-0.52) 

of mosquito infection was observed for ANL1 with increasing drug concentration. However, APL5G 

parasites were less affected by DHA, with a non-significant decrease in oocyst intensity observed 

(incidence rate ratio = 0.84, 95% CI: 0.65-1.07). Increasing concentrations of DHA were predicted to 

significantly reduce oocyst prevalence for APL5G (odds ratio = 0.72, 95% CI: 0.56-0.96), however, this 

effect was significantly less than the effect on ANL1 parasites (Table 6.1). The decreased impact of 

DHA on the ability of the K13mut isolate to infect mosquitoes indicates that that the resistance 

mutation may afford a transmission advantage in the presence of DHA, which offsets the fitness costs 

observed in the absence of drug.  

 

Figure 6.1 Modelling of standard membrane feeding data.  Graphs show the oocyst intensity and infection 
prevalence of the K13WT isolate (ANL1) in blue and the K13mut isolate (APL5G) in red after exposure to DHA or 
DMSO. Points and whiskers on each plot show the mean and bootstrapped 95% CI for each replicate, with the 
predicted relationship and 95% CI shown with the trend line and shaded region. In the absence of DHA 
(DMSO), APL5G is predicted to produce significantly fewer oocysts and infections, whereas in the presence of 
DHA concentrations greater than 2μM DHA, the transmission potential of APL5G is comparable to ANL1. 
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Table 6.1 Effects of DHA on oocyst prevalence and intensity in different parasite lines 

  Prevalence of Infection  Oocyst Intensity* 

 Odds Ratio 95% CI p  Incidence Rate Ratios 95% CI p 

K13mut in the 
absence of DHA 

0.20 0.16 – 0.25 <0.001  0.17 0.13 – 0.23 <0.001 

DHA (μM): WT 
line 

0.46 0.41 – 0.52 <0.001  0.73 0.66 – 0.80 <0.001 

DHA (μM): K13mut 0.72 0.56 – 0.96 <0.001  0.84 0.65 – 1.07 0.069 

    
 

* Negative binomial overdispersion parameter: 
0.837 

6.3.2. Translating the impact of K13mut resistance in SMFA studies to transmission modelling 

In order to translate the results of the SMFA into parameters for the transmission model, I used the 

results from the mixed-effect model to predict the prevalence of mosquito infection in the absence of 

artemisinin and in the presence of 2µM DHA. 2µM DHA was chosen to reflect the most likely peak 

dose concentration of DHA produced within the recommended dosage prescribed by the WHO for 

DHA-PPQ (World Health Organization 2015a). The WHO recommends doses of 4.0 mg/kg/day for DHA 

when combined with PPQ. Using the molar mass for DHA as 284.352 g/mol and a molarity of DHA 

equal to 2µM, the estimated peak dosage is 568.704 ng/ml, which is comparable to the median peak 

concentration observed in pharmacokinetic studies of DHA when prescribed as part of DHA-PPQ 

(Jamsen et al. 2011; Rijken et al. 2011; Chotsiri et al. 2017). 

A significant reduction in the mean prevalence of infection in the absence of DHA is predicted between 

K13WT parasites (55.1%, 95% CI: 50.5% - 57.8%) and K13mut
 parasites (19.2%, 95% CI: 13.3% - 26.0%) 

(Figure 6.2). This finding suggests that the fitness cost associated with the K13mut/PLAmut genotype 

causes a 65.1% reduction in the onward probability of infection relative to wild type parasites in the 

absence of drug. This cost reflects the double mutant, which yields a comparative fitness of 79% for a 

single mutant under the assumption of a multiplicative fitness cost and an equal fitness cost associated 

with each resistance mutation. In addition, in the absence of DHA, a significant reduction in mean 

oocyst intensity is predicted in K13mut parasites (0.621, 95% CI: 0.32-1.22) compared to K13WT parasites 

(3.57, 95% CI: 1.87 – 6.85) (Figure 6.1a). Consequently, the mean number of oocysts that forms from 

an infection is described by a negative binomial with mean equal to 3.57 and dispersion parameter 

equal to 0.837 (Table 6.1). In onward infections originating from individuals only infected with K13mut 

parasites, the expected number of oocysts is first drawn from the described negative binomial 

distribution, before reducing the number of oocysts by 82.6% to a minimum of one oocyst. Oocyst 
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numbers are not reduced below one because the reduction in the probability of onwards infections is 

conferred by the earlier described fitness cost. 

 

Figure 6.2 Fitness costs associated with DHA-PPQ resistance. The results of the standard membrane feeding 

assays allow for fitness costs associated with resistance to be estimated. The graph shows the predicted 

prevalence of infection of the K13WT stain (ANL1) and the K13mut/PLAmut strain (APL5G). The relative reduction 

in probability of infection between ANL1 and APL5G in the absence of DHA (DMSO) is 62.7% and reflects the 

comparative reduction in parasite transmission probability, which is the assumed fitness cost on transmission 

associated with dihydroartemisinin-piperaquine resistance. No significant difference was observed in 

infection prevalence in the presence of DHA. 

In the presence of 2µM DHA, no significant difference was observed between K13WT parasites (20.6%, 

95% CI: 27.7% - 14.3%) and K13mut
 parasites (12.1%, 95% CI: 4.1% - 25.4%). Consequently, we assume 

that in individuals who are treated with DHA-PPQ in the last 10 days, K13WT parasites are as equally 

likely as K13mut parasites to contribute male gametocytes to any oocysts that form from the bite and 

thus the chosen value for the sterilisation of male wild type gametocytes, 𝑠, must offset the fitness 

cost introduced above. K13WT parasites were significantly less likely to cause infection at 2µM DHA 

compared to the DMSO control, with a mean reduction of 65%, which is subsequently incorporated 

as our chosen value for 𝑠. The Imperial College transmission model is already parameterised with 

respect to the reduction in onward contribution to infection of individuals who are treated after 

developing symptoms compared to clinical cases not treated. Clinical cases of infection have a mean 

probability of causing onward infection equal to 0.068 in untreated cases and 0.0219 in treated cases, 

which is a 67.8% reduction. This value falls within the 95% confidence interval for the percentage 

reduction in K13WT parasites and consequently the onward probability of infection from a treated 
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clinical case, 𝑐𝑇, is kept equal to 0.0219. The only modification made is thus the decreased relative 

probability that in onward infections male gametocytes contribute to any oocysts formed. This effect 

is hypothesised to lead to an increased transmission advantage for K13mut parasites in the presence of 

artemisinin, which is summarised in Figure 6.3. 

 

Figure 6.3 Hypothesis for population level advantage conferred to resistant parasites due to sterilisation of 

male wild type gametocytes by artemisinin. In (A) an individual is infected with a mix of wild type (K13WT) 

and artemisinin resistant (K13mut) parasites, and in (B) a similar individual has been treated with artemisinin, 

which has sterilised a number of K13WT male gametocytes indicated with crosses. In both infections there are 

significantly more K13WT parasites as well as a female biased sex ratio. 1) Gametocytes are taken up by a 

mosquito bite. In (C), a number of ookinetes form that are predominately the result of fertilisation of two 

K13WT gametes due to increased numbers of K13WT gametocytes. Ookinetes formed from a female K13mut 

gamete, however, are less likely to invade the mosquito and fail to form an oocyst indicated with the cross. 

In (D), fewer oocysts form due to the presence of artemisinin, however, the sterilisation of male K13WT 

gametocytes increases the probability that an oocyst is formed due to the fertilisation of a female K13WT 

gamete by a K13mut male gamete. 2) Oocysts burst releasing recombinant sporozoites. In (E), the majority of 

sporozoites are wild type, with only one-sixth of sporozoites produced being both K13mut and adapted to the 

local mosquito population. In (F), due to the decreased number of oocysts and increased chance of K13mut 

male gametes fertilising K13WT female gametes, one-third of sporozoites are both K13mut and adapted to the 

local mosquito population. 3) Sporozoites are introduced by an infectious bite and a fraction survive to reach 

the liver stage. In (G), no K13mut sporozoites have survived to yield an infection, whereas in (H), artemisinin 

resistance has successfully been introduced. 

6.3.3.  Modelled impact of male gametocyte sterilisation on speed of resistance invasion 

Modelling the invasive dynamics of a K13mut/PLAmut parasite was simulated by assuming the constant 

importation of a fixed percentage of K13mut/PLAmut parasites into a human population with no resistant 

strains of malaria. An example of a single realisation of this process is shown in Figure 6.4, which 
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highlights how recombination between imported resistant parasites leads to the development of a 

vector adapted PLAmut strain first, before recombining again with resistant parasites to cause the 

emergence and subsequent spread of a parasite strain that is both adapted to the local vector 

population and resistant to DHA-PPQ.   

 

Figure 6.4 Example invasive simulation setting. In a) the frequency of each allele tracked in a simulation is 

presented, showing that prior to the initiation of importation there are no resistant parasites and all strains 

are vector adapted. After importation, vector adaptation frequency falls before increasing again. This can be 

explained by examining in b) the time series of the strain lineage frequency. Importation of K13mut/PLAmut 

parasites occurs first (in purple) before recombining with vector adapted parasites to form vector adapted 

PLAmut parasites (in blue). The frequency of these parasites then subsequently falls due to recombination with 

invasive K13mut/PLAmut parasites to yield vector adapted K13mut/PLAmut parasites (in pink). 

To assess for the impact of male gametocyte sterilisation, the mean rate of emergence was compared 

between 100 simulation realisations under different assumed levels of sterilisation, including the 

value predicted from Figure 6.2. One realisation of this is shown in Figure 6.5, which compares the 

impact of sterilisation for the following parameter set: EIR = 1, treatment coverage amongst 

symptomatic infections = 70%, relative vector adaptation of resistant female gametocytes = 100% and 

genetic linkage between vector adaptation locus and K13. In this scenario, vector adapted 

K13mut/PLAmut parasites spread faster in the absence of sterilisation. This difference, however, is slight 



154 

and only occurs after at least 30 years. When comparing the 95% confidence intervals of the time for 

the frequency of vector adapted K13mut/PLAmut parasites to reach 2.5%, 5% … 72.5%, 75% in each 

sterilisation level, 34 of the 90 comparisons are significantly different. Each of the 34 significant 

difference occurs due to increased speed of resistance spread in simulations with lower sterilisation 

levels (i.e. in 0% sterilisation vs both 65% and 90% sterilisation, and in 65% sterilisation vs 90% 

sterilisation).   

 

Figure 6.5 Summarised frequency of vector adapted K13mut/PLAmut parasites at different assumed degrees 
of male gametocyte sterilisation. The graph shows the mean and 95% confidence interval of a 100 simulation 
realisations for the invasion and spread of vector adapted K13mut/PLAmut parasites for one parameter setting 
(EIR = 1, treatment coverage = 70%, relative vector adaptation of resistant female gametocytes = 100%, 
genetic linkage between vector adaptation locus and K13) after the importation of K13mut/PLAmut parasites 
after 20 years, which is shown with the dashed line. 

The same comparative approach was used for to assess for differences in the speed of resistance 

invasion across a range of transmission intensities, treatment coverages and assumed levels and 

linkage of parasite adaptation to local vectors. Overall, very little difference was observed when the 

assumed level of sterilisation changed (Figure 6.6). No differences were observed above an EIR = 3 or 

below an EIR = 1. Of the few differences observed, the majority occurred in the absence of parasite 

adaptation to local vector populations, with more differences observed when genetic linkage was 

assumed between the locus conferring vector adaptation and K13 (Figure 6.6b). Of the few significant 

differences observed overall, the speed at which resistant parasites invaded and spread was quicker 

in simulations with lower assumed sterilisation levels (398 significant comparisons) than in simulations 

with higher sterilisation levels (77 significant comparisons). 
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Figure 6.6 Impact of sterilisation, female gametocyte adaptation to local vectors, treatment coverage and 
transmission intensity on the speed at which K13mut/PLAmut parasites can invade a naïve population. 
Simulations for a given parameter set (EIR, treatment coverage and vector adaptation) were compared against 
the same parameter set at different levels of assumed male gametocyte sterilisation. Three sterilisation levels 
were explored (0%, 65% and 90%), with each sterilisation level compared against each other. The mean time 
taken for the 60-day mean frequency of vector adapted K13mut/PLAmut parasites to increase every 2.5% was 
recorded, resulting in a total of 90 comparisons (comparisons at 30 frequencies for 3 sterilisation levels). The 
number of comparisons for which a significant difference in the speed of invasion was observed is indicated in 
each plot tile. For each treatment coverage two columns are presented. The left column records the number 
of significant comparisons when the difference in emergence time is due to emergence occurring quicker in 
simulations with a higher sterilisation levels, indicated with s1 < s2. The opposite is shown in the right column, 
indicted with s1 > s2. The majority of simulations showed no impact of sterilisation on resistance invasion. 
Sterilisation had a marginally smaller impact when the locus conferring vector adaptation was assumed to be 
genetically unlinked, shown in a), compared to when the locus is assumed to be pfs47, shown in b). An 
explanation of the data shown in the plot is indicated for two parameter sets, which are highlighted in orange.  
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6.4. Discussion 

The emergence of artemisinin resistance in the GMS poses a threat to malaria control, with many 

concerned that resistance will spread to Africa and reverse recent reductions in malaria burden. For 

example, chloroquine resistance first emerged in 1957 in Thailand before spreading to Africa (Payne 

1987). By 1988, the vast majority of regions in sub-Saharan Africa had lost chloroquine as an 

efficacious antimalarial (D’Alessandro and Buttiëns 2001).  However, as the use of chloroquine 

declined, numerous field studies observed a clear fitness cost associated with K76T chloroquine 

resistance, which led to a reduction in the allele frequency causing an expansion of the wild type 

parasite (Laufer et al. 2010; Nwakanma et al. 2014). These fitness costs, however, were unknown 

when chloroquine was spreading throughout Africa, with early mathematical models of chloroquine 

resistance noting the absence of key parameters such as the cost of resistance (Koella and Antia 2003). 

The cessation of chloroquine use confirmed a fitness cost, however, this strategy is not feasible with 

emerging artemisinin resistance with all currently recommended antimalarial treatments for 

uncomplicated malaria reliant on artemisinin derivatives.  

In this study, SMFA were used primarily to assess for the differential impact of artemisinin on the 

transmission success of artemisinin resistant parasites. Using mixed effect generalised linear models I 

have shown a significant difference in the impact of DHA on the ability of K13WT and K13mut to infect 

mosquitoes. In the presence of concentrations of DHA reflective of normal DHA-PPQ dosage, the 

results demonstrate comparable infection prevalence between K13WT and K13mut isolates. In the 

absence of DHA, however, a significantly decreased probability of onwards transmission of K13mut 

parasites compared to K13WT parasites was observed, suggestive of a fitness cost associated with K13 

mutations. Consequently, the results suggest that K13mut parasites have an increased transmission 

advantage in the presence of DHA, which offsets the fitness costs associated with resistance, through 

their reduced sterilisation of male gametocytes by artemisinin compared to wild type parasites.  

The results of the SMFA study led to a hypothesis (Figure 6.3) that a selective advantage may be 

conferred by the reduced impact of DHA on the ability for K13mut to be onwardly transmitted 

compared to K13WT parasites. However, incorporating these findings within my adapted transmission 

model revealed that this effect does not cause a significant effect at the population level. Regardless 

of the assumed level of sterilisation, broadly similar speeds were observed for the rate at which 

invasive K13mut/PLAmut parasites were able to invade a previously susceptible population. This finding 

is similar to previous modelling studies that predicted that the addition of the gametocytocidal drug 

primaquine to treatment regimens affords no major gains in transmission reduction and offers little 

population-wide benefit.(Johnston et al. 2014) 
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No significant differences in the speed of resistance invasion were observed above an EIR = 3, with all 

settings leading to quick resistance invasion. Where differences were observed, resistance appeared 

to emerge slower when sterilisation was present. This may be due to sterilisation reducing the overall 

transmission intensity, which was shown in chapter 5 to cause resistance to spread quicker in higher 

transmission settings. In most parameter sets explored in Figure 6.5, for which any significant 

differences were observed, the differences occurred predominantly in one direction, i.e. more 

occurred in either lower or higher sterilisation levels.  However, in the 14 parameter sets for which 

more than 10 significant comparisons were observed in total, four had comparable numbers (based 

on 95% binomial confidence interval from the counts of significant comparisons) in both directions 

(Table 6.2). The results presented, when viewed collectively, are suggestive of an absence of any 

population level selective advantage conferred by the increased transmission chance of K13mut 

parasites in the presence of DHA. Any parameter sets that exhibited significant differences due to 

invasion occurring quicker in simulations with greater sterilisation are more likely representative of a 

Type 1 error, resulting from the large number of simulations and parameter sets explored with a 100 

simulation realisations per parameter set. This conclusion is also based on the lack of any clear 

directional pattern in the speed of resistance as sterilisation is assumed to increase. 

Table 6.2 Simulation sets with non-consistent impacts of sterilisation on resistance invasion 

Genetic 

Linkage 

Vector 

Adaptation 

Treatment 

Coverage 
EIR s1 < s2*+ s1 > s2 

No 50% 30% 1 0.58   (7/12) (95% CI: 0.32-0.81) 0.42   (5/12) (95% CI: 0.19-0.68) 

No 100% 50% 1 0.38 (20/53) (95% CI: 0.26-0.51) 0.62 (33/53) (95% CI: 0.49-0.74) 

Yes 50% 70% 1 0.63 (30/48) (95% CI: 0.48-0.75) 0.37 (18/48) (95% CI: 0.25-0.52) 

Yes 100% 30% 2 0.33   (4/12) (95% CI: 0.14-0.61) 0.67   (8/12) (95% CI: 0.39-0.86) 

* Number of significant differences in which speed of invasion was quicker in simulations with greater sterilisation. The 

opposite finding (quicker in simulations with lower sterilisation) is shown with s1 > s2 

+ 95% binomial confidence intervals  based on the number of observations representing successes of a binomial covariate 

A clear increase in the number of significant differences in speed of resistance invasion was observed 

when EIR was equal to 1 and 2. This finding likely reflects a transmission range in which the 

stochasticity in the chance of imported parasites causing onward infections is at its greatest while still 

ensuring eventual invasion. For example, at the lowest EIRs resistance failed to invade due to the low 

absolute number of resistant parasites being imported. An EIR equal to 0.75 in the simulated 

population of 100,000 individuals results in an average of 75,000 total infections in a year, which is 

205 infections/day. With an importation rate of 0.5% we would predict that 1 infection on a given day 

is due to an invasive resistant parasite. Given the individual heterogeneity in biting rates, it is likely 
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that these rare imported events will lead to the resistant parasite being introduced into an individual 

with a high biting rate who is thus likely to have multiple parasites already. However, the increased 

biting rate of the individual also causes a higher acquired immunity and they are subsequently less 

likely to develop clinical symptoms and seek treatment allowing the transmission advantage conferred 

by K13mut to be realised. Conversely, if the imported parasite was introduced into a low immunity 

individual who would develop symptoms, there is less chance that this individual would have been 

either infected with wild type parasites (thus enabling the transmission advantage to be realised) or 

bitten while still infectious due to their lower individual biting rate. A similar explanation can be used 

to explain the absence of differences at high transmission intensities. In increased transmission 

intensities, individuals are predicted to have higher acquired immunity and subsequently more cases 

of malaria will result in asymptomatic infection. The duration of an asymptomatic infectious period is 

significantly longer than a treated infection, which leads to an increased chance of causing an onwards 

infection. Consequently, at higher transmission intensities the invasion of resistant parasites largely 

occurs via onward infections from asymptomatic individuals and thus any transmission advantage 

conferred in treated individuals is insignificant compared to the amount of infections originating from 

the asymptomatic reservoir.  

There are a number of assumptions made in the transmission model, however, that may impact the 

findings of this study. Firstly, human immunity was assumed to be equally effective against both local 

parasites and the invasive resistant parasites. Immunity against severe malaria is well documented to 

be less geographically variant compared to immunity against uncomplicated malaria (Nielsen et al. 

2004), with IgG mediated protection shown to be able to be transferred from sera collected in West-

Africa adults to Thai individuals infected with P. falciparum (Sabchareon et al. 1991). An argument 

could be made that invasive parasites may lead to an increased chance of developing a fever and 

seeking treatment. This would be predicted to increase the opportunity for the transmission 

advantage of K13mut parasites to be realised. However, this would also likely decrease the rate at which 

resistance was able to invade if all imported cases were subject to treatment. This is because the 

results suggested in this study show that the majority of transmission in the population is due to 

asymptomatic infections. Consequently, if all imported strains triggered symptoms then there would 

likely be comparatively fewer asymptomatic infections with K13mut/PLAmut parasites compared to wild 

type parasites because DHA-PPQ is assumed to still achieve 28-day parasite clearance in 57.7% of 

infections (Witkowski et al. 2017). We have also assumed that the fitness cost associated with each 

mutant is the same, i.e. plasmepsin 2-3 gene amplifications have the same fitness cost as K13 

mutations. If, however, fitness costs were more heavily associated with PLAmut then we would likely 
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predict a slower rate of resistance invasion, reflecting the increased treatment failure associated with 

PLAmut compared to K13mut. 

Secondly, the modelling assumes there is no inter-species competition between malaria parasites in 

mixed infections. This was not directly examined in the SMFA data, with mosquito infections produced 

by feeding on parasite cultures that were either K13WT or K13mut, as opposed to a mixed culture. The 

presence of inter-strain competition may lead to a reduction in resistant parasite stages further 

reducing the chance that invasive parasite strains are able to recombine with local vector populations. 

Thirdly, we do not explicitly track parasite densities, with drug failure based on fixed probabilities 

dependent on the genotype of the parasite and the probability of onward infection of a given strain 

dependent on the strain’s infection stage, human immunity and the results based on the SMFA data. 

This process does not thus include a complete PK-PD model, which would introduce an additional 

source of stochasticity resulting from the high variance observed in both drug absorption and parasite 

clearance rates (Johnston et al. 2014). This simplification may limit our modelling approach in its 

suitability to detect rare events that lead to resistance emerging earlier in particular settings. Lastly, 

the An. stephensi mosquitoes used in the SMFA were from a laboratory reared strain. The parasite 

strains chosen for further analysis by SMFA were the result of strains selected from an open-lab trial 

at 15 sites in 10 countries that were able to be successfully adapted to gametocyte cultures, which 

included the ANL1 K13WT and APL5G K13mut strains (Ashley et al. 2014). Although the strains were 

geographically-matched, the different affinities for each strain to be adapted in laboratory conditions 

and infect the chosen mosquito strain may be the cause of the observed fitness cost. The difference 

in infection prevalence in the absence of DHA may thus not be observed in natural infections or with 

a different vector. Consequently, follow up experiments that both explore the possibility of inter-

species competition and the transmission capabilities of the two strains within a range a mosquito 

lines are warranted.  

The results of the transmission modelling resulted in the rejection of the hypothesis suggested by the 

SMFA results that artemisinin resistance increases the speed with which invasive resistant lineages 

can invade susceptible populations. These results do, however, increase our understanding of the 

transmission phenotype associated with artemisinin resistance. For example, the results from the 

SMFA are to my knowledge the first to directly measure the fitness costs associated with artemisinin 

resistance at the transmission level, i.e. how fitness affects the ability for parasites to successfully 

infect mosquitoes. In contrast to this study, a number of studies have measured the in vitro fitness 

costs affecting asexual parasites with artemisinin resistance (Hott et al. 2015). These approaches often 

use competition assays or analysis of growth curves of naturally occurring K13mut isolates (Tirrell et al. 

2019) or K13mut parasites resulting from genome editing to investigate the specific costs associated 
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with particular mutations (Nair et al. 2018). This can lead to comparative fitness ranks to be drawn 

between parasite strains and the use of CRISPR-Cas9 gene editing can be hugely informative for 

assessing if specific mutations, such as K13mut, confer benefits that could explain the increased 

selection observed of this strain. These styles of studies, however, do not allow for any measured 

fitness cost to be suitable for inferring how these parasite strains differ in their transmission success.  

This fitness cost is of significant importance and enables transmission modelling studies to 

characterise how this fitness cost alters the predicted speed at which resistance may spread. Previous 

modelling studies have highlighted how the specific predictions made are ultimately heavily 

dependent on this fitness costs, which has limited the use of transmission modelling in resistance 

forecasting (Koella and Antia 2003). However, we are able to address this limitation in our study and 

use the developed transmission model to answer other questions. For example, the simulations 

conducted can be used to confirm previous modelling predictions that resistance spreads quickest 

under increased treatment coverage (Figure 6.7). Consequently, although our original hypothesis was  

 

Figure 6.7 Speed of resistance invasion is faster under higher drug pressure. The graph shows the 
mean and 95% confidence interval of a 100 simulation realisations for the invasion and spread of 
vector adapted K13mut/PLAmut parasites in a transmission setting within an EIR = 2 and no assumed 
genetic linkage between K13 and the loci responsible for vector adaptation. The speed at which 
vector adapted K13mut/PLAmut parasites invade the local population is greatest in areas with higher 
treatment coverage. In this parameter set, the assumed level of male gametocyte sterilisation and 
the degree of adaptation of the parasite to the local vector population has only a marginal impact 
on the speed at which resistance invades, which is observed only in the highest treatment settings. 
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shown to not be correct from the transmission modelling, the incorporation of results from laboratory 

experiments within the transmission model has been shown to be a useful tool for testing how a 

selective advantage at the within host level may not always translate to one within the population.  

6.5. Conclusion 

In this chapter I have extended the transmission model again, building on the inclusion of resistance 

in chapter 5 to explore how artemisinin resistance may confer additional selective advantages at the 

transmission stages of the parasite’s life cycle. This extended model was parameterised using results 

from standard membrane feeding assays conducted by collaborators in the Department of Life 

Sciences at Imperial College London. Their experimental set up explored the different oocyst intensity 

and prevalence of two parasite strains (a wild type and a DHA-PPQ resistant strain) in the presence 

and absence of DHA. I used mixed effect generalised linear models to account for clustering in their 

experimental replicates, which revealed a significant decrease in oocyst intensity and prevalence for 

the K13mut/PLAmut parasite in the absence of DHA. This decrease was interpreted as the fitness cost 

associated with resistance, which was found to be offset by the significantly reduced impact of DHA 

on K13mut/PLAmut oocyst prevalence compared to the wild type parasite. These findings were 

incorporated in the transmission model to test the hypothesis that the observed transmission 

advantage in the presence of DHA results in an increased selective advantage for artemisinin 

resistance. The transmission modelling largely rejected this hypothesis, however, with marginal 

impact resulting from male gametocyte sterilisation. This finding is believed to result from the 

substantially longer duration of infection associated with an asymptomatic infection compared to a 

treated infection. Consequently, any transmission advantage only occurs within a small time window 

compared to the more likely route for invasive resistant parasites to spread from longer asymptomatic 

infections. Despite this “negative” result, I have shown how the developed transmission model can be 

adapted to address nuanced questions related to the differential transmission of different parasite 

genetic variants.  
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Chapter 7. Discussion 

 

The increasing interest in using malaria genetic approaches for operational surveillance will almost 

certainly lead to genetics being used for malaria control efforts. However, in what form this will take 

and how far away are we from that point is largely unknown and dependent on your definition of 

malaria genetics approaches. The identification of the molecular markers of antimalarial resistance 

has been used to validate clinical observations of treatment failures, which has driven decisions to 

switch first line antimalarials. These confirmatory uses of malaria genetics are a clear and undeniably 

valuable tool for assisting malaria control. However, a number of other uses have been suggested in 

a technical consultation proposed to the Malaria Policy Advisory Committee on the role of parasite 

genetics in optimising responses by national programmes (Noor and Ringwald 2018). Although malaria 

genotyping has been shown to be informative of malaria transmission in some settings (Daniels et al. 

2015), the harder question is how useful will these approaches be and what else do we need to know 

before we can rule on the effective uses of parasite genetics.  

Mathematical models of malaria transmission models have been used extensively in the last 10 years 

to evaluate the benefit and use cases for a number of malaria control interventions. Evaluating the 

role that parasite genetics could have should be no different. However, the complexity of the 

processes that shape parasite genetic diversity coupled with the recentness of interest in parasite 

genetics has led to transmission models of malaria genetics being largely unexplored. In this thesis, I 

have addressed this absence, building new models and applying those models to show the breadth of 

questions that can be answered using transmission models while also highlighting the areas that 

warrant further research. In this discussion I summarise the findings of my thesis before reviewing the 

limitations and future directions of my work on modelling parasite genetics.  

7.1. Summary of findings 

In chapter 2, I extended my previous model of pfhp2 gene deletions to address the potential for biased 

estimates of the prevalence of pfhrp2/3 deletions to be made when sampling at different times in a 

transmission season (Watson et al. 2019b). This work was undertaken to highlight that the proposed 

8-week interval listed in the WHO guidance on pfhrp2/3 surveillance to national malarial control 

programmes should be considered with an awareness of how seasonality in transmission will affect 

estimates. I predict that highly seasonal settings are more susceptible to systematic variations in the 

observed prevalence of pfhrp2/3 deletions. This is due to the increased probability of an individual 

being only infected with pfhrp2/3 deleted parasites at the beginning of a transmission season. 



163 
 

Estimates made during this time are likely to overestimate the percentage of cases that would be 

misdiagnosed throughout the transmission season. This may lead to a premature switch to a less 

sensitive diagnostic that causes more malaria cases to be misdiagnosed. To highlight this, I created an 

online database that explores the potential bias for each level one administrative region in sub-

Saharan Africa to help guide control programmes implementing the WHO sampling scheme.  

In chapter 3, I moved away from the model used for pfhrp2 deletions. The model of pfhrp2 deletions 

was purpose-built for modelling pfhrp2 deletions and was consequently cumbersome for modelling 

more nuanced representations of parasite genetics. This chapter introduced an extended version of 

the Imperial College transmission model that is capable of simulating parasite genetics. Attention was 

placed on ensuring biological realism throughout and as such many factors omitted from previous 

modelling efforts were included. These included modelling mosquitoes at the individual level, which 

allows the full parasite life cycle to be tracked and recombination to be explicitly captured. Parasite 

densities were modelled indirectly by associating parasite strains with the predicted infection course 

for the human in the absence of future reinfections. The cotransmission of multiple parasite strains 

from one infectious bite was included and shown to be necessary when reproducing the relationship 

between age and the complexity of infection. Using these relationships, the percentage of sporozoites 

that survive from an infectious bite was estimated to be equal to 20%. With this parameter fitted, the 

model was used to show how simple population genetic predictions can be made using the model. 

Lastly, I characterised the contribution of both superinfection and cotransmission events towards 

parasite genetic diversity within hosts, estimating that in settings with than 11.5% malaria prevalence 

by PCR, the majority of genetic variation within hosts is generated through superinfection events.  

The parameterised model developed in chapter 3 was used to explore how parasite genetics could be 

used for surveillance purposes. The genetic barcode used to model parasite genotypes allows 

sufficient neutral genetic variation to be simulated, which allows estimates of multiple genetic metrics 

to be produced from the model. The relationship between six genetic metrics and malaria prevalence 

was characterised and the statistical power of each metric for detecting changes in malaria prevalence 

in response to the scale up of malaria prevalence estimated. To demonstrate how parasite genetics 

could be operationally used, I built an ensemble statistical model that uses summary parasite genetic 

metrics to predict current malaria prevalence. This exercise was conducted to show how the 

differences in the metrics could be combined to accurately predict malaria prevalence, as well as to 

highlight the importance in ensuring that sample metadata, such as the age and clinical status of the 

individuals contributing parasite samples, is made available as standard. The exercise is hoped to also 

delineate how parasite genetics could be used and to guide continued efforts in harnessing parasite 

genetics for inferring transmission intensity and evaluation intervention campaigns. 
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In chapter 5, I adapted the transmission model to simulate antimalarial resistance. By changing the 

information represented in the parasite genetic barcode, the resistance phenotype of parasite strains 

can be evaluated and used to infer treatment outcomes. The model was used to explore whether 

current drug treatment strategies can be improved to prevent the continued spread of resistance. I 

focussed on the spread of resistance, as opposed to the earlier stage of resistance emergence, to 

explore whether the same conclusions about drug treatment strategies are made. Three drug 

treatment strategies were explored, comparing multiple first line therapies against the current 

strategy of cycling first line antimalarials when they begin to fail. I predicted that multiple first line 

therapies are not superior to cycling at slowing the spread of resistance. Additionally, cycling of 

antimalarials can be improved by reducing the overprescription of antimalarials through the 

presumptive treatment of non-malarial fevers. The benefit of increasing diagnostic testing of non-

malarial fevers is characterised, predicting a significant benefit conferred when increasing diagnostic 

testing in settings above an EIR greater than 3 (PCR prevalence ~ 17.5%). Lastly, I demonstrate how 

multiple first line therapies can be improved by increasing the number of available artemisinin 

combination therapies. This creates a significant evolutionary barrier to the parasite due to the 

difficulties in acquiring resistance to multiple drugs and the compounded fitness costs associated with 

possessing mutations in multiple genes.  

In the final results chapter, I continued modelling antimalarial resistance but focussed on the 

mechanisms by which resistant parasites may invade new populations. This work was in collaboration 

with a parasitology group at Imperial College investigating the impact of sterilisation of male parasite 

gametocytes by artemisinin. I used mixed-effects generalised linear models to show that artemisinin 

significantly reduces the ability of wild type parasites to form oocysts and infect mosquitoes. 

Artemisinin was found to have a significantly smaller impact on the ability of resistant parasites to 

form oocysts, which offsets the fitness costs associated with resistance in the absence of artemisinin. 

These results were incorporated into an extended version of the transmission model developed in 

chapter 5 to characterise if the transmission advantage conferred to resistant parasites in the 

presence of artemisinin confers a population level selective advantage. I predict that the reduced 

impact of artemisinin on the transmission of artemisinin resistant parasites does not confer a 

significant population-level transmission advantage. This finding was robust to changes in 

transmission intensity, treatment coverage, the degree of sterilisation by artemisinin and assumptions 

about local parasites being adapted to the local vector population. The parameter estimates for the 

fitness costs associated with resistance, however, are an invaluable asset to resistance modelling 

efforts and can be used in the future for more accurate predictions from resistance modelling studies.  
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7.2. Limitations and Future Directions 

The majority of results presented in the thesis are based on mathematical modelling of the 

transmission dynamics of malaria parasites. Consequently, the findings need to be viewed in the 

context of the assumptions and limitations of the model. This critique will also be made in light of the 

available data for parameterisation efforts, highlighting where the modelling could be developed in 

the future. 

The original model of pfhrp2 gene deletions has been used to characterise the drivers of selection for 

pfhrp2 deletions and was able to reproduce how the frequency of deletions in the Democratic 

Republic of Congo varies across transmission settings and within a transmission season. However, one 

area of weakness is the incorporation of pfhrp3 deletions. In the original study, the role of PfHRP3 

epitopes in triggering a positive PfRHP2-based RDT result was included by assuming that false-negative 

HRP2-based RDTs still occur in 25% of HRP2-/HRP3+, which was based on earlier estimates of the 

impact of parasite density on HRP3 cross reactivity (Baker et al. 2005). In the last 2 years, the literature 

surrounding the cross reactivity of HRP3 has developed, suggesting that the 25% chosen may be too 

low, with evidence that HRP2-/HRP3+ infections >1000 parasites/µL are more likely to yield a positive 

RDT (Beshir et al. 2017). Moving forward, it seems increasingly likely that future studies will require 

the frequency of pfhrp3 gene deletions to be also modelled. Sensible parasite densities will also need 

to be included to reflect the chance that an individual infected with HRP2-/HRP3+ parasites will yield 

a positive RDT, with clinical cases caused by HRP2-/HRP3+ parasites almost certain to be detected 

given the parasite densities usually associated with symptomatic infection being above 1000 

parasites/µL (Kitchen 1949). Non-malarial fevers, however, were the largest driver of pfhrp2 deletions 

in my earlier study. A recent systematic review of parasite densities would suggest that many 

asymptomatic infections would fall under 1000 parasites/µL (Slater et al. 2019). Consequently, I would 

predict that the treatment seeking rates in Africa would cause individuals who are HRP2-/HRP3+ to 

have only a modest effect on slowing selection of HRP2-. However, it will likely still ensure that 

symptomatic malaria cases are not misdiagnosed, assuming they have presented at clinic prior to their 

parasite density falling below 1000 parasites/µL. The model developed in chapter 2 will likely be 

insufficient to accurately capture all the dynamics above and any future pfhrp2/3 deletion studies I 

conduct will likely adapt the model developed in chapters 3 to 6.  

Although the transmission model developed in chapter 3 involved considerable extensions to enable 

parasite genetics to be modelled, there were very few new parameters introduced. This was entirely 

by design. Considerable effort has been undertaken by researchers at Imperial College to 

parameterise the model (Griffin et al. 2010, 2014, 2015). Although computational running time of my 
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model is sufficiently fast, the additional complexities from including individual mosquitoes and 

parasite populations does hinder computational performance, which would make conducting a full 

parameter fitting exercise costly. However, it was something that was considered numerous times, 

most noticeably in reference to the immunity component, 𝐼𝐷. The Imperial College transmission 

model does not explicitly model parasite density, but models how 𝐼𝐷 alters the probability that an 

asymptomatic infection will be detected by microscopy. One reason for this is that there was no need 

to do so, with the model parametrised to malaria prevalence data using microscopy detection as well 

as clinical incidence data. However, in my model I wanted to include a better representation of the 

likely parasite densities. This was something I wanted to capture as it shapes many of the results 

presented in this thesis. For example, in chapter 3, I estimated the percentage of sporozoites that 

survive to found liver stage infections. This parameter modifies the mean COI by allowing more 

parasite strains to be introduced. However, translating my model estimated COI to the COI that would 

be estimated from an equivalent individual in the field is something I am still largely unsure of. For 

example, below what threshold will a parasite strain not contribute to recorded SNP frequencies from 

Sequenom genotyping? Will all minor clones be detected, or will some be sequestered at the time of 

sampling? Will some minor clones be attributed to sequencing error? From my model I am able to 

observe the true COI, however, it is unclear how this translates to observed COI from methods like 

THE REAL McCOIL. In my model fitting I made different assumptions about whether subpatent strains 

would be detected given the improved detection sensitivities of molecular methods compared to 

microscopy. These were then validated by bringing in data from msp2 based estimates of COI to give 

increased confidence to the estimated parameter. However, given that I track the time at which a 

parasite strain is acquired, whether it triggered a symptomatic infection and at what time it will 

become subpatent I feel the model could be extended to further capture the realism of within host 

parasite densities.  

Within host parasite densities were a common area of uncertainty and it still remains unclear to what 

extent inter-strain dynamics occur. The model assumes that individuals in state D are unable to be 

superinfected, due to the short lived interferon response from the current infection preventing 

immediate superinfection events (Recker et al. 2011). However, how parasites associated with 

asymptomatic infections both moderate new infections and impact within host parasite densities is 

largely unknown. Studies showing how asymptomatic infections do not affect the probability of being 

clinically infected conclude that it is more likely that the specific var gene expression of previous 

infections is more likely to determine if a new infection will trigger a symptomatic infection (Buchwald 

et al. 2019). The obvious extension to include this would involve using a section of the parasite barcode 

to track var type expression and include parameters detailing the rate of antigenic switching, which is 
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the approach used in the Intellectual Ventures model (Eckhoff 2011b) and other models investigating 

how antigenic variation is related to transmission intensity (Holding et al. 2018). However, this is a 

very different model of immunity acquisition to the purely exposure driven immunity that the Imperial 

College transmission uses and would require immunity to be rewritten. Given the model is still able to 

capture the relationships between COI and age in chapter 3 this does not seem necessary. Instead, 

variant exposure could be tracked within an individual, which would describe the parasite var types 

that have resulted in the current overall acquired immunity and used to infer each parasite strain’s 

density. The inclusion of explicit parasite densities based on antigenic variants would also open the 

possibility for the model to be extended to include PK-PD modelling when determining clinical 

outcomes and related parasite density profiles during recrudescent infections. This is similar to a 

model variant used in OpenMalaria when considering within host parasite dynamics (OpenMalaria 

#892bd5). In any future work related to antimalarial resistance it would be good to include this 

approach, at the very least as a sensitivity analysis, to explore how more accurate PK-PD modelling 

changes conclusions made about the optimum treatment strategies. This would directly tie into the 

planned systematic review of studies exploring the treatment efficacy of each ACT on known parasite 

resistant genotypes, or at least in areas with equivalent studies that have measured resistance allele 

frequencies.  

7.3. Implications  

The results presented in the thesis have implications for the analysis and surveillance of parasite 

genetic variants. Most immediately, the results in chapter 2 were conducted in collaboration with 

members from the WHO. The findings of the study have now been considered in recommendations 

made to national malaria control programmes that were conveyed during a WHO organised workshop 

for African malaria control programs hosted in Zambia earlier this year. As more studies estimating 

the prevalence of pfhrp2/3 deletions are conducted in the near future, I will be able to evaluate the 

predictions and update the recommendations made accordingly.  

In chapter 3, I estimate the percentage of sporozoites that survive from an infectious bite, which adds 

to growing evidence that cotransmission of multiple parasite strains from individual bites occurs. 

Although there has long been evidence that multiple sporozoites are introduced in a bite, studies to 

assess the genetic relatedness of the sporozoites have only been conducted recently, with one of the 

first studies looking at polygenomic infections in Senegal (Wong et al. 2017). One reason this finding 

was suggested so recently is the difficulty in analysing polygenomic infections and being able to phase 

these samples to identify the individual haplotypes present. In the last 2 years, however, the 

development of statistical methods that are now capable of estimating COI (Chang et al. 2017), 
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identity by descent within samples (Schaffner et al. 2018) and phasing polyclonal samples (Zhu et al. 

2019) suggests that our understanding of the factors shaping parasite genetic diversity is increasing. 

These tools will be of particular importance if parasite genetics are to ever be used for operational 

surveillance and inferring transmission intensity. This is demonstrated in the results of chapter 4, 

which show the added information that can be gained when polyclonal samples are assumed to be 

able to be phased, rather than having to rely on calling the major haplotype ore relying solely on 

monoclonal samples.   

The results in chapters 5 have implications for the control of antimalarial resistance. For example, I 

predict that ensuring diagnostic testing is made available for all non-malarial fevers could lead to up 

to a 25% decrease in relative treatment failure over a 20-year period. Additionally, I predict that the 

use of multiple first line therapies does not confer significant benefits over the current strategy of 

cycling first line therapies for slowing the continued spread of antimalarial resistance. This is the 

opposite finding to a previous study that compared the two strategies for preventing the emergence 

of resistance. Emergence represents a different stage of resistance development and as such my 

results suggest that policy decisions should be made in light of the current resistance profile of a 

country, i.e. preventing emergence or limiting the spread of existing resistance. I will also be 

continuing these studies to examine the emergence of resistance in order to give a more complete 

overview of how treatment strategies should be optimised.  

Finally, the results in chapter 6 provide estimates of the fitness costs associated with resistance to 

dihydroartemisinin-piperaquine. Estimates of fitness costs are a rarity and consequently these results, 

along with the estimated difference in the impact of artemisinin on wild type and resistant parasite 

transmission, will be of use to the wider resistance community. These effects, however, were 

predicted to not impact the selection for resistance at a population level. This exercise highlights the 

importance of considering experimental results in the wider epidemiological context of an infectious 

pathogen. Additionally, this chapter provides a demonstration of how malaria transmission models 

that incorporate parasite genetics can be adapted to answer more nuanced questions about malaria 

epidemiology. 
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7.4. Conclusion  

The proposed technical consultation to the World Health Organisation on the role of parasite genetics 

in malaria surveillance will be reported on at one of the next meetings of the Malaria Policy Advisory 

Committee. The stage is certainly set for malaria parasite genetics - but in what capacity? One area I 

am confident that parasite genetics will be needed is to address emerging threats of resistance. For 

example, the guidance proposed by the WHO to survey for the prevalence of pfhrp2/3 deletions is a 

necessary study to understand its current spread and guide RDT research and development 

accordingly. Similarly, phenotype-genotype studies have helped identify molecular markers of 

emerging resistance, which allow us to understand its spread and predict the next best course of 

action. In this thesis, I have shown how mathematical models that incorporate parasite genetics are a 

useful tool for helping to guide these efforts, which have yielded direct impact to current malaria 

responses. However, I think conclusions about the role that genetics has to play in inferring malaria 

prevalence will be less clear as there are still many unknowns in the processes shaping neutral genetic 

variation. The results in this thesis are consequently hoped to contribute to our understanding of these 

processes and to characterise the areas that warrant further study. Despite these challenges, 

considerable methodological and statistical methods have been developed in the last two years that 

have substantially aided our understanding of the genetic diversity of P. falciparum. I would thus not 

be surprised if the outcomes of the consultation recommend parasite genetics to be used for more 

than just the study of resistance. If they do, I hope this thesis helps demonstrate the role that 

transmission modelling of parasite genetics should have in these recommendations. 
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Abstract Ten countries have reported pfhrp2/pfhrp3 gene deletions since the first observation

of pfhrp2-deleted parasites in 2012. In a previous study (Watson et al., 2017), we characterised the

drivers selecting for pfhrp2/3 deletions and mapped the regions in Africa with the greatest

selection pressure. In February 2018, the World Health Organization issued guidance on

investigating suspected false-negative rapid diagnostic tests (RDTs) due to pfhrp2/3 deletions.

However, no guidance is provided regarding the timing of investigations. Failure to consider

seasonal variation could cause premature decisions to switch to alternative RDTs. In response, we

have extended our methods and predict that the prevalence of false-negative RDTs due to pfhrp2/

3 deletions is highest when sampling from younger individuals during the beginning of the rainy

season. We conclude by producing a map of the regions impacted by seasonal fluctuations in

pfhrp2/3 deletions and a database identifying optimum sampling intervals to support malaria

control programmes.

DOI: https://doi.org/10.7554/eLife.40339.001

Introduction
Diagnostic testing of suspected malaria cases has more than doubled in the last 15 years, with 75%

of suspected cases seeking treatment from the public health sector receiving a diagnostic test in

2017 (World Health Organization, 2018a). Much of this progress reflects the increased distribution

of rapid diagnostic tests (RDTs), with the most commonly used RDTs targeting the P. falciparum pro-

tein HRP2 (PfHRP2). In 2014, a review of published reports of pfhrp2/3 deletions was conducted and

included a critical assessment of the comprehensiveness of the diagnostic investigation.

(Cheng et al., 2014). The findings of this review highlighted a need for a harmonized approach to

investigating and confirming or excluding pfhrp2/3 deletions and called for further studies to deter-

mine the prevalence and impact of pfhrp2/3 gene deletions. Since that review, false-negative RDT

results due to pfhrp2/3 gene deletions have been reported in 10 countries in sub-Saharan Africa

(SSA) (World Health Organization, 2018b). The frequency of pfhrp2/3 deletions varies across SSA,
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with the highest burden observed in Eritrea where 80.8% of samples from Ghindae Hospital were

both pfhrp2-negative and pfhrp3-negative in 2016 (Berhane et al., 2018).

Mathematical modelling has predicted that the continued use of only PfHRP2 RDTs will quickly

select for parasites without the pfhrp2 gene (Gatton et al., 2017). This selection pressure occurs

due to the misdiagnosis of infections caused by parasites lacking the pfhrp2 gene, which will subse-

quently contribute more towards onwards transmission than wild-type parasites that are correctly

diagnosed due to the expression of pfhrp2. In 2017, we conducted an analysis of the drivers of

pfhrp2 gene deletion selection, identifying the administrative regions in SSA with the greatest

potential for selecting for pfhrp2-deleted parasites (Watson et al., 2017). The regions identified

were areas with both a low prevalence of malaria and a high frequency of people seeking treatment

and being treated on the basis of PfHRP2-based RDT diagnosis. The precise strength of selection,

however, is not known, with other factors such as the rate of non-malarial fevers and non-adherence

to RDT outcomes likely to impact the number of misdiagnosed cases receiving treatment.

In February 2018, the World Health Organization (WHO) issued guidance for national malaria con-

trol programmes on how to investigate suspected false-negative RDTs with an emphasis on pfhrp2/3

gene deletions. (World Health Organization, 2018c). The primary study outcome to be calculated

in the guidance is as follows:

ProportionofP: falciparum cases

with false�negativeHRP2RDT

resultsduetopfhrp2=3 deletions
¼

#of confirmed falciparumpatientswithpfhrp2=3
genedeletionsandHRP2RDTnegativeresults

#of confirmedP: falciparum cases

ðbyeitherRDTormicroscopyÞ

The guidance recommends that a national change to non PfHRP2-based RDTs should be made if

the estimated proportion of P. falciparum cases with false-negative HRP2 RDT results due to pfhrp2/

3 deletions is above 5%. If the estimated proportion is less than 5% the country is recommended to

establish a monitoring scheme whereby the study is repeated in two years if the 95% confidence

interval does not include 5%, or one year if it does include 5%. The 5% threshold approximates the

point at which the number of cases missed due to false-negative PfHRP2-based RDTs caused by

pfhrp2/3 deletions may become greater than the number of cases that would be missed due to the

decreased sensitivity of non PfHRP2-based RDTs. The guidance also specifies a sampling scheme to

be used when estimating the prevalence of pfhrp2/3 gene deletions. Samples are to be collected

from at least 10 health facilities per province to be tested, with sampling focussed on symptomatic

P. falciparum patients presenting at the health facilities. All samplings are to be ideally completed

within an 8-week period.

The 8-week interval permits for a rapid turnaround and allows for efficient investigations and pol-

icy responses. However, the timing of the 8-week interval chosen within a transmission season is

important. The chosen interval could lead to estimates of the proportion of P. falciparum cases with

false-negative HRP2 RDT results due to pfhrp2/3 deletions that are not representative of the annual

average proportion. Subsequently, any recorded estimate may not be predictive of the number of

cases that may be misdiagnosed due to pfhrp2/3 deletions in the years between sampling intervals.

For example, an overestimation of the annual average proportion of false-negative RDTs due to

pfhrp2/3 deletions could result in a switch to a less sensitive RDT, resulting in an increase in the num-

ber of malaria cases misdiagnosed if the annual average proportion of false-negative RDTs due to

pfhrp2/3 deletions is less than 5%. The alternative RDT may also be both more expensive and com-

plicated to implement. Similarly, an underestimation of the annual average proportion of P. falcipa-

rum cases with false-negative HRP2 RDT results due to pfhrp2/3 deletions would result in continued

use of an overall less effective test and could provide pfhrp2/3 deleted parasite populations an

opportunity to expand.

In response to these concerns, we extended our original methods (Watson et al., 2017) to char-

acterise the impact of seasonal variations in transmission intensity on the proportion of false-nega-

tive RDTs due to pfhrp2-deleted parasites. We present an extended version of our previous model,

which predicts that more false-negative RDTs due to pfhrp2 gene deletions are observed when

monoclonal infections are more prevalent, with the highest proportion observed when sampling
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from younger children at the start of the rainy season. We continue to assess how samples collected

within an 8-week interval can both over- and underestimate this proportion when compared to the

annual average, which reflects the monitoring scheme recommended by the WHO for follow up

studies if the outcomes of the original study are inconclusive. Lastly, we map the administrative

regions in SSA with the greatest potential for estimates of the proportion of P. falciparum cases with

false-negative HRP2 RDT results due to pfhrp2 deletions to be not predictive of the annual average.

In addition, we identify the optimum sampling intervals for each level one administrative region,

which are most representative of the annual average.

Results
Using our model, we first explored how the proportion of clinical cases only infected with pfhrp2-

deleted parasites varies throughout a transmission season. We recorded the proportion of clinical

cases that are PfHRP2-negative in four settings (a low and moderate transmission setting with both a

low and highly seasonal transmission dynamic), which had a starting pfhrp2 deletion frequency of

6%. 6% was chosen to reflect our previously estimated frequency of pfhrp2 deletions prior to the

introduction of RDTs in the Democratic Republic of the Congo (DRC) (Watson et al., 2017). We ini-

tially assumed that the frequency of pfhrp2 deletions was not increasing over time before consider-

ing scenarios in which the selective pressure for pfhrp2 deletions causes an increase in the

population frequency of phrp2 deletions. This decision allowed for the impact of seasonality on the

proportion of clinical cases that are pfhrp2-negative to be isolated, before allowing comparisons to

scenarios in which the proportion of clinical cases that are pfhrp2-negative is increasing also due to

changes in the population frequency of phrp2 deletions.

Our predictions suggest that the misdiagnosis of clinical cases due to pfhrp2-negative RDT results

is heavily dependent on transmission intensity (Figure 1). For the same population frequency of

pfhrp2 gene deletions (Figure 1Q–T), the observed proportion of clinical cases that are pfhrp2-neg-

ative is predicted to be higher in lower transmission settings (Figure 1I–P). The annual average pro-

portion of clinical cases that are pfhrp2-negative was equal to 5% and 3.25% in the low and

moderate transmission setting, respectively. This observation is attributable to the lower rate of

superinfection in low transmission settings. The lower rate of superinfection reduces the number of

polyclonal infections and increases the chance that an individual is only infected with pfhrp2-negative

parasites (Figure 1—figure supplement 1). When we considered scenarios with a selective advan-

tage for pfhrp2-deletions (Figure 1—figure supplement 2), the population frequency of pfhrp2

gene deletions increased over the two years observed (Figure 1—figure supplement 2Q–T) with a

corresponding increase in the proportion of clinical cases that are pfhrp2-negative (Figure 1—figure

supplement 2I–P).

An increased proportion of individuals only infected with pfhrp2 gene deletions is predicted to

occur at the beginning of the rainy season just before incidence starts to increase. During the rainy

season, the observed proportion of cases expected to yield a false-negative RDT due to pfhrp2-

deleted parasites (PfHRP2-negative) falls, with the lowest proportion observed after the end of the

rainy season. These dynamics are more pronounced in highly seasonal transmission regions

(Figure 1B, F, J, N, R, D, H, L, P and T). In the highly seasonal settings, the observed proportion of

clinical cases that are PfHRP2-negative is predicted to fluctuate above and below the 5% threshold

for switching RDT provided by the WHO (Figure 1J, L, N and P). Smaller fluctuations are seen in

less seasonal transmission regions (Figure 1A, E, I, M, Q, C, G, K, O and S), with no fluctuations in

the observed proportion of clinical cases that are PfHRP2-negative occurring above 5% in the mod-

erate transmission setting (Figure 1K and O). Similar patterns were observed in scenarios with an

increasing frequency of pfhrp2-deletions, with fluctuations in the proportion of clinical cases that

were PfHRP2-negative observed in the highly seasonal settings (Figure 1—figure supplement 2J, L,

N and P). The highest proportion of cases expected to yield a false-negative RDT due to pfhrp2-

deleted parasites was still observed at the beginning of the rainy season.

The specific 8-week interval during which samples are collected is predicted to impact the

observed proportion of false-negative RDTs due to pfhrp2 gene deletions (Figure 2). In a moderate

transmission setting, a clear seasonal pattern is predicted (Figure 2C), with sampling at the begin-

ning of the transmission seasons resulting in significant overestimation of the annual average propor-

tion of false-negative RDTs. Subsequently, sampling at the end of the rainy season is predicted to
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Figure 1. Relationship between seasonality, transmission intensity and proportion of clinical cases that are infected with only pfhrp2-deleted parasites.

Graphs show in (A – D) and (E - H) the model predicted PCR prevalence and annual clinical incidence respectively at both a low and a moderate

transmission intensity. In (I – L) and (M - P) the proportion of clinical cases only infected with pfhrp2-negative parasites is shown for both the whole

population and in children under 5 years old, respectively. Lastly, graphs (Q - T) show the population allele frequency of pfhrp2 gene deletions, which

Figure 1 continued on next page
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yield estimates that are most representative of the annual average. In comparison, surveillance in

regions with low seasonality is predicted to yield estimates representative of the annual average

throughout the transmission season (Figure 2B and D). In all settings, using a sampling scheme

spanning the entire transmission season produced estimates that accurately estimated the annual

average. A moderate increase in the proportion of false-negative RDTs is also predicted when sam-

pling younger individuals, with the same patterns also seen within asymptomatic individuals. This

observation reflects the increased probability that children younger than 5 years old yield symptoms

after the first infection, due to their comparatively lower acquired clinical immunity. Similar seasonal

dynamics were observed in the highly seasonal settings when we considered scenarios with a selec-

tive advantage for pfhrp2-deletions (Figure 2—figure supplement 1A and C).

Using data from a national survey of pfhrp2 gene deletions in the DRC, we found that the model-

predicted outcomes above were similar to those observed in the field (Figure 3) (Parr et al., 2017).

Among 2752 PCR-positive P. falciparum cases in the DRC, individuals were more likely to be infected

with only pfhrp2-negative parasites if the clinical incidence in the month prior to sample collection

was lower (p=4.1�10�6), and if the individuals were younger (p=0.016). These findings were main-

tained when comparing across age and transmission groups, with samples collected during periods

of lower transmission found to be more likely to be pfhrp2-negative in both older and younger age

groups (p=6.6�10�5 and 5.6�10�4, respectively). Samples collected in younger individuals were

more likely to be pfhrp2-negative in both lower and higher transmission groups when compared to

older individuals (p=0.06 and 0.06, respectively).

Lastly, we predicted and mapped the potential for estimates collected within 8-week intervals to

be unrepresentative of the annual average proportion of false-negative RDTs due to phrp2 gene

deletions across 598 first administrative regions in SSA (Figure 4). We predict that 66 regions pos-

sess at least one 8-week interval for which a premature switch to a non PfHRP2-based RDT would

have been made in more than 75% of simulations (Figure 4A) and 29 regions are predicted to pos-

sess at least one 8-week interval for which a premature decision to continue using PfHRP2-based

RDTs would have been made in more than 75% of simulations (Figure 4B). Out of these 29 regions,

25 are also present within the formerly identified 66 regions. The data for each administrative region

can be viewed online at the following interactive database https://shiny.dide.imperial.ac.uk/sea-

sonal_hrp2/.

Discussion
This research characterises the potential for surveillance in highly seasonal areas within sub-Saharan

Africa to produce estimates that fail to represent the annual average proportion of P. falciparum

cases with false-negative HRP2 RDT results due to pfhrp2 deletions. These findings highlight the

impact of both the seasonal timing and the age of individuals sampled when estimating the propor-

tion of false-negative RDTs due to pfhrp2 deletions. Policy decisions based on the proportion of clin-

ical cases presenting with false-negative RDTs due to pfhrp2 gene deletions should thus be made

with an awareness of the seasonal transmission dynamics of the region considered.

Our modelling predicted that there would be increased observation of false-negative HRP2 RDT

results after periods of lower transmission and within younger individuals. This prediction is consis-

tent with a large, nationally representative survey of pfhrp2-negative samples among asymptomatic

subjects in the DRC (Parr et al., 2017). These predictions are also in agreement with other

Figure 1 continued

was set equal to 6% at the beginning of each simulation. 10 simulation realisations are shown in each graph, with the mean shown with by the black

line. Lastly, the 5% threshold for switching RDT provided by the WHO is shown with the dashed horizontal line in plots (I – P).

DOI: https://doi.org/10.7554/eLife.40339.002

The following figure supplements are available for figure 1:

Figure supplement 1. Model predicted relationship between clonality of infection in asymptomatic and clinical cases against prevalence of malaria.

DOI: https://doi.org/10.7554/eLife.40339.003

Figure supplement 2. Impact of a selective advantage for pfhrp2-deleted parasites on the relationship between seasonality, transmission intensity and

proportion of clinical cases that are infected with only pfhrp2-deleted parasites.

DOI: https://doi.org/10.7554/eLife.40339.004
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Figure 2. Observed proportion of false-negative PfHRP2 RDTs within clinical cases during 8-week intervals. Graphs show the proportion of clinical cases

yielding false-negative PfHRP2 RDTs at 8-week intervals within a transmission season for both moderate (C, D) and low (A, B) transmission settings and

high (A, C) and low (B, D) seasonality. In each panel, the observed proportion pfhrp2-negative clinical cases is shown for the whole population and

within children aged under 5 years old. Ten stochastic realisations are represented by the points in each plot, with the mean relationship throughout

the transmission shown in black with a locally weighted scatterplot smoothing regression (loess). The annual average proportion of false-negative RDTs

Figure 2 continued on next page
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observations from Dioro in the Ségou region of Mali, where in 2012 more than 80% of smear-posi-

tive individuals had false-negative RDTs when collected at the end of the dry season (Koita et al.,

2013). The proportion of false-negative RDTs then rapidly decreased to 20% within 3–4 weeks after

the start of the rainy season. It is, however, likely that a proportion of these false-negative RDTs

were due to the increased observation of lower parasitaemia at lower transmission intensities such

as at the end of the dry season (Okell et al., 2012). In addition, findings from Eritrea also support

our model-predicted outcomes. Eritrea is a region with lower malaria prevalence compared to the

Ségou region of Mali. The resultant decrease in transmission intensity is likely to result in an

increased proportion of monoclonal infections throughout the transmission season. Consequently,

we would predict less variability in the number of false-negative RDTs due to pfhrp2 gene deletions

at any given period within a transmission season. We also expect the observed prevalence of pfhrp2

deletions to be more stochastic due to the lower effective population size of the parasite. Indeed,

infections due to pfhrp2-deleted parasites identified in Eritrea between November 2013 and

November 2014 were not more likely to have occurred after periods of lower transmission intensity

(p=0.56, n=144, pfhrp2 deletions at 9.7%) (Menegon et al., 2017).

Figure 2 continued

due to pfhrp2 gene deletions is shown with the horizontal dashed red line, and a sampling scheme that occurs throughout the year, with samples

collected proportionally to clinical incidence, is shown with grey points circled in red.

DOI: https://doi.org/10.7554/eLife.40339.005

The following figure supplement is available for figure 2:

Figure supplement 1. Impact of a selective advantage for pfhrp2-deleted parasites on the observed proportion of false-negative PfHRP2 RDTs within

clinical cases during 8-week intervals.

DOI: https://doi.org/10.7554/eLife.40339.006

Figure 3. Impact of age and transmission intensity upon pfhrp2 deletion in the Democratic Republic of the Congo (DRC), 2013–2014. Graphs show the

percentage of PCR-positive P. falciparum samples taken from children under the age of 5 years from the 2013–2014 Demographic and Health Survey in

DRC that are pfhrp2-negative. Children who are younger than the median age in the 2752 samples are grouped within the younger category. In

addition, samples are classified as lower transmission if the incidence of malaria in the month prior to sample collection is lower than the median

clinical incidence. The 95% binomial confidence intervals are indicated with the vertical error bars.

DOI: https://doi.org/10.7554/eLife.40339.007

Watson et al. eLife 2019;8:e40339. DOI: https://doi.org/10.7554/eLife.40339 7 of 14

Research advance Epidemiology and Global Health

https://doi.org/10.7554/eLife.40339.005
https://doi.org/10.7554/eLife.40339.006
https://doi.org/10.7554/eLife.40339.007
https://doi.org/10.7554/eLife.40339


Figure 4. Predicted areas with the potential for collected estimates of the proportion of false-negative PfHRP2 RDTs due to pfhrp2 deletions to be

unrepresentative of the annual average. The maps show (A) the number of 8-week intervals at which an administrative region would prematurely swap

to a non PfHRP2-based RDT due to overestimating the proportion of false-negative PfHRP2 RDTs due to pfhrp2 gene deletions in more than 75% of

simulations. In (A) the opposing trend is shown, with the number of 8-week intervals at which an administrative region would prematurely continue to

Figure 4 continued on next page
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Similar to the original publication (Watson et al., 2017), there are a number of modelling

assumptions in this study. Firstly, there are modelling uncertainties when predicting the dynamics of

false-negative RDTs due to pfhrp2-deleted parasites. To account for this uncertainty in this analysis,

we have controlled for the drivers characterised in our earlier study by assuming there was no selec-

tive advantage associated with pfhrp2-deleted parasites and recording the number of individuals

who would have been pfhrp2-negative and subsequently misdiagnosed. The absence of a selective

advantage in this way enabled the frequency of pfhrp2 deletions to remain constant, which ensured

that any observed dynamics in the estimates of false-negative RDTs due to pfhrp2 deletions were

due to the seasonality of transmission and not due to an increase in the population frequency of

pfhrp2 deletions. However, we are aware that there is likely a selective advantage for pfhrp2 deleted

parasites and subsequently we repeated the analyses with the selective advantage included. In these

simulations, we predicted a substantial increase in the frequency of pfhrp2 gene deletions (Fig-

ure 1—figure supplement 2Q-T), however clear seasonal dynamics, with an increased proportion of

false-negative RDTs due to pfhrp2 deletions at the beginning of the transmission season, were still

observed (Figure 2—figure supplement 1C). However, the observed dynamics were less clear in

settings with the greatest increase in the frequency of pfhrp2 deletions (Figure 2—figure supple-

ment 1B).

Secondly, we assessed the potential for a region to yield unrepresentative estimates of the pro-

portion of false-negative RDTs due to pfhrp2 deletions through comparisons to the annual average

proportion. This decision reflected firstly the monitoring period defined in the WHO technical guid-

ance, with follow-up studies recommended after two years if the 95% CI for the proportion of P. fal-

ciparum cases with false-negative HRP2 RDT results due to pfhrp2/3 deletions is less than 5%, or

one year if it does include 5%. It also reflected our modelling assumption that the population fre-

quency of pfhrp2 deletions is not increasing over time. However, in simulations in which a selective

advantage to pfhrp2 deleted parasites was included, a comparison to the annual average proportion

is less suitable. For example, in Figure 2—figure supplement 1B, because we started our simula-

tions in January the optimum sampling interval is simply the interval in the middle of the year,

reflecting the constant increase in pfhrp2 deleted parasites. In these scenarios, it could be argued

that the correct comparison would be to the average proportion of false-negative RDTs due to

pfhrp2/3 gene deletions in the year after sampling, which reflects how many cases could be misdiag-

nosed between sampling rounds. Unfortunately, this comparison is difficult without knowing how the

proportion of false-negative RDTs due to pfhrp2/3 gene deletions will change over time. However,

we believe that it is more important to focus on the assumption that the strength of selection is neg-

ligible (see Figure 5). Our rationale for this is that it is only in areas with a low selective pressure, for

which the frequency of pfhrp2/3 deletions is constant over time, that one could repeatedly make an

incorrect decision with regards to whether to switch RDT (Figure 5A). In areas with a selective pres-

sure, it is still possible to incorrectly estimate the annual average for the following year; however, the

presence of the selective pressure is likely to cause any decision made to be simply premature as

the frequency of pfhrp2/3 deletions and subsequently false-negative PfHRP2 RDTs will increase over

time (Figure 5B).

Lastly, it is important to note again that the true strength of selection is unknown. The precise

strength of selection is dependent on a number of factors such as the magnitude of any fitness costs

associated with pfhrp2 deletion, the degree to which microscopy-based diagnosis is used, the level

of non-adherence to RDT results, the treatment coverage and the prevalence of malaria in the region

considered. Consequently, our results should not be interpreted as precise predictions of how

unrepresentative future samples may be. They should instead be used to support surveillance efforts

and to reinforce the need for longitudinal measures conducted at the same point within a transmis-

sion season. In addition, we recommend that if possible, sample collection in highly seasonal regions

should not occur at the beginning of the transmission season, as this is predicted to lead to

Figure 4 continued

use PfHRP2-based RDTs due to underestimating the proportion of false-negative PfHRP2 RDTs due to pfhrp2 gene deletions in more than 75% of

simulations.

DOI: https://doi.org/10.7554/eLife.40339.008
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premature decisions to switch RDT irrespective of the strength of selection. It will, however, be pos-

sible after the samples have been collected to estimate the likely frequency of pfhrp2 gene deletions

by incorporating estimates of the multiplicity of infection within the sampled population. This fre-

quency could then be used to estimate how the proportion of false-negative RDT results due to

pfhrp2 deletions could increase in response to decreases in the prevalence of malaria.

In summary, our extended model predicts that highly seasonal dynamics in malaria transmission

intensity will cause comparable dynamics in the observed proportion of false-negative RDT results

due to pfhrp2 gene deletions. The observed proportion of false-negative RDTs due to pfhrp2 dele-

tions is higher when monoclonal infections are more prevalent, with the highest prevalence observed

when sampling at the start of the rainy season as individuals are less likely to already be infected.

Similarly, the observed proportion of false-negative RDTs due to pfhrp2 deletions is higher in youn-

ger individuals who have lower clinical immunity, as they are more likely to present with clinical

symptoms after their first infection event. As the rainy season progresses, individuals are more likely

to be superinfected and acquire wild-type parasites, resulting in positive PfHRP2-based RDT results

and a decrease in the observed proportion of false-negative RDTs due to pfhrp2 deletions. In

response to these dynamics, it may be sensible for national malaria control programmes conducting

surveillance for pfhrp2/3 deletions to choose a sampling interval towards the end of the transmission

season, which is predicted to be most representative of the annual average proportion of false-nega-

tive RDTs due to pfhrp2 deletions. To support surveillance efforts, we have published an online data-

base detailing the optimum sampling interval as well as the fluctuations throughout the transmission

season for each administrative region.

Figure 5. The impact of an assumed selective pressure for pfhrp2/3-deleted parasites on the decision to switch

RDT. The graphs show two hypothetical scenarios with two different regions shown in red and blue for each

region. In (A) there are strong seasonal dynamics but no selective pressure. The absence of a selective pressure

causes that the mean proportion of false-negative RDTs due to pfhrp2/3 deletions over a 1 year period to be

constant and is shown with a horizontal dashed line. Consequently, there are time periods in which an incorrect

decision to switch RDT could be made for the region in blue, and an incorrect decision to not switch RDT could

be made for the region in red. In (B), there are both seasonal dynamics and a selective pressure, which results in

an increasing annual mean proportion of false-negative RDTs due to pfhrp2/3 deletions over time. As in (A), there

are periods in which the observed proportion of false-negative RDTs due to pfhrp2/3 deletions is both higher and

lower than the rolling mean shown. However, decisions made in these periods are premature rather than

definitively incorrect as the selection pressure would eventually cause the proportion to be greater than 5%.

DOI: https://doi.org/10.7554/eLife.40339.009
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Materials and methods

Extensions to the P. falciparum transmission model
In our previous publication (Watson et al., 2017), we presented an extended version of an individ-

ual-based model of malaria transmission to characterise the key drivers of pfhrp2 deletion selection;

however, it did not capture seasonality. To address this, we incorporated seasonal variation in

malaria transmission intensity through the inclusion of seasonal curves fitted to daily rainfall data

available from the US Climate Prediction Center (National Weather Service Climate Prediction

Center, 2010). Rainfall data was available at a 10 � 10 km spatial resolution from 2002 to 2009, with

data missing for only two days. The data was subsequently aggregated to a series of 64 points per

year, before Fourier analysis was conducted to capture the seasonal dynamics within this time period

(Cairns et al., 2012). The first three frequencies of the resultant Fourier transformed data were used

to generate a normalised seasonal curve. This inclusion alters the rate at which new adult mosquitoes

are born, with the differential equation governing the susceptible adult stage of the mosquito popu-

lation now given by:

dSM

dt
¼ � tð Þ�MMv��MSM �LMSM

where �M is the daily death rate of adult mosquitoes, Mv is the total mosquito population, that is

SM + EM + IM, LM is the force of infection on the mosquito population and � tð Þ is the normalised sea-

sonal curve, with a period equal to 365 days. The rest of the model equations remain the same as in

our original study (Watson et al., 2017).

All extensions to the previous model code have been made using the R language (RRID:SCR_

001905) (R Development Core Team, 2016) and are available through an open source MIT licence

at https://github.com/OJWatson/hrp2malaRia (Watson, 2019; copy archived at https://github.com/

eLifeProduction/hrp2malaRia_2019). In addition, these extensions have been included in the pseudo-

code description of the model (Supplementary file 1).

Characterising the impact of seasonal transmission intensities upon the
proportion of false-negative RDTs due to pfhrp2 gene deletions
The impact of seasonality was examined by recording the proportion of clinical incidence that would

have been misdiagnosed due to pfhrp2 gene deletions across the year. This proportion was summar-

ised at 12 8-week intervals, that is January – March, February – April, December – February. This

proportion was recorded in both high and low seasonality settings, characterised by a Markham Sea-

sonality Index = 80% and 10%, respectively (Cairns et al., 2015). These settings were examined at

both low and moderate transmission intensity (EIR = 1 and 10 respectively), with the starting propor-

tion of pfhrp2-deleted parasites in the whole population set equal to 6% in agreement with previous

observations of pfhrp2 gene deletions in the DRC (Watson et al., 2017) The proportion of symp-

tomatic cases seeking treatment was assumed to be 40% (fTpfhrp2 = 0.4). In all simulations, 10 sto-

chastic realisations of 100,000 individuals were simulated for 60 years to reach equilibrium first,

before setting the frequency of pfhrp2 deletions. Initially, we assumed there was no assumed fitness

cost or selective advantage associated with pfhrp2 gene deletion. This was modelled by assuming

that individuals who are only infected with parasites with pfhrp2 gene deletions will still be treated.

This decision allowed us to control for selection within our investigation by ensuring that the changes

observed in the observation of PfHRP2-negative clinical cases are only due to seasonal variation in

transmission intensity, and not due to an increase in the frequency of pfhrp2 gene deletions due to

the selective advantage by evading diagnosis. As a result, when reporting the proportion of clinical

cases that were misdiagnosed resulting from a false-negative PfHPR2-negative RDT we are reporting

the proportion of cases that are infected with only pfhrp2-deleted parasites, that is individuals who

would have been pfhrp2-negative and subsequently misdiagnosed. We also assume that 25% of indi-

viduals who are only infected with pfhrp2-deleted parasites will still be pfhrp2-positive due to the

cross reactivity of PfHRP3 epitopes causing a positive PfHRP2-based RDT result (Baker et al., 2005).

Model predictions were subsequently compared to data collected from the Democratic Republic

of Congo as part of their 2013–2014 Demographic and Health Survey (DHS). In overview, 7137

blood samples were collected from children under the age of 5 years old, which yielded 2752
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children diagnosed with P. falciparum infection by real-time PCR targeting the lactate dehydroge-

nase (pfldh) gene. The RDT barcodes for the 2752 samples were identified and matched to the DHS

survey to identify both the age of the children and the date of sample collection. The collection date

was used to predict the mean clinical incidence from the previous 30 days for each sample. This was

estimated using the deterministic implementation of our model fitted to the observed PCR preva-

lence of malaria from the DRC DHS 2013–2014 survey (Meshnick et al., 2013), incorporating the

seasonality and treatment coverage for each province. Children who were younger than the median

age in the 2752 samples were grouped within a younger category. In addition, samples were classi-

fied as lower transmission if the clinical incidence of malaria in the month prior to sample collection

was lower than the median clinical incidence. The counts of pfhrp2-negative samples within each

group were subsequently compared using the Pearson chi-squared test with Rao-Scott corrections

to account for the hierarchal survey design implemented within DHS surveys (Jnk and Scott, 1984).

Pearson chi-squared tests were used in a similar analysis that was conducted using samples collected

from the Gash-Barka and Debug regions in Eritrea between 2013 and 2014, for which the dates of

sample collection were made available to us (Menegon et al., 2017).

Finally, the seasonal profiles for 598 first-level administrative regions across sub-Saharan Africa

were used to characterise the potential for estimates of the proportion of false-negative PfHRP2

RDTs due to pfhrp2 gene deletions to be unrepresentative of the annual average. For each region,

100 simulation repetitions were conducted for 60 years to reach equilibrium first before fitting the

frequency of pfhrp2 gene deletions in each simulation such that the annual average proportion of

false-negative RDT results due to pfhrp2 deletions is equal to 5%. Each repetition was subsequently

simulated for two further years, with 7300 individuals seeking treatment sampled from each 8-week

interval. This number approximates the recommended sample size within the WHO protocol for

pfhrp2 deletion prevalence at 5 ± 0.5%. For each sample, the proportion of false-negative PfHRP2-

based RDTs due to pfhrp2 gene deletions was recorded. For each sample, a binomial confidence

interval was calculated and the resultant percentage of intervals that did not include the annual prev-

alence of 5% was calculated. For each region, the number of 8-week intervals for which a premature

decision to either swap from a PfHRP2-based RDT or continue using a PfHRP2-based RDT was made

in more than 75% of simulations was recorded and mapped. The raw results of this analysis were

subsequently used to create a database that details the optimum sampling intervals for estimating

the annual proportion of false-negative RDT results due to pfhrp2 deletions.
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Okell LC, Bousema T, Griffin JT, Ouédraogo AL, Ghani AC, Drakeley CJ. 2012. Factors determining the
occurrence of submicroscopic malaria infections and their relevance for control. Nature Communications 3:
1237. DOI: https://doi.org/10.1038/ncomms2241, PMID: 23212366

Parr JB, Verity R, Doctor SM, Janko M, Carey-Ewend K, Turman BJ, Keeler C, Slater HC, Whitesell AN,
Mwandagalirwa K, Ghani AC, Likwela JL, Tshefu AK, Emch M, Juliano JJ, Meshnick SR. 2017. Pfhrp2-Deleted
plasmodium falciparum parasites in the democratic republic of the Congo: a national Cross-sectional survey.
The Journal of Infectious Diseases 216. DOI: https://doi.org/10.1093/infdis/jiw538, PMID: 28177502

R Development Core Team. 2016. R: A Language and Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing. http://www.r-project.org/

Watson OJ, Slater HC, Verity R, Parr JB, Mwandagalirwa MK, Tshefu A, Meshnick SR, Ghani AC. 2017. Modelling
the drivers of the spread of plasmodium falciparum hrp2 gene deletions in sub-Saharan Africa. eLife 6:e25008.
DOI: https://doi.org/10.7554/eLife.25008, PMID: 28837020

Watson OJ. 2019. hrp2malaRia. GitHub. 4d992a0. https://github.com/OJWatson/hrp2malaRia
World Health Organization. 2018a. World Malaria Report: World Health Organization. https://www.who.int/
malaria/publications/world-malaria-report-2018/en/.

World Health Organization. 2018b. Malaria threats map. http://www.who.int/malaria/maps/threats-about/en/
[Accessed May 1, 2018].

World Health Organization. 2018c. Protocol for estimating the prevalence of pfhrp2/pfhrp3 gene deletions
among symptomatic falciparum patients with false-negative RDT results. http://www.who.int/malaria/
publications/atoz/hrp2-deletion-protocol/en/ [Accessed March 16, 2018].

Watson et al. eLife 2019;8:e40339. DOI: https://doi.org/10.7554/eLife.40339 14 of 14

Research advance Epidemiology and Global Health

https://doi.org/10.1038/ncomms1879
https://doi.org/10.1186/s12936-015-0839-4
http://www.ncbi.nlm.nih.gov/pubmed/26283418
https://doi.org/10.1186/1475-2875-13-283
http://www.ncbi.nlm.nih.gov/pubmed/25052298
https://doi.org/10.1093/infdis/jix094
https://doi.org/10.1093/infdis/jix094
http://www.ncbi.nlm.nih.gov/pubmed/28329034
https://doi.org/10.1214/aos/1176346391
https://doi.org/10.1016/j.meegid.2017.09.004
https://dhsprogram.com/pubs/pdf/FR300/FR300.Mal.pdf
https://dhsprogram.com/pubs/pdf/FR300/FR300.Mal.pdf
https://www.cpc.ncep.noaa.gov/products/international/
https://doi.org/10.1038/ncomms2241
http://www.ncbi.nlm.nih.gov/pubmed/23212366
https://doi.org/10.1093/infdis/jiw538
http://www.ncbi.nlm.nih.gov/pubmed/28177502
http://www.r-project.org/
https://doi.org/10.7554/eLife.25008
http://www.ncbi.nlm.nih.gov/pubmed/28837020
https://github.com/OJWatson/hrp2malaRia
https://www.who.int/malaria/publications/world-malaria-report-2018/en/
https://www.who.int/malaria/publications/world-malaria-report-2018/en/
http://www.who.int/malaria/maps/threats-about/en/
http://www.who.int/malaria/publications/atoz/hrp2-deletion-protocol/en/
http://www.who.int/malaria/publications/atoz/hrp2-deletion-protocol/en/
https://doi.org/10.7554/eLife.40339

	Thesis_accepted_corrections
	Pages from Combined_hq_plus_paper



