
SEISMIC-HAZARD
ASSESSMENT:

Conditional Probability
_______________________________________________________________________

Supplies Needed
• calculator
_______________________

PURPOSE
Previous exercises in this book have outlined methods for inferring the patterns and

history of earthquake activity and faulting.  This information is vital for assessing seismic
hazard, but in its undigested form, it is not particularly useful to engineers, regional
planners, or the general public.  Earthquake-hazard  is the bridge than connects relatively
raw scientific data (fault patterns, slip rates, recurrence intervals, and ages of past
earthquakes) with their practical applications.  The purpose of this exercise is to illustrate
some of the basic principles by which conditional probabilities are calculated.  

INTRODUCTION
Conditional probability is defined as the likelihood that a given event – in this case an

earthquake – will occur within a specified time period.  This likelihood is based on
information regarding past earthquakes in a given area and the basic assumption that future
seismic activity will follow the pattern of activity observed in the past.  Figure 1 is an
example of a conditional-probability model for Southern California for the period, 1994-
2024 (Working Group on California Earthquake Probabilities, 1995). The model gives the
percent probability of a large earthquake during this 30-year period on each fault segment
shown.  Conditional probability is calculated only for those faults for which geologists have
collected enough information to make an informed estimate of seismic hazards.  This model
predicts a 80-90% likelihood that an earthquake with magnitude equal to or greater than 7.0
will strike somewhere in Southern California before 2024, with the single greatest
probability coming from the San Jacinto fault, just east of Los Angeles.  This information,
along with probabilities of maximum seismic shaking in different locations, is used by
architects and engineers in designing structures within acceptable safety margins.

Conditional-probability predictions are only as good as the data used to create them.
After the Loma Prieta earthquake struck the Santa Cruz mountains, just southeast of San
Francisco, in 1989, some geologists called this a success for the conditional-probability
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Figure 1.  Probabilities of fault rupture for the period 1994 to 2024.  Width of the
shaded bars indicate percent probability for each fault segment.  (After
Working Group on California Earthquake Probabilities, 1995)

approach.  A probability model published in 1988 had assigned this area a 30% chance of a
major earthquake in the subsequent 30 years, the second highest value of any segment of
the San Andreas fault.  At the same time, however, the same model had called this particular
probability “equivocal,” assigning it the lowest rating on its reliability scale (an E, on a
reliability scale from A to E).  Many geologists consider such estimates of reliability to be at
least as important as the conditional probability itself.  

EARTHQUAKE RECURRENCE
Conditional probability is based on models of how and when earthquakes recur.

Previous exercises in this book used various types of geologic data to estimate earthquake
recurrence intervals, the average time between earthquakes on a given fault.  In this
exercise, we need to examine this concept a bit more closely.  Our understanding of
earthquake recurrence is fundamentally based on the elastic-rebound model, which states
that earthquakes occur when elastic strain along a fault exceeds the strength of the rock.
Earthquakes release the strain built up during the preceding years.  
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Figure 2 illustrates three different
examples of earthquake recurrence, based on
three different interpretations of the elastic-
rebound model.  The first one, the
characteristic-earthquake model, assumes that
a given fault segment is characterized by
earthquakes with approximately the same
magnitudes and amount of slip.  Given a
constant long-term strain rate, these
characteristic earthquakes would occur at
approximately equal intervals.  In the elastic-
rebound model, characteristic earthquakes
would occur only where two strict
requirements are met:

A)  the fault has a constant, predictable strain threshold, and earthquakes
occur when strain exceeds that threshold

B)  earthquakes on the fault release all accumulated strain.

In the yield-threshold model, Requirement A is met, but not Requirement B.  In the total-
release model, Requirement B is met, but not Requirement A.  In both of these models,
earthquakes recur periodically, but with unequal recurrence intervals.  

In both the yield-threshold and the total-release models, recurrence intervals are not
constant, but like exam grades in a large university class, the intervals may follow a
predictable distribution (Figure 3).  Various statistical distributions can be used, but this

exercise assumes a normal (or Gaussian)
distribution.  Remember that a normal
distribution can be described by a mean (µ)
and a standard deviation (σ); about 68% of
all values fall in the range between µ–σ and
µ+σ, and 95% fall between µ–(2σ) and
µ+(2σ).  A statistical probability table (Table
1) can be used to find the probability that the
next interval between earthquakes will
exceed a predicted duration of time (T).  

Table 1 is simply a list of 300 probabilities, one for each of 300 normalized values
(N(T) for normalized time intervals).  Anormalized value is simply a value that is scaled for
the mean and standard deviation of that distribution:

N(T) = T – µ (1)
σ

For example, N(µ+2σ) = 2.00.  In order to use Table 1, calculate N(T) to two decimal
places, and then find the integer and the first decimal (e.g., 2.0 for N(T)=2.00) on the
vertical axis of the table and the second decimal (_._0 for N(T)=2.00) on the horizontal
axis.  Finally, find the value within the table at the intersection of those two axes (0.023 for
N(T)=2.00).  Remember that this value is the probability from (0.0 to 0.5) that the actual
earthquake recurrence interval will exceed T, the predicted interval.  
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Figure 2.  Models of earthquake recurrence.  (After
Shimazaki and Nakata, 1980)

µ µ+σ µ+2σµ−σµ−2σ

Figure 3.  A normal distribution. 



Table 1.  Probabilities that an actual value will exceed a predicted value, based on a normal
distribution.  Find the first two digits of N(T) on the vertical axis and the last digit on
the horizontal axis.  For N(x)<0 (values of T less than µ), subtract the indicated
probability from 1.000.  

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
N(T) _._0 _._1 _._2 _._3 _._4 _._5 _._6 _._7 _._8 _._9
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
0.0_ 0.500 0.496 0.492 0.488 0.484 0.480 0.476 0.472 0.468 0.464
0.1_ 0.460 0.456 0.452 0.448 0.444 0.440 0.436 0.433 0.429 0.425
0.2_ 0.421 0.417 0.413 0.409 0.405 0.401 0.397 0.394 0.390 0.386
0.3_ 0.382 0.378 0.375 0.371 0.367 0.363 0.359 0.356 0.352 0.348
0.4_ 0.345 0.341 0.337 0.334 0.330 0.326 0.323 0.319 0.316 0.312
0.5_ 0.309 0.305 0.302 0.298 0.295 0.291 0.288 0.284 0.281 0.278
0.6_ 0.274 0.271 0.268 0.264 0.261 0.258 0.255 0.251 0.248 0.245
0.7_ 0.242 0.239 0.236 0.233 0.230 0.227 0.224 0.221 0.218 0.215
0.8_ 0.212 0.209 0.206 0.203 0.201 0.198 0.195 0.192 0.189 0.187
0.9_ 0.184 0.181 0.179 0.176 0.174 0.171 0.169 0.166 0.164 0.161
1.0_ 0.159 0.156 0.154 0.152 0.149 0.147 0.145 0.142 0.140 0.138
1.1_ 0.136 0.134 0.131 0.129 0.127 0.125 0.123 0.121 0.119 0.117
1.2_ 0.115 0.113 0.111 0.109 0.108 0.106 0.104 0.102 0.100 0.099
1.3_ 0.097 0.095 0.093 0.092 0.090 0.089 0.087 0.085 0.084 0.082
1.4_ 0.081 0.079 0.078 0.076 0.075 0.074 0.072 0.071 0.069 0.068
1.5_ 0.067 0.066 0.064 0.063 0.062 0.061 0.059 0.058 0.057 0.056
1.6_ 0.055 0.054 0.053 0.052 0.051 0.050 0.049 0.048 0.047 0.046
1.7_ 0.045 0.044 0.043 0.042 0.041 0.040 0.039 0.038 0.038 0.037
1.8_ 0.036 0.035 0.034 0.034 0.033 0.032 0.031 0.031 0.030 0.029
1.9_ 0.029 0.028 0.027 0.027 0.026 0.026 0.025 0.024 0.024 0.023
2.0_ 0.023 0.022 0.022 0.021 0.021 0.020 0.020 0.019 0.019 0.018
2.1_ 0.018 0.017 0.017 0.017 0.016 0.016 0.015 0.015 0.015 0.014
2.2_ 0.014 0.014 0.013 0.013 0.013 0.012 0.012 0.012 0.011 0.011
2.3_ 0.011 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008
2.4_ 0.008 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007 0.006
2.5_ 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005
2.6_ 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
2.7_ 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
2.8_ 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
2.9_ 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 1:
Find the probability that a fault will rupture in the next 25 years if the fault has ruptured
in 1739, 1785, 1832, 1850, 1913, and 1979.

These six earthquakes define five inter-earthquake intervals, 46, 47, 18, 63, and
66 years long.  The mean of these intervals is:

µ = 46 + 47 + 18 + 63 + 66 = 48 years
5

The standard deviation of these intervals is:
σ = |46-48| + |47-48| + |18-48| + |63-48| + |66-48|

5

σ = 2 + 1 + 30 + 15 + 18 = 13.2 years
5

Thus the recurrence-interval distribution for this fault is 48±13.2 years.  If you are doing
this exercise in 2006, you know that the current recurrence interval (since 1979) is at least 
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27 years.  The question here is: what is the likelihood that the fault will rupture in the next
25 years (between 2006 and 2031)?  The probability that this recurrence interval will fall
between 27 and 52 years is:

P[27-52] = (P[27] – P[52]) ÷ P[27], (2)

which simply says that the probability of the recurrence interval falling in the range, 27 to
52 years, equals (the probability of the interval exceeding 27 years minus the probability
that it will exceed 52 years) divided by the 27-year probability.  You find P(27) and P(52)
by finding the normalized values (Equation 1) and then using Table 1:

N(52) = T – µ = 52 – 48 = 0.30
σ 13.2

N(27) = T – µ = 27 – 48 = –1.59
σ 13.2

The probability – P(52) – on Table 1 that corresponds to N(T)=0.30 is 0.382.
Finding P(27) is only slightly more complicated, because N(27) is negative.  As Table 1
instructs you, find the value in the table that corresponds to +N(x), and then subtract that
value from 1.000:

for N(T)=–1.59, P(T) = 1.000 – 0.056 = 0.944
Using the values of P(27) and P(52) and Equation 2:

P[27-52] = (P(27) – P(52)) ÷ P(27) = 0.944 – 0.382 = 0.447

This means that there is a 44.7% likelihood that a major earthquake will occur on this fault
in the 25-year period between 2006 and 2031.  

1)  Ground-rupturing earthquakes have occurred on the Parkfield segment of the San Andreas
fault in 1857, 1881, 1901, 1922, 1934, and 1966.  What is the probability that another
earthquake will not have occurred at Parkfield between 1966 and the present date?
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The Parkfield segment of the San Andreas fault is noteworthy because it has ruptured
so regularly in the past that, in 1985, the U.S. Geological Survey made a formal prediction
that there was a 90% probability that the Parkfield segment would generate a magnitude
5.5-6.0 earthquake by 1993.  The fault has remained embarrassingly quiet ever since.  In
fact, this author hesitates to even mention Parkfield for fear that the fault segment will
rupture the day after this book goes to press.  The Earth is complex, and there are a number
of reasons why a fault might deviate from the recurrence predicted by the past earthquakes,
including:

•  Earthquake clustering – Some faults are characterized by periods of closely-
spaced earthquakes, followed by periods of inactivity.  

•  Fault-segment triggering – Different segments of the same fault are not
truly independent.  An earthquake on one segment often triggers rupture
on adjacent segments.

•  Inadequate period of record – All earthquake-recurrence models are studies
in small numbers.  Statisticians prefer distributions that consist of
hundreds of values, but seismologists rarely have data for more than a
handful of past recurrence intervals.  

THE WASATCH FAULT ZONE
The 343 km-long Wasatch fault zone marks the eastern boundary of the Basin and

Range province, separating the region from the Colorado Plateau and the Middle Rocky
Mountains to the east.  The Wasatch fault zone underlies a populated corridor that is home
to 80% of the inhabitants of Utah.  The fault zone is subdivided into ten distinct segments
(Figure 4), including six more-active central segments and four less-active segments on the
margin of the fault zone.  All of the segments except the Brigham City segment have
ruptured in the last 1500 years, but none in historical time.

Extensive trenching has been done at sites along the Wasatch fault zone to
characterize the history of earthquakes in the recent geologic past.  Exercise 9 in this book
outlines how fault trenches are used in studies of paleoseismology, and Figure 5 illustrates
one trench cut across the Wasatch fault.  The right-hand side of Figure 4 summarizes the
available information on the number and timing of earthquakes on the six central fault
segments during the past 6000 years.  In the questions on the following pages, you will use
the fault-trench information (the best published data currently available) to estimate
conditional probabilities for this fault zone.  

2)  Summarizing the age information in Figure 4, trenches along the Wasatch fault zone record
earthquake recurrence intervals of:

1200, 525, 1725, 1050, 3975, 2100, 2625, 2250, 3675, and 900 years
Find the mean and standard deviation of this recurrence-interval population.  
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Figure 4.  Location map of the Wasatch fault zone and late Holocene earthquake
history from fault trenches.  (After Gori and Hays, 1991)
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Figure 5.  Part of trench BC-1 on the Brigham City segment of the Wasatch fault

zone illustrating an earthquake that ruptured the ground surface just after 3430
years BP.  (After Gori and Hays, 1991)

3)  All of the Wasatch fault segments have ruptured in the last 1500 years except the Brigham
City segment.  The last ground-rupturing earthquake there occurred approximately 3430
years ago.  Find the probability that a major earthquake will occur on the Brigham City
segment during the next 25 years.  
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4)  The Salt Lake City segment of the Wasatch fault zone last ruptured about 1500 years ago.
Find the probability that a major earthquake will occur on this segment during the next 25
years.

5)  Explain why the conditional probability for the Brigham City segment is so different from
that of the Salt Lake City probability.  

CONDITIONAL PROBABILITY AND GROUND SHAKING
Recurrence-interval information helps define the probability of future earthquakes,

but it says nothing about their magnitudes of their effects.  That information must come
from other sources, such as fault slip rates, past dimensions of rupture, past earthquake
magnitudes, and site-specific conditions.  Combined with recurrence probabilities, this
additional information allows us to calculate probabilities of different levels of seismic
ground shaking.  Figure 6 is a regional map of ground-shaking hazard across the U.S.,
based on recurrence-interval and ground-shaking probabilities.  Estimates of ground-
shaking risk are vital to architects, engineers, and planners in earthquake-prone areas.  

Like recurrence intervals, ground-shaking estimates for a specific site (usually
expressed as acceleration) can be described by a mean value and associated standard
deviation (a normal distribution).  Such estimates must be firmly based on shaking
intensities during past earthquakes or other data.  The probability of seismic shaking
exceeding a given value of acceleration (A) in a pre-specified duration of time (T) is
expressed as:

P(A,T) = P(A) * P(T). (3)
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P(A,T) is the probability that both: 1) an earthquake will occur in the pre-specified time, and
2) the ground shaking will exceed an acceleration of A during that earthquake.

Example 2:

Asite is characterized by seismic shaking of 0.5±0.3 g (50%±30% of the acceleration of
gravity) as a result of rupture on a nearby fault.  If there is a 12% chance of the fault
rupturing in the next 50 years, what is the probability that this site will experience seismic
acceleration greater than 0.7 g in that 50-year period?

The first step in this problem is to find P(A), which is the probability of A (0.7 g)
being exceeded during any one earthquake.  In order to do this, first calculate N(A):

N(A) = 0.7 g – µ = 0.7 g – 0.5 g = 0.67
σ 0.3 g  

using Table 1, P(A) = 0.251 = 25.1%

Now combine this information with the probability of recurrence (P(50)=12%):

P(A,T) = P(A) * P(T) = 0.251 * 0.120 = 0.030
This means that there is a 3.0% likelihood of an earthquake occurring on this fault and
causing ground acceleration greater than 0.7 g at the site in question.  
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Figure 6.  Ground-shaking hazards in the U.S.  (From Algermissen and Perkins, 1976)
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6)  A new construction project is being planned for a site 10 km from the Salt Lake City
segment of the Wasatch fault zone.  That site is characterized by seismic ground
acceleration of 0.4±0.2 g (for a M=7.0 earthquake; Joyner and Boore, 1988).  Find the
probability that the site will experience accelerations greater than 0.7 g during the next
100 years.  

7)  If the same site in Question 6 were instead 10 km from the Brigham City segment, what
would be the probability of exceeding 0.7 g in a 100-year period?
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