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Abstract
Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer’s disease (AD) pathogenesis. The 
overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for 
which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will 
categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these 
reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey 
matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary 
cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ 
burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earli-
est stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around 
established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early 
identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish 
the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements 
are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that 
amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of 
cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined 
and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. 
In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and 
discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care 
to the wider dementia community to increase visibility and understanding of these methods.
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SPM	� Statistical parametric mapping
SCD	� Subjective cognitive decline

Introduction

Amyloid‑β and the AD continuum

Alzheimer’s disease (AD) is the most common cause of 
dementia, accounting for 60–80% of cases above 65 years 
of age [1]. One of the earliest detectable brain changes in AD 
pathogenesis is amyloid-β (Aβ) plaque accumulation [2–4]. 
However, historically, AD has been diagnosed solely based 
on symptomatology, with a definite diagnosis only possible 
by post-mortem examination. With the recent arrival and 
increased availability of biomarkers for AD pathology, there 
has been a shift towards biomarker-based diagnosis, which 
can be appreciated in the 2007 research diagnosis criteria 
from the International Working Group [5, 6]. Updated in 
2021 [7], the guidelines now further highlight amyloid’s 
central role in the AD diagnostic process. In research set-
tings, a biomarker-only classification scheme has even been 
proposed, the amyloid/tau/neurodegeneration (A/T/N) 
framework [8], which further highlights the shift towards 
a biological definition of the disease independent of clini-
cally defined diagnostic schemes. Detection of abnormal Aβ 
only, referred to as “Alzheimer’s pathologic change” (A+/
T−), is considered the essential first step and if followed by 
a pathological change in tau progresses to the classifica-
tion of AD (A+/T+) — with or without dementia. Amyloid 
biomarkers have been used as part of the A/T/N framework 
in large validation studies of population-based cohorts [9, 
10], memory clinic populations [11, 12], cognitively unim-
paired subjects [13], and longitudinal cognitive outcomes 
[9, 11, 13]. The central role of amyloid pathology across 
the AD continuum has been of major interest for both AD 
clinical research and drug development [14–17]. Alongside 
the development of cerebrospinal fluid (CSF) and blood-
based biomarkers, molecular imaging using positron emis-
sion tomography (PET) plays an increasingly important role 
in determining biomarker status [18].

Amyloid PET

The use of amyloid PET allows for the in vivo visualisation 
and quantification of Aβ protein fibrillary deposits, directly 
providing information on the total load and spatial distribu-
tion of Aβ pathology. Three fluorine-18 amyloid PET trac-
ers are currently available for routine clinical use (Fig. 1) 
and have been validated against Consortium to Establish 
a Registry for Alzheimer’s Disease (CERAD) pathology 
as the gold standard. These radiotracers are [18F]florbeta-
pir (Amyvid™; Avid Radiopharmaceuticals; approved in 

2012) [19], [18F]flutemetamol (Vizamyl™; GE Healthcare; 
approved in 2013) [20], and [18F]florbetaben (Neuraceq™; 
Life Molecular Imaging; approved in 2014) [21]. Each of 
these radiotracers has different pharmacokinetics, chemical 
structure, and binding site/properties. However, they have all 
been approved by the Food and Drug Administration (FDA) 
and European Medicines Authority (EMA) for routine clini-
cal use, and have local regulatory approval in other coun-
tries, such as Japan and Korea. The tracers are also widely 
used by the research community. In addition, other known 
compounds such as the carbon-11 labelled Pittsburgh com-
pound B ([11C]PiB) [22] and [18F]NAV4694 [18, 23] are 
available for investigational use only.

Clinical utility of amyloid PET

Routine clinical use of amyloid PET tracers involves visual 
assessment and binary categorisation of scans, based on 
tracer-specific manufacturers’ guidelines [24–26]. Classifi-
cation is either negative (predominantly white matter uptake) 
or positive (binding in one or more cortical brain regions, or 
the striatum for [18F]flutemetamol and [11C]PiB). Certified 
readers are required by the regulatory authorities to com-
plete and pass a training program specific to each radiotracer 
[27–29]. The visual assessment scales and guidelines are dif-
ferent for each radiotracer. However, high inter-rater agree-
ment for visual rating protocols has been demonstrated for 
all 18F-labelled amyloid tracers [30], suggesting that visual 
interpretation of amyloid imaging by experts is not depend-
ent on the rating protocol. Furthermore, efforts to create a 
universal visual assessment protocol for all amyloid imaging 
tracers are underway [31].

Over the past decade, many studies have demonstrated 
the level of analytical and clinical validity of amyloid PET 
in routine clinical practice [25, 29, 32–40]. More specifi-
cally, real-world studies have shown that disclosure of 
amyloid PET imaging results leads to a change in etiologi-
cal diagnosis in approximately 25–31% of cases [33, 35, 
36], significant increases in diagnostic confidence [33, 36, 
38–40], and changes in patient management in approxi-
mately 37–72% of cases [35–38]. Appropriate use criteria 
have also been published for amyloid PET [41]. However, 
recent evidence suggests that patients beyond the appropri-
ate use criteria can also benefit from amyloid PET through 
changes in management and diagnosis [42]. For example, 
research has suggested that anti-amyloid strategies could 
be a relevant approach to slow disease progression in Par-
kinson’s disease and Lewy body dementia [43, 44]. Also, 
in subjective cognitive decline (SCD) patients, for whom a 
positive or negative amyloid status can increase diagnostic 
confidence [33, 34, 37]. The largest clinical utility study to 
date is the Imaging Dementia-Evidence for Amyloid Scan-
ning (IDEAS) study, which was designed to investigate 
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the clinical utility of amyloid PET. The study enrolled 
over 18,000 patients from 946 dementia specialists at 595 
centres in America [34]. Of the 11,409 patients complet-
ing study procedures, the composite endpoint changed in 
4159 of 6905 patients with MCI (60.2%), the etiological 
diagnosis changed from AD to non-AD in 2860 (25.1%), 
and from non-AD to AD in 1201 (10.5%) cases, which 
was linked with changes in clinical management within 
90 days. Whether these changes in management reflect an 
improvement in clinical outcomes for dementia patients is 
yet to be determined.

Global multi‑centre studies adopting amyloid PET

Global multi-centre studies and consortia aiming to unravel 
the influence, prognostic value, and role of amyloid deposi-
tion in the AD timeline have been ongoing for some time. 
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
study began in 2005 [45] and has acquired amyloid PET in 
thousands of mainly MCI patients [46–48] (http://​adni.​loni.​
usc.​edu/). The first results from the Australian Imaging, Bio-
markers and Lifestyle (AIBL) study were published in 2009 
[49] and has continued to monitor over 1,000 volunteers 

Fig. 1   Illustrative PET images derived from the five most commonly 
used amyloid tracers on different patients. The left column shows 
Aß negative subjects (all ~0 Centiloid) and right column shows Aß 
positive subjects (all ~50 Centiloid, for further details, see “Centiloid 
scaling” section). Colour schemes used for regulatory approved trac-
ers are in line with each of their FDA label prescribing information: 

[18F]flutemetamol (https://​www.​acces​sdata.​fda.​gov/​drugs​atfda_​docs/​
label/​2016/​20313​7s005​lbl.​pdf), [18F]florbetaben (https://​www.​acces​
sdata.​fda.​gov/​drugs​atfda_​docs/​label/​2014/​20467​7s000​lbl.​pdf), [18F]
florbetapir (https://​www.​acces​sdata.​fda.​gov/​drugs​atfda_​docs/​label/​
2012/​20200​8s000​lbl.​pdf)

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/203137s005lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/203137s005lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204677s000lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204677s000lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202008s000lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202008s000lbl.pdf
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(http://​adni.​loni.​usc.​edu/​categ​ory/​aibl-​study-​data/). More 
recently, in 2016, the AMYPAD consortium was initiated 
involving multiple academic and private research partners 
(https://​amypad.​eu/). AMYPAD consists of two substudies: 
(i) the diagnostic and patient management study (DPMS) 
[50], assessing amyloid PET’s impact on clinical manage-
ment and diagnosis where quantitative measures will be the 
secondary endpoint; and (ii) the prognostic and natural his-
tory study (PNHS) [51]. In the PNHS, quantitative measures 
are the primary endpoint and amyloid PET is used to under-
stand the development of AD in the pre-dementia phase of 
the disease, including cognitively unimpaired, SCD, and 
MCI participants. Given these goals, another major objective 
of AMYPAD is the development and validation of robust 
standardised methodology for quantitatively measuring 
brain amyloid [52], see “Future directions” section later in 
this review for an overview of AMYPAD’s ongoing studies. 
Studies such as these highlight the importance of amyloid 
PET and quantitative measures across the AD continuum, 
while visual reading remains the most common method of 
Aβ pathology in clinical routine.

Challenges of amyloid PET visual assessment 
across the clinical spectrum

Phase III autopsy validation studies have shown that binary 
classification through visual assessment is approximately 
90% accurate in advanced clinical and end-of-life subjects, 
providing a useful stratification of Aβ status for clinical rou-
tine, clinical trials, and research purposes [20, 21, 27]. In a 
heterogeneous clinical population, visual assessment can be 
challenged by partial volume effects compounded by corti-
cal thinning or atrophy, which in turn raises the question of 
whether or not to perform partial volume correction (PVC). 
The field remains divided on this issue, where recent evi-
dence suggests that PVC can increase sensitivity for detect-
ing early stage cerebral amyloidosis [53], but other studies 
comparing techniques have proven inconclusive [54, 55]. 
In addition, comorbidities such as normal pressure hydro-
cephalus [56] or other neurodegenerative disorders can fur-
ther complicate visual assessments [29, 57–60]. However, 
the proportion of pre-dementia patients assessed in memory 
clinics has significantly increased over the past few years, 
with up to ~25% of patients presenting with SCD [61]. In 
these subjects, amyloid deposition may be emerging or focal 
[62], which makes visual assessment more challenging, 
especially by less experienced readers [63]. In such cases, 
the dichotomous approach is more prone to subjectivity, as it 
heavily relies on the prior experience of the clinician, result-
ing in higher inter-rater variability [19, 30, 64–66]. There-
fore, adjunct quantitative measures of amyloid deposition 
and more sensitive thresholds are beneficial [25, 67–69]. 
In addition, quantification could hold a range of benefits 

and clinical utility on top of current binary classification, 
such as improvements in diagnostic confidence, prediction of 
cognitive decline, and changes to patient management [58, 
70–74]. Similar utility has been shown for other neurologi-
cal disorders, for example, quantification of regional atro-
phy patterns in dementia [75–78] and traumatic brain injury 
[79, 80]; hippocampal sclerosis and quantitative T2 signal in 
temporal lobe epilepsy [81–84]; stroke severity quantifica-
tion by critical care physicians [85, 86]; pre-surgical plan-
ning and survival prediction in glioma resection [87, 88]; 
and lesion load measurements in multiple sclerosis [89–91]. 
The various quantitative measures available for amyloid PET 
quantification are discussed in detail later in the review.

Aims of this state‑of‑the‑art review

In this review, methods for quantification of static amyloid 
PET scans are summarised and compared along with a 
discussion of the overall utility of amyloid PET quantifi-
cation in routine clinical practice, observational research, 
and clinical trials. The general aim is to facilitate greater 
understanding and wider use of sensitive standardised meth-
odologies for measuring Aβ pathology. More specifically, 
accurate cross-sectional and longitudinal measurement of 
brain amyloid pathology can support the use of amyloid PET 
biomarkers in clinical and research settings, by providing 
information on the extent of pathology. This could include 
the evaluation of both early and established amyloid pathol-
ogy, improving our understanding of disease development, 
and consequently optimise individualised risk stratification. 
Full quantification using dynamic PET acquisition and deter-
mination of the non-displaceable binding potential (BPND) 
were beyond the scope of this review; as such, the methods 
covered in this review constitute semi-quantification of amy-
loid PET. Indeed, factors such as acquisition time window 
and regional cerebral blood flow can impact methods based 
on static acquisitions, although the latter does not play a 
major role in an early AD population [92, 93]. For a review 
on the value of full PET quantitation, see Lammertsma [94].

Quantitative measures for clinical 
assessment of amyloid burden

Quantification of static amyloid PET scans can be per-
formed using software packages to calculate both regional 
and composite levels of amyloid burden. Importantly, these 
packages generate a continuous measure of amyloid burden 
which can be used in addition to dichotomous visual reads. 
Currently available measures are the more commonly used 
standardised uptake value ratio (SUVr) [95], the Centiloid 
(CL) scale [74, 96], and reference-based z-scores [97], while 
the more recent methods include the Aβ load [98], Aβ index 

http://adni.loni.usc.edu/category/aibl-study-data/
https://amypad.eu/
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[99], and AMYQ [100]. Both CL and z-scores are calculated 
based on SUVr, whereas the emerging methods use different 
approaches to select the target and reference regions for seg-
menting regions of interest (ROIs). In addition, each method 
provides a unique unit/scale and specific metric for quanti-
fication, which motivated inclusion in this review. A key 
area of current research focusses on the potential sensitivity 
of visual assessment and quantification methods to varia-
tion in scanners [101], reconstruction algorithms [102–104], 
scanning time, and scanning window [93, 105, 106], all of 
which can affect both visual assessment and quantification. 
See “Future directions” later in this review for an overview 
of ongoing technical validation studies. While these quan-
tification measures are becoming increasingly common for 
research purposes, some of these metrics have also been 
used in clinical practice and trial settings. Quantification 
could supplement visual inspection of amyloid PET imag-
ing, especially for (i) less experienced readers [63]; (ii) 
equivocal (“grey zone”) cases [107, 108] where diagnos-
tic confidence is low [109]; and (iii) for assessing isolated 
regional uptake [57, 110]. In clinical trials, quantification 
can be used to better guide patient enrolment and for therapy 
response monitoring [111–114].

Standardised uptake value ratio

The most widely used measure for quantifying amyloid 
burden is the SUVr. It is a simplified method based on 
computing the ratio of tracer uptake between a target 
region and a reference region in a late (static) PET acqui-
sition, when the radiotracer is expected to have reached 
pseudo-equilibrium [95] (Fig.  2). Target regions can 
include either individual regions or be a composite of 
several (cortical) regions. Common ROIs in the amyloid 
PET radiotracer product labels include the medial orbital 
frontal cortex, anterior cingulate, lateral temporal lobes, 

precuneus, posterior cingulate, parietal lobe, and striatum. 
On the other hand, reference regions should ideally have 
no specific tracer binding, similar tissue characteristics/
kinetics as the target regions, and tracer uptake in ref-
erence region should be unaffected by the disease under 
investigation, making the cerebellar cortex a suitable refer-
ence regions for amyloid tracers in most cases [94, 115]. 
Alternative reference regions have been proposed, such as 
the pons, whole cerebellum, and subcortical white mat-
ter, as their use generally results in increased stability of 
quantification over time [116–118].

Various software packages are clinically available (see 
“Regulatory approved tools and research methods for amy-
loid PET quantification” section below) to quantify brain 
amyloid using SUVr. Using these software approaches, 
optimal SUVr cut-offs for amyloid positivity have been 
defined using various approaches and for different pur-
poses: receiver operating characteristics for differential 
diagnosis [119], comparison with histological findings 
[19, 20], and using young healthy adults as a definition 
for amyloid negativity [120].

SUVr is the most widely used and established metric 
[121], having been implemented in several recent trials to 
assess treatment efficacy [122–128]. However, accurate 
measurement and cut-off values are highly dependent on 
the chosen tracer, reference region (Fig. 2), and delinea-
tion method [74, 129, 130], which challenges the pooling 
of multi-centre SUVr data across tracers [131]. In addi-
tion, there is high variability in longitudinal results [93, 
132], which limits the power in detecting genuine bio-
logical differences. SUVr values can also vary based on 
partial volume averaging effects [133, 134]. However, PVC 
intrinsically amplifies noise in trying to reduce bias and, 
therefore, a given PVC method needs to be finely tuned to 
the particular image characteristics so that the beneficial 
effects of the method outweigh anything detrimental.

Fig. 2   Example of the most 
common reference and target 
regions used when generating 
SUVr
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Centiloid scaling

As the use of different amyloid PET tracers grew in both 
clinical and research settings, there was a need for inter-
tracer standardisation of the SUVr metric in multi-centre 
collaborations. To this end, the CL scale was developed 
[74], which is an unbounded 0 (mean grey matter signal of 
young healthy controls) to 100 (typical AD patient signal) 
scale that conveys a single patient’s amyloid burden based on 
two anchor points using the [11C]PiB SUVr from the Global 
Alzheimer’s Association Interactive Network (GAAIN) ref-
erence dataset (http://​www.​gaain.​org/​CL-​proje​ct). The main 
aims of the CL scale were to (i) simplify and expedite direct 
comparison of Aβ PET results across sites and studies; (ii) 
outline the earliest thresholds for amyloid positivity and 
define the range of positivity in AD; (iii) robustly quantify 
longitudinal change; and (iv) facilitate inter-tracer compari-
sons [74]. Since then, several studies have tested the scale’s 
validity and used it to improve the harmonisation and stand-
ardisation of Aβ PET quantification across tracers, scanners, 
and analytical implementations [52, 96, 104, 118, 135–144].

The CL approach allows any site using amyloid PET to 
follow a multi-step process to generate a CL scaling from 
their own local Aβ PET data. The basic principle is to scale 
the 18F-labelled tracers’ SUVr to equivalent [11C]PiB SUVr, 
and this is further transformed to the 0–100 scale mentioned 
above. This process consists of a validation of the local pipe-
line using the GAAIN data and then the application to a new 
tracer [74, 138]. PET processing for CL quantification is 
often implemented through statistical parametric mapping 
(SPM) but other methods are available, including those with-
out the use of an accompanying MRI [96, 145]. Routinely, 
PET images are first co-registered to their corresponding 
T1-weighted MR images and subsequently transformed to 
MNI space. Next, PET images are intensity normalised often 
using the whole cerebellum as the primary reference region, 
and other reference regions include pons, cerebellar grey 
matter, and whole cerebellum plus brainstem. Finally, CL 
values are generated using the mean values of the standard 
CL target region based on a previously calibrated transfor-
mation [74]. The team behind the CL project and producers 
of the approved fluorine-18 labelled radiotracers have made 

progress in deriving and verifying conversion formulae that 
enable translation of non-[11C]PiB Aβ PET semi-quantita-
tive values to standardised [11C]PiB measures [52, 96, 136, 
143], see Table 1 for conversion equations using the stand-
ard CL processing pipeline. However, please note that the 
CL method can be applied to any non-standard pipeline, 
thus leading to a potentially unlimited number of conver-
sion equations.

Implementation

Since its development in 2015, the CL scale has been widely 
implemented in research studies, including both AMYPAD 
studies and various clinical trials (Fig. 3) [25, 51, 52, 57, 69, 
107, 112–114, 132, 136, 138, 146–155].

One of the key advantages of an “absolute” metric of 
amyloid burden is generalisation of quantitative thresholds 
across tracers and pipeline implementations. Universal 
cut-off or threshold values to denote amyloid status can be 
applied alongside visual reads and in longitudinal multi-
centre studies to facilitate inter-centre and inter-tracer com-
parisons. The CL approach has been validated against neuro-
pathology [148, 149] where CL < 10 correlates with absence 
of neuritic plaques, CL > 20 specified at least moderate 

Table 1   Conversion equations using the whole cerebellum as reference region applicable to the standard CL processing pipeline for generating 
CL scores with the most commonly used tracers, adapted from [101]

Tracer Variance (CL SD) 
young controls

Variance ratio 
(tracer SD/PiB SD)

Slope (tracer SUVR 
to PiB SUVR)

Intercept R2 CL equation
CL =

[18F]Florbetapir [143] 12.0 4.6 0.54 0.5 0.89 175.4*SUVRfbp–182.3
[18F]Flutemetamol [52] 5.4 1.54 0.78 0.2 0.95 121.4*SUVRflute–121.2
[18F]Florbetaben [136] 6.8 1.96 0.61 0.4 0.96 153.4*SUVRfbb–154.9
[11C]PiB [138] 3.5 n/a n/a n/a n/a 93.7*SUVRpib–94.6

"Centiloid"publications in PubMed
25

20

15

10

5

0
2014 2015 2016 2017 2018 2019 2020 2021

Fig. 3   Bar graph showing the increasing use of CLs in academic pub-
lications. The numbers were obtained through a PubMed search for 
“Centiloid” in all fields on 7th September 2021

http://www.gaain.org/centiloid-project
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plaque density, and > 50 CL best confirmed both neuro-
pathological and clinicopathological evidence of AD. Clini-
cal studies have also validated thresholds for amyloid PET 
positive status [25, 132, 146], defined “grey zone” patient 
cut-offs [107] and derived CL cut-offs to detect early amy-
loid abnormalities in cognitively unimpaired individuals [69, 
150–152]. Predictive models using the CL scale have been 
developed for calculating rate of cognitive decline in cog-
nitively normal subjects [153–155]. In addition, Hanseeuw 
et al. [156] found that a CL threshold of 26 in memory clinic 
patients optimally predicts progression to dementia 6 years 
after PET.

In clinical trial settings, quantification may be used to 
identify the optimal window for therapeutic intervention 
[157]. This is illustrated by the AHEAD 3-45 study, which 
requires participants to have specific levels of amyloid 
pathology, either “intermediate” (20–40 CL) or “elevated” 
(> 40 CL), signifying the added value beyond binary clas-
sifications [158]. The CL scale has been used in clinical trial 
settings to track therapy response measure [111–114, 159, 
160], determine strategies for reducing AD prevention trial 
sample sizes [161], and improve patient selection for trials 
[48, 162] and could assist in treatment endpoint decisions 
[51]. Various cut-offs established in the literature are sum-
marised in Fig. 4.

Z‑scores

Z-scores represent the number of standard deviations from 
the mean of a reference or control group and are generally 
based on SUVr values. It can be calculated for both com-
posite cortical regions, individual regions [97], and at voxel 

level [58, 163]. Therefore, z-scores are another method for 
establishing whether a subject’s amyloid deposition should 
be considered abnormal. Previous work using a classification 
threshold of z = 2.0 demonstrated high concordance with 
visual read and an autopsy cohort [97]. Based on a set of 
amyloid negative subjects, an average image (NIDAve) and a 
standard deviation image (NIDSD) are created. The patient 
scan (Pat) is then compared to this reference database as 
follows:

Implementation

Z-scores are widely used in several areas of medical 
research. In the context of amyloid PET, four of the five 
commercial software packages covered in this review gener-
ate z-scores. One recent study compared the results of two 
packages with visual assessment, reporting that both soft-
ware packages provide a high sensitivity and can assist with 
reporting more complex cases, such as those with atrophy or 
poor grey-white matter differentiation [164]. Optimal z-score 
thresholds for amyloid positivity have been established for 
the pons (1.97) and cerebellar cortex (2.41) as reference 
regions [165]. These thresholds have been validated against 
histopathological classification and visual read [97]. Several 
studies have used z-score maps for predicting and measuring 
temporal trajectories and patterns of Aβ and tau accumula-
tion in AD [70], where the entorhinal cortex is flagged as 

Pat
Zscore

=

Pat
SUVR

− NID
Ave

NID
SD

Fig. 4   Summary of the various 
CL thresholds established in the 
literature and in use for clinical 
current clinical trial inclusion
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one of earliest areas for tau deposition and medial cortical 
areas for Aβ deposits [166–168].

Aβ load

With the aim of increasing sensitivity for detecting change 
and therefore statistical power in clinical trials, the Aβ load 
metric was developed by Invicro (https://​invic​ro.​com/​case-​
studi​es/​amylo​id-​load/) as a novel approach to quantify global 
Aβ burden using [18F]florbetapir as the test ligand. In line 
with CL, PET images are co-registered to a correspond-
ing T1-weighted MRI and transformed to MNI space. The 
Aβ load metric is then generated based on spatiotemporal 
modelling work as a linear combination of two previously 
defined canonical images: (i) nonspecific binding of [18F]
florbetapir and (ii) “Aβ carrying capacity,” which is the 
greatest possible Aβ concentration for a specific region 
[169]. The final Aβ load calculation is performed with the 
MATLAB-implemented “AmyloidIQ algorithm,” which uses 
both cross-sectional and longitudinal PET and MRI from 
ADNI to generate a percentage of global Aβ burden [98, 
169].

Implementation

The Aβ load metric has been implemented for assessing 
amyloid accumulation in Down’s syndrome [170, 171] and 
in a multisite analysis of the concordance of visual read and 
amyloid PET quantification [65], which found 92.5% con-
cordance across 120 scans.

Aβ index

The Aβ PET pathology accumulation index does not require 
an MRI as it is based on a PET-driven principal component 
analysis (PCA) method [99, 172]. The Aβ index corresponds 
to a weighting factor acquired during spatial normalisation 
of the images to MNI space using a previously described 
adaptive principal component template [172]. Two principal 
components are generated using the single value decomposi-
tion from SUVr images: (i) the average of the images and 
(ii) either the specific binding or the elements of discrep-
ancy between Aβ positive and Aβ negative scans. A syn-
thetic template is generated using the linear combination 
of these two principal components, from which a bounded 
metric between −1 and 1 is generated to define the global 
Aβ burden.

Implementation

The Aβ index has not been widely used to date. Nonetheless, 
it was recently used in a study comparing visual read and 
automated methods for amyloid PET processing, where an 

optimal cut-off score of −0.36 achieved a sensitivity of 97% 
based on visual read in 155 elderly controls over a 4.5 year 
follow up [173].

AMYQ

The most recently developed technique is AMYQ, which 
is based on similar methodology to the Aβ index, does not 
require an MRI scan, and is interchangeable across tracers 
[100]. As with the Aβ index, a synthetic amyloid template 
is generated using PCA and is independent of predefined 
regions of minimal cortical load or corresponding reference 
regions for scaling the PET. AMYQ uses the same scale 
as CL and was recently validated against CL for detecting 
amyloid positivity (area under curve > 0.94) and for accu-
racy in differentiating AD dementia patients and controls 
[100]. AMYQ is yet to be used or validated in further clini-
cal studies.

Comparison of quantitative measures 
for assessing brain amyloid

The various methods have been summarised for direct com-
parison in Table 2, and Fig. 5 shows an example of each 
measure calculated from a subject with high and one with 
low amyloid uptake.

Regulatory approved tools and research 
methods for amyloid PET quantification

Various regulatory approved (FDA 510k/CE-marked) soft-
ware packages currently exist for automated quantification 
of amyloid PET:

1.	 Syntermed’s NeuroQ (https://​www.​synte​rmed.​com/​neu-
roq) — which generates z-scores and a “cortex-to-whole 
cerebellum ratio” based on the standard SUVr.

2.	 Hermes Medical Solutions’ BRASS (https://​www.​herme​
smedi​cal.​com/​neuro​logy/) — which generates an SUVr 
relative to the whole cerebellum and a z-score (≥ 2 in 
ROI is considered positive) based on a normative data-
base of 80 healthy controls [164].

3.	 MIM Software’s MIMneuro (https://​www.​mimso​
ftware.​com/​nucle​ar_​medic​ine/​mim_​neuro) — which 
uses a standardised PET template registration to gener-
ate voxel-based surface projections, regional and mean 
SUVr, and z-score statistics without the need for an MRI 
[181]. MIM has also recently implemented the Centiloid 
scale across multiple tracers.

4.	 GE Healthcare’s CortexID (https://​www.​gehea​lthca​re.​
com/​cours​es/​aw-​cortex-​id) — which generates SUVr 

https://invicro.com/case-studies/amyloid-load/
https://invicro.com/case-studies/amyloid-load/
https://www.syntermed.com/neuroq
https://www.syntermed.com/neuroq
https://www.hermesmedical.com/neurology/
https://www.hermesmedical.com/neurology/
https://www.mimsoftware.com/nuclear_medicine/mim_neuro
https://www.mimsoftware.com/nuclear_medicine/mim_neuro
https://www.gehealthcare.com/courses/aw-cortex-id
https://www.gehealthcare.com/courses/aw-cortex-id
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and z-score surface projection maps of individual 
patients [97].

5.	 Siemens Healthineers’ Syngo.VIA (https://​www.​sieme​
ns-​healt​hinee​rs.​com/​medic​al-​imagi​ng-​it/​advan​ced-​visua​
lizat​ion-​solut​ions/​syngo​via) — which uses positive 
cut-off value of SUVr ≥ 1.17 and a further threshold 
of SUVr ≥ 1.08 to assess “identifiable” levels of Aβ 
plaques, both of which are derived from previous work 
[182].

6.	 Qubiotech’s Neurocloud PET (https://​www.​qubio​tech.​
com/​en/​solut​ions/​neuro​cloud-​pet/) — which generates 
individual SUVr using the whole cerebellum as a refer-
ence region.

Other tools are available in research settings, such as 
PMOD (https://​www.​pmod.​com/​web/?​portf​olio=​CL), 
MIAKAT (https://​nmmit​ools.​org/​2019/​01/​01/​miakat/), 
CapAIBL [183], EvaLuation of Brain Amyloidosis (ELBA) 
[184], and NiftyPET (https://​github.​com/​Nifty​PET/​Nifty​
PET) [102]. In addition, companies with CE/FDA cleared 
tools in the radiology AI space have software in development 
and validation stages, such as ADM diagnostics (https://​
admdx.​com/), icometrix (https://​icome​trix.​com/​servi​ces), 
Cortechs.ai (https://​www.​corte​chs.​ai/​produ​cts/​petqu​ant-
2/), and Combinostics (www.​combi​nosti​cs.​com). However, 
detailed coverage of these tools is beyond the scope of this 
review as they are not yet approved for clinical use.

Why is amyloid PET quantification valuable 
and clinically beneficial?

In this review, various methods for automated quantifica-
tion of amyloid PET measures are presented and discussed. 
These methods are becoming more widely available and 
there is a duty of care to the wider dementia community to 

increase their visibility and facilitate greater understanding 
of these methods.

Quantification in clinical practice

Quantification of amyloid PET has shown strong concord-
ance with binary visual assessment in several studies [25, 
57, 63, 65, 66, 97, 107, 109, 173, 174, 185]. Amyloid PET 
tracers available in clinical and research settings have all 
demonstrated comparable cross-sectional amyloid SUVr 
results [186–188]. However, there has been no direct head-
to-head comparison of the three tracers within the same 
cohort. As such, the individual effectiveness of each tracer 
in, for example, assessing an equivocal test set remains to be 
seen. Other recent studies have found that using quantifica-
tion alongside visual reads improves diagnostic confidence 
[33, 36, 38–40, 189], accuracy, and consistency for (i) early 
detection of amyloid (mild AD, MCI, and controls) [58, 
190]; (ii) less experienced readers, i.e. those with visual read 
accuracy of ≤ 90% [63]; and (iii) more difficult to interpret 
cases, such as patients with unclear diagnoses or weaker 
grey-white matter differentiation [57, 109, 164]. However, 
additional inter-tracer standardisation is required to facili-
tate multi-centre patient assessment, collaborations, and 
longitudinal evaluation [191]. More broadly, there remains 
a need to increase the general understanding of quantita-
tive measures and their diagnostic information. SUVr is 
the most widely used metric but, as previously mentioned, 
accurate results are highly dependent on chosen reference 
region and its delineation [74, 129, 130]. The CL scale could 
provide a continuous standardised metric that aligns the use 
of target and reference regions and harmonises the outcome 
measures [74, 146]. Multiple standardised cut-offs have also 
been established to progress beyond simple binary stratifica-
tion, provide prognostic information, and predict cognitive 
decline (Fig. 4).

Fig. 5   Example of quantitative metrics computed on two subjects 
from the AIBL dataset scanned with [18F]flutemetamol. Low amyloid 
uptake (left image) and high amyloid uptake (right image), includ-
ing demographics. It was not possible to compute AMYQ due to 

the proprietary nature of the software. Abbreviations: mini-mental 
state examination (MMSE), standardised uptake value ratio (SUVr); 
amyloid-β (Aβ)

https://www.siemens-healthineers.com/medical-imaging-it/advanced-visualization-solutions/syngovia
https://www.siemens-healthineers.com/medical-imaging-it/advanced-visualization-solutions/syngovia
https://www.siemens-healthineers.com/medical-imaging-it/advanced-visualization-solutions/syngovia
https://www.qubiotech.com/en/solutions/neurocloud-pet/
https://www.qubiotech.com/en/solutions/neurocloud-pet/
https://www.pmod.com/web/?portfolio=centiloid
https://nmmitools.org/2019/01/01/miakat/
https://github.com/NiftyPET/NiftyPET
https://github.com/NiftyPET/NiftyPET
https://admdx.com/
https://admdx.com/
https://icometrix.com/services
https://www.cortechs.ai/products/petquant-2/
https://www.cortechs.ai/products/petquant-2/
http://www.combinostics.com
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Objective quantification of amyloid burden is imper-
ative now more than ever due to the recent approval of 
aducanumab (Aduhelm) in the USA and the potential 
availability of other amyloid targeted therapies. Putting 
controversies aside, accurate Aβ measures are essential 
for prescribing the drug, and future similar drugs, most 
effectively in clinical practice. For example, prophylactic 
removal of amyloid may not be suitable for all amyloid 
positive patients, such as those with dual pathologies and 
mixed dementia [192]. The aducanumab appropriate use 
recommendations advocate determination of amyloid sta-
tus but do not cover when, if ever, treatment should stop or 
the requirements of a maintenance regimen [193]. In the 
future, therapy response monitoring with quantitative met-
rics might be relevant from a perspective of patient burden 
and health economics. With further research, quantitative 
amyloid PET could provide universal thresholds along-
side visual assessment for deeming treatment as either suc-
cessful or unsuccessful on a per patient basis, and thereby 
assisting in the decision to continue or cease treatment. 
Further work on the clinical benefit of adjunct quantifica-
tion is encouraged; see Table 3 in “Future directions” for 
an overview of relevant ongoing AMYPAD studies.

Quantification and prevention trials

In addition to clinical practice, established CL thresholds 
can also be used to improve clinical trial enrolment [48, 
158, 161, 162], assess treatment response [111–114, 159, 
160], and, as previously mentioned, potentially guide 
treatment endpoint decisions. Aducanumab is not an AD 
dementia panacea and will likely form part of a combined 
therapy [193, 196–198]. Indeed, there are several ongo-
ing and planned clinical trials of novel anti-amyloid and 
anti-tau agents. These phase II and III trials are large, 
multi-centre and multi-tracer with the inclusion of data 
from different scanners, which have implemented stand-
ardised and validated quantitative metrics, such as the CL 
scale. Furthermore, in clinical trials of multiple active 
dose and placebo-controlled arms, PET signal changes 
must be averaged across subjects in each treatment arm, 
highlighting the value of the CL scale. Quantitative met-
rics will also be critical in establishing the ideal disease 
stage for therapeutic intervention and if/when to withdraw 
a drug [69, 161, 162, 199]. Trials are increasingly enroll-
ing cognitively unimpaired individuals who have started to 
accumulate regional Aβ but are still considered “negative” 
both visually and dichotomously, i.e. preclinical AD [6, 
200]. In these cases, visual reading can be challenging but 

Table 3   Overview of current validation requirements in amyloid PET quantification and the associated AMYPAD studies currently underway

What research is still required to validate amyloid PET quantification? What studies are in place to perform this validation?

Technical validation
Measure agreement among quantification and visual read across 

cohorts to assess robustness across populations
Diagnostic and Patient Management Study (DPMS) [50] and Prognostic 

and Natural History Study (PNHS) [51]
Evaluate the utility and robustness of longitudinal quantification 

measures
Systematic review (PROSPERO ID: CRD42021254695) updating previ-

ous work by Schmidt et al., from 2015 [134]
Calculate the impact of data harmonisation on global CL quantifica-

tion
Ongoing work presented at AAIC 2020: “Harmonization of Amyloid 

PET Scans Minimizes the Impact of Reconstruction Parameters on 
Centiloid Values” [103]

Assess CL stability as a function of pipeline design, reference region 
selection, cortical target, and image resolution. Provide optimal 
pipeline for multi-centre studies

Ongoing work presented at AAIC 2021: “Evaluating robustness of the 
Centiloid scale against variations in amyloid PET image resolution” 
[194]

Compare static acquisition derived metrics with full quantitation 
derived from dual-time window dynamic imaging

“Parametric imaging of dual-time window [18F]flutemetamol and [18F]
florbetaben studies” [195]. Tertiary outcome of the PNHS; predicting 
disease progression analyses [51]

Routine clinical use (diagnostic settings)
Determine clinical utility of amyloid PET quantification using a 

randomised-controlled trial design
Primary outcome of the DPMS [50]

Formally test if and when quantification approaches support visual 
assessment of difficult cases

Secondary outcome of the DPMS [50]

Assess the value of regional visual read and quantification in routine 
clinical settings

Tertiary outcome of the DPMS [50]

Scientific and clinical trial settings
Assess value of quantification to improve risk stratification and indi-

vidualised disease trajectory in the earliest stages of AD
Primary outcome of the PNHS [51]
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quantification could automatically flag this “grey-zone” 
status [153–155, 190, 200].

Regional measures of amyloid burden

Regional estimates of Aβ deposition measured with PET 
scanning are a potential advantage over CSF and blood-
based biomarkers, which do not convey this valuable 
information [201]. Recently, the field of AD research has 
focussed on the value of the topographical distribution and 
extent of amyloid burden, beyond binary classification of the 
amyloid status [199, 202, 203]. Studies so far have demon-
strated the added value of this information for both disease-
modifying therapies [112] and in clinical use, especially 
during the earliest phases of amyloid accumulation where 
cognitive symptoms are subtle [38, 110, 204–206]. In these 
cases, regional assessment has improved detection and there 
remains a need to reliably quantify this early amyloid pathol-
ogy as secondary prevention trials, such as the AHEAD 3-45 
study, move to treat preclinical AD subjects with low but 
detectable Aβ levels [200]. Additionally, there is benefit in 
improving the prognostic value of amyloid imaging in rou-
tine clinical practice, by considering the regional location 
and extent of pathological load, which could improve subject 
placement along the AD trajectory [199, 207, 208]. While 
useful, regional quantification brings an additional challenge 
where smaller regions are more sensitive to quantification 
errors and confounding factors, such as partial volume 
effects and changes in cerebral blood flow.

Possible influence of cerebral blood flow

Quantitative measures remain sensitive to changes in cer-
ebral blood flow (CBF), albeit less of an issue in early stages 
of dementia [92, 93]. This may reduce the accuracy of lon-
gitudinal assessment [134] and acquisitions outside of the 
predefined time window. This review is broadly targeted to 
the generalist reader rather than specialists but it is worth 
noting that other (fully) quantitative approaches do exist. 
These methods require dynamic PET acquisitions and phar-
macokinetic modelling using a plasma or reference tissue 
input. From these scans, the specific tracer binding can be 
derived, as changes in physiological factors are accounted 
for, such as CBF and tracer clearance [93]. However, these 
measures face a similar dependency on radiotracer and also 
require a longer dynamic acquisition protocol with complex 
processing requirements, which limits routine clinical use. 
Future longitudinal intervention studies could make greater 
use of dynamic imaging to measure smaller effects but this 
is much less likely in clinical routine due to time constraints 
[161]. Dual-phase or dual-time window protocols could be 
considered instead, as they provide measures of specific 
tracer binding but with shorter acquisition protocols [105, 

106]. Nevertheless, the gain in precision would need to be 
beneficial to the overall workflow and should not supersede 
routine scanning otherwise.

Future directions

Across the field, there are several initiatives aiming to 
assess the direct impact of amyloid PET, both clinically 
and in terms of health economics. While large projects 
such as the IDEAS trial and ABIDE study [33] already 
demonstrated the substantial effect on diagnosis and 
patient management, more recent outcomes are focussed 
on how undergoing amyloid PET affects hospitalisa-
tion, and therefore medical costs. In addition, differences 
among racial and ethnic groups are under investigation in 
the Health & Aging Brain among Latino Elders (HABLE) 
[209]. The next IDEAS phase aims to address racial dis-
parities by recruiting a diverse cohort of at least 2,000 
African American and 2,000 Latino subjects among the 
planned study population of 7,000 [210]. The IDEAS team 
recently published their PET-only processing pipeline to 
support the use of standardised quantitative measures in 
heterogeneous datasets [211]. These efforts are paramount 
to optimising the use of amyloid PET quantification in 
clinical routine and trial settings.

Within this context, the AMYPAD initiative covers 
several projects on the utility, robustness, and harmonisa-
tion of amyloid PET, especially for longitudinal measure-
ments. As a body of work, the planned and current stud-
ies encompass the relevant validation necessary to drive 
greater uptake of quantitative measures in clinic for the 
benefit of patients worldwide. The ongoing AMYPAD 
studies aiming to meet these validation requirements are 
also outlined in Table 3.

Although it is a topic beyond the scope of this paper, 
quantitative analysis is likely to be complemented by AI-
driven analysis techniques in the future. Indeed, various 
deep learning-based strategies currently exist for amy-
loid status prediction [212, 213] and SUVr quantification 
[214], and it will be of great interest to see how techniques 
such as these develop and contribute to the field.

Limitations

Given that this review focusses on the clinical utility of 
amyloid PET quantification, it was out of scope to assess 
amyloid PET vs CSF or plasma amyloid measures, other 
experimental tracers, or PET imaging measures of neu-
roinflammation and synaptic density. While the CL scale 
has been used to assess amyloid and tau PET relationships 
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and their prognostic value [215–217], discussion of tau 
PET was also out of scope although it remains a topic of 
interest. Furthermore, dynamic PET scanning can provide 
greater precision over static PET but requires longer acqui-
sition time, which limits clinical use, and the overall added 
value still needs to be determined in different indications. 
As such, dynamic imaging protocols have not been fully 
discussed in this review. Finally, it was not possible to 
compute the AMYQ metric due to the proprietary nature 
of the software.

Conclusion

In conclusion, several metrics are available to facilitate amy-
loid PET quantification. Accurate, tracer-independent meas-
urements are needed now more than ever, and use of these 
methods is increasing. Individual strengths and weaknesses 
have been presented in this state-of-the-art review. Various 
recent methods do not require an MRI or a priori reference 
regions but they do require further validation in multi-centre 
studies against expert visual rating. The CL method has been 
widely validated and provides the dementia field with a con-
tinuous and universal metric. This method aligns the use of 
target and reference regions and harmonises the outcome 
measures. Several studies have validated CL thresholds for 
capturing the dynamic transition of patients from amyloid 
negativity to positivity, as well as for measuring disease pro-
gression, patient stratification, and prognostic assessment. 
However, further work is still required to determine thresh-
old validity for longitudinal assessment, treatment endpoint 
decisions, clinical trial inclusion, optimising therapy inter-
vention time points, and guiding dose selection.
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